
Perforce 2004.2
System Administrator’s Guide

September 2004

This manual copyright 1997-2004 Perforce Software.

All rights reserved.

Perforce software and documentation is available from http://www.perforce.com. You may download and use
Perforce programs, but you may not sell or redistribute them. You may download, print, copy, edit, and redistribute
the documentation, but you may not sell it, or sell any documentation derived from it. You may not modify or attempt
to reverse engineer the programs.

Perforce programs and documents are available from our Web site as is. No warranty or support is provided. Warran-
ties and support, along with higher capacity servers, are sold by Perforce Software.

Perforce Software assumes no responsibility or liability for any errors or inaccuracies that may appear in this book.

By downloading and using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce Software. Perforce software includes software developed
by the University of California, Berkeley and its contributors.

All other brands or product names are trademarks or registered trademarks of their respective companies or organi-
zations.

Table of Contents
Preface About This Manual ... 9
Using Perforce? ...9
Please Give Us Feedback ...9

Chapter 1 Welcome to Perforce:
Installing and Upgrading... 11
Getting Perforce ..11
UNIX Installation..11

Download the files and make them executable12
Create a Perforce server root directory ...12
Telling Perforce servers on which port to listen13
Telling Perforce client programs which port to connect to13
Starting the Perforce server...14
Stopping the Perforce server...14

Windows Installation ...14
Windows services and servers ...15
Starting and stopping Perforce...15

Upgrading a Perforce Server...16
Using old client programs with a new server ..16
Important notes for 2001.1 and later..16
UNIX upgrades...17
Windows upgrades ..18

Installation and Administration Tips...18
Release and license information...18
Observe proper backup procedures ..19
Use separate physical drives for server root and journal.......................19
Use protections and passwords..19
Allocate disk space for anticipated growth ..20
Managing disk space after installation ...20
Large filesystem support...21
UNIX and NFS support...21
Windows: Username and password required for network drives........22
UNIX: Run p4d as a non-privileged user ...22
Logging errors ..22
Perforce 2004.2 System Administrator’s Guide 3

Table of Contents
Case sensitivity issues... 23
Tune for performance.. 23

Chapter 2 Supporting Perforce:
Backup and Recovery ... 25
Backup and Recovery Concepts .. 25

Checkpoint files ... 26
Journal files... 28
Versioned files .. 30

Backup Procedures .. 31
Recovery Procedures ... 33

Database corruption, versioned files unaffected 33
Both database and versioned files lost or damaged............................... 35
Ensuring system integrity after any restoration 37

Chapter 3 Administering Perforce:
Superuser Tasks ... 39
Basic Perforce Administration ... 39

Authentication methods: passwords and tickets.................................... 39
Server security levels .. 41
Resetting user passwords... 43
Creating users .. 43
Preventing creation of users... 43
Deleting obsolete users ... 45
Reverting files left open by obsolete users .. 45
Reclaiming disk space by obliterating files ... 45
Deleting changelists and editing changelist descriptions 47
File verification by signature ... 47
Defining filetypes with p4 typemap... 48
Forcing operations with the -f flag.. 50

Advanced Perforce Administration .. 52
Running Perforce through a firewall .. 52
Specifying IP addresses in P4PORT.. 55
Running from inetd on UNIX.. 55
Case sensitivity and multi-platform development................................. 56
Monitoring server activity.. 58
4 Perforce 2004.2 System Administrator’s Guide

Table of Contents
Perforce server trace flags ...60
Moving a Perforce Server to a new machine ..61

Moving your versioned files and Perforce database...............................61
Changing the IP address of your server ...63
Changing the hostname of your server...63

Using Multiple Depots...64
Defining new depots..64
Other depot operations ...65

Remote depots and distributed development..65
When to use remote depots ..66
How remote depots work ...66
Using remote depots for code drops ...67

Chapter 4 Administering Perforce:
Protections.. 71
When Should Protections Be Set?...71
Setting Protections with “p4 protect” ..71

The permission lines’ five fields...71
Access levels..72
Which users should receive which permissions?73
Default protections...74
Interpreting multiple permission lines ...74
Exclusionary protections ...75

Granting Access to Groups of Users..76
Creating and editing groups...76
Groups and protections ...76
Deleting groups ..77

How Protections are Implemented ..77
Access Levels Required by Perforce Commands...78

Chapter 5 Customizing Perforce:
Job Specifications .. 81
The Default Perforce Job Template ..81
The Job Template’s Fields ..82

The Fields: field ..83
The Values: fields..85
Perforce 2004.2 System Administrator’s Guide 5

Table of Contents
The Presets: field.. 85
The Comments: field... 86

Caveats, Warnings, and Recommendations... 87
Example: A Custom Template ... 88
Working with third-party defect tracking systems..................................... 89

Using P4DTI - Perforce Defect Tracking Integration.............................. 89
Building your own integration.. 90
Getting more information .. 90

Chapter 6 Scripting Perforce:
Triggers and Daemons.. 91
Triggers.. 91

The trigger table... 92
Triggering on changelists ... 95
Triggering on specifications ... 98
Using multiple triggers... 101
Writing triggers to support multiple Perforce Servers......................... 102
Triggers and security... 102
Triggers and Windows.. 102

Daemons.. 103
Perforce’s change review daemon .. 103
Creating other daemons ... 104
Commands used by daemons ... 105
Daemons and counters ... 106
Scripting and buffering... 106

Chapter 7 Tuning Perforce for Performance............................ 107
Tuning for Performance .. 107

Memory... 107
Filesystem performance.. 107
Disk space allocation... 108
Network .. 109
CPU.. 109

Diagnosing Slow Response Times..110
Hostname vs. IP address ...110
Try p4 info vs. P4Win ...110
6 Perforce 2004.2 System Administrator’s Guide

Table of Contents
Windows wildcards ... 111
DNS lookups and the hosts file.. 111
Location of the “p4” executable ... 111

Preventing Server Swamp...112
Using tight views..112
Assigning protections ..113
Limiting database queries ...114
Scripting efficiently ..116
Using compression efficiently ..118

Checkpoints for Database Tree Rebalancing ..119

Chapter 8 Perforce and Windows ... 121
Using the Perforce installer ...121

Upgrade notes...121
Installation options...121
Scripted deployment and unattended installation................................123

Windows services vs. Windows servers..124
Starting and stopping the Perforce service...124
Starting and stopping the Perforce server ..124
Installing the Perforce service on a network drive................................125

Multiple Perforce services under Windows..125
Windows configuration parameter precedence ...127
Resolving Windows-related instabilities...128
Users having trouble with P4EDITOR or P4DIFF128

Chapter 9 Perforce Proxy ... 131
System Requirements...132
Installing P4P...132

UNIX ..132
Windows..132

Running P4P..132
Running as a Windows service ..132

P4P flags...133
Administering P4P ...134

No backups required ...134
Stopping P4P...134
Managing disk space consumption ...134
Perforce 2004.2 System Administrator’s Guide 7

Table of Contents
Determining if your Perforce client is using the proxy........................ 134
P4P and protections... 135
Determining if specific files are being delivered from the proxy....... 135

Maximizing performance improvement .. 136
Network topologies versus P4P .. 136
Pre-loading the cache directory for optimal initial performance 137
Distributing disk space consumption... 137
Reducing server CPU usage by disabling file compression................ 137

Appendix A Perforce Server (p4d) Reference.............................. 139
Synopsis .. 139
Syntax .. 139
Description ... 139
Exit Status ... 139
Options.. 139
Usage Notes.. 140
Related Commands ... 141

Index.. 143
8 Perforce 2004.2 System Administrator’s Guide

Preface About This Manual
This is the Perforce 2004.2 System Administrator’s Guide.

This guide is intended for people responsible for installing, configuring, and maintaining
Perforce servers. This guide covers tasks typically performed by a “system administrator”
(for instance, installing and configuring the software, and ensuring uptime and data
integrity), as well as tasks performed by a “Perforce administrator”, such as setting up
Perforce users, configuring Perforce depot access controls, resetting Perforce user
passwords, and so on.

Because Perforce requires no special system permissions, a Perforce administrator does
not typically require root-level access. Depending on your site’s needs, your Perforce
administrator need not be your system administrator.

Both the UNIX and Windows versions of the Perforce server are administered from the
command line. To familiarize yourself with the Perforce Command-Line Client, see the
Perforce Command Reference.

Using Perforce?

If you plan to use Perforce as well as administer a Perforce server, see the Perforce User’s
Guide for information on Perforce from a user’s perspective.

All of our documentation is available from our web site at http://www.perforce.com.

Please Give Us Feedback

We are interested in receiving opinions on it from our users. In particular, we’d like to
hear from users who have never used Perforce before. Does this guide teach the topic
well? Please let us know what you think; we can be reached at manual@perforce.com.
Perforce 2004.2 System Administrator’s Guide 9

Preface: About This Manual
10 Perforce 2004.2 System Administrator’s Guide

Chapter 1 Welcome to Perforce:
Installing and Upgrading
This chapter describes how to install a Perforce server or upgrade an existing installation.

This chapter includes a brief overview of things to consider at installation time, along
with some basic security and administration tips. More detailed information on
administrative tasks is found in later chapters.

Getting Perforce

Perforce requires at least two executables: the server (p4d), and at least one Perforce client
program (such as p4 on UNIX, or p4.exe or p4win.exe on Windows).

The server and client executables are available from the Downloads page on the Perforce
web site:

http://www.perforce.com/perforce/loadprog.html

Go to the web page, select the files for your platform, and save the files to disk.

UNIX Installation

Although you can install p4 and p4d in any directory, on UNIX, the Perforce client
programs typically reside in /usr/local/bin, and the Perforce server is usually located
either in /usr/local/bin or in its own server root directory. Perforce client programs can
be installed on any machine that has TCP/IP access to the p4d host.

To limit access to the Perforce server files, ensure that the p4d executable is owned and
run by a Perforce user account that has been created for the purpose of running the
Perforce server.

Warning! If you are upgrading an existing installation to Release 2001.1 or later, see
the notes in “Upgrading a Perforce Server” on page 16 before proceeding.

Windows Where the UNIX and Windows versions of Perforce differ, a note to that
effect is made. For Windows-specific information, see “Perforce and
Windows” on page 121.

Many of the examples in this book are based on the UNIX version of the
Perforce server. In most cases, the examples apply equally to both Windows
and UNIX installations.

OS X The material for UNIX also applies to MacOS X.
Perforce 2004.2 System Administrator’s Guide 11

Chapter 1: Welcome to Perforce: Installing and Upgrading
To start using Perforce:

1. Download the p4 and p4d files for your platform from the Perforce web site.

2. Make the downloaded p4 and p4d files executable.

3. Create a server root directory to hold the Perforce database and versioned files.

4. Tell the Perforce server what port to listen to by specifying a TCP/IP port to p4d.

5. Start the Perforce server (p4d).

6. Specify the name or TCP/IP address of the Perforce server machine and the p4d port
number to the Perforce client program(s) by setting the P4CLIENT environment
variable.

Download the files and make them executable

On UNIX (or MacOS X), you must make the Perforce executables (p4 and p4d) executable.
After downloading the programs, use the chmod command to make them executable, as
follows:

Create a Perforce server root directory

The Perforce server stores all user-submitted files and system-generated metadata in files
and subdirectories beneath its own root directory. This directory is called the server root.

To specify a server root, set the environment variable P4ROOT to point to the server root, or
use the -r root_dir flag when invoking p4d. Perforce client programs never use the
P4ROOT directory or environment variable; the p4d server is the only process that uses the
P4ROOT variable.

Because all Perforce files are stored beneath the server root, the contents of the server root
will grow over time. See “Installation and Administration Tips” on page 18 for a brief
overview of diskspace requirements, and “Disk space allocation” on page 108 for more
detail.

A Perforce server requires no privileged access; there is no need to run p4d as root or any
other privileged user. For more information, see the section entitled “UNIX: Run p4d as a
non-privileged user” on page 22.

The server root can be located anywhere, but the account that runs p4d must have read,
write, and execute permissions on the server root and all directories beneath it. For
security purposes, set the umask(1) file creation-mode mask of the account that runs p4d
to a value that denies other users access to the server root directory.

chmod +x p4
chmod +x p4d
12 Perforce 2004.2 System Administrator’s Guide

Chapter 1: Welcome to Perforce: Installing and Upgrading
Telling Perforce servers on which port to listen

The p4d server and Perforce client programs communicate with each other using TCP/IP.
When p4d starts, it listens (by default) on port 1666. The Perforce client assumes (also by
default) that its p4d server is located on a host named perforce, listening on port 1666.

If p4d is to listen on a different port, specify that port with the -p port_num flag when
starting p4d (as in, p4d -p 1818), or set the port with the P4PORT environment or registry
variable.

Unlike P4ROOT, the environment variable P4PORT is used by both the Perforce server and
Perforce client programs, and must be set on both Perforce server machines and Perforce
client workstations.

Telling Perforce client programs which port to connect to

Perforce client programs need to know on what machine the p4d server resides, and on
which TCP/IP port the p4d server program is listening. Set each Perforce user’s P4PORT
environment variable to host:port#, where host is the name of the machine on which
p4d is running, and port# is the port on which p4d is listening.

Examples:

If the Perforce client program is running on the same host as p4d. only the p4d port
number need be provided in P4PORT. If p4d is running on a host named or aliased
perforce, and is listening on port 1666, the definition of P4PORT for the client can be
dispensed with altogether. For example:

If your p4d host is not named perforce, you can simplify life somewhat for your Perforce
users by setting perforce as an alias to the true host name in your users’ workstations’
/etc/hosts files, or by doing so via Sun’s NIS or Internet DNS.

If P4PORT is... Then...

dogs:3435 The client program connects to the p4d server on host dogs listening at
port 3435.

x.com:1818 The client program connects to the p4d server on host x.com listening at
port 1818.

If P4PORT is... Then...

3435 The client program connects to the p4d server on its local host listening
at port 3435.

<not set> The client program connects to the p4d server on the host named or
aliased perforce listening on port 1666.
Perforce 2004.2 System Administrator’s Guide 13

Chapter 1: Welcome to Perforce: Installing and Upgrading
Starting the Perforce server

After setting p4d’s P4PORT and P4ROOT environment variables, start the server by running
p4d in the background with the command:

p4d &

Although the example shown is sufficient to run p4d, other flags that control such things
as error logging, checkpointing, and journaling, can be provided.

Example: Starting a Perforce server.

P4PORT can be overridden by starting p4d with the -p flag, and P4ROOT can be overridden by
starting p4d with the -r flag. A journal file can be specified with the -J flag, and errors can
be logged to a file specified with a -L flag. A startup command that overrides the environment
variables might look like this:

The -r, -J, and -L flags (and others) are discussed in “Supporting Perforce: Backup and
Recovery” on page 25. A complete list of server flags is provided in the “Perforce Server (p4d)
Reference” on page 139.

Stopping the Perforce server

To shut down a Perforce server, use the command:
p4 admin stop

to gracefully shut down the Perforce server. Only a Perforce superuser can use p4 admin
stop.

If you are running a release of Perforce from prior to 99.2, you must find the process ID of
the p4d server and kill the process manually from the UNIX shell. Use kill -15 (SIGTERM)
instead of kill -9 (SIGKILL), as p4d might leave the database in an inconsistent state if
p4d is in the middle of updating a file when a SIGKILL signal is received.

Windows Installation

To install Perforce on Windows, use the Perforce installer (perforce.exe) from the
Downloads page of the Perforce web site.

Use the Perforce installer to:

• Install Perforce client software (“User install”).

This option enables you to install p4.exe (the Perforce Command-Line Client),
p4win.exe (P4Win, the Perforce Windows Client), and p4scc.dll (Perforce’s
implementation of the Microsoft common SCM interface).

p4d -r /usr/local/p4root -J /var/log/journal -L /var/log/p4err -p 1818 &
14 Perforce 2004.2 System Administrator’s Guide

Chapter 1: Welcome to Perforce: Installing and Upgrading
• Install Perforce as either a Windows server or service as appropriate. (“Administrator
typical” and “Administrator custom” install).

These options enable you to install Perforce client programs and the Perforce Windows
server (p4d.exe) and service (p4s.exe) executables, or to automatically upgrade an
existing Perforce server or service running under Windows.

Under Windows 2000 or higher, you must have Administrator privileges to install
Perforce as a service, and Power User privileges to install Perforce as a server.

• Uninstall Perforce: remove the Perforce server, service, and client executables, registry
keys, and service entries. The Perforce database and the depot files stored under your
server root are preserved.

For more about installing on Windows, see “Using the Perforce installer” on page 121.

Windows services and servers

The terms “Perforce server” and “p4d” are used interchangeably to refer to “the process
which handles requests from Perforce client programs”. In cases where the distinction
between an NT server and an NT service is important, the distinction is made.

On UNIX systems, there is only one Perforce “server” program (p4d) responsible for this
back-end task. On Windows, however, the back-end program can be started either as a
Windows service (p4s.exe) process that runs at boot time, or as a server (p4d.exe)
process that must be invoked from a command prompt.

The Perforce service (p4s.exe) and the Perforce server (p4d.exe) executables are copies
of each other; they are identical apart from their filenames. When run, the executables use
the first three characters of the name with which they were invoked (either p4s or p4d) to
determine their behavior. (For example, invoking copies of p4d.exe named
p4smyservice.exe or p4dmyserver.exe invoke a service and a server, respectively.)

In most cases, it is preferable to install Perforce as a service, not a server. For a more
detailed discussion of the distinction between services and servers, see “Windows
services vs. Windows servers” on page 124.

Starting and stopping Perforce

If you install Perforce as a service under Windows, the service starts whenever the
machine boots. Use the Services applet in the Control Panel to control the Perforce
service’s behavior.

If you install Perforce as a server under Windows, invoke p4d.exe from a command
prompt. The flags for p4d under Windows are the same as those used under UNIX.
Perforce 2004.2 System Administrator’s Guide 15

Chapter 1: Welcome to Perforce: Installing and Upgrading
To stop a Perforce service (or server) at Release 99.2 or above, use the command:
p4 admin stop

Only a Perforce superuser can use p4 admin stop.

For older revisions of Perforce, shut down services manually by using the Services applet
in the Control Panel. Shut down servers running in command prompt windows by
typing CTRL-C in the window or by clicking on the icon to Close the command prompt
window.

Although these manual shutdown options work with Release 99.2 and earlier versions of
Perforce, they are not necessarily “clean”, in the sense that the server or service is shut
down abruptly. With the availability of the p4 admin stop command in 99.2, the manual
shutdown options are obsolete.

Upgrading a Perforce Server

Whether your Perforce server is installed on Windows or UNIX, you must back up your
server (see “Backup Procedures” on page 31) as part of any upgrade process.

Using old client programs with a new server

Although older Perforce client programs (p4, p4.exe, p4win.exe, and p4scc.dll)
generally work with newer server versions, some features in new server releases require
upgrades to Perforce client programs. In general, users with older client programs are
able to use features available from the Perforce server at the client program’s release level,
but are not able to use the new server features offered by subsequent server upgrades.

Perforce’s remote depot support is an exception: remote depot support is not guaranteed
to work unless all Perforce servers are at or above Release 98.2.

Important notes for 2001.1 and later

On small installations (installations with fewer than 1000 submitted changelists),
installing a 2001.1 (or more recent) server automatically upgrades the underlying
database from versions 98.2 and up.

On larger installations, you must upgrade the database manually. Although the upgraded
database is typically smaller than a pre-2001.1 database, the upgrade process may

Warning! If you are upgrading to 2001.1 or later, it is imperative that you read the
notes pertaining to the 2001.1 upgrade.
16 Perforce 2004.2 System Administrator’s Guide

Chapter 1: Welcome to Perforce: Installing and Upgrading
(temporarily) require approximately three times the size of the existing database to store
files required during the upgrade.

If you are upgrading from Release 97.3 or earlier to 2001.1 or later, the automatic or
manual upgrade procedures will not work; you will likely have to make an intermediate
checkpoint. Contact Perforce technical support for assistance before upgrading a Release
97.3 or earlier server.

UNIX upgrades

To upgrade your current Perforce server to a newer version, your Perforce license file
must be current. Expired licenses do not work with upgraded servers. (Restrictions on
license files are not an issue for users running a two-user installation with no license.)

You must back up your server as described in “Backup Procedures” on page 31 as part of
any upgrade process.

For additional safety, run p4 verify as part of your upgrade. See “Verifying during
server upgrades” on page 48 for details.

Upgrading from UNIX Release 98.2 or later

If you have a valid license (or require no license) and are upgrading from Release 98.2 or
later:

1. Download the new p4d executable for your platform

2. Stop the current instance of p4d

3. Make a checkpoint and back up your old installation

4. Install the new p4d in the desired location

Note If you have limited disk space, see the Release Notes for a more precise
estimate of the amount of disk space required.

By turning off journaling during the upgrade (by setting P4JOURNAL to
off), you can reduce the amount of disk space required for the upgrade.
(Remember to turn journaling back on when the upgrade is complete!)

Warning! Upgrading to Release 2001.1 or later requires an upgrade of your database
files. Downgrading thereafter requires a that you restore from backups.

If you wish to keep your pre-2001.1 server available as a fallback option
when upgrading to 2001.1 or higher, you must back up your entire server
root (including the db.* files) after stopping the server.
Perforce 2004.2 System Administrator’s Guide 17

Chapter 1: Welcome to Perforce: Installing and Upgrading
5. Run p4d -xu to upgrade the database.

6. Restart the new p4d with your site’s usual parameters.

Your users should then be able to use the new server.

Windows upgrades

On Windows, download the installer (perforce.exe) and follow the installation dialog.

The upgrade process on Windows is extremely conservative; in the event of an error
condition during an upgrade, you will be able to revert to your pre-upgrade Perforce
server or service.

If you have any questions or difficulties during an upgrade, contact Perforce technical
support.

Installation and Administration Tips

Release and license information

Perforce servers are licensed according to how many users they support.

Licensing information is contained in a file called license in the server root directory.
The license file is a plain text file supplied by Perforce Software. Without the license
file, the Perforce server limits itself to two users and two client workspaces.

Note If your server has fewer than 1000 changes, the upgrade runs automatically.
Larger installations require that you run p4d -xu manually.

You must have sufficient disk space to complete the upgrade. The required
amount is typically two to three times the size of the larger of the db.have
or db.integ files.

The db.have and db.integ files reside in your P4ROOT directory.

Note If your server has fewer than 1000 changes, the upgrade runs automatically.
Larger installations require that you run p4d -xu manually.

Either way, you must have sufficient disk space to complete the upgrade.
The required amount is typically two to three times the size of the larger of
the db.have or db.integ files.

The db.have and db.integ files reside in your P4ROOT directory.
18 Perforce 2004.2 System Administrator’s Guide

Chapter 1: Welcome to Perforce: Installing and Upgrading
To view current licensing information, invoke p4d -V from the server root directory
where the license file resides, or by specifying the server root directory either on the
command line (p4d -V -r server_root) or in the P4ROOT environment variable.

If the server is running, you can also use p4 info to view your licensing information.

The server version is also displayed when invoking p4d -V or p4 -V.

Observe proper backup procedures

Regular backups of your Perforce data are vital. The key concepts are:

• Make sure journaling is active,

• Create checkpoints regularly, and

• Use p4 verify regularly.

See “Supporting Perforce: Backup and Recovery” on page 25 for a full discussion of
backup and restoration procedures.

Use separate physical drives for server root and journal

Whether installing on UNIX or Windows, it is advisable to have your P4ROOT directory
(that is, the directory containing your database and versioned files) on a different physical
drive than your journal file.

By storing the journal on a separate drive, you can be reasonably certain that if a disk
failure corrupts the drive containing P4ROOT, such a failure will not affect your journal file.
You can then use the journal file to restore any lost or damaged metadata.

Further details are available in “Supporting Perforce: Backup and Recovery” on page 25.

Use protections and passwords

Until you define a Perforce superuser, every Perforce user is a Perforce superuser, and can
run any Perforce command on any file. After starting a new Perforce server, use:

p4 protect

as soon as possible to define a Perforce superuser. To learn more about how p4 protect
works, see “Administering Perforce: Protections” on page 71.

Without passwords, any user is able to impersonate any other Perforce user, either with
the -u flag or by setting P4USER to an existing Perforce user name. Use of Perforce
passwords prevents such impersonation. See the Perforce User’s Guide for details.

To set (or reset) a user’s password, use p4 passwd username (as a Perforce superuser),
and enter the new password for the user, or invoke p4 user -f username (also while as
a Perforce superuser) and enter the new password into the user specification form. The
Perforce 2004.2 System Administrator’s Guide 19

Chapter 1: Welcome to Perforce: Installing and Upgrading
former command is supported in release 99.1 or later; the latter command is supported
under all releases from 97.3 onwards.

The security-conscious Perforce superuser also uses p4 protect to ensure that no access
higher than list is granted to non-privileged users, and to ensure that each user has a
Perforce password.

Allocate disk space for anticipated growth

Because the collection of versioned files grows over time, a good guideline is to allocate
sufficient space in your P4ROOT directory to hold three times the size of your users’
present collection of versioned files, plus an additional 0.5K per user per file to hold the
database files that store the list of depot files, file status, and file revision histories.

For a more detailed example of a disk sizing estimate, see “Disk space allocation” on
page 108.

Managing disk space after installation

All of Perforce’s versioned files reside in subdirectories beneath the server root, as do the
database files, and (by default) the checkpoints and journals. If you are running low on
disk space, consider the following approaches to limit disk space usage:

• Configure Perforce to store the journal file on a separate physical disk. Use the
P4JOURNAL environment variable or p4d -J to specify the location of the journal file.

• Checkpoint on a daily basis to keep the journal file short.

• Compress checkpoints, or use the -z option to tell p4d to compress checkpoints on the
fly.

• Use the -jc prefix option with the p4d command to write the checkpoint to a different
disk. Alternately, use the default checkpoint files, but back up your checkpoints to a
different drive and then delete the copied checkpoints from the root directory. Moving
checkpoints to separate drives is good practice not only in terms of diskspace, but due
to the fact that old checkpoints are needed when recovering from a hardware failure,
and if your checkpoint and journal files reside on the same disk as your depot, a
hardware failure could leave you without the ability to restore your database.

• On UNIX systems, you can relocate some or all of the depot directories to other disks by
using symbolic links. If you use symbolic links to shift depot files to other volumes,
create the links only after stopping the Perforce server.

• If your installation’s database files have grown to more than 10 times the size of a
checkpoint, you may be able to reduce the size of the files by recreating them from a
checkpoint. See “Checkpoints for Database Tree Rebalancing” on page 119.
20 Perforce 2004.2 System Administrator’s Guide

Chapter 1: Welcome to Perforce: Installing and Upgrading
Large filesystem support

Early versions of the Perforce server, as well as some operating systems, limit Perforce
database files (the db.* files in the P4ROOT directory that hold your site’s metadata) to 2GB
in size. The db.have file holds the list of files currently synced to client workspaces, and
tends to grow the most quickly.

If you anticipate any of your Perforce database files growing beyond the 2GB level, install
the Perforce server on a platform with support for large files. The following combinations
of operating system and Perforce server revision support database files larger than 2GB:

UNIX and NFS support

The Perforce server process has been tested and is supported on the Solaris 2.6 (and
higher) implementations of NFS. Because Perforce client programs never directly access
the files in P4ROOT, the only process needing access to P4ROOT is the p4d server itself.

Consequently, under Solaris 2.6 or higher, you can store your journal, log, depot, and
db.* files on NFS-mounted filesystems.

Some issues still remain regarding file locking on non-commercial implementations of
NFS (for instance, Linux and FreeBSD). On these platforms, store your journal, log, depot,
and db.* files on a drive local to the server machine, not on an NFS-mounted volume.

These issues affect only the Perforce Server process (p4d). Perforce client programs, (such
as p4, the Perforce Command-Line Client) have always been able to work with client
workspaces on NFS-mounted drives, such as client workspaces located in users’ home
directories.

Operating System OS version: Perforce Server Revision

Windows NT, 2000, XP All versions,
SP6 recommended for NT

98.2/8127 or higher

FreeBSD All versions 98.2/5713 or higher

Linux x86 Kernels 2.4.0 and higher 2002.2/21749 or higher

HP-UX HP-UX 11.11 and higher 2001.1/26433 or higher

Solaris 2.6 and higher 98.2/7488 compiled for 2.6 or
higher

Tru64 UNIX
(a.k.a. Digital UNIX, OSF/1)

All versions 98.2/5713 or higher

SGI IRIX 6.2 All versions 98.2/5713 or higher

SGI IRIX 5.3 Only with the SGI-
supplied xfs upgrade

98.2/5713 or higher

xfs OS upgrade required
Perforce 2004.2 System Administrator’s Guide 21

Chapter 1: Welcome to Perforce: Installing and Upgrading
Windows: Username and password required for network drives

By default, the Perforce service runs under the Windows local System account. Because
Windows requires a real account name and password to access files on a network drive, if
Perforce is installed as a service under Windows with P4ROOT pointing to a network drive,
the installer requires an account name and a password. The Perforce service is then
configured with the supplied data and run as the specified user instead of System. (The
account running the service must have Administrator privileges on the machine.)

Although Perforce operates reliably with its root directory on a network drive, it does so
only at a substantial performance penalty, as all writes to the database are performed over
the network. For optimal performance, install the Windows service to use local drives
rather than networked drives.

For more information, see “Installing the Perforce service on a network drive” on
page 125.

UNIX: Run p4d as a non-privileged user

The Perforce server process does not require privileged access. For security reasons, do
not run p4d as root or otherwise grant the owner of the p4d process root-level privileges.

Create a non-privileged UNIX user (for example, “perforce”) to manage p4d and
(optionally) a UNIX group for it (for example, “p4admin”). Use the umask(1) command to
ensure that the server root (P4ROOT) and all files and directories created beneath it are
writable only by the UNIX user perforce, and (optionally) readable by members of the
UNIX group p4admin.

Under this configuration, the Perforce server (p4d), running as UNIX user perforce, can
write to files in the server root, but no users are able to read or overwrite its files. Access to
read the files created by p4d (that is, the depot files, checkpoints, journals, and so on) can
subsequently be granted to trusted users by making them members of the UNIX group
p4admin.

Logging errors

Use the -L flag to p4d or the environment variable P4LOG to specify the Perforce server’s
error output file. If no error output file is defined, errors are dumped to the p4d process’
standard error.

Windows On Windows, directory permissions are set securely by default; when
running as a server, the Perforce server root is accessible only to the user
who invoked the server from the command prompt. When installed as a
service, the files are owned by the LocalSystem account, and are accessible
only to those with Administrator access.
22 Perforce 2004.2 System Administrator’s Guide

Chapter 1: Welcome to Perforce: Installing and Upgrading
Although p4d tries to ensure that all error messages reach the user, if an error occurs and
the client program disconnects before the error is received, p4d also logs these errors to its
error output.

The Perforce server also supports trace flags used for debugging purposes. See “Perforce
server trace flags” on page 60 for details.

Case sensitivity issues

Whether your Perforce server is running on Windows or UNIX, if your site is involved in
cross-platform development (that is, if you are using Perforce client programs on both
Windows and UNIX workstations), your users must be aware of certain details regarding
case sensitivity issues. See “Case sensitivity and multi-platform development” on page 56
for details.

Tune for performance

Perforce is an efficient consumer of network bandwidth and CPU power. The most
important variables that determine server performance are the efficiency of your server’s
disk I/O subsystem and the number of files referenced in any given user-originated
Perforce operation.

For more detailed performance tuning information, see “Tuning Perforce for
Performance” on page 107.
Perforce 2004.2 System Administrator’s Guide 23

Chapter 1: Welcome to Perforce: Installing and Upgrading
24 Perforce 2004.2 System Administrator’s Guide

Chapter 2 Supporting Perforce:
Backup and Recovery
The Perforce server stores two kinds of data: versioned files and metadata. Both are stored in
the server’s root directory.

• Versioned files are files submitted by Perforce users. Versioned files are stored in
directory trees called depots. There is one subdirectory under the server’s root directory
for each depot in your Perforce installation. The versioned files for a given depot are
stored in a tree of directories beneath this subdirectory.

• Database files store metadata, including changelists, opened files, client specs, branch
specs, and other data concerning the history and present state of the versioned files.
Database files appear as db.* files in the top level of the server root directory. Each db.*
file contains a single, binary-encoded database table.

Backup and Recovery Concepts

Disk space shortages, hardware failures, and system crashes can corrupt any of the
Perforce server’s files. That’s why the entire Perforce root directory structure (your
versioned files and your database) should be backed up regularly.

As mentioned earlier, versioned files are stored in subdirectories beneath your Perforce
server root, and can be restored directly from backups without any loss of integrity.

The files making up the Perforce database, on the other hand, may not have been in a state
of transactional integrity at the moment they were copied to the system backups.
Restoring the db.* files from system backups may result in an inconsistent database. The
only way to guarantee the integrity of the database after it’s been damaged is to
reconstruct the db.* files from Perforce checkpoint and journal files.

• A checkpoint is a snapshot or copy of the database at a particular moment in time.

• A journal is a log that records updates made to the database since the last snapshot was
taken.

The checkpoint file is often much smaller than the original database, and can be made
smaller still by compressing it. The journal file, on the other hand, can grow quite large; it
is truncated whenever a checkpoint is made, and the older journal is renamed. The older
journal files can then be backed up offline, freeing up more space locally.
Perforce 2004.2 System Administrator’s Guide 25

Chapter 2: Supporting Perforce: Backup and Recovery
Both the checkpoint and journal are text files, and have the same format. A checkpoint
and, if available, its subsequent journal, can restore the Perforce database.

Because the information stored in the Perforce database is as irreplaceable as your
versioned files, checkpointing and journaling are an integral part of administering a
Perforce server, and should be performed regularly.

Checkpoint files

A checkpoint is a file that contains all information necessary to recreate the metadata in the
Perforce database. When you create a checkpoint, the Perforce database is locked,
enabling you to take an internally consistent snapshot of that database.

Versioned files are backed up separately from checkpoints. This means that a checkpoint
does not contain the contents of versioned files, and as such, you cannot restore any
versioned files from a checkpoint. You can, however, restore all changelists, labels, jobs,
and so on, from a checkpoint.

To guarantee database integrity upon restoration, the checkpoint must be as old as, or
older than, the versioned files in the depot. This means that the database should be
checkpointed, and the checkpoint generation must be complete, before the backup of the
versioned files starts.

Regular checkpointing is important to keep the journal from getting too long. Making a
checkpoint immediately before backing up your system is good practice.

Creating a checkpoint

Checkpoints are not created automatically; someone or something must run the
checkpoint command on the Perforce server machine. You can create a checkpoint by
invoking the p4d program with the -jc (journal-create) flag:

p4d -r root -jc

This can be run while the Perforce server (p4d) is running.

To make the checkpoint, p4d locks the database and then dumps its contents to a file
named checkpoint.n, where n is a sequence number. Before it unlocks the database, p4d
also copies the journal file to a file named journal.n-1, and then truncates the current
journal. This guarantees that the last checkpoint (checkpoint.n) combined with the
current journal (journal) always reflects the full contents of the database at the time the
checkpoint was created.

Warning! Checkpoints and journals archive only the Perforce database files, not the
files in the depot directories! You must always back up the depot files (your
versioned files) with the standard OS backup commands after
checkpointing.
26 Perforce 2004.2 System Administrator’s Guide

Chapter 2: Supporting Perforce: Backup and Recovery
(The sequence numbers reflect the roll-forward nature of the journal; to restore databases
to older checkpoints, match the sequence numbers. That is, the database reflected by
checkpoint.6 can be restored by restoring the database stored in checkpoint.5 and
rolling forward the changes recorded in journal.5. In most cases, you’re only interested
in restoring the current database, which is reflected by the highest-numbered
checkpoint.n rolled forward with the changes in the current journal.)

You can specify a prefix for the checkpoint and journal filename by using the -jc option.
That is, if you create a checkpoint with:

p4d -jc prefix

your checkpoint and journal files will be named prefix.ckp.n, or prefix.jnl.n
respectively, where prefix is as specified on the command line and n is a sequence
number. If no prefix is specified, the default filenames checkpoint.n and journal.n are
used.

As of Release 99.2, if you need to take a checkpoint but are not on the machine running the
Perforce server, you can create a checkpoint remotely with the p4 admin command. Use:

p4 admin checkpoint [prefix]

to take the checkpoint and optionally specify a prefix to the checkpoint and journal files.
(You must be a Perforce superuser to use p4 admin.)

A checkpoint file may be compressed, archived, or moved onto another disk. At that time
or shortly thereafter, the files in the depot subdirectories should be archived as well.

When recovering, the checkpoint must be at least as old as the files in the depots. (that is, the
versioned files can be newer than the checkpoint, but not the other way around.) As you
might expect, the shorter this time gap, the better.

You can set up an automated program to create your checkpoints on a regular schedule.
Be sure to always check the program’s output to ensure that checkpoint creation was
started.

If the checkpoint command itself fails, contact Perforce Technical Support immediately.
Checkpoint failure is usually a symptom of a resource problem (disk space, permissions,
etc.) that can put your database at risk if not handled correctly.

Note The meaning of the argument to -jc changed in Release 99.2.

Prior to Release 99.2, the files created with p4d -jc prefix would have
been prefix.n (for the checkpoint) and journal.n (for the old journal).

The behavior in 99.2 is a change from that in previous releases; if you have
scripts which rely on the old behavior, you may have to modify them.
Perforce 2004.2 System Administrator’s Guide 27

Chapter 2: Supporting Perforce: Backup and Recovery
Journal files

The journal is the running transaction log that keeps track of all database modifications
since the last checkpoint. It’s the bridge between two checkpoints.

If you have Monday’s checkpoint and the journal that was collected from then until
Wednesday, those two files (Monday’s checkpoint plus the accumulated journal) contain
the same information as a checkpoint made Wednesday. If a disk crash were to cause
corruption in your Perforce database on Wednesday at noon, for instance, you could still
restore the database even though Wednesday’s checkpoint hadn’t yet been made.

To restore your database, you only need to keep the most recent journal file accessible, but
it doesn’t hurt to archive old journals with old checkpoints, should you ever need to
restore to an older checkpoint.

Enabling journaling on Windows

For Windows installations, if you used the installer (perforce.exe) to install a Perforce
server or service, journaling is turned on for you.

If you installed Perforce without the installer (for an example of when you might do this,
see “Multiple Perforce services under Windows” on page 125), you do not have to create
an empty file named journal in order to enable journaling under a manual installation on
Windows.

Enabling journaling on UNIX

For UNIX installations, journaling is also automatically enabled.

If P4JOURNAL is left unset (and no location is specified on the command line), the default
location for the journal is $P4ROOT/journal.

After enabling journaling

Be sure to create a new checkpoint with p4d -jc (and -J journalfile if required)
immediately after enabling journaling. Once journaling is enabled, you’ll need make
regular checkpoints to control the size of the journal file. An extremely large current
journal is a sign that a checkpoint is needed.

Warning! By default, the current journal file name is journal and it resides in the
P4ROOT directory. However, if a disk failure corrupts that root directory,
your journal file will be inaccessible too.

We strongly recommend that you set up your system so that the journal is
written to a filesystem other than the P4ROOT filesystem. You can specify
this from the command line, or set P4JOURNAL before starting the Perforce
server to tell it where to write the journal.
28 Perforce 2004.2 System Administrator’s Guide

Chapter 2: Supporting Perforce: Backup and Recovery
Every checkpoint after your first checkpoint starts a new journal file and renames the old
one. The old journal is renamed to journal.n, (or prefix.jnl.n for Release 99.2 or
later) where n is a sequence number, and a new journal file is created.

By default, the journal is written to the file journal in the server root directory (P4ROOT).
Since there is no sure protection against disk crashes, the journal file and the Perforce
server root should be located on different filesystems, ideally on different physical disk
drives. The name and location of the journal can be changed by specifying the name of the
journal file in the environment variable P4JOURNAL, or by providing the -J filename flag
to p4d.

Whether you use P4JOURNAL or the -J journalfile option to p4d, the journal file name
can be provided either as an absolute path, or as a path relative to the server root.

Example: Specifying journal files

Starting the server with:

requires that you either checkpoint with:

or set P4JOURNAL to /usr/local/perforce/journal and use

If your P4JOURNAL environment variable (or command-line specification) doesn’t match the
setting used when you started the Perforce server, the checkpoint is still created, but the
journal is neither saved nor truncated. This is highly undesirable!

Warning! If you create a journal file with the -J filename flag, make sure that
subsequent checkpoints use the same file, or the journal will not be
properly renamed.

$ p4d -r $P4ROOT -p 1666 -J /usr/local/perforce/journalfile

Perforce Server starting...

$ p4d -r $P4ROOT -J /usr/local/perforce/journalfile -jc

Checkpointing to checkpoint.19...
Saving journal to journal.18...
Truncating /usr/local/perforce/journalfile...

$ p4d -r $P4ROOT -jc

Checkpointing to checkpoint.19...
Saving journal to journal.18...
Truncating /usr/local/perforce/journalfile...
Perforce 2004.2 System Administrator’s Guide 29

Chapter 2: Supporting Perforce: Backup and Recovery
Disabling journaling

To disable journaling, stop the server, remove the existing journal file (if it exists), set the
environment variable P4JOURNAL to off, and restart p4d without the -J flag.

Versioned files

Your checkpoint and journal files are used to reconstruct the Perforce database files only.
Your versioned files are stored in directories under the Perforce server root, and must be
backed up separately.

Versioned file formats

Versioned files are stored in subdirectories beneath your server root. Text files are stored
in RCS format, with filenames of the form filename,v. There is generally one RCS-format
(,v) file per text file. Binary files are stored in full in their own directories named
filename,d. Depending on the Perforce file type selected by the user storing the file,
there may be one or more archived binary files in each filename,d directory. If more than
one file resides in a filename,d directory, each one refers to a different revision of the
binary file, and is named 1.n, where n is the revision number.

As of Release 99.2, Perforce also supports the AppleSingle file format for Macintosh. On
the server, these files are stored in full, compressed, just like other binary files. They are
stored in the Mac’s AppleSingle file format; if need be, these files can be copied directly
from the server root, uncompressed, and used as-is on a Macintosh.

Because Perforce uses compression in the depot files, do not assume compressibility of the
data when sizing backup media. Both text and binary files are either compressed by the
Perforce server (denoted by the .gz suffix) before storage, or are stored uncompressed. At
most installations, if any binary files in the depot subdirectories are being stored
uncompressed, they were probably incompressible to begin with. (For example, many
image, music, and video file formats are incompressible.)

Back up after checkpointing

In order to ensure that the versioned files reflect all the information in the database after a
post-crash restoration, the db.* files must be restored from a checkpoint that is at least as
old as (or older than) your versioned files. For this reason, create the checkpoint before
backing up the versioned files in the depot directory or directories.

While your versioned files can be newer than the data stored in your checkpoint, it is in
your best interest to keep this difference to a minimum; in general, you’ll want your
backup script to back up your versioned files immediately after successfully completing a
checkpoint.
30 Perforce 2004.2 System Administrator’s Guide

Chapter 2: Supporting Perforce: Backup and Recovery
Backup Procedures

To back up your Perforce server, perform the following steps as part of your nightly
backup procedure:

1. Verify the integrity of your server and add file signatures to any new files:
p4 verify //...
p4 verify -u //...

You may wish to pass the -q (quiet) option to p4 verify. If called with the -q option,
p4 verify produces output only when errors are detected.

The first command (p4 verify) recomputes the MD5 signatures of all of your
archived files and compares them with those stored when p4 verify -u was first
run on them. It also ensures that all files known to Perforce actually exist in the depot
subdirectories; a disk-full condition that results in corruption of the database or
archived files during the day can be detected by examining the output of these
commands.

The second command (p4 verify -u) updates the database with MD5 signatures for
any new file revisions for which checksums have not yet been computed.

By running p4 verify -u before the backup, you ensure that you create and store
checksums for any files new to the depot since your last backup, and that these
checksums are stored as part of the backup you’re about to take.

The use of p4 verify is optional, but is good practice not only because it enables you
to spot any server corruption before a backup is made, but it also gives you the
ability, following a crash, to detect whether or not the files restored from your
backups are in good condition.

2. Make a checkpoint by invoking p4d with the -jc (journal-create) flag, or by using the
p4 admin command. Use one of:

p4d -jc

or (as of Release 99.2 or higher):
p4 admin checkpoint

Note If your site is very large, p4 verify may take some time to run, and you
may wish to perform this step on a weekly basis rather than on a daily
basis. For more about the p4 verify command, see “File verification by
signature” on page 47.
Perforce 2004.2 System Administrator’s Guide 31

Chapter 2: Supporting Perforce: Backup and Recovery
Because p4d locks the entire database when making the checkpoint, you do not
generally have to stop your Perforce server during any part of the backup procedure.

If you are using the -z flag to create a gzip-compressed checkpoint, the checkpoint
file is named as specified. If you want the compressed checkpoint file to end in .gz,
you must explicitly specify the .gz on the command line.

3. Ensure that the checkpoint has been created successfully before backing up any files.
(After a disk crash, the last thing you want to discover is that the checkpoints you’ve
been backing up for the past three weeks were incomplete!)

You can tell that the checkpoint command has completed successfully by examining
the error code returned from p4d -jc, or by observing the truncation of the current
journal file.

4. Once the checkpoint has been created successfully, back up the checkpoint file, the
old journal file, and your versioned files.

(If you don’t require an audit trail, you don’t actually need to back up the journal. It
is, however, usually good practice to do so.)

You never need to back up the db.* files. Your latest checkpoint and journal contain
all the information necessary to re-create them. More significantly, a database

Note If your site is very large (say, several GB of db.* files), creating a checkpoint
may take a considerable length of time.

Under such circumstances, you may wish to defer checkpoint creation and
journal truncation until times of low system activity. You might, for
instance, archive only the journal file in your nightly backup, and only
create checkpoints and roll the journal file on a weekly basis.

Note There are rare instances (for instance, users obliterating files during
backup, or submitting files on Windows during the file backup portion of
the process) in which your depot files may change during the interval
between the time the checkpoint was taken and the time at which the depot
files get backed up by the backup utility.

Most sites are affected by these issues; having the Perforce server available
on a 24/7 basis is generally a benefit worth this minor risk, especially if
backups are being performed at times of low system activity.

If, however, the reliability of every backup is of paramount importance,
consider stopping the Perforce server before checkpointing, and restarting
it after the backup process has completed. Doing so will eliminate all risk of
the system state changing during the backup process.
32 Perforce 2004.2 System Administrator’s Guide

Chapter 2: Supporting Perforce: Backup and Recovery
restored from db.* files is not guaranteed to be in a state of transactional integrity. A
database restored from a checkpoint is.

Recovery Procedures

If the database files become corrupted or lost, either because of disk errors, a hardware
failure such as a disk crash, the database can be recreated with your stored checkpoint
and journal.

There are many ways in which systems can fail; while this guide cannot address all of
them, it can at least provide a general guideline for recovery from the two most common
situations, specifically:

• corruption of your Perforce database only, without damage to your versioned files, and

• corruption to both your database and versioned files.

The recovery procedures for each failure are slightly different, and are discussed
separately in the following two sections.

If you suspect corruption in either your database or versioned files, contact Perforce
technical support.

Database corruption, versioned files unaffected

If only your database has been corrupted, (that is, your db.* files were on a drive that
crashed, but you were using symbolic links to store your versioned files on a separate
physical drive), you need only re-create your database.

You will need:

• The last checkpoint file, which should be available from the latest P4ROOT directory
backup.

Windows On Windows, if you make your system backup while the Perforce server is
running, you must ensure that your backup program doesn’t attempt to
back up the db.* files.

If you try to back up the db.* files with a running server, Windows locks
them while the backup program backs them up. During this brief period,
the Perforce server is unable to access the files; if a user attempts to perform
an operation that would update the file, the server may fail.

If your backup software doesn’t allow you to exclude the db.* files from
the backup process, stop the server with p4 admin stop before backing up,
and restart the server after the backup process is complete.
Perforce 2004.2 System Administrator’s Guide 33

Chapter 2: Supporting Perforce: Backup and Recovery
• The current journal file, which should be on a separate filesystem from your P4ROOT
directory, and which should therefore have been unaffected by any damage to the
filesystem where your P4ROOT directory was held.

You will not need:

• Your backup of your versioned files; if they weren’t affected by the crash, they’re
already up to date.

To recover the database

1. Stop the current instance of p4d:
p4 admin stop

(You must be a Perforce superuser to use p4 admin.)

2. Rename (or move) the corrupt database (“db.*”) files:
mv your_root_dir/db.* /tmp

The corrupt db.* files aren’t actually used in the restoration process, but it’s safe
practice not to delete them until you’re certain your restoration was successful.

3. Invoke p4d with the -jr (journal-restore) flag, specifying your most recent
checkpoint and current journal. If you explicitly specify the server root ($P4ROOT),
the -r $P4ROOT argument must precede the -jr flag:

p4d -r $P4ROOT -jr checkpoint_file journal_file

This recovers the database as it existed when the last checkpoint was taken, and then
apply the changes recorded in the journal file since the checkpoint was taken.

Check your system

Your restoration is complete. See “Ensuring system integrity after any restoration” on
page 37 to make sure your restoration was successful.

Note If you’re using the -z (compress) option to compress your checkpoints
upon creation, you’ll have to restore the uncompressed journal file
separately from the compressed checkpoint.

That is, instead of using:

p4d -r $P4ROOT -jr checkpoint_file journal_file

you’ll use two commands:

p4d -r $P4ROOT -z -jr checkpoint_file.gz
p4d -r $P4ROOT -jr journal_file

You must explicitly specify the .gz extension yourself when using the -z
flag, and ensure that the -r $P4ROOT argument precedes the -jr flag.
34 Perforce 2004.2 System Administrator’s Guide

Chapter 2: Supporting Perforce: Backup and Recovery
Your system state

The database recovered from your most recent checkpoint, after you’ve applied the
accumulated changes stored in the current journal file, is up to date as of the time of
failure.

After recovery, both your database and versioned files should reflect all changes made up
to the time of the crash, and no data should have been lost.

Both database and versioned files lost or damaged

If both your database and your versioned files were corrupted, you need to restore both
the database and your versioned files, and you’ll need to ensure that the versioned files
are no older than the restored database.

You will need:

• The last checkpoint file, which should be available from the latest P4ROOT directory
backup.

• Your versioned files, which should be available from the latest P4ROOT directory
backup.

You will not need:

• Your current journal file. The journal contains a record of changes to the metadata and
versioned files that occurred between the last backup and the crash; because you’ll be
restoring a set of versioned files from a backup taken before that crash, the checkpoint
alone contains the metadata useful for the recovery, and the information in the journal
is of limited or no use.

To recover the database

1. Stop the current instance of p4d:
p4 admin stop

(You must be a Perforce superuser to use p4 admin.)

2. Rename (or move) the corrupt database (“db.”) files:
mv your_root_dir/db.* /tmp

The corrupt db.* files aren’t actually used in the restoration process, but it’s safe
practice not to delete them until you’re certain your restoration was successful.

3. Invoke p4d with the -jr (journal-restore) flag, specifying only your most recent
checkpoint:

p4d -r $P4ROOT -jr checkpoint_file
Perforce 2004.2 System Administrator’s Guide 35

Chapter 2: Supporting Perforce: Backup and Recovery
This recovers the database as it existed when the last checkpoint was taken, but does
not apply any of the changes in the journal file. (The -r $P4ROOT argument must
precede the -jr flag.)

The database recovery without the roll-forward of changes in the journal file brings
the database up to date as of the time of your last backup. In this scenario, you do not
want to apply the changes in the journal file, because the versioned files you restored
reflect only the depot as it existed as of the last checkpoint.

To recover your versioned files

4. After recovering the database, you then need to restore the versioned files according
to your system’s restoration procedures (for instance, the UNIX restore(1)
command) to ensure that they are as new as the database.

Check your system

Your restoration is complete. See “Ensuring system integrity after any restoration” on
page 37 to make sure your restoration was successful.

Note that files submitted to the depot between the time of the last system backup and the
disk crash will not be present in the restored depot.

Your system state

After recovery, your depot directories may not contain the newest versioned files. That is,
files submitted after the last system backup but before the disk crash may have been lost.

• In most cases, the latest revisions of such files can be restored from the copies still
residing in your users’ client workspaces.

Note Although “new” files (submitted to the depot but not yet backed up) will
not appear in the depot after restoration, it’s possible (indeed, highly
probable!) that at one or more of your users have up-to-date copies of such
files present in their client workspaces.

Your users can find such files by using Perforce to examine how files in
their client workspaces differ from those in the depot. If they run:

p4 diff -se

...they’ll be provided with a list of files in their workspace which differ from
the files Perforce believes them to have. After verifying that these files are
indeed the files you wish to restore, you may wish to have one of your
users open these files for edit and submit them to the depot in a changelist.
36 Perforce 2004.2 System Administrator’s Guide

Chapter 2: Supporting Perforce: Backup and Recovery
• In a case where only your versioned files (but not the database, which may have resided
on a separate disk and remained unaffected by the crash) were lost, you may also be
able to make a separate copy of your database and apply your journal to it in order to
examine recent changelists to track down files submitted between the last backup and
the disk crash.

In either case, contact Perforce technical support for further assistance.

Ensuring system integrity after any restoration

After any restoration, it’s wise to run p4 verify to ensure the versioned files are at least
as new as the database:

p4 verify -q //...

This command verifies the integrity of the versioned files. The -q (quiet) option tells the
command to only produce output on error conditions. Ideally, this command should
produce no output.

If any versioned files are reported as MISSING by the p4 verify command, you’ll know
that there is information in the database concerning files that didn’t get restored. The
usual cause is that you restored from a checkpoint and journal made after the backup of
your versioned files. (that is, that your backup of the versioned files was older than the
database.)

If (as recommended) you’ve been using p4 verify -u to generate and store MD5
signatures for your versioned files as part of your backup routine, you can run p4 verify
on the server after restoration to reassure yourself that your restoration was successful.

If you have any difficulties restoring your system after a crash, contact Perforce Technical
Support for assistance.
Perforce 2004.2 System Administrator’s Guide 37

Chapter 2: Supporting Perforce: Backup and Recovery
38 Perforce 2004.2 System Administrator’s Guide

Chapter 3 Administering Perforce:
Superuser Tasks
This chapter describes basic tasks associated with day-to-day Perforce administration and
advanced Perforce configuration issues related to cross-platform development issues,
migration of Perforce servers from one machine to another, and working with remote and
local depots.

Most of the tasks described in this chapter requires that you have Perforce superuser
(access level super) or administrator (access level admin) privileges as defined in the
Perforce protections table. For more about controlling Perforce superuser access, and
protections in general, see “Administering Perforce: Protections” on page 71.

Release 2004.2 of Perforce introduced a new authentication mechanism and a server-
configurable security setting to govern password strength requirements and
authentication method policy. For details, see “Authentication methods: passwords and
tickets” on page 39 and “Server security levels” on page 41.

Basic Perforce Administration

The following tasks commonly performed by Perforce administrators and superusers are:

• User maintenance tasks, including resetting passwords, creating users, disabling the
automatic creation of users, and cleaning up files left open by former users,

• Administrative operations, including setting the server security level, obliterating files
to reclaim disk space, editing submitted changelists, verifying server integrity, defining
filetypes to control Perforce’s file type detection mechanism, and the use of the -f flag
to force operations.

Authentication methods: passwords and tickets

Perforce supports two methods of authentication: password-based and ticket-based.

Warning Although ticket-based authentication provides a more secure
authentication mechanism than password-based authentication, it does
not encrypt network traffic between client workstations and the Perforce
server.

If you are accessing Perforce over an insecure network, use a third-party
tunneling solution (for example, ssh or a VPN) regardless of the
authentication method you choose.
Perforce 2004.2 System Administrator’s Guide 39

Chapter 3: Administering Perforce: Superuser Tasks
How password-based authentication works

Password-based authentication is stateless; once a password is correctly set, access is
granted for indefinite time periods. Prior to Release 2004.2, the password-based
authentication mechanism did not enforce password strength or existence requirements.

The concept of the server security level, introduced in Release 2004.2, enables
administrators to enforce password strength and existence requirements. See “Server
security levels” on page 41 for details.

Password based authentication is supported at security levels 0, 1, and 2.

How ticket-based authentication works

Ticket-based authentication is supported as of Release 2004.2. This new authentication
method is based on time-limited tickets that enable users to connect to Perforce servers.

Tickets are authentication tokens stored on client workstations in users’ home directories.
Tickets are managed automatically by 2004.2 and later Perforce client programs. On
Windows and UNIX, tickets are stored in %USERPROFILE%\p4tickets.txt and
$HOME/.p4tickets respectively.

All tickets have a finite lifespan, after which they cease to be valid. By default, tickets are
valid for 12 hours (43200 seconds). To set different ticket lifespans for groups of users, edit
the Timeout: field in the p4 group form for each group. The timeout value for a user in
multiple groups is the largest timeout value for all groups of which a user is a member.

Although tickets are not passwords, Perforce servers accept valid tickets wherever users
can specify Perforce passwords. This behavior provides the security advantages of ticket-
based authentication with the ease of scripting afforded by password authentication.
Ticket-based authentication is supported at all server security levels, and is required at
security level 3.

Logging in to Perforce

To use ticket-based authentication, get a ticket by logging in with the p4 login command:
p4 login

You are prompted for your password and a ticket is created for you in your ticket file. You
can extend your ticket’s lifespan by calling p4 login while already logged in. If you run
p4 login while logged in, your ticket’s lifespan is extended by 1/3 of its initial timeout
setting, subject to a maximum of your initial timeout setting.

By default, Perforce tickets are valid for your IP address only. If you have a shared home
directory that is used on more than one machine, you can log in to Perforce from both
machines by using the command:

p4 login -a

to create a ticket in your home directory that is valid from all IP addresses.
40 Perforce 2004.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
Logging out of Perforce

To log out of Perforce from one machine by removing your ticket, use the command:
p4 logout

The entry in your ticket file is removed. If you have valid tickets for the same Perforce
server, but those tickets exist on other machines, those tickets remain present (and you
remain logged in) on those other machines.

If you are logged in to Perforce from more than one machine, you can invalidate all of
your Perforce tickets with one command. Use the command:

p4 logout -a

to log out of Perforce from all machines from which you were logged in.

Determining ticket status

To see if your current ticket (that is, for your IP address, username, and P4PORT setting) is
still valid, use the command:

p4 login -s

If your ticket is valid, the length of time for which it will remain valid is displayed.

To display all tickets you currently have, use the command:
p4 tickets

The contents of your ticket file are displayed.

Server security levels

Perforce superusers can configure server-wide password usage requirements, password
strength enforcement, and supported methods of user/server authentication by setting
the security counter. To change the security counter, issue the command:

p4 counter -f security seclevel

where seclevel is 0, 1, 2, or 3. After setting the counter, stop and restart the server.

Choosing a server security level

The default security level is 0: passwords are not required, and password strength is not
enforced.

To ensure that all users have passwords, use security level 1. Users of old client programs
may still enter weak passwords.

To ensure that all users have strong passwords, use security level 2. Old Perforce software
continues to work, but users of old Perforce client software must change their password to
a strong password by using a Perforce client program at Release 2003.2 or above.

To require that all users have strong passwords, and to require the use of session-based
authentication, use security level 3 and current Perforce client software.
Perforce 2004.2 System Administrator’s Guide 41

Chapter 3: Administering Perforce: Superuser Tasks
Level 0 corresponds to pre-2003.2 server operation. Levels 1 and 2 were designed for
support of legacy client software. Level 3 affords the highest degree of security.

The Perforce server security levels and their effects on the behavior of Perforce client
programs are defined below:

Security
level

Server behavior

0
(or unset)

Legacy support: passwords are not required. If passwords are used,
password strength is not enforced.

Users with passwords may use either their P4PASSWD setting or the p4
login command for ticket-based authentication.

Users of old Perforce client programs are unaffected.

1 Strong passwords are required for users of post-2003.2 Perforce client
programs, but existing passwords are not reset.

Pre-2003.2 Perforce client programs may set passwords with p4 passwd or
in the p4 user form, but password strength is not enforced.

Users with passwords may use either their P4PASSWD setting or the p4
login command for ticket-based authentication.

2 All unverified strength passwords must be changed.

Users of pre-2003.2 client programs may not set passwords.

Users of client programs at release 2003.2 or higher must use p4 passwd
and enter their passwords at the prompt. Setting passwords with the p4
user form or the p4 passwd -O oldpass -P newpass command is
prohibited.

On Windows, passwords are no longer stored in (or read from) the registry.
(Storing P4PASSWD as an environment variable is supported, but passwords
set with p4 set P4PASSWD are ignored.)

Users who have set strong passwords with a 2003.2 or higher Perforce client
program may use either their P4PASSWD setting for password-based
authentication, or the p4 login command for ticket-based authentication.

3 All password-based authentication is rejected.

Users must use ticket-based authentication (p4 login).

If you have scripts that rely on passwords, use p4 login to create a ticket
valid for the user running the script, or use p4 login -p to display the
value of a ticket that can be passed to Perforce commands as though it were
a password (that is, either from the command line, or by setting P4PASSWD
to the value of the valid ticket).
42 Perforce 2004.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
Resetting user passwords

If you are a Perforce superuser, you can reset a Perforce user’s password with:

• Release 99.1 and later:
p4 passwd username

When prompted, enter a new password for user username.

• Pre-99.1 releases:
p4 user -f username

Enter the password in the Password: field of the user specification form.

Password strength defined

Certain combinations of server security level and Perforce client software releases require
users to set “strong” passwords. A password is considered strong if it is at least eight
characters long, and at least two of the following are true:

• Password contains uppercase letters

• Password contains lowercase letters

• Password contains non-alphabetic characters.

For example, the passwords a1b2c3d4, A1B2C3D4, aBcDeFgH are considered strong.

Creating users

By default, Perforce creates a new user record in its database whenever a command is
issued by a user that does not exist. Perforce superusers can also use the -f (force) flag to
create a new user as follows:

p4 user -f username

Fill in the form fields with the information for the user you want to create.

The p4 user command also has an option (-i) to take its input from the standard input
instead of the forms editor. To quickly create a large number of users, write a script that
reads user data, generates output in the format used by the p4 user form, and then pipes
each generated form to p4 user -i -f.

Preventing creation of users

By default, Perforce creates a new user record in its database whenever a command is
issued by a user that does not exist.

To prevent Perforce from automatically creating users, all users must be defined in the
protections table. The easiest way to do this is to include all users in a Perforce group, and
to configure Perforce to grant access only to members of that group.
Perforce 2004.2 System Administrator’s Guide 43

Chapter 3: Administering Perforce: Superuser Tasks
Example: Setting up users in a group.

A Perforce superuser wants to prevent the server from creating new users. He starts by
setting up a group called p4users for the three users currently at his site. He types:

p4 group p4users

and fills in the form as follows:

He then uses p4 protect to edit the protections table. The relevant line of the default
protections table looks like this:

This grants write permission to any user matching * (that is, to all users) from any host
(the second *) in all areas of the depot (that is, to files in //...).

After using p4 group p4users to create the Perforce group p4users, he uses p4 protect
to change this line in the protections table to read:

The replacement protection grants only write access to users whose group matches
p4users. Members of p4users may use Perforce from any host (*) and have write access to
all areas of the depot (//...).

As long as no other lines in the protections table grant permission to all users, all users are
now defined within p4 protect, and the server will no longer automatically create new user
entries when new users attempt to access Perforce.

For a more in-depth description of Perforce protections, see “Administering Perforce:
Protections” on page 71.

A Perforce Group Specification.
Group: The name of the group.
MaxResults: A limit on the results of operations for users in
this group, or ’unlimited’.
MaxScanRows:A limit on data scanned during operations for users
in this group, or ’unlimited’.
Timeout: Time in seconds which determines how long a ’p4 login’
session ticket remains valid (default is 12 hours).
Subgroups: Other groups automatically included in this group.
Users: The users in the group. One per line.
Group: p4users
MaxResults: unlimited
MaxScanRows: unlimited
Timeout: 43200
Subgroups:
Users:
 edk
 lisag

write user * * //...

write group p4users * //...
44 Perforce 2004.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
Deleting obsolete users

Each user on the system consumes one Perforce license. A Perforce administrator can free
up licenses from unused users by deleting them.

p4 user -d username

You must first revert (or submit) any open files opened by a user before deleting that user.
If you attempt to delete a user who has opened files, Perforce will display an error
message to that effect.

To free the Perforce license, you must also delete the user from entries in the grouping
and protections tables maintained with p4 group or p4 protect.

Reverting files left open by obsolete users

If files have been left open by a nonexistent or obsolete user (for instance, a departing
employee), a Perforce administrator can revert the files by deleting the client spec in
which they were opened.

For example, if the output of p4 opened shows:
//depot/main/code/file.c#8 - edit default change (txt) by jim@stlouis

the “stlouis” client spec can be deleted with:
p4 client -d -f stlouis

Deleting a user’s client spec automatically reverts all files opened by that client, and also
removes that client’s “have list”. Note that it does not affect any files in the workspace
actually used by that client; the files can still be accessed by other employees.

Reclaiming disk space by obliterating files

The depot is always growing, which is not always desirable: a user may have created
hundreds of unneeded files by means of an inadvertent branch or submit, or perhaps
there are directories of old files that are no longer in use. Because p4 delete merely
marks files as deleted in their head revisions, it cannot be used to free up disk space on the
server. This is where p4 obliterate can be useful.

Warning! Use p4 obliterate with caution. This is the only command in Perforce
that actually removes file data.
Perforce 2004.2 System Administrator’s Guide 45

Chapter 3: Administering Perforce: Superuser Tasks
Perforce administrators can use p4 obliterate filename to remove all traces of a file
from a depot, making the file indistinguishable from one that never existed in the first
place.

By default, p4 obliterate filename does nothing; it merely reports on what it would
do. To actually destroy the files, use p4 obliterate -y filename.

To destroy only one revision of a file, specify only the desired revision number on the
command line. For instance, to destroy revision #5 of a file, use:

p4 obliterate -y file#5

Revision ranges are also acceptable. To destroy revisions 5 through 7 of a file, use:
p4 obliterate -y file#5,7

The p4 obliterate command has one more flag: -z. When you branch a file from one
area of the depot into another, a “lazy copy” is created - the file itself isn’t copied, only a
record that a branch was made. If, for some reason, you wish to undo the “lazy copy” and
create a new copy of the branched file’s contents in your depot subdirectories, you can
“obliterate” the lazy copy and create a new one by using p4 obliterate -y -z
filename.

Removing lazy copies by using the -z flag typically increases disk space usage. The only
practical use of p4 obliterate -y -z is to undo lazy copies in order to enable you to
manually remove archive files without breaking any linked metadata that points to the
deleted files.

If a user sees the following error message while trying to access files:
Operation:user-sync
Librarian checkout path failed

Note The purpose of a software configuration management system is to enable
your site to maintain a history of what operations were performed on
which files. The p4 obliterate command defeats this purpose; as such, it
is only intended to be used to remove files that never belonged in the depot
in the first place, and not as part of a normal software development process.

Note also that p4 obliterate is computationally expensive; obliterating
files requires that the entire body of metadata be scanned per file argument.
Avoid using p4 obliterate during peak usage periods.

Warning! If you intend to obliterate a revision range, be certain you’ve specified it
properly. If you fail to specify a revision range, all revisions of the file are
obliterated.

The safest way to use p4 obliterate is to use it without the -y flag until
you are certain the files and revisions are correctly specified.
46 Perforce 2004.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
where path is the path of a previously-obliterated file, the user has probably encountered
a problem that resulted from an earlier use of p4 obliterate from an older (pre-
98.2/10314) Perforce server. Contact Perforce technical support for a workaround.

Deleting changelists and editing changelist descriptions

Perforce administrators can use the -f (force) flag with p4 change to change the
description or username of a submitted changelist. The syntax is p4 change -f
changenumber. This presents the standard changelist form, but enables you to edit the
change time, description, and/or username.

You can also use the -f flag to delete any submitted changelists that have been emptied of
files with p4 obliterate. The full syntax is p4 change -d -f changenumber.

Example: Updating changelist 123 and deleting changelist 124

Use p4 change with the -f (force) flag:
p4 change -f 123
p4 change -d -f 124

The User: and Description: fields for change 123 are edited, and change 124 is deleted.

File verification by signature

Perforce administrators can use the p4 verify filenames command to generate 128-bit
MD5 signatures of each revision of the named files. The signatures created by p4 verify
-u can later be used to confirm proper recovery in case of a crash: if the signatures of the
recovered files match the previously saved signatures, the files were recovered accurately.

Subsequent verifications of file revisions are performed against the stored signatures; if a
new signature does not match the signature in the Perforce database for that file revision,
Perforce adds the characters BAD! after the signature.

It is good practice to run p4 verify before performing your nightly system backups, and
to proceed with the backup only if p4 verify reports no corruption. Generate and store
new checksums with p4 verify -u following a successful p4 verify on a weekly basis.

As of Release 2003.2, p4 verify -u is obsolescent, because Perforce Servers at Release
2003.2 and higher automatically generate and store MD5 checksums of files upon file
submission. (You must still run p4 verify -u at least once, following an upgrade to
2003.2, to generate signatures for any pre-2003.2 files for which signatures were not
generated.)

If you ever see a BAD! signature during a p4 verify command, your database or
versioned files may have been corrupted, and you should contact Perforce Technical
Support.
Perforce 2004.2 System Administrator’s Guide 47

Chapter 3: Administering Perforce: Superuser Tasks
Verifying during server upgrades

It is good practice to use p4 verify before and after server upgrades:

1. Before the upgrade, run:
p4 verify -qu //...

to generate the new checksums.

2. Take a checkpoint and copy the checkpoint and your versioned files to a safe place.

3. Perform the server upgrade.

4. After the upgrade, run:
p4 verify -q //...

to verify the integrity of your system.

Defining filetypes with p4 typemap

By default, Perforce automatically determines if a file is of type text or binary based on
an analysis of the first 1024 bytes of a file. If the high bit is clear in each of the first 1024
bytes, Perforce assumes it to be text; otherwise, it is assumed to be binary.

Although this default behavior can be overridden by the use of the -t filetype flag, it’s
easy for users to overlook this, particularly in cases where files’ types are usually (but not
always) detected correctly. Certain file formats, such as RTF (Rich Text Format) and
Adobe PDF (Portable Document Format), can start with a series of comment fields and/or
other textual data. If these comments are sufficiently long, such files may be erroneously
detected by Perforce as being of type text.

The p4 typemap command solves this problem by enabling system administrators to set
up a table that links Perforce file types with file name specifications. If an entry in the
typemap table matches a file being added, it overrides the file type that would otherwise
be assigned by the Perforce client program. For example, to treat all PDF and RTF files as
binary, use p4 typemap to modify the typemap table as follows:

The first three periods (“...”) in the specification are a Perforce wildcard specifying that
all files beneath the root directory are to be included in the mapping. The fourth period
and the file extension specify that the specification applies to files ending in “.pdf” (or
“.rtf”).

Typemap:
 binary //....pdf
 binary //....rtf
48 Perforce 2004.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
The following table lists recommended Perforce file types and modifiers for common file
extensions.

File Type Perforce file type Description

.asp text Active server page file

.avi binary+F Video for Windows file

.bmp binary Windows bitmap file

.btr binary Btrieve database file

.cnf text Conference link file

.css text Cascading style sheet file

.doc binary Microsoft Word document

.dot binary Microsoft Word template

.exp binary+w Export file (Microsoft Visual C++)

.gif binary+F GIF graphic file

.htm text HTML file

.html text HTML file

.ico binary Icon file

.inc text Active Server include file

.ini text+w Initial application settings file

.jpg binary JPEG graphic file

.js text JavaScript language source code file

.lib binary+w Library file (several programming languages)

.log text+w Log file

.mpg binary+F MPEG video file

.pdf binary Adobe PDF file

.pdm text+w Sybase Power Designer file

.ppt binary Microsoft Powerpoint file

.xls binary Microsoft Excel file

.zip binary ZIP archive file
Perforce 2004.2 System Administrator’s Guide 49

Chapter 3: Administering Perforce: Superuser Tasks
Use the following p4 typemap table to map all of the file extensions to the Perforce file
types recommended in the preceding table.

For more information, see the p4 typemap page in the Perforce Command Reference.

Forcing operations with the -f flag

Certain commands support the -f flag that enables Perforce administrators and
superusers to force certain operations unavailable to ordinary users.

Perforce administrators can use this flag with p4 branch, p4 change, p4 client, p4 job,
p4 label, and p4 unlock. Perforce superusers can also use it to override the p4 user
command.

Perforce File Type Mapping Specifications.
#
TypeMap: a list of filetype mappings; one per line.
Each line has two elements:
Filetype: The filetype to use on ’p4 add’.
Path: File pattern which will use this filetype.
See ’p4 help typemap’ for more information.

TypeMap:

 text //....asp
 binary+F //....avi
 binary //....bmp
 binary //....btr
 text //....cnf
 text //....css
 binary //....doc
 binary //....dot
 binary+w //....exp
 binary+F //....gif
 text //....htm
 text //....html
 binary //....ico
 text //....inc
 text+w //....ini
 binary //....jpg
 text //....js
 binary+w //....lib
 text+w //....log
 binary+F //....mpg
 binary //....pdf
 text+w //....pdm
 binary //....ppt
 binary //....xls
 binary+F //....zip
50 Perforce 2004.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
The usages and meanings of this flag are as follows:

Command Syntax Function

p4 branch p4 branch -f branchname Allows the modification date to
be changed while editing the
branch specification

p4 branch -f -d branchname Deletes the branch, ignoring
ownership

p4 change p4 change -f [changelist#] Allows the modification date to
be changed while editing the
changelist specification

p4 change -f changelist# Allows the description field and
username in a committed
changelist to be edited

p4 change -f -d changelist# Deletes empty, committed
changelists

p4 client p4 client -f clientname Allows the modification date to
be changed while editing the
client specification

p4 client -f -d clientname Deletes the client, ignoring
ownership, even if the client has
opened files

p4 job p4 job -f [jobname] Allows the manual update of
read-only fields

p4 label p4 label -f labelname Allows the modification date to
be changed while editing the
label specification

p4 label -f -d labelname Deletes the label, ignoring
ownership

p4 unlock p4 unlock -c changelist -f file Releases a lock (set with p4
lock) on an open file in a
pending numbered changelist,
ignoring ownership.
Perforce 2004.2 System Administrator’s Guide 51

Chapter 3: Administering Perforce: Superuser Tasks
Advanced Perforce Administration

Running Perforce through a firewall

Perforce clients communicate with a Perforce server using TCP/IP. The server listens for
connections at a specified port on the machine on which it’s running, and clients make
connections to that port.

The port on which the server listens is specified when the server is started. The number is
arbitrary, so long as it does not conflict with any other networking services and is greater
than 1024. The port number on the client machine is dynamically allocated.

A firewall is a network element which prevents any packets from outside a local (trusted)
network from reaching that local network. This is done at a low level in the network
protocol; any packets not coming from a trusted IP address are simply ignored.

In the following diagram, the Perforce client is on an untrusted part of the network. None
of its connection requests reach the machine with the Perforce server. Consequently, the
user running the client through the firewall is unable to use Perforce.

p4 user p4 user -f username Allows the update of all fields,
ignoring ownership.

This command requires super
access.

p4 user -f -d username Deletes the user, ignoring
ownership.

This command requires super
access.

Command Syntax Function

the network
3710

(arbitrary port)

p4dboxuserbox

P4PORT=p4dbox:3710
52 Perforce 2004.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
Secure shell

To solve this problem, you have to make the connection to the Perforce server from within
the trusted network. This can be done securely using a package called secure shell (ssh).

Secure shell (ssh) is meant to be a replacement for the UNIX rsh (remote shell) command,
which allows you to log into a remote system and execute commands on it. The “secure”
part of “secure shell” comes from the fact that the connection is encrypted, so none of the
data is visible while it passes through the untrusted network. With simple utilities like
rsh, all traffic - even passwords - is unencrypted and visible to all intermediate hosts,
creating an unacceptable security hazard.

Secure shell is available for free in source form for a multitude of UNIX platforms from
http://www.openssh.com. This page also links to ports of ssh for OS/2 and Amiga, as
well as commercial implementations for Windows and Macintosh from Data Fellows
(http://www.datafellows.com) and SSH (http://www.ssh.com).

The OpenSSH FAQ (Frequently Asked Questions) can also be found online at the main site
(http://www.openssh.com/faq.html).

Solving the problem

Once you have ssh up and running, the simplest thing to do is to use it to log into the
firewall machine and run the Perforce client from the firewall. While it has the advantage
of simplicity, it’s a poor solution: you typically want your client files accessible on your
local machine, and of course, there’s no guarantee that your firewall machine will match
your development platform.

A good solution takes advantage of ssh’s ability to forward arbitrary TCP/IP connections.
By using ssh, you can make your Perforce client appear as though it’s connecting from the
firewall machine over the local (trusted) network. In reality, your client remains on your
local machine, but all packets from your local machine are first sent to the firewall
through the secure channel set up by ssh.

3710

p4dboxfirewall

local, trusted
network

big, bad,
untrusted
network

“I’m listening, but nobody’s talking”

userbox

“Hey, where’d p4dbox go?”
Perforce 2004.2 System Administrator’s Guide 53

Chapter 3: Administering Perforce: Superuser Tasks
Suppose the Perforce server is on p4dbox.bigcorp.com, and the firewall machine is
called firewall.bigcorp.com. In our example, we’ll arbitrarily choose local port 4242,
and assume that the Perforce server is listening on port 3710.

Packets ultimately destined for your client’s port 4242 are first sent to the firewall, and
ssh forwards them securely to your client. Likewise, connections made to port 4242 of the
firewall machine will end up being routed to port 3710 of the Perforce server.

On UNIX, the ssh command on your own machine to set up and forward the TCP/IP
connection would be:

ssh -L 4242:p4dbox.bigcorp.com:3710 firewall.bigcorp.com

At this point, it may be necessary to provide a password to log into
firewall.bigcorp.com. Once the connection is established, ssh listens at port 4242 on
the local machine, and forwards packets over its encrypted connection to
firewall.bigcorp.com; the firewall then forwards them by normal channels to port
3710 on p4dbox.bigcorp.com.

All that remains is to tell the Perforce client to use port 4242 by setting the environment
variable P4PORT to 4242.

Normally, setting P4PORT=4242 would normally indicate that we are trying to connect to
a Perforce server on the local machine listening at port 4242. In this case, ssh takes the
role of the Perforce server. Anything a client sends to port 4242 of the local machine is
forwarded by ssh to the firewall, which passes it to the real Perforce server at
p4dbox.bigcorp.com. Since all of this is transparent to the Perforce client, it doesn’t
matter whether the client is talking to an instance of ssh that’s forwarding traffic from
port 4242 of the local machine, or if it’s talking to a real Perforce server residing on the
local machine.

The only glitch is that there’s a login session you don’t normally want on the firewall
machine.

This can be solved by running
ssh -L 4242:p4dbox.bigcorp.com:3710 firewall.bigcorp.com -f sleep 9999999 -f

on the remote system.

3710

p4dboxfirewall

local, trusted
network

ssh-based
encrypted
connection

userbox

4242

“Something at 4242 looks
“userbox:4242 <-> p4dbox:3710” “There’s a client at 3710!”like a Perforce server to me”
54 Perforce 2004.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
This tells ssh on firewall.bigcorp.com to fork a long-running sleep command in the
background after the password prompt. Effectively, this sets up the ssh link and keeps it
up; there is no login session to terminate.

Finally, ssh can be configured to “do the right thing” so that it is unnecessary to type such
a long command with each session. The Windows version of ssh, for instance, has a GUI
to configure this.

One final concern: with port 4242 on the local machine now forwarded to a supposedly
secure server, your local machine is part of the trusted network; it is prudent to make sure
the local machine really is secure. The Windows version of ssh has an option to only
permit local connections to the forwarded port, which is a wise precaution; your machine
will be able to use port 4242, but a third party’s machine will be ignored.

Specifying IP addresses in P4PORT

Under most circumstances, your Perforce server’s P4PORT setting consists solely of a port
number. If you specify both an IP address and a port number in P4PORT when starting p4d,
the Perforce server ignores requests from any IP addresses other than the one specified in
P4PORT.

Although this isn’t the default behavior, it can be useful. For instance, if you want to
configure p4d to listen only to a specific network interface or IP address, you can force
your Perforce server to ignore all non-local connection requests by setting
P4PORT=localhost:port.

Running from inetd on UNIX

Under a normal installation, the Perforce server is run on UNIX as a background process
which waits for connections from clients. To have p4d start up only when connections are
made to it, using inetd and p4d -i, add the following line to /etc/inetd.conf:

p4dservice stream tcp nowait username /usr/local/bin/p4d p4d -i -rp4droot

and add the following to /etc/services:
p4dservice nnnn/tcp

where:

• p4dservice is the service name you choose for this Perforce server

• /usr/local/bin is the directory holding your p4d binary

• p4droot is the root directory (P4DROOT) to use for this Perforce server (for example,
/usr/local/p4d)

• username is the UNIX user name to use for running this Perforce server

• nnnn is the port number for this Perforce server to use
Perforce 2004.2 System Administrator’s Guide 55

Chapter 3: Administering Perforce: Superuser Tasks
The “extra” p4d on the /etc/inetd.conf line must be present; inetd passes this to the OS
as argv[0]. The first argument, then, is the -i flag, which causes p4d not to run in the
background as a daemon, but rather to serve the single client connected to it on
stdin/stdout. (This is the convention used for services started by inetd.)

This method is an alternative to running p4d from a startup script. It can also be useful for
providing special services; for example, at Perforce, we have a number of test servers
running on UNIX, each defined as an inetd service with its own port number.

There are caveats with this method:

• inetd may disallow excessive connections, so a script which invokes several thousand
p4 commands, each of which spawns an instance of p4d via inetd may cause inetd to
temporarily disable the service. Depending on your system, you may need to configure
inetd to ignore or raise this limit.

• There is no easy way to disable the server, since the p4d executable is run each time;
disabling the server requires modifying /etc/inetd.conf and restarting inetd.

Case sensitivity and multi-platform development

Early (pre-97.2) releases of the Perforce server treated all filenames, pathnames, and
database entity names with case significance, whether the server was running on UNIX or
Windows.

For example, //depot/main/file.c and //depot/MAIN/FILE.C were treated as two
completely different files. This caused problems where users on UNIX were connecting to
a Perforce server running on Windows, because the filesystem underlying the server
could not store files with the case-variant names submitted by UNIX users.

In release 97.3, the behavior was changed, and only the UNIX server supports case-
sensitive names. However, there are still some case-sensitivity problems which users can
run into when sharing development projects across UNIX and Windows.

If you are running a pre-97.2 server on Windows, please contact support@perforce.com
to discuss upgrading your server and database.

For current releases of the server:

• The Perforce server on UNIX supports case-sensitive names.

• The Perforce server on Windows ignores case differences.

• Case is always ignored in keyword-based job searches, regardless of platform.
56 Perforce 2004.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
The following table summarizes these rules:

To find out what platform your Perforce server runs on, use p4 info.

Perforce server on UNIX

If your Perforce server is on UNIX, and you have users on both UNIX and Windows, your
UNIX users must be very careful not to submit files whose names differ only by case.
Although the UNIX server can support these files, when Windows users sync their
workspaces, they’ll find files overwriting each other.

Conversely, Windows users will have to be careful to use case consistently in file and path
names when adding new files. They may not realize that files added as
//depot/main/one.c and //depot/MAIN/two.c will appear in two different directories
in a UNIX user’s workspace.

The UNIX Perforce server always respects case in client names, label names, branch view
names, and so on. Windows users connecting to a UNIX server should be aware that the
lowercased workstation names are used as the default names for new client workspaces.
For examples, if a new user creates a client spec on a Windows machine named ROCKET,
his client workspace is named rocket by default. If he later sets P4CLIENT to ROCKET (or
Rocket), Perforce will tell him his client is undefined. He must set P4CLIENT to rocket (or
unset it) to use the client workspace he defined.

Perforce server on Windows

If your Perforce server is running on Windows, your UNIX users must be aware that their
Perforce server will store case-variant files in the same namespace.

For example, users who try something like this:
p4 add dir/file1
p4 add dir/file2
p4 add DIR/file3

should be aware that all three files will be stored in the same depot directory. The depot
path and filenames assigned to the Windows server will be those first referenced. (In this
case, the depot path name would be dir, and not DIR.)

Case-sensitive UNIX server Windows server

Pathnames and filenames Yes No

Database entities (clients, labels, etc.) Yes No

Job search keywords No No
Perforce 2004.2 System Administrator’s Guide 57

Chapter 3: Administering Perforce: Superuser Tasks
Monitoring server activity

Use the p4 monitor command to obtain information about Perforce-related processes
running on your Perforce server machine.

Enabling server process monitoring

You must enable server process monitoring for p4 monitor to work. To enable server
process monitoring, set the monitor counter as follows:

p4 counter -f monitor 1

After setting the monitor counter, stop and restart the Perforce Server to enable server
process monitoring. Server process monitoring requires minimal system resources.

Listing running processes

To list the processes running on the Perforce server, use the command:
p4 monitor show

By default, each line of p4 monitor output looks like this:
pid status owner hh:mm:ss command [args]

where pid is the UNIX process ID (or Windows thread ID), status is R or T depending on
whether the process is running or marked for termination, owner is the Perforce user
name of the user who invoked the command, hh:mm:ss is the time elapsed since the
command was called, and command and args are the command and arguments as
received by the Perforce server. For example:

To show the arguments with which the command was called, use the -a (arguments) flag:

To obtain more information about user environment, use the -e flag. The -e flag produces
output of the form:

pid client IP-address status owner workspace hh:mm:ss command [args]

$ p4 monitor show
74612 R qatool 00:00:47 job
78143 R edk 00:00:01 filelog
78207 R p4admin 00:00:00 monitor

$ p4 monitor show -a
74612 R qatool 00:00:48 job job004836
78143 R edk 00:00:02 filelog //depot/main/src/proj/file1.c //dep
78208 R p4admin 00:00:00 monitor show -a
58 Perforce 2004.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
where client is the Perforce client program (if known), IP-address is the IP address of
the user’s Perforce client program, and workspace is the name of the calling user’s current
client workspace setting. For example:

By default, all user names and (if applicable) client workspace names are truncated at 10
characters, and lines are truncated at 80 characters. To disable truncation, use the -l
(long-form) option:

Only Perforce administrators and superusers may use the -a, -l, and -e options.

Marking processes for termination

If a process on a Perforce Server is consuming excessive resources, administrators and
superusers can mark it for termination with p4 monitor terminate.

Once marked for termination, the process is terminated by the Perforce server within
50000 scan rows or lines of output. Only processes that have been running for at least ten
seconds can be marked for termination. Users of terminated processes are notified with
the following message:

Command has been canceled, terminating request

Processes that involve the use of interactive forms (such as p4 job or p4 user) can also be
marked for termination, but data entered by the user into the form is preserved. Some
commands, such as p4 obliterate, cannot be terminated.

Clearing entries in the process table

Under some circumstances (for example, a Windows machine is rebooted while certain
Perforce commands are running), entries may remain in the process table even after the
process has terminated.

Perforce administrators and superusers can remove these erroneous entries from the
process table altogether with p4 monitor clear pid, where pid is the erroneous process
ID. To clear all processes from the table (running or not), use p4 monitor clear all.

Running processes removed from the process table with p4 monitor clear continue to
run to completion.

$ p4 monitor show -e
74612 p4 192.168.10.2 R qatool buildenvir 00:00:47 job
78143 192.168.10.4 R edk eds_elm 00:00:01 filelog
78207 p4 192.168.10.10 R p4admin p4server 00:00:00 monitor

$ p4 monitor show -a -l
74612 R qatool 00:00:50 job job004836
78143 R edk 00:00:04 filelog //depot/main/src/proj/file1.c //dep
ot/main/src/proj/file1.mpg
78209 R p4admin 00:00:00 monitor show -a -l
Perforce 2004.2 System Administrator’s Guide 59

Chapter 3: Administering Perforce: Superuser Tasks
Perforce server trace flags

You can turn on command tracing in the Perforce server by adding the -v server=1 flag
to the p4d startup command. Use P4LOG or the -L logfile flag to name a log file:

p4d -r /usr/perforce -v server=1 -p 1666 -L /usr/perforce/logfile

Trace output appears in the specified log file, and shows the date, time, username, IP
address, and command for each request processed by the server. Before turning on
logging, you should make sure that you have adequate disk space.

The server trace flags and their meanings are as follows:

Setting server debug levels on a Perforce server (p4d) has no effect on the debug level of a
Perforce Proxy (p4p) process, and vice versa.

In most cases, the Perforce server trace flags are useful only to administrators working
with Perforce Technical Support to diagnose or investigate a problem.

Windows Prior to Release 98.1, you could not set this trace flag when running
Perforce as a service; you could set this flag (on Windows only) when
running p4d.exe a server process from the MS-DOS command line.

As of Release 98.1, you can use the p4 set command to set P4DEBUG as a
registry variable to “server=1” and thereby use this trace flag with
Perforce installed as a service on Windows.

Prior to Release 97.3, server trace flags were unavailable.

Trace flag Meaning

server=1 Logs server commands to the server log file.

(Requires server at release 98.1 or higher)

server=2 In addition to data logged at level 1, logs server command completion
and basic information on CPU time used. Time elapsed is reported in
seconds. On UNIX, CPU usage (system and user time) is reported in
milliseconds, as per getrusage().

(Requires server at release 2001.1 or higher)

server=3 In addition to data logged at level 2, adds usage information for
compute phases of p4 sync and p4 flush commands.

(Requires server at release 2001.2 or higher)
60 Perforce 2004.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
Moving a Perforce Server to a new machine

The procedure for moving an existing Perforce Server from one machine to another
depends on whether or not you’re moving between machines

• of identical architectures,

• of different architectures using the same text file (CR/LF) format, or

• of different architecture and different text file format.

Additional considerations apply if the new machine has a different IP address/hostname.

The Perforce server stores two types of data under the Perforce root directory: versioned
files and a database containing metadata describing those files. Your versioned files are the
ones created and maintained by your users, and your database is a set of Perforce-
maintained binary files holding the history and present state of the versioned files. In
order to move a Perforce server to a new machine, both the versioned files and the
database must be successfully migrated from the old machine to the new machine.

For more about the distinction between versioned files and database, as well as for an
overview of backup and restore procedures in general, see “Backup and Recovery
Concepts” on page 25.

For more about moving a Perforce server from one machine to another, see also the
Perforce Tech Note at:

http://www.perforce.com/perforce/technotes/note010.html

Moving your versioned files and Perforce database
Between machines of the same architecture

If the architecture of the two machines is the same (e.g., SPARC/SPARC, x86/x86), the
versioned files and database can be copied directly between the machines, and you only
need to move the server root directory tree to the new machine. You can use tar, cp,
xcopy.exe, or any other method. Copy everything in and under the P4ROOT directory -
the db.* files (your database) as well as the depot subdirectories (your versioned files).

1. Back up your server (including a p4 verify before the backup) and take a
checkpoint.

2. On the old machine, stop p4d.

3. Copy the contents of your old server root (P4ROOT) and all its subdirectories on the
old machine into the new server root directory on the new machine.

4. Start p4d on the new machine with the desired flags.

5. Run p4 verify on the new machine to ensure that the database and your versioned
files were transferred correctly to the new machine.
Perforce 2004.2 System Administrator’s Guide 61

Chapter 3: Administering Perforce: Superuser Tasks
(Although the backup, checkpoint, and subsequent p4 verify are not strictly necessary
in this case, it’s always good practice to verify, checkpoint, and back up your system
before any migration, and likewise to perform a subsequent verification after migration.)

Between different architectures using the same text format

If the internal data representation (big-endian vs. little-endian) convention differs
between the two machines (e.g., Linux-on-x86/SPARC, NT-on-Alpha/NT-on-x86), but
their operating systems use the same CR/LF text file conventions, you can still simply
move the server root directory tree to the new machine.

Although the versioned files are portable across architectures, the database, as stored in
the db.* files, is not. To transfer the database, you will need to create a checkpoint of your
Perforce server on the old machine and use that checkpoint to recreate the database on the
new machine. The checkpoint is a text file which can be read by a Perforce server on any
architecture. For more details, see “Creating a checkpoint” on page 26.

After creating the checkpoint, you can use tar, cp, xcopy.exe, or any other method to
copy the checkpoint file and the depot directories to the new machine. (You don’t need to
copy the db.* files, because they will be recreated from the checkpoint you took.)

1. On the old machine, use p4 verify to ensure that the database is in a consistent
state.

2. On the old machine, stop p4d.

3. On the old machine, create a checkpoint:
p4d -jc checkpointfile

4. Copy the contents of your old server root (P4ROOT) and all its subdirectories on the
old machine into the new server root directory on the new machine.

(To be precise, you don’t need to copy the db.* files, just the checkpoint and the
depot subdirectories. The db.* files will be recreated from the checkpoint. If it’s more
convenient to copy everything, then copy everything.)

5. On the new machine, if you copied the db.* files, be sure to remove them from the
new P4ROOT before continuing.

6. Recreate a new set of db.* files suitable for your new machine’s architecture from the
checkpoint you created:

p4d -jr checkpointfile

7. Start p4d on the new machine with the desired flags.

8. Run p4 verify on the new machine to ensure that the database and your versioned
files were transferred correctly to the new machine.
62 Perforce 2004.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
Between Windows and UNIX

In this case, both the architecture of the system and the CR/LF text file convention may be
different. You still have to create a checkpoint, copy it, and recreate the database on the
new platform, but when you move the depot subdirectories containing your versioned
files, you will also have to address the issue of the differing linefeed convention between
the two platforms.

Depot subdirectories can contain both text and binary files. The text files (in RCS format,
ending with “,v”) and binary files (directories of individual binary files, each directory
ending with “,d”) will need to be transferred differently in order to translate the line
endings on the text files while leaving the binary files unchanged.

As with all other migrations, be sure to run p4 verify after your migration.

Contact Perforce Technical Support for assistance when migrating a Perforce server from
Windows to UNIX or vice-versa.

Changing the IP address of your server

If the IP address of the new machine is not the same as that of the old machine, you may
need to update any IP-address-based protections in your protections table. See
“Administering Perforce: Protections” on page 71 for information on setting protections
for your Perforce server.

If you are a licensed Perforce customer, you will also need a new license file to reflect the
new IP address. Contact Perforce technical support to obtain an updated license.

Changing the hostname of your server

If the hostname of the new machine serving Perforce is different from that of its
predecessor, your users will need to change their P4PORT settings. If the old machine is
being retired or renamed, consider setting an alias for the new machine to match that of
the old machine, so that your users won’t have to change their P4PORT settings.

Warning Windows is a case-insensitive operating system. Files that differ by case
only on a UNIX server will occupy the same namespace when transferred
to a Windows machine. For instance, files Makefile and file makefile on
a UNIX server will appear to be the same file on a Windows machine.

Due to the risk of data loss due to case collision, migrations from UNIX
server to Windows are not encouraged.
Perforce 2004.2 System Administrator’s Guide 63

Chapter 3: Administering Perforce: Superuser Tasks
Using Multiple Depots

Just as Perforce servers can host multiple depots, Perforce client programs can access files
from multiple depots. These other depots may reside within the Perforce server normally
accessed by the Perforce client, or they may reside within other, remote, Perforce servers.

When using local depots, the user’s Perforce client program communicates with the
Perforce server specified by the user’s P4PORT environment variable or equivalent setting.

When using remote depots, the user’s Perforce client program uses the Perforce server
specified by the user’s P4PORT environment variable or equivalent setting as a means to
access a second, remote, Perforce server. The local Perforce server communicates with the
remote Perforce server in order to access a subset of its files. Remote depots are primarily
used to facilitate the sharing of code (that is, “code drops”) between separate
organizations, and are discussed in “Remote depots and distributed development” on
page 65.

Remote depots are not a generalized solution for load-balancing or network access
problems. To support shared development or to deal with load-balancing or network
access problems, see “Perforce Proxy” on page 131.

Defining new depots

New depots (local or remote) in a server namespace are defined with the command p4
depot depotname. Depots may be defined as either local or remote depots.

Defining local depots

To define a new local depot (that is, a new depot in the current Perforce server
namespace), call p4 depot with the new depot name, and edit only the Map: field in the
resulting form.

For example, to create a new depot called book with the files stored in the local Perforce
server namespace in a root subdirectory called book (that is, $P4ROOT/book), enter the
command p4 depot book, and fill in the resulting form as follows:

By default, the Map: field on a local depot points to a depot directory matching the depot
name, relative to the server root (P4ROOT) setting for your server. To store a depot’s
versioned files on another volume or drive, specify an absolute path in the Map: field. This
path need not be under P4ROOT.

Depot: book
Type: local
Address: subdir
Map: book/...
64 Perforce 2004.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
Absolute paths in the Map: field on Windows must be specified with forward slashes (for
instance, d:/newdepot/) in the depot form.

Other depot operations

The following operations apply to both local and remote depots.

Naming depots

Depot names share the same namespace as branches, client workspaces, and labels. For
example, //rel2 refers uniquely to one of the depot rel2, the workspace rel2, the branch
rel2, or the label rel2; you can’t simultaneously have both a depot and a label named
rel2.

Listing depots

You can list all depots known to the current Perforce server with the p4 depots
command.

Deleting depots

You can delete depots with p4 depot -d depotname.

To delete a depot, it must be empty; you must first obliterate all files in the depot with p4
obliterate.

For local depots, p4 obliterate deletes the versioned files as well as all their associated
metadata. For remote depots, p4 obliterate erases only the locally held client and label
records; the files and metadata still residing on the remote server remain intact.

Before using p4 obliterate, and especially if you’re about to use it to obliterate all files in
a depot, read and understand the warnings in “Reclaiming disk space by obliterating
files” on page 45.

Remote depots and distributed development

Remote depots are designed to support shared code, not shared development. They enable
independent organizations with separate Perforce installations to integrate changes
between Perforce installations. Briefly:

• A “remote depot” is a depot on your Perforce server of type remote. It acts as a pointer
to a depot of type “local” that resides on a second Perforce server.

• A user of a remote depot is typically a build engineer or handoff administrator
responsible for integrating software between separate organizations.

• Control over what files are available to a user of a remote depot resides with the
administrator of the remote server - not the users of the local server.

• See “Restricting access to remote depots” on page 69 for security requirements.
Perforce 2004.2 System Administrator’s Guide 65

Chapter 3: Administering Perforce: Superuser Tasks
When to use remote depots

Perforce is designed to cope with the latencies of large networks and inherently supports
users with client workspaces at remote sites. A single Perforce installation is ready, out of
the box, to support a shared development project, regardless of the geographic
distribution of its contributors.

Partitioning joint development projects into separate Perforce installations will not
improve throughput, and usually only complicates administration. If your site is engaged
in distributed development (that is, developers in multiple sites working on the same
body of code), it is usually preferable to set up a Perforce installation with all code in
depots resident on one Perforce server, and to cache frequently-accessed files at each
development site with Perforce Proxy.

If, however, your organization regularly imports or exports material from other
organizations, you may wish to consider using Perforce’s remote depot functionality to
streamline your code drop procedures.

How remote depots work

The following diagram illustrates how Perforce client programs use a user’s default
Perforce server to access files in a depot hosted on another Perforce server.

In this example, an administrator of a Perforce server at oak:1234 is retrieving a file from
a remote server at pine:1818.

P4PORT=oak:1234

1234

1818
oak

pine

Depot name: depot
Type: local
Address: subdir
Map: depot/...

Depot name: from-pine
Type: remote
Address: pine:1818
Map: //depot/outbound/...

Depot name: depot
Type: local
Address: subdir
Map: depot/...

//depot/outbound/file.c

...ask pine:1818 for it...//from-pine isn’t local...

p4 integ //from-pine/file.c //depot/codedrops/file.c

user
66 Perforce 2004.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
Although it is possible to permit individual developers to sync files from remote depots
into their client workspaces, this is generally an inefficient use of resources.

The preferred technique for using remote depots is for your organization’s build or
handoff administrator to integrate files from a remote depot into an area of your local
depot. After the integration, your developers can access copies of the files from the local
depot into which the files were integrated.

To accept a code drop from a remote depot, create a branch in a local depot from files in a
remote depot, and then integrate changes from the remote depot into the local branch.
This integration is a one-way operation; you cannot make changes in the local branch and
integrate them back into the remote depot. The copies of the files integrated into your
Perforce installation become the responsibility of your site’s development team; the files
on the depot remain under the control of the development team at the other Perforce
installation.

Restrictions on remote depots

Prior to Release 99.2, remote depots were accessible only by Perforce servers running at
the same release levels. At Release 99.2 and higher, remote depots are interoperable
between release levels.

Remote depots facilitate the sharing of code between organizations (as opposed to the
sharing of development within a single organization). Consequently, access to remote
depots is restricted to read-only operations, and server metadata (information about client
workspaces, changelists, labels, and so on) cannot be accessed using remote depots.

Using remote depots for code drops

Performing a code drop requires coordination between two organizations, namely the site
receiving the code drop, and the site providing the code drop. In most cases, the following
three things must be configured:

• The Perforce administrator at the site receiving the code drop must create a remote
depot on his or her Perforce server that points to the site providing the code drop.

This is described in “Defining remote depots” on page 68.

• The Perforce administrator at the site providing the code drop should configure his or
her Perforce server to allow the recipient site’s remote depot to access the providing
site’s Perforce server.

This is described in “Restricting access to remote depots” on page 69.

• The configuration manager or integration manager at the receiving site must integrate
the desired files from the remote depot into a local depot under his or her control.

This is described in “Receiving a code drop” on page 70.
Perforce 2004.2 System Administrator’s Guide 67

Chapter 3: Administering Perforce: Superuser Tasks
Defining remote depots

To define a new remote depot:

1. Create the depot with p4 depot depotname.

2. Set the Type: to remote.

3. Direct your Perforce server to contact the remote Perforce server by providing the
remote server’s name and listening port in the Address: field.

A remote server’s host and port are specified in the Address: field just as though it
were a P4PORT setting.

4. Set the Map: field to map into the desired portion of the remote server’s namespace.

For remote depots, the mapping contains a subdirectory relative to the remote depot
namespace. For example, //depot/outbound/... maps to the outbound
subdirectory of the depot named depot hosted on the remote server.

The Map: field must contain a single line pointing to this subdirectory, specified in
depot syntax, and containing the “...” wildcard on its right side.

If you are unfamiliar with client views and mappings, see the Perforce User’s Guide for
general information about how Perforce mappings work.

In order for anyone on your site to access files in the remote depot, the administrator of
the remote server must grant read access to user remote to the depot(s) and
subdirectories within the depots specified in the Map: field.

Example: Defining a remote depot

Lisa is coordinating a project and wants to provide a set of libraries to her developers from a
third party development shop. The third party development shop uses a Perforce server on
host pine that listens on port 1818. Their policy is to place releases of their libraries on their
server’s single depot depot under the subdirectory outbound.

Lisa creates a new depot from which she can access the code drop; she’ll call this depot from-
pine; she’d type p4 depot from-pine and fill in the form as follows:

This creates a remote depot called from-pine on Lisa’s Perforce server; this depot (//from-
pine) maps to the third party’s depot’s namespace under its outbound subdirectory.

Depot: from-pine
Type: remote
Address: pine:1818
Map: //depot/outbound/...
68 Perforce 2004.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
Restricting access to remote depots

Remote depots are always accessed by a virtual user named remote. This virtual user
does not consume a Perforce license.

By default, all the files on any Perforce server may be accessed remotely. To limit or
eliminate remote access to a particular server, use p4 protect to set permissions for user
remote on that server. Perforce recommends that administrators deny access to user
remote across all files and all depots by adding the following permission line in the p4
protect table:

list user remote * -//...

Since remote depots can only be used for read access, it is not necessary to remove write
or super access to user remote.

Example security configuration

Using the two organizations described in “Receiving a code drop” on page 70, a basic set
of security considerations for each site would include:

On the local (oak) site:

• Deny access to //from-pine to all users. Developers at the oak site have no need to
access files on the pine server by means of the remote depot mechanism.

• Grant read access to //from-pine to your integration or build manager(s). The only
user at the oak site who requires access the //from-pine remote depot is the user (in
this example, “adm”) performing the integration from the remote depot to the local
depot.

To accomplish this, the oak Perforce administrator should include the following lines to
the p4 protect table:

On the remote (pine) site, access to code residing on pine is entirely the responsibility of
the pine server’s administrator. At a minimum, this administrator should:

• Pre-emptively deny access to user remote across all depots from all IP addresses:

Adding these lines to the p4 protect table is sound practice for any Perforce
installation whether its administrator intends to use remote depots or not.

• Grant read access to user remote to only those areas of the pine server into which code
drops are to be placed. In this example, outgoing code drops are published in the
//depot/outbound/... subdirectory on the pine server.

list user * * -//from-pine/...
read user adm * //from-pine/...

list user remote * -//...
Perforce 2004.2 System Administrator’s Guide 69

Chapter 3: Administering Perforce: Superuser Tasks
• Grant read access for user remote only to the IP address of the Perforce server(s)
authorized to receive code drops. If oak’s IP address was 192.168.41.2, the pine
Perforce administrator should add the following to the p4 protect table:

Receiving a code drop

To perform a handoff and/or code drop between two Perforce installations:

1. Developers on pine:1818 complete work on a body of code for delivery.

2. The build or release manager on pine:1818 branches the deliverable code into an
area of pine:1818 intended for outbound code drops. In this example, the released
code is branched to //depot/outbound/...

3. A Perforce administrator at oak:1234 configures a remote depot called //from-pine
on the oak server. This remote depot contains a Map: field that directs the oak server
to the //depot/outbound area of pine:1818.

4. Upon notification of the release’s availability, a build or release manager at oak:1234
performs the code drop by integrating files in the //from-pine/... remote depot
into a suitable area of the local depot, such as //depot/codedrops/pine.

5. Developers at oak:1234 may now use the pine organization’s code, now hosted
locally under //depot/codedrops/pine. Should patches be required to pine’s code,
oak developers can make such patches under //depot/codedrops/pine. The pine
group retains control over its code.

read user remote 192.168.41.2 //depot/outbound/...

P4PORT=oak:1234

oak:1234 pine:1818

p4 integrate //from-pine/... //depot/codedrops/pine/...

adm

//from-pine/...

//depot/codedrops/...

remote depot on oak

local depot on oak

//depot/outbound/...

local depot on pine

P4PORT=oak:1234
p4 sync //depot/codedrops/...

dev
70 Perforce 2004.2 System Administrator’s Guide

Chapter 4 Administering Perforce:
Protections
Perforce provides a protection scheme to prevent unauthorized or inadvertent access to
the depot. The protections determine which Perforce commands can be run, on which
files, by whom, and from which host. Configure protections with the p4 protect
command.

When Should Protections Be Set?

Run p4 protect immediately after installing Perforce for the first time. Before the first
call to p4 protect, every Perforce user is a superuser, and may access and change
anything in the depot. The first time a user runs p4 protect, a protections table is created
that gives superuser access to the user from all IP addresses, and lowers all other users’
access level to write permission on all files from all IP addresses.

The Perforce protections table is stored in the db.protect file in the server root directory;
if p4 protect is first run by an unauthorized user (or if you accidentally lock yourself
out!) the depot can be brought back to its unprotected state by removing this file.

Setting Protections with “p4 protect”

The p4 protect form contains a single form field called Protections: that consists of
multiple lines. Each line in Protections: contains subfields, and the table looks like this:

Example: A sample protections table:

(The five fields may not line up vertically on your screen; they are aligned here for readability.)

The permission lines’ five fields

Each line specifies a particular permission; each permission is defined by five fields.

Protections:
read user emily * //depot/elm_proj/...
write group devgrp * //...
write user * 195.3.24.* -//...
write user joe * -//...
write user lisag * -//depot/...
write user lisag * //depot/doc/...
super user edk * //...
Perforce 2004.2 System Administrator’s Guide 71

Chapter 4: Administering Perforce: Protections
The meanings of these fields are:

Access levels

The access level is described by the first value on each line. The seven access levels are:

Field Meaning

Access
Level

Which access level is being granted: list, read, open, write, review,
admin, or super. These are described below.

User/Group Does this protection apply to a user or a group? The value must be user
or group.

Name The user or group whose protection level is being defined. This field may
contain the “*” wildcard. A “*” by itself grants this protection to
everyone, “*e” grants this protection to every user (or group) whose
username ends with an “e”.

Host The TCP/IP address of the host being granted access. This must be
provided as the numeric address of the host in dotted quad notation (for
instance, 192.168.41.2).

This field may contain the “*” wildcard. A “*” by itself means that this
protection is being granted for all hosts. The wildcard can be used as in
any string, so “192.168.41.*” would define access to any subnet within
192.168.41, and “*3*” would refer to any IP address with a “3” in it.

Because the client’s IP address is provided by the Internet Protocol itself,
this field provides as much security as is provided by the network.

If you are using Perforce Proxy, see “P4P and protections” on page 135 to
find out how to use host-based protections for users connecting to a
Perforce Server from behind a Perforce Proxy.

Files A file specification representing the files in the depot on which
permissions are being granted. Perforce wildcards can be used in the
specification.

“//...” means all files in all depots.

Level Meaning

list Permission is granted to run Perforce commands that display file
metadata, such as p4 filelog. No permission is granted to view or
change the contents of the files.

read The user(s) can run those Perforce commands that are needed to read
files, such as p4 client and p4 sync. The read permission includes list
access.
72 Perforce 2004.2 System Administrator’s Guide

Chapter 4: Administering Perforce: Protections
Each Perforce command is associated with a particular minimum access level. For
example, to run p4 sync on a particular file, the user must have been granted at least read
access on that file.

The access level required to run a particular command can usually be reasoned from
knowledge of what the command does. For example, it is somewhat obvious that p4
print would require read access. For a full list of the minimum access levels required to
run each Perforce command, see “How Protections are Implemented” on page 77.

Which users should receive which permissions?

The simplest method of granting permissions is to give write permission to all users who
don’t need to manage the Perforce system, and give super access to those who do, but
there are times when this simple solution isn’t sufficient.

open Grants permission to read files from the depot into the client workspace,
and gives permission to open and edit those files. This permission does
not permit the user to write the files back to the depot. open is similar to
write, except that with open permission, users are not permitted to run
p4 submit or p4 lock.

The open permission includes read and list access.

write Permission is granted to run those commands that edit, delete, or add
files. The write permission includes read, list, and open access.

This permission allows use of all Perforce commands except protect,
depot, obliterate, and verify.

review A special permission granted to review daemons. It includes list and read
access, plus use of the p4 review command. Only review daemons
require this permission.

admin For Perforce administrators; grants permission to run Perforce commands
that affect metadata, but not server operation. Provides write and review
access plus the added ability to override other users’ branch
specifications, client specifications, jobs, labels, and change descriptions,
as well as to update the typemap table, verify and obliterate files, and to
customize job specifications.

super For Perforce superusers; grants permission to run all Perforce commands.
Provides write, review, and admin access plus the added ability to create
depots and triggers, edit protections and user groups, delete users, reset
passwords, and to shut down the server.

Level Meaning
Perforce 2004.2 System Administrator’s Guide 73

Chapter 4: Administering Perforce: Protections
Read access to particular files should be granted to users who never need to edit those
files. For example, an engineer may have write permission for source files, but have only
read access to the documentation, and managers not working with code may be granted
read access to all files.

Because open access enables local editing of files, but does not permit these files to be
written to the depot, open access is granted only in unusual circumstances. You might
choose open access over write access when users are testing their changes locally, but
when these changes should not be seen by other users. For instance, bug testers may want
to change code in order to test theories as to why particular bugs occur, but these changes
are not to be written to the depot. Perhaps a codeline has been frozen, and local changes
are to be submitted to the depot only after careful review by the development team. In
these cases, open access is granted until the code changes have been approved, after
which time the protection level is upgraded to write and the changes submitted.

Default protections

Before p4 protect is invoked, every user has superuser privileges. When p4 protect is
first run, two permissions are set by default. The default protections table looks like this:

This indicates that write access is granted to all users, on all hosts, to all files.
Additionally, the user who first invoked p4 protect (in this case, edk) is granted
superuser privileges.

Interpreting multiple permission lines

The access rights granted to any user are defined by the union of mappings in the
protection lines that match her user name and client IP address. (This behavior is slightly
different when exclusionary protections are provided and is described in the next section.)

Example: Multiple Permission Lines

Lisa, whose Perforce username is lisag, is using a client with the IP address
195.42.39.17. The protections file reads as follows:

The union of the first three permissions apply to Lisa. Her username is lisag, and she’s
currently using a client workspace on the host specified in lines 1 and 2. Thus, she can write
files located in the depot’s doc subdirectory, but can only read other files. Lisa tries the
following:

write user * * //...
super user edk * //...

read user * 195.42.39.17 //...
write user lisag 195.42.39.17 //depot/elm_proj/doc/...
read user lisag * //...
super user edk * //...
74 Perforce 2004.2 System Administrator’s Guide

Chapter 4: Administering Perforce: Protections
She types p4 edit //lisag/doc/elm-help.1, and is successful.

She types p4 edit //lisag/READ.ME, and is told that she doesn’t have the proper
permission. She is trying to write to a file to which has only read access. She types p4 sync
//lisag/READ.ME, and this command succeeds, as only read access is needed, and this is
granted to her on line 1.

Lisa later switches to another machine with IP address 195.42.39.13. She types p4 edit
//lisag/doc/elm-help.1, and the command fails; when she’s using this host, only the
third permission applies to her, and she only has read privileges.

Exclusionary protections

A user can be denied access to particular files by prefacing the fifth field in a permission
line with a minus sign (“-”). This is useful for giving most users access to a particular set
of files, while denying access to the same files to only a few users.

To use exclusionary mappings properly, it is necessary to understand some of their
peculiarities:

• When an exclusionary protection is included in the protections table, the order of the
protections is relevant: the exclusionary protection is used to remove any matching
protections above it in the table.

• No matter what access level is provided in an exclusionary protection, all access levels
for the matching files and IP addresses are denied. The access levels provided in
exclusionary protections are irrelevant. See “How Protections are Implemented” on
page 77 for a more detailed explanation.

Example: Exclusionary protections.

Ed has used p4 protect to set up protections as follows:

The first permission looks like it grants write access to all users to all files in all depots, but
this is overruled by later exclusionary protections for certain users.

The third permission denies Joe permission to access any file from any host. No subsequent
lines grant Joe any further permissions; thus, Joe has been effectively locked out of Perforce.

The fourth permission denies Lisa all access to all files on all hosts, but the fifth permission
gives her back write access on all files within a specific directory. If the fourth and fifth lines
were switched, Lisa would be unable to run any Perforce command.

write user * * //...
read user emily * //depot/elm_proj/...
super user joe * -//...
list user lisag * -//...
write user lisag * //depot/elm_proj/doc/...
Perforce 2004.2 System Administrator’s Guide 75

Chapter 4: Administering Perforce: Protections
Granting Access to Groups of Users

Perforce groups simplify maintenance of the protections table. The names of users with
identical access requirements can be stored in a single group; the group name can then be
entered in the table, and all the users in that group receive the specified permissions.

Groups are maintained with p4 group and their protections assigned with p4 protect.
Only Perforce superusers may use these commands.

Creating and editing groups

If p4 group groupname is called with a non-existent groupname, a new group named
groupname is created. Calling p4 group with an existing groupname allows editing of the
user list for this group.

To add users to a group, add user names in the Users: field of the form generated by the
p4 group groupname command. User names are entered under the Users: field header;
each user name must be typed on its own line, indented. A single user may be listed in
any number of groups.

Groups may contain other groups as well as individual users. To add all users in a
previously defined group to the group you’re working with, include the group name in
the Subgroups: field of the p4 group form. User and group names occupy separate
namespaces, so groups and users can have the same names.

Groups and protections

To use a group with the p4 protect form, specify a group name instead of a user name in
any line in the protections table, and set the value of the second field on the line to group
instead of user. All the users in that group will be granted the specified access.

Example: Granting access to Perforce groups.

This protections table grants list access to all members of the group devgrp, and super
access to user edk:

If a user belongs to multiple groups, one permission may override another. For instance, if
you use exclusionary mappings to deny access to an area of the depot to members of
group1, but grant access to the same area of the depot to members of group2, a user who
is a member of both group1 and group2 is granted, not denied, access. The actual
permissions granted to a specific user can be determined by replacing the names of all
groups to which a particular user belongs with the user’s name within the protections
table, and applying the rules described earlier in this chapter.

list group devgrp * //...
super user edk * //...
76 Perforce 2004.2 System Administrator’s Guide

Chapter 4: Administering Perforce: Protections
Deleting groups

To delete a group, invoke
p4 group -d groupname

Alternately, invoke p4 group groupname and delete all the users from the group in the
resulting editor form. The group will be deleted when the form is closed.

How Protections are Implemented

This section describes the algorithm that Perforce follows to implement its protection
scheme. Protections can be used properly without reading this section, as the material
here is provided to explain the logic behind the behavior described above.

Users’ access to files is determined by the following steps:

• The command is looked up in the command access level table shown in “Access Levels
Required by Perforce Commands” on page 78 to determine the minimum access level
needed to run that command. In our example, p4 print is the command, and the
minimum access level required to run that command is read.

• Perforce makes the first of two passes through the protections table. Both passes move
up the protections table, bottom to top, looking for the first relevant line.

The first pass determines whether or not the user is permitted to know whether or not
the file exists. This search simply looks for the first line encountered that matches the
user name, host IP address, and file argument. If the first matching line found is an
inclusionary protection, then the user has permission to at least list the file, and Perforce
proceeds to the second pass. Otherwise, if the first matching protection found is an
exclusionary mapping, or if the top of the protections table is reached without a
matching protection being found, then the user has no permission to even list the file,
and will receive a message like File not on client.

Example: Interpreting the order of mappings in the protections table.

Suppose the protections table is as follows:

If Ed runs p4 print //depot/file.c, Perforce examines the protections table bottom to
top, and first encounters the last line. The files specified there don’t match the file that Ed
wants to print, so this line is irrelevant. The second-to-last line is examined next; this line
matches Ed’s user name, his IP address, and the file he wants to print; since this line is an
exclusionary mapping, Ed isn’t allowed to list the file.

write user * * //...
read user edk * -//...
read user edk * //depot/elm_proj/...
Perforce 2004.2 System Administrator’s Guide 77

Chapter 4: Administering Perforce: Protections
• If the first pass is successful, a second pass is made at the protections table; this pass is
the same as the first, except that access level is now taken into account.

If an inclusionary protection line is the first line encountered that matches the user
name, IP address, file argument, and has an access level greater than or equal to the
access level required by the given command, then the user is given permission to run
the command.

If an exclusionary mapping is the first line encountered that matches according to the
above criteria, or if the top of the protections table is reached without finding a
matching protection, then the user has no permission to run the command, and will
receive the message “You don’t have permission for this operation”.

Access Levels Required by Perforce Commands

The following table lists the minimum access level required to run each command. For
example, because p4 add requires at least open access, you can run p4 add if you have
open, write, admin, or super access.

Command Access Level Command Access Level

add open job b e open

admin super jobs a list

annotate read jobspec b admin

branch e open label a e open

branches list labels a b list

change e open labelsync open

changes a list lock write

client e list login none

clients list logout none

counter c review obliterate admin

counters list opened list

delete open passwd list

depot a b super print read

depots a list protect a super

describe read reopen open

describe -s list resolve open
78 Perforce 2004.2 System Administrator’s Guide

Chapter 4: Administering Perforce: Protections
a This command doesn’t operate on specific files. Thus, permission is granted to run the
command if the user has the specified access to at least one file in the depot.

b The -o flag to this command, which allows the form to be read but not edited, requires only
list access.

c list access is required to view an existing counter’s value; review access is required to
change a counter’s value or create a new counter.

d To run p4 integrate, the user needs open access on the target files and read access on the
donor files.

e The -f flag to override existing metadata or other users’ data requires admin access.

Commands that list files, such as p4 describe, list only those files to which the user has
at least list access.

Some commands (for example, p4 change, when editing a previously submitted
changelist) take a -f flag which can only be used by Perforce superusers. See “Forcing
operations with the -f flag” on page 50 for details.

diff read resolved open

diff2 read revert open

dirs list review a review

edit open reviews a list

filelog list set list

files list submit write

fixes a list sync read

fstat list tag open

group a b super tickets none

groups a list triggers super

have list typemap admin

help none unlock e open

info none user a b list

integrate d open users a list

integrated list verify admin

where a none

Command Access Level Command Access Level
Perforce 2004.2 System Administrator’s Guide 79

Chapter 4: Administering Perforce: Protections
80 Perforce 2004.2 System Administrator’s Guide

Chapter 5 Customizing Perforce:
Job Specifications
Perforce’s jobs feature enables users to link changelists to enhancement requests, problem
reports, and other user-defined tasks. Perforce also offers P4DTI (Perforce Defect Tracking
Integration) as a way to integrate third-party defect tracking tools with Perforce. See
“Working with third-party defect tracking systems” on page 89 for details.

The Perforce user’s use of p4 job is discussed in the Perforce User’s Guide. This chapter
covers administrator modification of the jobs system.

Perforce’s default jobs template has five fields for tracking jobs. These fields are sufficient
for small-scale operations, but as projects managed by Perforce grow, the information
stored in these fields may be insufficient. To modify the job template, use the p4 jobspec
command. You must be a Perforce administrator to use p4 jobspec.

This chapter discusses the mechanics of altering the Perforce job template.

The Default Perforce Job Template

To understand how Perforce jobs are specified, we will examine the default Perforce job
template. The examples that follow in this chapter are based upon modifications to the
default Perforce job template.

A job created with the default Perforce job template has this format:

Warning! Improper modifications to the Perforce job template can lead to corruption
of your server’s database. Recommendations, caveats, and warnings about
changes to job templates are summarized at the end of this chapter.

A Perforce Job Specification.
#
Job: The job name. ’new’ generates a sequenced job number.
Status: Either ’open’, ’closed’, or ’suspended’. Can be changed.
User: The user who created the job. Can be changed.
Date: The date this specification was last modified.
Description: Comments about the job. Required.
Job: new
Status: open
User: edk
Date: 1998/06/03 23:16:43
Description:
 <enter description here>
Perforce 2004.2 System Administrator’s Guide 81

Chapter 5: Customizing Perforce: Job Specifications
The template from which this job was created can be viewed and edited with p4 jobspec.
The default job specification template looks like this:

The Job Template’s Fields

There are four fields in the p4 jobspec form. These fields define the template for all
Perforce jobs stored on your server. The fields and field types are:

A Perforce Job Specification.
#
Updating this form can be dangerous!
See ’p4 help jobspec’ for proper directions.
Fields:
 101 Job word 32 required
 102 Status select 10 required
 103 User word 32 required
 104 Date date 20 always
 105 Description text 0 required
Values:
 Status open/suspended/closed
Presets:
 Status open
 User $user
 Date $now
 Description $blank
Comments:
 # A Perforce Job Specification.
 #
 # Job: The job name. ’new’ generates a sequenced job number.
 # Status: Either ’open’, ’closed’, or ’suspended’. Can be changed.
 # User: The user who created the job. Can be changed.
 # Date: The date this specification was last modified.
 # Description: Comments about the job. Required.

Field / Field Type Meaning

Fields: A list of fields to be included in each job.

Each field consists of an ID#, a name, a datatype, a length, and a
setting.

Values: A list of fields whose datatype is select.

For each select field, you must add a line containing the
field’s name, a space, and its list of acceptable values, separated
by slashes.
82 Perforce 2004.2 System Administrator’s Guide

Chapter 5: Customizing Perforce: Job Specifications
The Fields: field

The p4 jobspec field Fields: lists the fields to be tracked by your jobs, and specifies the
order in which they appear on the p4 job form.

The default Fields: field includes these fields:

Presets: A list of fields and their default values.

Values can be either literal strings or variables supported by
Perforce.

Comments: The comments that appear at the top of the p4 job form.

These comments are also used by P4Win, the Perforce Windows
Client.

Fields:
 101 Job word 32 required
 102 Status select 10 required
 103 User word 32 required
 104 Date date 20 always
 105 Description text 0 required

Warning Do not attempt to change, rename, or redefine fields 101 through 105.
Fields 101 through 105 are used by Perforce and should not be deleted or
changed. Only use p4 jobspec to add new fields (106 and above) to your
jobs.

• Field 101 is required by Perforce and cannot be renamed nor deleted.
• Fields 102 through 105 are reserved for use by Perforce client programs.

Although it is possible to rename or delete these fields, it is highly
undesirable to do so. Perforce client programs may continue to set the
value of field 102 (the Status: field) to closed upon changelist sub-
mission, even if the administrator has redefined field 102 for use as a
field that does not contain closed as a permissible value, leading to
unpredictable and confusing results.

Field / Field Type Meaning
Perforce 2004.2 System Administrator’s Guide 83

Chapter 5: Customizing Perforce: Job Specifications
Each field must be listed on a separate line, and is comprised of five separate descriptors:

Field
Descriptor

Meaning

ID# A unique integer identifier by which this field is indexed. After a field
has been created and jobs entered into the system, the name of this field
can change, but the data becomes inaccessible if the ID number changes.

ID numbers must be between 106 and 199.

Name The name of the field as it should appear on the p4 job form.

Data Type One of five datatypes (word, text, line, select, or date), as described
in the next table.

Length The recommended size of the field’s text box as displayed in P4Win, the
Perforce Windows Client. To display a text box with room for multiple
lines of input, use a length of 0; to display a single line, enter the Length
as the maximum number of characters in the line.

The value of this field has no effect on jobs edited from the Perforce
command line, and is not related to the actual length of the values
stored by the server.

Persistence Determines whether a field is read-only, contains default values, is
required, and so on. The valid values for this field are:

• optional: field can take any value or can be deleted.
• default: a default value is provided, but it can be changed or

erased.
• required: a default is given; it can be changed but the field can’t be

left empty.
• once: read-only; the field is set once to a default value and is never

changed.
• always: read-only; the field value is reset to the default value when

the job is saved. Useful only with the $now variable to change job
modification dates, and with the $user variable to change the name
of the user who last modified the job.

In version 98.2 of Perforce, a field’s persistence was specified in a very
different way. If you have upgraded from 98.2, no conversion need be
done; the old persistences will appear in the p4 jobspec form in the
new template.
84 Perforce 2004.2 System Administrator’s Guide

Chapter 5: Customizing Perforce: Job Specifications
The five field datatypes are:

The Values: fields

You specify the set of possible values for any field of datatype select by entering lines in
the Values: field. Each line should contain the name of the field, a space, and the list of
possible values, separated by slashes.

In the default Perforce job specification, the Status: field is the only select field, and its
possible values are defined as follows:

The Presets: field

All fields with a persistence of anything other than optional require default values. To
assign a default value to a field, create a line in the jobspec form under Presets,
consisting of the field name to which you’re assigning the default value. Any single-line
string can be used as a default value.

Field Type Explanation Example

word A single word. A userid: edk

text A block of text that can span multiple lines. A job’s description

line One line of text. A user’s real name: Ed K.

select One of a set of values.

Each field with datatype select must
have a corresponding line in the Values:
field entered into the job specification.

A job’s status. One of:
open/suspended/closed

date A date value. The date and time of job
creation:
1998/07/15:13:21:46

Values:
 Status open/suspended/closed

Note Prior to version 2000.1 of Perforce, the Values: and Presets: fields were
specified differently.

If you have scripts that rely upon the old style of jobspecs, you might
have to modify them. (Scripts that manipulate jobs, but not jobspecs, do
not require modification.)
Perforce 2004.2 System Administrator’s Guide 85

Chapter 5: Customizing Perforce: Job Specifications
Three variables are available for use as default values:

The lines in the Presets: field for the standard jobs template are:

The Comments: field

The Comments: field supplies the comments that appear at the top of the p4 job form.
Because p4 job does not automatically tell your users the valid values of select fields,
which fields are required, and so on, your comments must tell your users everything they
need to know about each field.

Each line of the Comments: field must be indented by at least one tab stop from the left
margin, and must begin with the comment character #.

The comments for the default p4 job template appear as:

If you administer a Perforce server and your users use P4Win, the Perforce Windows
Client, you must take extra care when writing your comments.

P4Win displays these comments in two ways:

• When the P4Win user creates or edits a job and presses the Form Info button in the job
dialog box, a popup window displays the comments.

Variable Value

$user The Perforce user creating the job, as specified by the P4USER
environment or registry variable, or as overridden with p4 -u username
job.

$now The date and time at the moment the job is saved.

$blank The text <enter description here>.

When users enter jobs, any fields in your jobspec with a preset of $blank
must be filled in by the user before the job is added to the system.

Presets:
 Status open
 User $user
 Date $now
 Description $blank

Comments:
 # A Perforce Job Specification.
 # Job: The job name. ’new’ generates a sequenced job number.
 # Status: Either ’open’, ’closed’, or ’suspended’. Can be changed
 # User: The user who created the job. Can be changed.
 # Date: The date this specification was last modified.
 # Description: Comments about the job. Required.
86 Perforce 2004.2 System Administrator’s Guide

Chapter 5: Customizing Perforce: Job Specifications
• As the (Windows) cursor moves over each field, the first line of the comment following
the colon after the field name in the jobspec is displayed in a ToolTip. The remainder of
each of these lines is displayed as the ToolTip for the field that matches the first word of
the line. Only the first line of the comment is displayed.

For instance, the ToolTip for the Status: field in the preceding jobspec reads:
Either ’open’, ’closed’, or ’suspended’. Can be changed

Caveats, Warnings, and Recommendations

Although the material in this section has already been presented elsewhere in this
chapter, it is important enough to bear repeating. Please follow the guidelines presented
here when editing job specifications with p4 jobspec.

• Do not attempt to change, rename, or redefine fields 101 through 105. These fields are
used by Perforce and should not be deleted or changed. Only use p4 jobspec to add
new fields (106 and above) to your jobs.

Field 101 is required by Perforce and cannot be renamed nor deleted.

Fields 102 through 105 are reserved for use by Perforce client programs. Although it is
possible to rename or delete these fields, it is highly undesirable to do so. Perforce client
programs may continue to set the value of field 102 (the Status: field) to closed upon
changelist submission, even if the administrator has redefined field 102 for use as a field
that does not contain closed as a permissible value, leading to unpredictable and
confusing results.

• After a field has been created and jobs have been entered, do not change the field’s ID#.
Any data entered in that field through p4 job will be inaccessible.

• Field names can be changed at any time. When changing a field’s name, be sure to also
change the fieldname in other p4 jobspec fields that reference this fieldname. For
example, if you create a new field 106 named severity and subsequently rename it to
bug-severity, then the corresponding line in the jobspec’s Presets: field must be
changed to bug-severity to reflect the change.

• The comments that you write in the Comments: field are the only way to let your users
know the requirements for each field. Make these comments understandable and
complete. These comments are treated specially in P4Win, the Perforce Windows Client.
For P4Win ToolTip compatibility, the first line of each field’s comment should be
understandable if read on its own.

Warning! Please read and understand the material in this section before attempting to
edit a job specification.
Perforce 2004.2 System Administrator’s Guide 87

Chapter 5: Customizing Perforce: Job Specifications
Example: A Custom Template

The following example shows a more complicated jobspec and the resulting job form:

The order of the listing under Fields: in the p4 jobspec form determines the order in
which the fields appear to users in job forms; fields need not be ordered by numeric
identifier.

A Custom Job Specification.
#
Updating this form can be dangerous!
See ’p4 help jobspec’ for proper directions.
Fields:
 101 Job word 32 required
 102 Status select 10 required
 103 User word 32 required
 104 Date date 20 always
 111 Type select 10 required
 112 Priority select 10 required
 113 Subsystem select 10 required
 114 Owned_by word 32 required
 105 Description text 0 required
Values:
 Status open/closed/suspended
 Type bug/sir/problem/unknown
 Priority A/B/C/unknown
 Subsystem server/gui/doc/mac/misc/unknown
Presets:
 Status open
 User setme
 Date $now
 Type setme
 Priority unknown
 Subsystem setme
 Owned_by $user
 Description $blank
Comments:
 # Custom Job fields:
 # Job: The job name. ’new’ generates a sequenced job number.
 # Status: Either ’open’, ’closed’, or ’suspended’. Can be changed
 # User: The user who created the job. Can be changed.
 # Date: The date this specification was last modified.
 # Type: The type of the job. Acceptable values are
 # ’bug’, ’sir’, ’problem’ or ’unknown’
 # Priority: How soon should this job be fixed?
 # Values are ’a’, ’b’, ’c’, or ’unknown’
 # Subsystem: One of server/gui/doc/mac/misc/unknown
 # Owned_by: Who’s fixing the bug
 # Description: Comments about the job. Required.
88 Perforce 2004.2 System Administrator’s Guide

Chapter 5: Customizing Perforce: Job Specifications
Running p4 job against the example custom jobspec displays the following job form:

Working with third-party defect tracking systems

With P4DTI, you can integrate Perforce with any third-party defect tracking or process
management software.

Activity in your Perforce depot (enhancements, bug fixes, propagation of changes into
release branches, and so forth) can be automatically entered into your defect tracking
system by P4DTI. Conversely, issues and status entered into your defect tracking system
(such as bug reports, change orders, work assignments) can be converted automatically to
Perforce metadata for access by Perforce users.

P4DTI can be easily extended to other products; TeamShare and Bugzilla are the first two
integrations published.

P4DTI is open source and available under a FreeBSD-like license.

Using P4DTI - Perforce Defect Tracking Integration

If you want to integrate Perforce with your in-house defect tracking system, or develop an
integration with a third-party defect tracking system, P4DTI is probably the best place to
start.

To get started with P4DTI, see the P4DTI product information page at:
http://www.perforce.com/perforce/products/p4dti.html

Custom Job fields:
Job: The job name. ’new’ generates a sequenced job number.
Status: Either ’open’, ’closed’, or ’suspended’. Can be changed
User: The user who created the job. Can be changed.
Date: The date this specification was last modified.
Type: The type of the job. Acceptable values are
’bug’, ’sir’, ’problem’ or ’unknown’
Priority: How soon should this job be fixed?
Values are ’a’, ’b’, ’c’, or ’unknown’
Subsystem: One of server/gui/doc/mac/misc/unknown
Owned_by: Who’s fixing the bug
Description: Comments about the job. Required.

Job: new
Status: open
User: setme
Type: setme
Priority: unknown
Subsystem: setme
Owned_by: edk
Description:
 <enter description here>
Perforce 2004.2 System Administrator’s Guide 89

Chapter 5: Customizing Perforce: Job Specifications
Available from this page are the TeamShare and Bugzilla implementations, an overview
of the P4DTI’s capabilities, and a kit (including source code and developer documentation)
for building integrations with other products or in-house systems.

Building your own integration

Even if you don’t use the P4DTI kit as a starting point, you can still use Perforce’s job
system as the interface between Perforce and your defect tracker. Depending on the
application, the interface you set up will consist of one or more of the following:

• A trigger or script on the defect tracking system side that adds, updates, or deletes a job
in Perforce every time a bug is added, updated, or deleted in the defect tracking system.

The third-party system should generate the data and pass it to a script which reformats
the data to resemble the form used by a manual (interactive) invocation of p4 job. The
script can then pipe the generated form to a the standard input of a p4 job -i
command.

(The -i flag to p4 job is used when you want p4 job to read a job form directly from
the standard input, rather than using the interactive “form-and-editor” approach
typical of user operations. Further information on automating Perforce with the -i
option is available in the Perforce Command Reference.)

• A trigger on the Perforce side that checks changelists being submitted for any necessary
bug fix information.

• A Perforce review daemon that checks successfully-submitted changelists for job fixes
and issues the appropriate commands to update the corresponding data in your defect
tracking system.

For more about triggers and review daemons, including examples, see “Scripting
Perforce: Triggers and Daemons” on page 91.

Getting more information

In addition to the P4DTI-based TeamTrack and Bugzilla integrations, Perforce customers
currently integrate Perforce with their own home-grown defect tracking systems, and
with third-party systems such as Remedy, Scopus, and ClearTrack.

If you are interested in seeing what other Perforce users have done, visit the Perforce web
site and examine the perforce-user mailing list archives, which are available under our
Documentation page.

You may also wish to consider posting to perforce-user to ask if anyone has integrated
Perforce with the third-party tool you’re interested in, as someone may have already done
all the setup work required to work with your system.
90 Perforce 2004.2 System Administrator’s Guide

Chapter 6 Scripting Perforce:
Triggers and Daemons
There are two primary methods of scripting Perforce:

• Perforce triggers are user-written scripts that are called by a Perforce server whenever
certain operations (such as changelist submission or changes to forms) are performed. If
the script returns a value of 0, the operation continues; if the script returns any other
value, the operation fails. Upon failure, the script’s standard output (not error output)
is sent to the Perforce client program as an error message.

• Daemons run at predetermined times, looking for changes to the Perforce metadata.
When a daemon determines that the state of the depot has changed in some specified
way, it runs other commands. For example, a daemon might look for newly submitted
changelists and send email to users interested in tracking changes to those files.
Perforce provides a number of tools that make writing daemons easier.

This chapter assumes that you know how to write scripts.

Triggers

Triggers can be useful in many situations. Consider the following common uses:

• To validate changelist contents beyond the mechanisms afforded by the Perforce
protections table. For example, you can use a pre-submit trigger to ensure that
whenever file1 is submitted in a changelist, file2 is also submitted.

• To validate file contents as part of changelist submission. For example, you can use a
mid-submit trigger to ensure that, when file1 and file2 are submitted, both files refer
to the same set of header files.

• To start build processes after successful changelist submission.

• To validate specifications, or to provide customized versions of Perforce specification
forms. For example, you can use specification triggers to generate a customized default
workspace view in the p4 client command, or to ensure that users enter a meaningful
workspace description.

• To notify other users of attempts to change forms such as the user form or the job
specification form, or to trigger process control tools following updates to Perforce
metadata.
Perforce 2004.2 System Administrator’s Guide 91

Chapter 6: Scripting Perforce: Triggers and Daemons
Example: A basic trigger.

The development group wants to ensure that whenever an .exe file is submitted to the depot,
a set of release notes for the program are submitted at the same time.

You write a trigger script that takes a changelist number as its only argument, performs a p4
opened on the changelist, parses the results to find the files included in the changelist, and
ensures that for every executable file that’s been submitted, a RELNOTES file in the same
directory has also been submitted. If the changelist includes a RELNOTES file, the script
terminates with an exit status of 0; otherwise the exit status is set to 1.

After writing the script, you add it to the trigger table by editing the p4 trigger form as
follows:

Whenever a file ending in .exe is submitted, this trigger is fired. If the trigger script fails, it
returns a nonzero exit status, and the user’s submit fails.

The trigger table

After you have written a trigger script, create the trigger by issuing the p4 triggers
command. The p4 triggers form looks like this:

You must be a Perforce superuser to run p4 triggers.

Warning! When writing trigger scripts, Perforce commands that write data to the
depot are dangerous and should be avoided. In particular, do not run the
p4 submit command from within a trigger script.

Triggers:
 rnotes submit //depot/....exe "/usr/bin/test.pl %changelist%"

Triggers:
 relnotes_check submit //depot/bld/... "/usr/bin/relcheck.pl %user%"
 verify_jobs submit //depot/... "/usr/bin/job.py %change%"
92 Perforce 2004.2 System Administrator’s Guide

Chapter 6: Scripting Perforce: Triggers and Daemons
Trigger table fields

Each line in the trigger table has four fields:

Field Meaning

name The user-defined name of the trigger.

type There are six trigger types. The first three trigger types (submit,
content, and commit) are fired when users submit changelists, and
are referred to as changelist submission triggers. The remaining
trigger types (save, out, and in) are fired when users generate or
modify form specifications, and are referred to as specification
triggers.

• submit: Execute a changelist trigger after changelist creation, but
before file transfer. Trigger may not access file contents.

• content: Execute a changelist trigger after changelist creation
and file transfer, but before file commit.
To obtain file contents, use commands such as p4 diff2, p4
files, p4 fstat, and p4 print with the revision specifier
@=change, where change is the changelist number of the pending
changelist as passed to the script in the %changelist% variable.

• commit: Execute a changelist trigger after changelist creation, file
transfer, and changelist commit.

• save: Execute specification trigger after its contents are parsed,
but before its contents are stored in the Perforce database. Trigger
may not modify form specified in %formfile% variable.

• out: Execute specification trigger upon generation of form to end
user. Trigger may modify form.

• in: Execute specification trigger on edited form before contents
are parsed and validated by the Perforce server. Trigger may
modify form.

path For changelist submission triggers (submit, content, or commit), a
file pattern in depot syntax. When a user submits a changelist that
contains any files that match this file pattern, the script linked to
this trigger is run. Use exclusionary mappings to prevent triggers
from running on specified files.

For specification triggers (save, out, or in), the name of the type of
form, such as branch, client, and so on. Triggers that fire on the p4
triggers command are ignored.
Perforce 2004.2 System Administrator’s Guide 93

Chapter 6: Scripting Perforce: Triggers and Daemons
Trigger script variables

Use the following variables in the command field to pass data to a trigger script:

command The command for the Perforce server to run when a matching path
applies for the trigger type. Specify the command in a way that
allows the Perforce server account to locate and run the command.
The command must be quoted, and can take the variables specified
in “Trigger script variables” on page 94 as arguments.

For submit and content triggers, changelist submission continues
if the trigger script exits with 0, or fails if the script exits with a
nonzero value. For commit triggers, changelist submission succeeds
regardless of the trigger script’s exit code, but subsequent commit
triggers do not fire if the script exits with a nonzero value.

For in, out, and save triggers, the data in the specification becomes
part of the Perforce database if the script exits with 0. Otherwise,
the database is not updated.

Argument Description Available for type

%changelist% The number of the changelist being submitted.
(The abbreviated form %change% is equivalent.)

submit, content,
and commit

%client% Triggering user’s client workspace name. all

%clienthost% Hostname of the client. all

%clientip% The IP address of the client. all

%serverhost% Hostname of the Perforce server. all

%serverip% The IP address of the server. all

%serverport% The IP address and port of the Perforce server, in
the format ip_address:port.

all

%serverroot% The P4ROOT directory of the Perforce server. all

%user% Perforce username of the triggering user. all

%formfile% Path to temporary specification file. To modify
the form from an in or out trigger, overwrite this
file. The file is read-only for triggers of type save.

save, out, and in

%formname% Name of form (for instance, a branch name or a
changelist number).

save, out, and in

%formtype% Type of form (for instance, branch, change, and
so on).

save, out, and in

Field Meaning
94 Perforce 2004.2 System Administrator’s Guide

Chapter 6: Scripting Perforce: Triggers and Daemons
Triggering on changelists

To configure Perforce to run trigger scripts when users submit changelists, use changelist
submission triggers: these are triggers of type submit, content, and commit.

For changelist submission triggers, the path column of each trigger line is a file pattern in
depot syntax. If a changelist being submitted contains any files in this path, the trigger
fires. To prevent changes to a file from firing a trigger, use an exclusionary mapping in the
path.

Submit triggers

Use the submit trigger type to create triggers that fire after changelist creation, but before
files are transferred to the server. Because submit triggers fire before files are transferred
to the server, submit triggers cannot access file contents. Submit triggers are useful for
integration with reporting tools or systems that do not require access to file contents.

Example: The following submit trigger is an MS-DOS batch file that rejects a changelist if the
submitter has not assigned a job to the changelist. This trigger fires only on changelist
submission attempts that affect at least one file in the //depot/qa branch.

To use the trigger, add the following line to your triggers table:

Every time a changelist is submitted that affects any files under //depot/qa, the
jobcheck.bat file is called. If the string “Jobs:” (followed by two newlines and a tab
character) is detected, the script assumes that a job has been attached to the changelist and
permits changelist submission to continue. Otherwise, the submit is rejected.

The second findstr command ensures that the final error level of the trigger script is the
same as the error level that determines whether to output the error message.

Content triggers

Use the content trigger type to create triggers that fire after changelist creation and file
transfer, but prior to committing the submit to the database. Content triggers can access
file contents by using the p4 diff2, p4 files, p4 fstat, and p4 print commands with
the @=change revision specifier, where change is the number of the pending changelist as
passed to the trigger script in the %changelist% variable.

@echo off
if not x%1==x goto doit
echo Usage is %0[change#]

:doit
p4 describe -s %1|findstr "Jobs:\n\n\t" > nul
if errorlevel 1 echo No jobs found for changelist %1
p4 describe -s %1|findstr "Jobs:\n\n\t" > nul

sample1 submit //depot/qa/... "jobcheck.bat %changelist%"
Perforce 2004.2 System Administrator’s Guide 95

Chapter 6: Scripting Perforce: Triggers and Daemons
Use content triggers to validate file contents as part of changelist submission, and to abort
changelist submission if the validation fails.

Example: The following content trigger is a Bourne shell script that ensures that every file in
every changelist contains a copyright notice for the current year.

The script assumes the existence of a client workspace called copychecker that includes all
of //depot/src. This workspace does not have to be synced.

To use the trigger, add the following line to your triggers table:

The trigger fires when any changelist with at least one file in //depot/src is submitted. The
corresponding DEPOT_PATH defined in the script ensures that of all the files in the triggering
changelist, only those files actually under //depot/src are checked.

#!/bin/sh

Set target string, files to search, location of p4 executable...

TARGET="Copyright ‘date +%Y‘ Example Company"
DEPOT_PATH="//depot/src/..."
CHANGE=$1
P4CMD="/usr/local/bin/p4 -p 1666 -c copychecker"
XIT=0
echo ""

For each file, strip off #version and other non-filename info
Use sed to swap spaces w/"%" to obtain single arguments for "for"

for FILE in ‘$P4CMD files $DEPOT_PATH@=$CHANGE | \
 sed -e ’s/\(.*\)\#[0-9]* - .*$/\1/’ -e ’s/ /%/g’‘
do
 # Undo the replacement to obtain filename...
 FILE="‘echo $FILE | sed -e ’s/%/ /g’‘"

 # ...and use @= specifier to access file contents:
 # p4 print -q //depot/src/file.c@=12345
 if $P4CMD print -q "$FILE@=$CHANGE" | grep "$TARGET" > /dev/null
 then
 else
 echo "Submit fails: '$TARGET' not found in $FILE"
 XIT=1
 fi
done

exit $XIT

sample2 content //depot/src/... "copydate.sh %change%"
96 Perforce 2004.2 System Administrator’s Guide

Chapter 6: Scripting Perforce: Triggers and Daemons
Commit triggers

Use the commit trigger type to create triggers that fire after changelist creation, file
transfer, and changelist commission to the database. Use commit triggers for processes
that assume (or require) the successful submission of a changelist.

Example: The following commit trigger sends emails to other users who have files open in the
submitted changelist:

To use the trigger, add the following line to your triggers table:

Whenever a user submits a changelist, any users with open files affected by that changelist
receive an email notification.

#!/bin/sh
mailopens.sh - Notify users when open files are updated
changelist=$1
workspace=$2
user=$3
p4 fstat @$changelist,@$changelist | while read line
do
 # Parse out the name/value pair.
 name=‘echo $line | sed ’s/[\.]\+\([^]\+\) .\+/\1/’‘
 value=‘echo $line | sed ’s/[\.]\+[^]\+ \(.\+\)/\1/’‘
 if ["$name" = "depotFile"]
 then
 # Line is "... depotFile <depotFile>". Parse to get depotFile.
 depotfile=$value
 elif ["‘echo $name | cut -b-9‘" = "otherOpen" -a \
 "$name" != "otherOpen"]
 then
 # Line is "... ... otherOpen[0-9]+ <otherUser@otherWorkspace>".
 # Parse to get otherUser and otherWorkspace.
 otheruser=‘echo $value | sed ’s/\(.\+\)@.\+/\1/’‘
 otherworkspace=‘echo $value | sed ’s/.\+@\(.\+\)/\1/’‘
 # Get email address of the other user from p4 user -o.
 othermail=‘p4 user -o $otheruser | grep Email: \
 | grep -v \# | cut -b8-‘

 # Mail other user that a file they have open has been updated
 mail -s "$depotfile was just submitted" $othermail <<EOM
The Perforce file: $depotfile
was just submitted in changelist $changelist by Perforce user $user
from the $workspace workspace. You have been sent this message
because you have this file open in the $otherworkspace workspace.
EOM
 fi
done
exit 0

sample3 commit //... "mailopens.sh %changelist% %client% %user%"
Perforce 2004.2 System Administrator’s Guide 97

Chapter 6: Scripting Perforce: Triggers and Daemons
Triggering on specifications

To configure Perforce to run trigger scripts when users edit specifications, use specification
triggers: these are triggers of type save, in, and out.

Use specification triggers to generate customized specifications for users, validate
customized specifications, to notify other users of attempted changes to specification
forms, and to otherwise interact with process control and management tools.

Save triggers

Save triggers are called when users send changed specifications to the server, and are
called after the specification has been parsed by the server, but before the changed
specification is stored in the Perforce metadata.

Example: To prohibit certain users from modifying their client workspaces, add the users to a
group called lockedws, and use the following save trigger.

This trigger denies attempts to change client specifications for users in the lockedws group,
outputs an error message containing the user name, IP address of the user’s workstation, and
the name of the client workspace on which a modification was attempted, and notifies an
administrator.

The save trigger fires on client specifications only, and appears in the trigger table as
follows:

Users whose names appear in the output of p4 groups lockedws have changes to their
client workspaces parsed by the server, and even if those changes are syntactically correct, the
attempted change to the workspace is denied and an administrator is notified of the attempt.

#!/bin/bash
NOAUTH=lockedws
USERNAME=$1
WSNAME=$2
IPADDR=$3

GROUPS=‘p4 groups "$1"‘

if echo "$GROUPS" | grep -qs $NOAUTH
then
 echo "$USERNAME ($IPADDR) in $NOAUTH may not change $WSNAME"
 mail -s "User $1 workspace mod denial" admin@127.0.0.1
 exit 1
else
 exit 0
fi

sample5 save client "ws_lock.sh %user% %client% %clientip%"
98 Perforce 2004.2 System Administrator’s Guide

Chapter 6: Scripting Perforce: Triggers and Daemons
Out triggers

Out triggers are called whenever the Perforce Server generates a specification for display
to the user. For example, the command p4 job -o fires an out trigger on the job path.

Example: The default Perforce client workspace view maps the entire depot //depot/... to the
user’s client workspace. To prevent novice users from attempting to sync the entire depot, this
Perl script changes the default workspace view used by p4 client to map only the current
release codeline of //depot/releases/main/...

The out trigger fires on client specifications only, and appears as follows:

New users creating client workspaces are presented with your customized default view.

Warning! Never use a Perforce command in an out trigger that fires the same out
trigger, or infinite recursion will result. For example, never run p4 job -o
from within an out trigger script that fires on job specifications.

#!/usr/bin/perl
default_ws.pl - Customize the default client workspace view.

$p4 = "p4 -p localhost:1666";
$formname = $ARGV[0]; # from %formname% in trigger table
$formfile = $ARGV[1]; # from %formfile% in trigger table

Default server-generated workspace view and modified view
$defaultin = "\t//depot/... //$formname/...\n";
$defaultout = "\t//depot/releases/main/... //$formname/...\n";

Check "p4 clients" to be sure this is a new workspace.
If it’s an existing workspace, exit without modifying the view.
open CLIENTS, "$p4 clients |" or die "Couldn’t get workspace list";
while (<CLIENTS>)
{
 if (/^Client $formname .*/) { exit 0; }
}

Build a modified workspace spec based on contents of %formfile%
$modifiedform = "";
open FORM, $formfile or die "Trigger couldn’t read form tempfile";
while (<FORM>)
{ ## Do the substitution as appropriate.
 if (m:$defaultin:) { $_ = "$defaultout"; }
 $modifiedform .= $_;
}

Write the modified spec back to the %formfile%,
open MODFORM, ">$formfile" or die "Couldn’t write form tempfile";
print MODFORM $modifiedform;
exit 0;

sample3 out client "default_ws.pl %formname% %formfile%"
Perforce 2004.2 System Administrator’s Guide 99

Chapter 6: Scripting Perforce: Triggers and Daemons
In triggers

In triggers are called when users submit specifications, and before the specification is
parsed by the Perforce server.

Example: All users authorized to edit jobs have been placed in a designated group called
jobbers. The following Python script runs p4 group -o jobbers with the -G (Python
marshaled objects) flag to determine if the user who triggered the script is in the jobbers
group.

The in trigger fires on job specifications only, and appears in the trigger table as follows:

If the user is in the jobbers group, the in trigger succeeds and the changed job is passed to
the Perforce server for parsing. Otherwise, an error message is displayed and changes to the
job are rejected.

import sys, os, marshal

Configure for your environment
tuser = "triggerman" # trigger username
auth_group = "jobbers" # Perforce group authorized to edit jobs

Get trigger input args
user = sys.argv[1]

Get authorized user list
Use global -G flag to get output as marshaled Python dictionary
CMD = "p4 -G -u %s -p 1666 group -o %s" % \
 (tuser, auth_group)
result = {}
result = marshal.load(os.popen(CMD, ’r’))

auth_users = []
for k in result.keys():
 if k[:4] == ’User’: # user key format: User0, User1, ...
 u = result[k]
 auth_users.append(u)

Compare current user to authorized users.
if not user in auth_users:
 print "\n\t>>> You don’t have permission to edit jobs."
 print "\n\t>>> You must be a member of ’%s’.\n" % auth_group
 sys.exit(1)
else: # authorized user -- OK to create/edit jobs
 sys.exit(0)

sample3 in job "python jobgroup.py %user%"
100 Perforce 2004.2 System Administrator’s Guide

Chapter 6: Scripting Perforce: Triggers and Daemons
Using multiple triggers

Triggers are run in the order in which they appear in the triggers table. If you have
multiple triggers of the same type that fire on the same path, each is run in the order in
which it appears in the triggers table. If one of these triggers fails, no further triggers are
executed.

Example: Multiple triggers on the same file:

All *.c files must pass through the scripts check1.sh, check2.sh, and check3.sh:

If any trigger fails (for instance, check1.sh), the submit fails immediately and none of the
subsequent triggers (that is, check2.sh and check3.sh) are called. Each time a trigger
succeeds, the next matching trigger is run.

To link multiple file specifications to the same trigger (and trigger type), list the trigger
multiple times in the trigger table.

Example: Activating the same trigger for multiple filespecs:

In this case, the bugcheck trigger runs on the *.c files, the *.h files, and the *.cpp files.

Multiple changelist submission triggers of different types that fire on the same path fire in
the following order:

1. submit (fired on changelist submission, before file transmission)

2. content triggers (after changelist submission and file transmission)

3. commit triggers (fired any automatic changelist renumbering by the server).

Similarly, specification triggers of different types are fired in the following order

1. out (form generation)

2. in (changed form is transmitted to the server)

3. save (validated form is ready for storage in the Perforce database).

Triggers:
 check1 submit //depot/src/*.c "/usr/bin/check1.sh %change%"
 check2 submit //depot/src/*.c "/usr/bin/check2.sh %change%"
 check3 submit //depot/src/*.c "/usr/bin/check3.sh %change%"

Triggers:
 bugcheck submit //depot/*.c "/usr/bin/checkit.pl %change%"
 bugcheck submit //depot/*.h "/usr/bin/checkit.pl %change%"
 bugcheck submit //depot/*.cpp "/usr/bin/checkit.pl %change%"
Perforce 2004.2 System Administrator’s Guide 101

Chapter 6: Scripting Perforce: Triggers and Daemons
Writing triggers to support multiple Perforce Servers

To call the same trigger script from more than one Perforce Server, use the %serverhost%,
%serverip%, and %serverport% variables to make your trigger script more portable.

For instance, if you have a script that uses hardcoded port numbers and addresses...

...and you call it with the following line in the trigger table...

...you can improve portability by changing the script as follows...

...and passing the server-specific data as an argument to the trigger script:

For a complete list of variables that apply for each trigger type, see “Trigger script
variables” on page 94.

Triggers and security

Triggers and Windows

By default, the Perforce service runs under the Windows local System account.

Because Windows requires a real account name and password to access files on a network
drive, if the trigger script resides on a network drive, you must configure the service to
use a real userid and password to access the script.

For details, see “Installing the Perforce service on a network drive” on page 125.

#!/bin/sh
Usage: jobcheck.sh changelist
CHANGE=$1
P4CMD="/usr/local/bin/p4 -p 192.168.0.12:1666"
$P4CMD describe -s $1 | grep "Jobs fixed...\n\n\t" > /dev/null

sample1 submit //depot/qa/... "jobcheck.sh %change%"

#!/bin/sh
Usage: jobcheck.sh changelist server:port
CHANGE=$1
P4PORT=$2
P4CMD="/usr/local/bin/p4 -p $P4PORT"
$P4CMD describe -s $1 | grep "Jobs fixed...\n\n\t" > /dev/null

sample2 submit //depot/qa/... "jobcheck.sh %change% %serverport%"

Warning! Because triggers are spawned by the p4d process, never run p4d as root on
UNIX systems.
102 Perforce 2004.2 System Administrator’s Guide

Chapter 6: Scripting Perforce: Triggers and Daemons
Daemons

Daemons are processes that are called periodically or run continuously in the background.
Daemons that use Perforce usually work by examining the server metadata as often as
needed and taking action as often as necessary.

Typical daemon applications include:

• A change review daemon that wakes up every ten minutes to see if any changelists
have been submitted to the production depot. If any changelists have been submitted,
the daemon sends email to those users who have “subscribed” to any of the files
included in those changelists. The message informs them that the files they’re interested
in have changed.

• A jobs daemon that generates a report at the end of each day to create a report on open
jobs. It shows the number of jobs in each category, the severity each job, and more. The
report is mailed to all interested users.

• A Web daemon that looks for changes to files in a particular depot subdirectory. If new
file revisions are found there, they are synced to a client workspace that contains the
live web pages.

Daemons can be used for almost any task that needs to occur when Perforce metadata has
changed. Unlike triggers, which are used primarily for submission validation, daemons
can also be used to write information (that is, submit files) to a depot.

Perforce’s change review daemon

The Perforce change review daemon (p4review.py) is available from the Perforce
Supporting Programs page:

http://www.perforce.com/perforce/loadsupp.html#daemon

The review daemon runs under Python, available at http://www.python.org/. Before
running the review daemon, please be sure to read and follow the configuration
instructions included in the daemon itself.

Users subscribe to files by calling p4 user, entering their email addresses in the Email:
field, and entering any number of file patterns corresponding to files in which they’re
interested in to the Reviews: field.

User: sarahm
Email: sarahm@elmco.com
Update: 1997/04/29 11:52:08
Access: 1997/04/29 11:52:08
FullName: Sarah MacLonnogan
Reviews:
 //depot/doc/...
 //depot.../README
Perforce 2004.2 System Administrator’s Guide 103

Chapter 6: Scripting Perforce: Triggers and Daemons
The change review daemon monitors the files were included in each newly submitted
changelist and emails all users who have subscribed to any files included in a changelist,
letting those users know that the file(s) in question have changed.

By including the special path //depot/jobs in the Reviews: field, users can also receive
mail from the Perforce change review daemon whenever job data is updated.

The change review daemon implements the following scheme:

1. p4 counter is used to read and change a variable, called a counter, in the Perforce
metadata. The counter used by this daemon, review, stores the number of the latest
changelist that’s been reviewed.

2. The Perforce depot is polled for submitted, unreviewed changelists with the p4
review -t review command.

3. p4 reviews generates a list of reviewers for each of these changelists.

4. The Python mail module mails the p4 describe changelist description to each
reviewer.

5. The first three steps are repeated every three minutes, or at some other interval
configured the time of installation.

The command used in the fourth step (p4 describe) is a straightforward reporting
command. The other commands (p4 review, p4 reviews, and p4 counter) are used
almost exclusively by review daemons.

Creating other daemons

You can use p4review.py (see “Perforce’s change review daemon” on page 103) as a
starting point to create your own daemons, changing it as needed. As an example, another
daemon might upload Perforce job information into an external bug tracking system after
changelist submission. It would use the p4 review command with a new review counter
to list new changelists, and use p4 fixes to get the list of jobs fixed by the newly
submitted changelists. This information might then be fed to the external system,
notifying it that certain jobs have been completed.

If you write a daemon of your own and would like to share it with other users, you can
submit it into the Perforce Public Depot. For more information, go to
http://www.perforce.com and follow the “Perforce Public Depot” link.
104 Perforce 2004.2 System Administrator’s Guide

Chapter 6: Scripting Perforce: Triggers and Daemons
Commands used by daemons

Certain Perforce commands are used almost exclusively by review daemons.

These commands are:

Command Usage

p4 counter name [value] When a value argument is not included, p4
counter returns the value of the variable name.

When a value argument appears, p4 counter
sets the value of the variable name to value.

Requires at least review access to run.

WARNING: The review counters journal, job,
and change are used internally by Perforce; use
of any of these three names as review numbers
could corrupt the Perforce database.

For Release 99.2 and above, Perforce will not let
you change the values of journal, job, and
change.

Counters are represented internally as signed
ints. For most platforms, the largest value that
can be stored in a counter is 231 - 1, or
2147483647. A server running on a 64-bit
platform can store counters up to 263 - 1, or
9223372036854775807

p4 counters List all counters and their values.

p4 review -c change# For all changelists between change# and the
latest submitted changelist, this command lists
the changelists’ numbers, creators, and creators’
email addresses.

Requires at least review access to run.

p4 reviews -c change# filespec Lists all users who have subscribed to review the
named files or any files in the specified
changelist.

p4 changes -m 1 -s submitted Output a single line showing the changelist
number of the last submitted changelist, as
opposed to the highest changelist number
known to the Perforce server.
Perforce 2004.2 System Administrator’s Guide 105

Chapter 6: Scripting Perforce: Triggers and Daemons
Daemons and counters

If you’re writing a change review daemon or other daemon that deals with submitted
changelists, you may also wish to keep track of the changelist number of the last submitted
changelist, which is the second field in the output of a p4 changes -m 1 -s submitted
command.

This is not the same as the output of p4 counter change. The last changelist number
known to the Perforce server (the output of p4 counter change) includes pending
changelists created by users, but not yet submitted to the depot.

Scripting and buffering

Depending on your platform, the output of individual p4 commands may be fully-
buffered (output flushed only after a given number of bytes generated), line-buffered (as
on a tty, one line sent per linefeed), or unbuffered.

In general, stdout to a file or pipe is fully-buffered, and stdout to a tty is line-buffered. If
your trigger or daemon requires line-buffering (or no buffering), you can disable
buffering by supplying the -v0 debug flag to the p4 command in question.

If you’re using pipes to transfer standard output from a Perforce command (with or
without the -v0 flag), you may also experience buffering issues introduced by the kernel,
as the -v0 flag can only unbuffer the output of the command itself.
106 Perforce 2004.2 System Administrator’s Guide

Chapter 7 Tuning Perforce for
Performance
Your Perforce server should normally be a light consumer of system resources. As your
installation grows, however, you may wish to revisit your system configuration to ensure
that it is configured for optimal performance.

The following chapter briefly outlines some of the factors that can affect the performance
of a Perforce server, provides a few tips on diagnosing network-related difficulties, and
offers some suggestions on decreasing server load for larger installations.

Tuning for Performance

The following variables can affect the performance of your Perforce server.

Memory

Server performance is highly dependent upon having sufficient memory. Two bottlenecks
are relevant: the first can be avoided by ensuring that the server doesn’t page when
running large queries, and the second by ensuring that the db.rev table (or at least as
much of it as practical) can be cached in main memory.

• Determining memory requirements for large queries is fairly straightforward: the
server requires about 1KB/file of RAM to avoid paging; 10,000 files will require 10MB of
RAM.

• To cache db.rev, the size of the db.rev file in an existing installation can be observed
and used as an estimate. New installations of Perforce can expect db.rev to require
about 150-200 bytes per revision, and roughly 3 revisions per file, or about 0.5KB of
RAM per file.

Thus, if there is 1.5KB of RAM available per file, or 150MB for 100,000 files, the server will
not page, even when performing an operation involving all files. It is still possible that
multiple large operations will be performed simultaneously and thus require more
memory to avoid paging. On the other hand, the vast majority of operations will only
involve a small subset of files.

For most installations, a system with enough RAM for 1.5KB per file in the depot will
suffice.

Filesystem performance

Perforce is judicious with regards to its use of disk I/O; its metadata is well-keyed and
accesses are mostly sequential scans of limited subsets of the data.
Perforce 2004.2 System Administrator’s Guide 107

Chapter 7: Tuning Perforce for Performance
The only disk-intensive activity is file check-in, where the Perforce server must write and
rename files in the archive. Server performance depends heavily upon the operating
system’s filesystem implementation, and in particular, whether directory updates are
synchronous.

Although Perforce does not recommend any specific filesystem, Linux servers are
generally fastest (owing to Linux’s asynchronous directory updating), but may have poor
recovery if power is cut at the wrong time. The BSD filesystem (also used in Solaris) is
relatively slow, but much more reliable. NTFS performance falls somewhere in between
these two ranges. The filesystems used by IRIX and OSF have demonstrated an excellent
combination of both speed and robustness.

Performance in systems where database and versioned files are stored on NFS-mounted
volumes is typically dependent on the implementation of NFS in question and/or the
underlying storage hardware. Perforce has been tested and is supported under the Solaris
implementation of NFS.

Under Linux and FreeBSD, database updates over NFS can be an issue as file locking is
relatively slow; if the journal is NFS-mounted on these platforms, all operations will be
slower. In general (but in particular on Linux and FreeBSD) we recommend that the
Perforce database, depot, and journal files be stored on disks local to the machine running
the Perforce server process.

These issues affect only the Perforce Server process (p4d). Perforce client programs, (such
as p4, the Perforce Command-Line Client) have always been able to work with client
workspaces on NFS-mounted drives (for instance, workspaces in users’ home directories).

Disk space allocation

Perforce disk space usage is a function of three variables:

• Number and size of client workspaces

• Size of server database

• Size of server’s archive of all versioned files

All three variables depend on the nature of your data and how heavily you use Perforce.

The client file space required is the size of the files that your users will need in their client
workspaces at any one time.

The server’s database size can be calculated with a fair level of accuracy; as a rough
estimate, it requires 0.5KB per user per file. (For instance, a system with 10,000 files and 50
users will require 250MB of disk space for the database). The database can be expected to
grow over time as histories of the individual files grow.
108 Perforce 2004.2 System Administrator’s Guide

Chapter 7: Tuning Perforce for Performance
The size of the server’s archive of versioned files depends on the sizes of the original files
stored and grows as revisions are added. For most sites, allocate space equivalent to at
least three times the aggregate size of the original files.

If you anticipate your database growing into the gigabyte range, you should ensure that
your platform has adequate support for large filesystems. See “Allocate disk space for
anticipated growth” on page 20.

The db.have file holds the list of files opened in client workspaces, and tends to grow
more rapidly than other files in the database. If you are experiencing issues related to the
size of your db.have file and are unable to quickly switch to a server with adequate
support for large files, deleting unused client workspace specifications and reducing the
scope of client workspace views can help alleviate the problem.

Network

Perforce can run over any TCP/IP network. Although we have not yet seen network
limitations, the more bandwidth the better. Presumably FDDI would be better than
10Mb/s Ethernet, but some users have reported that using a T1 (1.5 Mb/s) provides
response times comparable to using Perforce locally. Perforce employees work
successfully over ISDN (64 Kb/s) lines.

Perforce uses a TCP/IP connection for each client interaction with the server. The server’s
port address is defined by P4PORT, but the TCP/IP implementation picks a client port
number. After the command completes and the connection is closed, the port is left in a
state called TIME_WAIT for two minutes. While the port number ranges from 1025 to
32767, generally only a few hundred or thousand can be in use simultaneously. It is
therefore possible to occupy all available ports by invoking a Perforce client command
many times in rapid succession, such as with a script.

Before release 99.2, both the server and client side of the connection remained in
TIME_WAIT, which meant that a script running on one user’s machine could deprive other
users of service by tying up all available ports on the server side. As of Release 99.2, only
the client side goes into TIME_WAIT, leaving the Perforce server free to handle other
clients.

CPU

Perforce is based on a client/server architecture. Both the client and server are lightweight
in terms of CPU resource consumption. By way of example, a server supporting 80 users
on a low-end (140 MHz) SPARC Ultra server can use as little as 7 CPU-minutes per day, or
about 0.5% of available processing power. Weighting this for peak use and headroom,
such a server could support upwards of 800 users.

In general, CPU power is not a major consideration when determining the platform on
which to install a Perforce server.
Perforce 2004.2 System Administrator’s Guide 109

Chapter 7: Tuning Perforce for Performance
Diagnosing Slow Response Times

Perforce is normally a light user of network resources. While it is possible that an
extremely large user operation could cause the Perforce server to respond slowly,
consistently slow responses to p4 commands are usually caused by network problems.
Any of the following may cause slow response times:

1. misconfigured domain name system (DNS)

2. misconfigured Windows networking

3. difficulty accessing the p4 executable on a networked file system

A good initial test is to run p4 info. If this does not respond immediately, then there is a
network problem. Although solving network problems is beyond the scope of this
manual, here are some suggestions for troubleshooting them.

Hostname vs. IP address

On a client machine, try setting P4PORT to the server’s IP address instead of its hostname.
For example, instead of using

P4PORT=host.domain:1666

try using:
P4PORT=1.2.3.4:1666

with your site-specific IP address and port number.

On most systems, you can determine the IP address of a host by invoking:
ping hostname

If p4 info responds immediately when you use the IP address, but not when you use the
hostname, the problem is likely related to DNS.

Try p4 info vs. P4Win

If you are using P4Win, you can compare the response of P4Win’s “Show Connection
Info” (Help -> Show Connection Info) with the response from the command-line p4
info.

If the former is fast and the latter is slow, you have a DNS-related problem. (When the
Perforce server receives a p4 info request, it does a reverse name lookup in order to send
back the client and server hostnames along with other configuration information. When
110 Perforce 2004.2 System Administrator’s Guide

Chapter 7: Tuning Perforce for Performance
the server receives a P4Win“Show Connection Info” request, however, it simply returns
the IP addresses.)

Windows wildcards

In some cases, p4 commands using unquoted filepatterns with a combination of depot
syntax and wildcards, such as:

p4 files //depot/*

can result in a delayed response on Windows. You can prevent the delay by putting
double quotes around the file pattern, like so:

p4 files “//depot/*”

The cause of the problem is the p4 command’s use of a Windows function to expand
wildcards. When quotes are not used, the function interprets //depot as a networked
computer path and spends time in a futile search for a machine on the network named
depot.

DNS lookups and the hosts file

On Windows, the %SystemRoot%\system32\drivers\etc\hosts file can be used to
hardcode IP address-hostname pairs. You may be able to work around DNS problems by
adding entries to this file.

The corresponding UNIX file is /etc/hosts.

Location of the “p4” executable

If none of the above diagnostic steps explains the sluggish response time, it’s possible that
the p4 executable itself is on a networked file system which is performing very poorly. To
check this, try running:

p4 -V

This merely prints out the version information, without attempting any network access. If
you get a slow response, network access to the p4 executable itself may be the problem.
Copying or downloading a copy of p4 onto a local filesystem should improve response
times.

Note This test is only valid for Release 99.1 and newer servers. In releases prior
to 99.1, the server always did a reverse name lookup, whether the request
was coming from p4 info or P4win
Perforce 2004.2 System Administrator’s Guide 111

Chapter 7: Tuning Perforce for Performance
Preventing Server Swamp

Generally, Perforce’s performance depends on the number of files a user tries to
manipulate in a single command invocation, not the size of the depot. That is, syncing a
client view of 30 files from a 3,000,000-file depot should not be much slower than syncing
a client view of 30 files from a 30-file depot.

The number of files affected by a single command is largely determined by:

• p4 command line arguments (or selected folders in the case of GUI operations).

Without arguments, most commands will operate on, or at least refer to, all files in the
view.

• Client views, branch views, label views, and protections.

Because commands without arguments operate on all files in the view, it follows that
the use of unrestricted views and unlimited protections can result in commands
operating on all files in the depot.

When the server answers a request, it locks down the database for the duration of the
computation phase. For normal operations, this is a successful strategy, as it can “get in
and out” quickly enough to avoid a backlog of requests. Abnormally large requests,
however, can take seconds, sometimes even minutes. If frustrated users hit CTRL-C and
retry, the problem gets even worse; the server consumes more memory and responds
even more slowly.

At sites with very large depots, unrestricted views and unqualified commands will make
a Perforce server work much harder than it needs to. Users and administrators can ease
load on their servers by:

• Using “tight” views

• Assigning protections

• Limiting maxresults

• Writing efficient scripts

• Using compression efficiently

Using tight views

The following “loose” view is trivial to set up but could invite trouble on a very large
depot:

//depot/... //workspace/...
112 Perforce 2004.2 System Administrator’s Guide

Chapter 7: Tuning Perforce for Performance
In the loose view, the entire depot was mapped into the client workspace; for most users,
this can be “tightened” considerably. The following view, for example, is restricted to
specific areas of the depot:

Client views, in particular, but also branch views and label views, should also be set up to
give users just enough scope to do the work they need to do.

Client, branch, and label views are set by a Perforce administrator or by individual users
with the p4 client, p4 branch, and p4 label commands respectively.

Two of the techniques for script optimization (described in “Using branch views” on
page 117 and “The temporary client trick” on page 118) rely on similar techniques. By
limiting the size of the view available to a command, fewer commands need to be run,
and when run, the commands require fewer resources.

Assigning protections

Protections (see “Administering Perforce: Protections” on page 71) are actually another
type of Perforce view. Protections are set with the p4 protect command and control
which depot files can be affected by commands run by users.

Unlike client, branch, and label views, however, the views used by protections can be set
only by Perforce superusers. (Protections also control read and write permission to depot
files, but the permission levels themselves have no impact on server performance.) By
assigning protections in Perforce, a Perforce superuser can effectively limit the size of a
user’s view, even if the user is using “loose” client specifications.

Protections can be assigned to either users or groups. For example:

Perforce groups are created by superusers with the p4 group command. Not only do they
make it easier to assign protections, but they provide useful fail-safe mechanisms in the
form of maxresults and maxscanrows, described in the next section.

//depot/main/srv/devA/... //workspace/main/srv/devA/...
//depot/main/drv/lport/... //workspace/main/dvr/lport/...
//depot/rel2.0/srv/devA/bin/... //workspace/rel2.0/srv/devA/bin/...
//depot/qa/s6test/dvr/... //workspace/qa/s6test/dvr/...

write user sam * //depot/admin/...
write group rocketdev * //depot/rocket/main/...
write group rocketrel2 * //depot/rocket/rel2.0/...
Perforce 2004.2 System Administrator’s Guide 113

Chapter 7: Tuning Perforce for Performance
Limiting database queries

Each Perforce group has an associated maxresults and maxscanrows value. The default for
each is “unlimited”, but a superuser can use p4 group to limit it for any given group.

Users in such groups are unable to run any commands which affect more database rows
than the group’s maxresults limit. (For most commands, the number of database rows
affected is roughly equal to the number of files affected.)

Like maxresults, maxscanrows prevents certain user commands from placing excessive
demands on the server. (For most commands, the number of rows that could be scanned
is roughly equal to the number of files affected, multiplied by the average number of
revisions per file in the depot.)

To set these limits, fill in the Maxresults: or Maxscanrows: field in the p4 group form. If
a user is listed in multiple groups, the highest of the maxresults (or maxscanrows) limits
(but not including the default “unlimited” setting) for those groups is taken as the user’s
maxresults (or maxscanrows) value.

Example: Effect of setting maxresults and maxscanrows:

As an administrator, you wish members of the group rocketdev to be limited to operations
of 20,000 files or less, and to scan no more than 100,000 revisions:

Suppose that Ruth has an unrestricted (“loose”) client view. When she types:
p4 sync

her sync command is rejected if the depot contains more than 20,000 files. She can work
around this limitation either by restricting her client view, or, if she needs all of the files in the
view, by syncing smaller sets of files at a time, as follows:

p4 sync //depot/projA/...
p4 sync //depot/projB/...

Either method enables her to get her files, but without tying up the server to process a single
extremely large command.

If Ruth tries a command that scans every revision of every file, such as:
p4 filelog //depot/projA/...

Group: rocketdev
Maxresults: 20000
Maxscanrows: 100000
Timeout: 43200
Subgroups:
Users:
 bill
 ruth
 sandy
114 Perforce 2004.2 System Administrator’s Guide

Chapter 7: Tuning Perforce for Performance
and there are less than 20,000 files, but more than 100,000 revisions (perhaps the projA
directory contains 8000 files, each of which has 20 revisions), the maxresults limit does not
apply, but the maxscanrows limit does.

To remove any limits on the number of result lines processed (or database rows scanned)
for a particular group, set the Maxresults: or Maxscanrows: value for that group to
unlimited.

As these limitations can make life difficult for your users, do not use them unless you find
that certain operations are slowing down your server. The Maxresults: value should
never be less than 10,000, since certain operations performed by P4Win, the Perforce
Windows Client, may require a Maxresults: value of between 5,000 and 8,000. Similarly,
Maxscanrows should rarely need to be set below 50,000.

For more information, including a comparison of Perforce commands and the number of
files they affect, type:

p4 help maxresults
p4 help maxscanrows

from the command line.

Maxresults and maxscanrows for users in multiple groups

As mentioned earlier, if a user is listed in multiple groups, the highest maxresults limit of
all the groups a user belongs to is the limit that affects the user. The default value of
“unlimited” is not a limit; if a user is in a group where maxresults is set to “unlimited”,
he or she is still limited by the highest maxresults (or maxscanrows) limit of the other
groups of which he or she is a member. A user’s commands are truly unlimited only when
the user belongs to no groups, or when all of the groups of which the user is a member
have their maxresults set to “unlimited”

A side effect of this is that you can’t create a group that assigns “unlimited” maxresults
values to superusers, because if any of the users in such a group were to belong to another
group, the “unlimited” limit from the superuser group would also apply to them. You
can get around this by assigning a very high maxresults limit to your superusers group.

For example:

(The largest possible maxresults or maxscanrows limit is platform-dependent; on most
platforms, this is a 32-bit integer.)

Group: superusers
Maxresults: 10000000
Maxscanrows: 100000000
Perforce 2004.2 System Administrator’s Guide 115

Chapter 7: Tuning Perforce for Performance
Scripting efficiently

The Perforce Command-Line Client, p4, supports the scripting of any command that can
be run interactively. The Perforce server can process commands far faster than users can
issue them, so in an all-interactive environment, response time is excellent. However, p4
commands issued by scripts -- triggers, review daemons, or command wrappers, for
example -- can cause performance problems if you haven’t paid attention to their
efficiency. This is not because p4 commands are inherently inefficient, but because the
way one invokes p4 as an interactive user isn’t necessarily suitable for repeated iterations.

This section points out some common efficiency problems and solutions.

Iterating through files

Each Perforce command issued causes a connection thread to be created and a p4d
subprocess to be started. Reducing the number of Perforce commands your script runs is
the first step to making it more efficient.

To this end, scripts should never iterate through files running Perforce commands when
they can accomplish the same thing by running one Perforce command on a list of files
and iterating through the command results.

For example, try an approach like this:
for i in `p4 diff2 path1/... path2/...`
do
 [process diff output]
done

Instead of this:
for i in `p4 files path1/...`
do
 p4 diff2 path1/$i path2/$i
 [process diff output]
done

Using list input files

Any Perforce command that accepts a list of files as a command line argument can also
read the same argument list from a file. Scripts can make use of the list input file feature
by building up a list of files first, then passing the list file to p4 -x.

For example, if your script currently does something like:
for components in header1 header2 header3
do
 p4 edit ${component}.h
done
116 Perforce 2004.2 System Administrator’s Guide

Chapter 7: Tuning Perforce for Performance
a more efficient alternative would be:
for components in header1 header2 header3
do
 echo ${component}.h >> LISTFILE
done
p4 -x LISTFILE edit

The -x flag instructs p4 to read arguments, one per line, from the named file. If the file is
specified as “-” (a dash), the standard input is read.

Using branch views

Branch views can be used with p4 integrate or p4 diff2 to reduce the number of
Perforce command invocations. For example, if you have a script that runs:

p4 diff2 pathA/src/... pathB/src/...
p4 diff2 pathA/tests/... pathB/tests/...
p4 diff2 pathA/doc/... pathB/doc/...

you can make it more efficient by creating a branch view that looks like this:

and replacing the three commands with one:
p4 diff2 -b pathA-pathB

Limiting label references

Repeated references to large labels can be particularly costly. Commands that refer to files
using labels as revisions will scan the whole label once for each file argument. To keep
from hogging the Perforce server, your script should get the labeled files from the server,
then scan the output for the files it needs.

For example, this:
p4 files path/...@label | egrep “path/f1.h|path/f2.h|path/f3.h”

will impose a lighter load on the Perforce server than either this:
p4 files path/f1.h@label path/f1.h@label path/f3.h@label

or this:
p4 files path/f1.h@label
p4 files path/f2.h@label
p4 files path/f3.h@label

The “temporary client” trick described below may also reduce the number of times you
have to refer to files by label.

Branch: pathA-pathB
View:
 pathA/src/... pathB/src/...
 pathA/tests/... pathB/tests/...
 pathA/doc/... pathB/doc/...
Perforce 2004.2 System Administrator’s Guide 117

Chapter 7: Tuning Perforce for Performance
The temporary client trick

Most Perforce commands can process all the files in the current client view with a single
command line argument. By making use of a temporary client view that contains the files
on which you want to work, you may be able to reduce the number of commands you
have to run, and/or to reduce the number of file arguments you need to give each
command.

For instance, suppose your script runs these commands:
p4 sync pathA/src/...@label
p4 sync pathB/tests/...@label
p4 sync pathC/doc/...@label

You can combine the command invocations and reduce the three label scans to one by
using a client spec that looks like:

and running:
p4 -c XY-temp sync @label

Using compression efficiently

By default, revisions of files of type binary are compressed when stored on the Perforce
server.

Some file formats (for example, .GIF and .JPG images, .MPG and .AVI media content, files
compressed with .gz and .ZIP compression) include compression as part of the file
format. Attempting to compress such files on the Perforce Server results in the
consumption of server CPU resources with little or no savings in disk space.

To disable server storage compression for these file types, specify such files as type
binary+F (binary, stored on the server in full, without compression) either from the
command line or from the p4 typemap table.

For more about p4 typemap, including a sample typemap table, see “Defining filetypes
with p4 typemap” on page 48.

Client: XY-temp
View:
 pathA/src/... //XY-temp/pathA/src/...
 pathB/tests/... //XY-temp/pathB/tests/...
 pathC/doc/... //XY-temp/pathC/doc/...
118 Perforce 2004.2 System Administrator’s Guide

Chapter 7: Tuning Perforce for Performance
Checkpoints for Database Tree Rebalancing

Perforce’s internal database stores its data in structures called Bayer trees, more
commonly referred to as B-trees. While B-trees are a very common way to structure data
for rapid access, over time the process of adding and deleting elements to and from the
trees can eventually lead to imbalances in the data structure.

Eventually, the tree may become sufficiently unbalanced that performance is negatively
affected. The Perforce checkpoint and restore processes (see “Backup and Recovery
Concepts” on page 25) re-create the trees in a balanced manner, and consequently, you
may see some increase in server performance following a backup, a removal of the db.*
files, and the re-creation of the db.* files from a checkpoint.

Rebalancing the trees is normally only useful if the database files have become more than
about 10 times the size of the checkpoint. Given the length of time required for the trees to
become unbalanced during normal Perforce use, we expect that the majority of sites will
never need to restore the database from a checkpoint (that is, rebalance the trees) for
performance reasons.
Perforce 2004.2 System Administrator’s Guide 119

Chapter 7: Tuning Perforce for Performance
120 Perforce 2004.2 System Administrator’s Guide

Chapter 8 Perforce and Windows
This chapter describes certain information of specific interest to administrators who set up
and maintain Perforce servers on Windows.

Using the Perforce installer

The Perforce installer program, perforce.exe, gives you the option to install either as a
user (the Perforce client), a typical administrator (Perforce installed as a Windows
service), a custom administrator (Perforce installed as a service with additional
customization options), or to uninstall Perforce from your system.

If you have Administrator privileges, it is usually best to install Perforce as a service. If
you don’t, install it as a server.

Under Windows 2000 or higher, you need Administrator privileges to install Perforce as a
service, and Power User privileges to install Perforce as a server.

Upgrade notes

The Perforce installer also automatically upgrades all types of Perforce servers (or
services), even versions prior to 97.3. The upgrade process is extremely conservative; if
anything fails at any step in the upgrade process, the installer stops the upgrade, and you
are still able to use your old server (or service).

Installation options

When you invoke the installer, it presents an initial screen that lists the revisions of the
Perforce software you’re about to install. You are offered the choice between:

• a user install,

• a typical Administrator install,

• a customized Administrator install, or

• uninstalling Perforce.

Note Unless otherwise specified, the material presented here applies equally to
Windows NT, Windows 2000, and Windows XP.
Perforce 2004.2 System Administrator’s Guide 121

Chapter 8: Perforce and Windows
User install

The “user install” installs only the Perforce Command-Line Client (p4.exe), Perforce
Windows Client (P4Win), and (optionally) the third-party SCM plug-in. Under Windows
2000 or higher, this option requires Power User privileges.

You are prompted to specify the location of the client executables, the port (P4PORT) on
which the client should attempt to contact the Perforce server, the default editor, and the
default username.

When specifying the port for the client to use, remember to include the hostname in the
form hostname:port. See “Telling Perforce client programs which port to connect to” on
page 13 for more about how to set P4PORT.

If the installer detects older versions of Perforce client or server software on the machine,
you are given the option to rename the old executables to prevent PATH-dependent
conflicts.

Administrator typical

The “typical administrator install” installs both client and server software for Perforce.
This option requires administrator privileges.

You are prompted to specify the directory for the client and server executables, the port
on the local machine where the Perforce server or service will listen to client requests
(P4PORT), the default editor, and the default username.

The installer selects default locations for the P4LOG error log file and the journal file. If an
earlier version of Perforce was installed on the machine, these locations are based on those
already in use.

If you have Administrator privileges, the installer installs Perforce and configures it to run
as an auto-starting service. The service is set up and started after the installation is
complete, and automatically restarts whenever the machine is rebooted. If you do not
have Administrator privileges, a shortcut to run Perforce as a server is placed into your
Start menu.

If the installer detects older versions of Perforce client or server software on the machine,
you are given the option to rename the old executables to prevent PATH-dependent
conflicts.

Administrator custom

The “custom administrator install” installs both client and server software for Perforce,
with certain customizations. This option requires administrator privileges.

As with the typical administrator install, you are prompted to specify the location of client
and server executables, the port on the local machine where the Perforce server or service
will listen to client requests, the default editor, and the default username.
122 Perforce 2004.2 System Administrator’s Guide

Chapter 8: Perforce and Windows
Unlike the typical administrator install, you are prompted to optionally specify separate
directories for the client and server executables, as well as server root, server port, and
whether to set up Perforce as an auto-starting (or non-auto-starting) service or server
process. The locations of any existing P4LOG file and journal file are displayed for
reference, and may be changed later using p4 set.

If you try to install a Perforce service while another Perforce server is running, the
following error message is displayed:

Setup has determined that a Perforce Server could be running. Please
shut down all Perforce Servers before continuing the installation.

Failure to shut down the running Perforce server(s) will result in conflicts between the
newly installed service and the existing server.

As with the other installation options, if the installer detects older versions of Perforce
client or server software on the machine, you are given the option to rename the old
executables to prevent PATH-dependent conflicts.

Uninstalling Perforce

To remove Perforce from a Windows machine, run perforce.exe and select the
Uninstall option. This option requires administrator privileges.

The uninstall procedure removes everything except your server data; the Perforce server,
service, and client executables, registry keys, and service entries are all deleted. The
database and depot files in your server root, however, are always preserved.

Scripted deployment and unattended installation

The Perforce installer supports scripted installation, enabling you to accelerate a
deployment of Perforce across a large number of desktops.

Scripted installations are controlled by a configuration file that comes with the scriptable
version of the Perforce installer. You can edit this file to preconfigure Perforce
environment variables (such as P4PORT) for your environment, to automatically select
Perforce client programs in use at your site, and more.

To learn more about how to automate a deployment of Perforce, see Tech Note #68 at:
http://www.perforce.com/perforce/technotes/note068.html

Perforce technical support personnel are available to answer any questions or concerns
you have about automating your Perforce deployment.
Perforce 2004.2 System Administrator’s Guide 123

Chapter 8: Perforce and Windows
Windows services vs. Windows servers

To run any task as a Windows server, a user account must be logged in, as shortcuts in a
user’s Startup folder cannot be run until that user logs in. A Windows service, on the
other hand, is invoked automatically at boot time, and runs regardless of whether or not a
user is logged in to the machine.

Throughout most of the documentation set, the terms “Perforce server” or “p4d” are used
to refer to “the process at the back end that manages the database and responds to
requests from Perforce clients”. Under Windows, this can lead to ambiguity; the back-end
process can run as either a service (p4s.exe, which runs as a thread) or as a server
(p4d.exe, which runs as a regular process). From a Windows administrator’s point of
view, these are important distinctions. Consequently, the terminology used in this chapter
uses the more precise definitions.

The Perforce service (p4s.exe) and the Perforce server (p4d.exe) executables are copies
of each other; they are identical apart from their filenames. When run, they use the first
three characters of the name with which they were invoked (that is, either p4s or p4d) to
determine their behavior. For example, invoking copies named p4smyserver.exe or
p4dmyservice.exe invokes a service and a server, respectively.

Starting and stopping the Perforce service

If Perforce was installed as a service, a user with Administrator privileges can start and
stop it using the Services applet under the Control Panel.

If you are running at Release 99.2 or above, you can also use the command:
p4 admin stop

to stop the Perforce service.

Starting and stopping the Perforce server

If Perforce was installed as a server, there should be a “Perforce Server” shortcut in your
Start menu. To start the server, double-click on the shortcut. To stop the server, right-click
on the “Perforce Server” button in the taskbar and select “Close”.

You can also start the Perforce server manually from a command prompt. The server
executable, p4d.exe, is normally found in your P4ROOT directory. To start the server, first
make sure your current P4ROOT, P4PORT, P4LOG, and P4JOURNAL settings are correct, then
run: %P4ROOT%\p4d

If you want to start a server using settings different than those set by P4ROOT, P4PORT,
P4LOG, or P4JOURNAL, you can use p4d command line flags. For example:

c:\test\p4d -r c:\test -p 1999 -L c:\test\log -J c:\test\journal
124 Perforce 2004.2 System Administrator’s Guide

Chapter 8: Perforce and Windows
starts a Perforce server process with a root directory of c:\test, listening to port 1999,
logging errors to c:\test\log, and with a journal file of c:\test\journal.

Note that p4d command line flags are case sensitive.

If you are running at Release 99.2 or above, use the following command:
p4 admin stop

to stop the Perforce server.

Installing the Perforce service on a network drive

By default, the Perforce service runs under the local System account. Because the System
account has no network access, a real userid and password are required in order to make
the Perforce service work if the metadata and depot files are stored on a network drive.

If you are installing your server root on a network drive, the Perforce installer
(perforce.exe) requests a valid combination of userid and password at the time of
installation. This user must have administrator privileges. (The service, when running,
will run under this user name, rather than System)

Although the Perforce service runs reliably using a network drive as the server root, there
is still a marked performance penalty due to increased network traffic and slower file
access. Consequently, Perforce recommends that the depot files and Perforce database
reside on a drive local to the machine on which the Perforce service is running.

Multiple Perforce services under Windows

By default, the Perforce installer for Windows installs a single Perforce server as a single
service. If you want to host more than one Perforce installation on the same machine (for
instance, one for production and one for testing), you can either manually start Perforce
servers from the command line, or use the Perforce-supplied utility svcinst.exe, to
configure additional Perforce services.

Note If you are running Release 99.1 or earlier, type Ctrl-C in the Command
Prompt window, or simply Close the window.

Although this method of stopping a Perforce server works in all versions of
Perforce, it is not necessarily “clean”. With the availability of the p4 admin
stop command in 99.2, this method is no longer recommended.

Note You must use Perforce 99.1/10994 or a later release in order to set up
multiple Perforce services under Windows.
Perforce 2004.2 System Administrator’s Guide 125

Chapter 8: Perforce and Windows
Understanding the precedence of environment variables in determining Perforce
configuration is useful when configuring multiple Perforce services on the same machine.
Before you begin, read and understand “Windows configuration parameter precedence”
on page 127.

To set up a second Perforce service:

1. Create a new directory for the Perforce service.

2. Copy the server executable, service executable, and your license file into this
directory.

3. Create the new Perforce service using the svcinst.exe utility, as described in the
example below. (The svcinst.exe utility comes with the Perforce installer, and can
be found in your Perforce server root.)

4. Set up the environment variables and start the new service.

We recommend that you install your first Perforce service using the Perforce installer.
This first service is called “Perforce” and its server root directory contains files that are
required by any other Perforce services you create on the machine.

Example: Adding a second Perforce service.

You want to create a second Perforce service with a root in C:\p4root2 and a service name of
“Perforce2”. You are running Release 99.1/10994 or greater, and the svcinst executable
is in the server root of the first Perforce installation you installed in C:\perforce.

Verify that your p4d.exe executable is at Release 99.1/10994 or greater:
p4d -V

(If you are running an older release, you must first download a more recent release from
http://www.perforce.com and upgrade your server before continuing.)

Create a P4ROOT directory for the new service:
mkdir c:\p4root2

Copy the server executables - both p4d.exe (the server) and p4s.exe (the service) - and
your license file into the new directory:

copy c:\perforce\p4d.exe c:\p4root2
copy c:\perforce\p4d.exe c:\p4root2\p4s.exe
copy c:\perforce\license c:\p4root2\license

Use Perforce’s svcinst.exe (the service installer) to create the “Perforce2” service:
svcinst create -n Perforce2 -e c:\p4root2\p4s.exe -a

Warning Setting up multiple services to increase the number of users you support
without purchasing more user licenses is a violation of the terms of your
Perforce End User License Agreement.
126 Perforce 2004.2 System Administrator’s Guide

Chapter 8: Perforce and Windows
After creating the “Perforce2” service, set the service parameters for the “Perforce2”
service:

p4 set -S Perforce2 P4ROOT=c:\p4root2
p4 set -S Perforce2 P4PORT=1667
p4 set -S Perforce2 P4LOG=log2
p4 set -S Perforce2 P4JOURNAL=journal2

Finally, use the Perforce service installer to start the “Perforce2” service:
svcinst start -n Perforce2.

The second service is now running, and both services will start automatically the next time
you reboot.

Windows configuration parameter precedence

Under Windows, Perforce configuration parameters can be set in many different ways.
When a Perforce client program (such as p4 or P4Win), or a Perforce server program (p4d)
starts up, it reads its configuration parameters according to the following precedence:

1. The program’s command line flags have the highest precedence.

2. The P4CONFIG file, if P4CONFIG is set.

3. User environment variables.

4. System environment variables.

5. The Perforce user registry (set by p4 set).

6. The Perforce system registry (set by p4 set -s).

As of Release 99.1/10994, when a Perforce service (p4s) starts up, it reads its configuration
parameters from the environment according to the following precedence:

1. Windows service parameters (set by p4 set -S servicename) have the highest
precedence.

2. System environment variables.

3. The Perforce system registry (set by p4 set -s).

User environment variables can be set with any of the following:

• The MS-DOS set command.

• The AUTOEXEC.BAT file.

• The User Variables tab under the System Properties dialog in the Control Panel.

System environment variables can be set with:

• The System Variables tab under the System Properties dialog in the Control Panel.
Perforce 2004.2 System Administrator’s Guide 127

Chapter 8: Perforce and Windows
Resolving Windows-related instabilities

There are many large sites running Perforce on Windows without incident. There are also
sites in which Perforce service or server installation appears to be unstable; the server dies
mysteriously, the service can’t be started, and in extreme cases the system crashes. In most
of these cases, this is an indication of recent changes to the machine or a corrupted
operating system.

While not all Perforce failures are caused by OS-level problems, a number of symptoms
may indicate the OS is at fault. Examples include: the system crashing, the Perforce server
exiting without any error in its log and without Windows indicating that the server
crashed, or the Perforce service not starting properly.

Perforce is supported on Windows NT 4.0 sp6a and higher, including Windows 2000 Intel
x86, Windows XP Intel x86, and Windows Server 2003.

In some cases, installing third-party software after installing a Service Pack can overwrite
critical files installed by the service pack; reinstalling your most-recently installed service
pack can often correct these problems. If you’ve installed another application after your
last service pack, and server stability appears affected since the installation, consider
reinstalling the service pack.

As a last resort, it may pay to install Perforce on another system to see if the same failures
occur, or even to reinstall the OS and Perforce on the faulty system.

Users having trouble with P4EDITOR or P4DIFF

Your Windows users may experience difficulties using the Perforce Command-Line
Client (p4.exe) if they use the P4EDITOR or P4DIFF environment variables.

The reason for this is that Perforce clients sometimes use the DOS shell (cmd.exe) to start
programs such as user-specified editors or diff utilities. Unfortunately, the DOS shell
knows that when a Windows command is run (such as a GUI-based editor like
notepad.exe), the shell doesn’t have to wait for the command to complete before
terminating. When this happens, the Perforce client then mistakenly believes that the
command has finished, and attempts to continue processing, often deleting the temporary
files that the editor or diff utility had been using, leading to error messages about
temporary files not being found, or other strange behavior.

You can get around this problem in two ways:

• Unset the environment variable SHELL. Perforce clients under Windows only use
cmd.exe when SHELL is set, otherwise they call spawn() and wait for the Windows
programs to complete.
128 Perforce 2004.2 System Administrator’s Guide

Chapter 8: Perforce and Windows
• Set the P4EDITOR or P4DIFF variable to the name of a batch file whose contents are the
command:
start /wait program %1 %2

where program is the name of the editor or diff utility you wish to invoke. The /wait
flag instructs the system to wait for the editor or diff utility to terminate, enabling the
Perforce client program to behave properly.

Some Windows editors (most notably, Wordpad) do not exhibit proper behavior, even
when instructed to wait. There is presently no workaround for such programs.
Perforce 2004.2 System Administrator’s Guide 129

Chapter 8: Perforce and Windows
130 Perforce 2004.2 System Administrator’s Guide

Chapter 9 Perforce Proxy
Perforce is built to handle distributed development in a wide range of network
topologies. Where bandwidth to remote sites is limited, P4P, the Perforce Proxy, improves
performance by mediating between Perforce clients and servers to cache frequently
transmitted file revisions. By intercepting requests for cached file revisions, P4P reduces
demand on the Perforce server and network.

To improve performance obtained by multiple Perforce clients accessing a central
Perforce server across a WAN, configure P4P on the side of the network close to the clients
and configure the clients to access P4P, and then configure P4P to access the central
Perforce server. (On a LAN, you can also obtain performance improvements by setting up
proxies to divert workload from the central server’s CPU and disks.)

The following diagram illustrates a typical P4P configuration:

In this configuration, file revisions requested by users at a remote development site are
fetched first from a central Perforce server (p4d running on central) and transferred over
a relatively slow WAN. Subsequent requests for that same revision, however, are
delivered from the Perforce Proxy, (p4p running on outpost), over the remote
development site’s LAN, reducing both network traffic across the WAN and CPU load on
the central server.

WAN

outpostcentral

P4PORT=outpost:1999P4PORT=central:1666

/src/p4root/... /var/proxyroot/...

p4d p4p
Perforce 2004.2 System Administrator’s Guide 131

Chapter 9: Perforce Proxy
System Requirements

To use Perforce Proxy, you must have:

• A Perforce server at Release 2002.2 or higher

• Sufficient disk space on the proxy host to store a cache of file revisions

Installing P4P

UNIX

To install P4P on UNIX, do the following:

1. Download the p4p executable to the machine on which you wish to run the proxy.

2. Select a directory on this machine (P4PCACHE) in which to cache file revisions.

3. Select a port (P4PORT) on which p4p will listen for requests from Perforce client
programs.

4. Select the target Perforce server (P4TARGET) for which this proxy will cache.

Windows

Install P4P from the Windows installer’s custom/administrator installation dialog.

Running P4P

To run P4P, invoke the p4p executable, configuring it with environment variables or
command-line flags. Flags you specify on the command line override environment
variable settings.

For example, the following command line starts a proxy that communicates with a central
Perforce server located on a host named central, listening on port 1666.

p4p -p 1999 -t central:1666 -r /var/proxyroot

To use the proxy, Perforce client programs connect to P4P on port 1999 on the machine
where the proxy runs. P4P file revisions are stored under a directory named
/var/proxyroot.

Running as a Windows service

To run P4P as a Windows service, install P4P from the Windows installer, or specify the -s
flag when you invoke p4p.exe, or rename the P4P executable to p4ps.exe.
132 Perforce 2004.2 System Administrator’s Guide

Chapter 9: Perforce Proxy
P4P flags

The following command-line flags specific to the proxy are supported.

The following general options are supported.

Flag Meaning

-d Run as daemon - fork first, then run (UNIX only)

-f Do not fork - run as a single-threaded server (UNIX only)

-i Run for inetd (socket on stdin/stdout - UNIX only)

-q Run quietly; suppress startup messages

-s Run as an NT service (Windows only)

Running p4p.exe -s is equivalent to invoking p4ps.exe

-c Do not compress files transmitted from the Perforce server to P4P

(This option reduces CPU load on the central server at the expense of
slightly higher bandwidth consumption)

Flag Meaning

-h or -? Display a help message

-p port Specify the port on which P4P will listen for requests from Perforce
client programs.

Default is P4PORT, or 1666 if P4PORT is not set.

-r root Specify the directory where revisions are cached.

Default is P4PCACHE, or the directory from which p4p is started if
P4PCACHE is not set.

-t port Specify the port of the target Perforce server (that is, the Perforce server
for which P4P acts as a proxy).

Default is P4TARGET or perforce:1666 if P4TARGET is not set.

-v level Specifies server trace level. Debug messages are stored in the proxy
server’s log file. Debug messages from p4p are not passed through to
p4d, and debug messages from p4d are not through to instances of p4p.

Default is P4DEBUG, or none if P4DEBUG is not set.

-L logfile Specify the location of the log file.

Default is P4LOG, or the directory from which p4p is started if P4LOG is
not set.

-V Display the version of the Perforce Proxy.
Perforce 2004.2 System Administrator’s Guide 133

Chapter 9: Perforce Proxy
Administering P4P

No backups required

You never need to back up the P4P cache directory.

If necessary, P4P reconstructs the cache based on Perforce server metadata.

Stopping P4P

P4P is effectively stateless; to stop P4P under UNIX, kill the p4p process with SIGTERM or
SIGKILL. Under Windows, select End Process under the Task Manager.

Managing disk space consumption

P4P caches file revisions in its cache directory. These revisions accumulate until you delete
them. P4P does not delete its cached files or otherwise manage its consumption of disk
space.

Determining if your Perforce client is using the proxy

If your Perforce client program is using the proxy, the proxy’s version information
appears in the output of p4 info.

For example, if a Perforce server is running on central:1666 and you direct your
Perforce client to a Perforce Proxy running on outpost:1999, the output of p4 info
resembles the following:

Warning! If you do not delete cached files, you will eventually run out of disk space.

To recover disk space, remove files under the proxy’s root. It is safe to
delete the proxy’s cached files while the proxy is running.

$ export P4PORT=outpost:1999

$ p4 info

User name: p4adm
Client name: admin-temp
Client host: remotesite22
Client root: /home/p4adm/tmp
Current directory: /home/p4adm/tmp
Client address: 192.168.0.123:55768
Server address: central:1666
Server root: /src/p4root
Server date: 2002/10/14 15:03:05 -0700 PDT
Server version: P4D/FREEBSD4/main/36609 (2002/09/30)
Proxy version: P4P/SOLARIS26/main/36884 (2002/10/14)
Server license: P4 Admin <p4adm> 20 users (expires 2003/02/01)
134 Perforce 2004.2 System Administrator’s Guide

Chapter 9: Perforce Proxy
P4P and protections

To apply the IP address of a Perforce Proxy user’s workstation against the protections
table, prepend the string proxy- to the workstation’s IP address.

For instance, consider an organization with a remote development site with workstations
on a subnet of 192.168.10.0/24. The organization also has a central office where local
development takes place; the central office exists on the 10.0.0.0/8 subnet. A Perforce
Server resides on the 10.0.0.0/8 subnet, and a Perforce Proxy resides on the
192.168.10.0/24 subnet. Users at the remote site belong to the group remotedev, and
may occasionally visit the central office.

To ensure that members of the remotedev group use the proxy while working at the
remote site, but do not use the proxy when visiting the local site, add the following lines
to your protections table:

The first line denies list access to all users in the remotedev group if they attempt to
access Perforce without using the proxy from their workstations in the 192.168.10.*
subnet. The second line grants write access all users in remotedev if they are using a
Perforce Proxy server and are working from the 192.168.10.* subnet. Users of
workstations at the remote site must use the proxy.

Similarly, the third and fourth lines deny list access to remotedev users when they
attempt to use the proxy from workstations on the central office’s subnet (10.0.0.0/8),
but grant write access to remotedev users who access the Perforce server directly from
workstations on the central office’s subnet. When visiting the local site, users from the
remotedev group must access the Perforce server directly.

Determining if specific files are being delivered from the proxy

Use the -Zproxyverbose flag with p4 to display messages indicating whether file
revisions are coming from the proxy (p4p) or the central server (p4d).

For instance:

list group remotedev 192.168.10.* -//...
write group remotedev proxy-192.168.10.* //...
list group remotedev proxy-10* -//...
write group remotedev 10.* //...

$ p4 -Zproxyverbose sync noncached.txt
//depot/main/noncached.txt - refreshing /home/p4adm/tmp/noncached.txt

$ p4 -Zproxyverbose sync cached.txt
//depot/main/cached.txt - refreshing /home/p4adm/tmp/cached.txt
File /home/p4adm/tmp/cached.txt delivered from proxy server
Perforce 2004.2 System Administrator’s Guide 135

Chapter 9: Perforce Proxy
Maximizing performance improvement

Network topologies versus P4P

If network bandwidth on the same subnet as the central Perforce server is nearly
saturated, deploying proxy servers on the same subnet will not likely result in a
performance improvement. Instead, deploy the proxy servers on the other side of a router
so that the traffic from the clients to the proxy server is isolated to a subnet separate from
the subnet containing the central Perforce server.

For example:

Deploying an additional proxy server on a subnet when network bandwidth on the
subnet is nearly saturated will not likely result in a performance improvement. Instead,
split the subnet into multiple subnets and deploy a proxy server in each resulting subnet.

In the illustrated configuration, a server room houses a company’s Perforce server (p4d), a
network storage device (NAS), and a database server (RDBMS). The server room’s network
segment is saturated due heavy loads placed on it by a sales force constantly querying a
database for live updates, and the developers and graphic artists frequently accessing
large files through the Perforce server.

(router)

p4d

NAS

RDMBS

192.168.10.0/24

p4p

p4p

192.168.21.0/24

192.168.30.0/24

192.168.22.0/24
(artists’ subnet)

(development subnet)

(server room) (sales subnet)
136 Perforce 2004.2 System Administrator’s Guide

Chapter 9: Perforce Proxy
By deploying two instances of Perforce Proxy, one on the developers’ subnet, and one on
the graphic artists’ subnet, all three groups benefit from improved performance due to
decreased use on the server room’s network segment.

Pre-loading the cache directory for optimal initial performance

P4P stores file revisions only when one of its clients requests them. That is, file revisions
are not “prefetched”. The performance gains from P4P only occur after file revisions are
cached.

After starting P4P, you can effectively prefetch the cache directory by creating a client
workspace and syncing it to the head revision. All other clients that subsequently connect
to the proxy immediately obtain the performance improvements provided by P4P.

For instance, a development site located in Asia with a P4P server targeting a Perforce
server in North America can preload its cache directory by using an automated job that
runs a p4 sync against the entire Perforce depot after most work at the North American
site had been completed, but before its own developers arrived for work.

Distributing disk space consumption

P4P stores revisions as if there is only one depot tree. If this approach stores too much file
data onto one filesystem, you can use symbolic links to spread the revisions across
multiple filesystems.

For instance, if the P4P cache root is /disk1/proxy and the Perforce server it supports has
two depots named //depot and //released, you can split data across disks, storing
//depot on disk1 and //released on disk2 as follows:

The symbolic link means that when P4P attempts to cache files in the //released depot to
/disk1/proxy/released, the files are stored on /disk2/proxy/released.

Reducing server CPU usage by disabling file compression

By default, P4P compresses communication with the central Perforce server, imposing
additional overhead on the server.

To disable compression, specify the -c option when you invoke p4p. This option is
particularly effective if you have excess network and disk capacity and are storing large
numbers of binary file revisions in the depot, because the proxy (rather than the server)
will decompress the binary files from its cache before sending them to Perforce clients.

mkdir /disk2/proxy/released
cd /disk1/proxy
ln -s /disk2/proxy/released released
Perforce 2004.2 System Administrator’s Guide 137

Chapter 9: Perforce Proxy
138 Perforce 2004.2 System Administrator’s Guide

Appendix A Perforce Server (p4d)
Reference
Synopsis

Invoke the Perforce server or perform checkpoint/journaling (system administration)
tasks.

Syntax
p4d [options]
p4d.exe [options]
p4s.exe [options]
p4d -j [-z] [args ...]

Description

The first three forms of the command invoke the Perforce background process (“Perforce
server”). The fourth form of the command is used for system administration tasks.

On UNIX and MacOS X, the executable is p4d.

On Windows, the executable is p4d.exe (running as a server) or p4s.exe (running as a
service).

Exit Status

After successful startup, p4d does not normally exit. It merely outputs the startup
message

Perforce server starting...

and runs in the background.

On failed startup, p4d returns a nonzero error code.

Also, if invoked with any of the -j checkpointing and/or journaling flags, p4d exits with a
nonzero error code if any error occurs.

Options
Flag Meaning

-c command Lock database tables, run command, unlock the tables, and exit.

-d Run as a daemon (in the background)

-f Run as a single-threaded (non-forking) process

-i Run from inetd on UNIX
Perforce 2004.2 System Administrator’s Guide 139

Appendix A: Perforce Server (p4d) Reference
Usage Notes

• On all systems, journaling is enabled by default. If P4JOURNAL is unset when a server
starts, the default location for the journal is $P4ROOT/journal. If you wish to manually
disable journaling, you must explicitly set P4JOURNAL to off.

• Take checkpoints and truncate the journal often, preferably as part of your nightly
backup process.

• Checkpointing and journaling preserve only your Perforce metadata (data about your
stored files). The stored files themselves (the files containing your source code) reside
under P4ROOT and must be also be backed up as part of your regular backup procedure.

-q Run quietly (no startup messages)

-s Run p4d.exe as an NT service (equivalent to running p4s.exe)

-xu Run database upgrades and exit.

-xi Irreversibly reconfigure the Perforce server (and its metadata) to
operate in unicode mode. Do not use this flag unless you know you
require unicode mode. See the Release Notes for details.

-jc [prefix] Journal-create; checkpoint and save/truncate journal.

-jd [file] Journal-checkpoint; create checkpoint without saving/truncating
journal.

-jj [prefix] Journal-only; save and truncate journal without checkpointing.

-jr file Journal-restore; restore metadata from a checkpoint and/or journal
file.

-z Compress (in gzip format) checkpoints and journals.

-h, -? Print help message.

-V Print server version.

-J journal Specify a journal file. Overrides P4JOURNAL setting. Default is
journal.

-L log Specify a log file. Overrides P4LOG setting. Default is stderr.

-p port Specify a port to listen to. Overrides P4PORT. Default 1666.

-r root Specify the server root directory. Overrides P4ROOT. Default is
current working directory.

-v debuglevel Set server trace flags. Overrides value P4DEBUG setting. Default is
null.

Flag Meaning
140 Perforce 2004.2 System Administrator’s Guide

Appendix A: Perforce Server (p4d) Reference
• If your users are using triggers, don’t use the -f (non-forking mode) flag; the Perforce
server needs to be able to spawn copies of itself (“fork”) in order to run trigger scripts.

• After a hardware failure, the flags required for restoring your metadata from your
checkpoint and journal files may vary, depending on whether or not data was
corrupted.

• Because restorations from backups involving loss of files under P4ROOT often require
the journal file, we strongly recommend that the journal file reside on a separate
filesystem from P4ROOT. This way, in the event of corruption the filesystem containing
P4ROOT, the journal is likely to remain accessible.

• The database upgrade flag (-xu) is may require considerable disk space. See the Release
Notes and the section “Important notes for 2001.1 and later” on page 16 if upgrading to
2001.1 or later from a 2000.2 or earlier server.

Related Commands
To start the server, listening to port
1999, with journaling enabled and
written to journalfile.

p4d -d -p 1999 -J /opt/p4d/journalfile

To checkpoint a server with a non-
default journal file, the -J argument
(or the environment variable
P4JOURNAL) must match the journal
file specified when the server was
started.

Checkpoint with:

p4d -J /p4d/jfile -jc

or

P4JOURNAL=/p4d/jfile ; export P4JOURNAL
p4d -jc

To create a compressed checkpoint
from a server with files in directory
P4ROOT

p4d -r $P4ROOT -z -jc

To create a compressed checkpoint
with a user-specified prefix of “ckp”
from a server with files in directory
P4ROOT

p4d -r $P4ROOT -z -jc ckp

To restore metadata from a
checkpoint named checkpoint.3
for a server with root directory
P4ROOT

p4d -r $P4ROOT -jr checkpoint.3

To restore metadata from a
compressed checkpoint named
checkpoint.3.gz for a server with
root directory P4ROOT

p4d -r $P4ROOT -z -jr checkpoint.3.gz
Perforce 2004.2 System Administrator’s Guide 141

Appendix A: Perforce Server (p4d) Reference
142 Perforce 2004.2 System Administrator’s Guide

 Index
A
access level

and protections 72
access levels 72
admin access level 39, 73
administrator

force flag 50
privilege required 125

administrators
and job specifications 81

allocating disk space 20
AppleSingle 30
.asp files 49
automated checkpoints 27
automating Perforce 43
.avi files 49
B
backing up 31
backup

procedures 31
recovery procedures 33

backups
and Perforce Proxy 134

.bmp files 49
branches

namespace 65
.btr files 49
buffering

of input/output in scripts 106
C
can 124
case-sensitivity

and cross-platform development 23
UNIX and Windows 23, 56

change review 103
changelist numbers

highest possible 105
pending vs. submitted changelists 106

changelist submission triggers 93

changelist triggers 95
changelists

deleting 47
editing 47

checkpoint
as part of backup script 31
creating 26
creation of, automating 27
defined 26
ensuring completion of 32
failed 27
introduced 25
managing disk space 20
when to call support 27

checkpoints
creating with p4 admin 27, 31

client
and port 13

clients
namespace 65

.cnf files 49
commands

forcing 50
content

trigger type 95, 97
counter

limits 105
CPU

and performance 109
CR/LF conversion 63
creating checkpoints 26
creating users 43
creation of users

preventing 43
cross-platform development

and case sensitivity 23
.css files 49
D
daemon
Perforce 2004.2 System Administrator’s Guide 143

Index
change review 103
daemons 91

changelist numbers 106
creating 104

database files 61
defined 25
where stored 25

db.* files 25
debugging

with server tracing 60
defect tracking

integrating with Perforce 90
deleting

changelists 47
depots 65
files, permanently 45
user groups 77

deleting users 45
depot

and Mac file formats 30
and server root 64

depot files
see versioned files 30

depots
defined 25
defining 64
deleting 65
listing 65
local 64
mapping field 68
multiple 64
namespace 65
remote 64, 69
remote, defining 68

disabling journaling 30
disk

performance 108
sizing 108

disk space
allocating 20
and server trace flags 60
freeing up 45
required for upgrade 16

distributed development 66
DNS

and performance 110, 111
.doc files 49
.dot files 49
drives

and db.*and journal file 19
E
editing

changelists 47
editor

Wordpad, limitation 129
environment variables

P4PCACHE 132, 133
P4PORT 132
P4TARGET 132, 133

error logging 22
error messages

and p4 verify 47
example

specifying journal files 29
exclusionary mappings

and protections 75
.exp files 49
F
fields

of job template 82
file formats

AppleSingle 30
file names

mapping to file types 48
file specification

and protections 72
file types 49

mapping to file names 48
files

access to, limiting 75
.asp 49
.avi 49
.bmp 49
.btr 49
.cnf 49
.css 49
144 Perforce 2004.2 System Administrator’s Guide

Index
database 25
.doc 49
.dot 49
.exp 49
.gif 49
.htm 49
.html 49
.ico 49
.inc 49
.ini 49
.jpg 49
.js 49
left open by users, reverting 45
.lib 49
.log 49
matching Perforce file types to file names

48
.mpg 49
.pdf 49
.pdm 49
permanent deletion of 45
.ppt 49
subscribing to 104
verification of 47
versioned 25
.xls 49
.zip 49

filesystems
and performance 108
large 21
NFS-mounted, caveats 21, 108

firewall
defined 52
running Perforce through 52

flags
and Perforce Proxy 133
-f to force 50
server, listed 139

forms
triggers 98

G
.gif files 49
groups

and protections 72, 76
and subgroups 76
deleting 77
editing 76
of users 76

H
hostname

changing your server’s 63
hosts

and protections 72
hosts file

on Windows and UNIX 111
.htm files 49
.html files 49
I
-i

and inetd 55
automating job submissions 90
automating user creation 43

.ico files 49
in

trigger type 100
.inc files 49
inetd 55, 139
.ini files 49
installation

Windows 14
installing

license file 18
on network drives 22
on NFS filesystems 21, 108
on UNIX 11
on Windows 14
on Windows network drives 125
Perforce Proxy 132

IP address
changing your server’s 63
servers and P4PORT 55

IP forwarding
and ssh 53

J
job fields

data types 85
Perforce 2004.2 System Administrator’s Guide 145

Index
job specification 81–??
and administrators 81
and comments 86
default format 81
defining fields 83
extended example 88
warnings 87

job template
default 81
fields of 82
viewing 82

jobs
comments in 86
other defect tracking systems 90

journal
defined 28
introduced 25
managing size of 20
where to store 20

journal file
specifying 140
store on separate drive 19

journaling
disabling 30

.jpg files 49

.js files 49
L
label

namespace 65
.lib files 49
license 18
licensing information 18
limitations

Wordpad 129
list access level 72
listing

depot names 65
local depots 64
localhost 55
log file

specifying 140
.log files 49

M
Mac

and file formats 30
Macintosh

OS X 11
mappings

and depots 68
maxresults

and multiple groups 115
and P4Win 115
and performance 114
use of 114

maxscanresults
and performance 114
use of 114

maxscanrows
and multiple groups 115
and P4Win 115

MD5 signatures 47
memory

and performance 107
requirements 107

metadata
see database files 25, 61

monitoring server activity 58
moving servers 61

across architectures 62
between Windows and UNIX 63
new hostname 63
new IP address 63
same architecture 61

.mpg files 49
multiple depots 64
N
naming

depots 65
network

and performance 109, 110
Perforce Proxy configuration 131
problems, diagnosing 110

network drives
and triggers 102
and Windows 22
146 Perforce 2004.2 System Administrator’s Guide

Index
network interface
directing server to listen to specific 55

NFS
and installation 21, 108

non-forking 139
O
obliterating files 45
open access level 73
operating systems

and large filesystem support 21
OS X

and UNIX 11
out

trigger type 99
P
p4 admin

and Windows 16, 124
creating checkpoints 27, 31
stopping server with 14, 34, 35

p4 jobspec

warnings 87
p4 monitor 58
p4 set -s

setting variables for Windows services
127

p4 triggers

form 92
p4 typemap 48
p4 verify 47

use of 31
p4d

flags, listed 139
security 22, 102
specifying journal file 140
specifying log file 140
specifying port 140
specifying server root 140
specifying trace flags 140

p4d.exe 15
P4DEBUG 140

and proxy server 133
P4JOURNAL 140
P4LOG 140

and proxy server 133
P4P

and remote development 66
see Perforce Proxy 131, 132

P4PCACHE 132, 133
P4PORT

and client 13
and proxy server 133
and server 13, 140
IP addresses and your server 55
Perforce Proxy 132

P4ROOT 12, 140
and depot files 64

p4s.exe 15
P4TARGET 132, 133
passwords

setting 19, 43
PDF files

and p4 typemap 48
.pdf files 49
.pdm files 49
Perforce

uninstalling 123
Perforce clients

and P4PORT 13
Perforce file types 49
Perforce Proxy 66, 131

backups 134
diskspace usage 134
installation 132
options 133
protections 135
startup 132
stopping 134
troubleshooting 134
tuning 136

Perforce server
and P4PORT 13
and triggers 94
and Windows network drives 22
installing under NFS 21, 108
monitoring 58
moving to another machine 61
Perforce 2004.2 System Administrator’s Guide 147

Index
running from inetd 55
UNIX UPGRADE 17
upgrading 16
upgrading under Windows 18
verifying 47
vs. service 15

Perforce service
vs. server 15

perforce.exe 14
performance

and memory 107
and scripts 116
and wildcards under Windows 111
CPU 109
monitoring 58
network 109, 131
preventing server swamp 112
slow, diagnosing 110

performance tuning
and Perforce Proxy 136

permissions
see protections 74

port
for client 13
for server 13
specifying 140

ports
running out of TCP/IP 109

.ppt files 49
privileges

administrator 125
protections 71–78

algorithm for applying 77
and commands 78
and groups 76
and Perforce Proxy 135
and performance 113
and superusers 71
commands affected by 78
default 74
exclusionary 75
multiple 74
schemes for defining 73

securing remote depots 69
protections table 71
proxy 131

and remote development 66
python 103
R
RAM

and performance 107
read access level 72
recovery

procedures 33
remote depots 64

and virtual users 69
defining 68
securing 69

resetting passwords 43
review access level 73
review daemon 103
revision range

and obliterate 46
rich text

and p4 typemap 48
root

must not run p4d 22, 102
S
save

trigger type 98
scripting

buffering standard in/output 106
guidelines for efficient 116
with -i 43

scripting Perforce ??–104
secure shell 53
security

and passwords 19
p4d must have minimal privileges 22, 102
preventing user impersonation 19
restrict remote access 69

server
and triggers 94
backing up 31
license file 18
licensing 18
148 Perforce 2004.2 System Administrator’s Guide

Index
migrating 61
monitoring 58
port 13
proxy 131
recovery 33
root, specifying 140
running from inetd 55
running in background 139
running single-threaded 139
specifying journal file 140
specifying log file 140
specifying port 140
stopping on Windows 124
stopping with p4 admin 14, 34, 35
trace flags 60
upgrading 16
verifying 47
vs. service 15
Windows 15

server flags
listed 139

server root
and depots 64
and P4ROOT 12
creating 12
defined 12
specifying 140

server upgrade
UNIX 17
Windows 18

setting passwords 19, 43
single-threaded 139
specification triggers 93, 98, 99, 100
specifications

triggers 98
ssh 53
standard input/output

buffering 106
stopping server

on Windows 124
with p4 admin 14, 34, 35

subgroups
and groups 76

super access level 39, 73
superuser

and triggers 92
force flag 50
Perforce, defining 19

superusers
and protections 71

svcinst.exe 125
symbolic links

and disk space 20
T
TCP/IP

and port number 13
running out of ports 109

technical support
when to call 27

template
job, default 81

trace flags
specifying 140

triggers 91, 91–??
and Windows 102
content 95, 97
fields 93
firing order 101
form 92
input 100
multiple 101
naming 93
on changelists 95
output 99
passing arguments to 94
portability 102
save 98
script, specifying arguments to 94
security and p4d 22, 102
specification triggers 98
submitsubmit

trigger type 95
types of 93
warnings 99

troubleshooting
Perforce 2004.2 System Administrator’s Guide 149

Index
Perforce Proxy 134, 135
slow response times 110

type mapping 48
U
umask(1) 12
unicode 140
uninstalling Perforce 123
UNIX

/etc/hosts file 111
and case-sensitivity 57
upgrading a server 17

upgrading
server 16

users
access control by groups 76
and protections 72
creating 43
deleting 45
files, limiting access to 75
nonexistent 45
preventing creation of 43
preventing impersonation of 19
resetting passwords 43
virtual, and remote depots 69

V
variables

in trigger scripts 94
setting for a Windows service 127

verifying server integrity 47
version information

and Perforce Proxy 133
clients and servers 19

versioned files 61
defined 25
format and location of 30
introduced 25
where stored 25

view
scope of, and performance 112

W
warnings

and job specifications 87
database changes on upgrade 16, 17

disk space and Perforce Proxy 134
disk space and upgrade 16
obliterating files 46
recursive triggers 99
security 69
security and p4d 22, 102

wildcards
and protections 72
and Windows performance 111

Windows
and case-sensitivity 23, 57
and p4 admin 16
and server upgrade 18
hosts file 111
installer 14
installing on 14
installing on network drive 22, 125
server 15
service, setting variables in 127
stopping server 124
triggers and network drives 102

Wordpad
limitation 129

write access level 73
X
.xls files 49
Z
.zip files 49
150 Perforce 2004.2 System Administrator’s Guide

	Table of Contents
	Preface About This Manual
	Using Perforce?
	Please Give Us Feedback

	Chapter 1 Welcome to Perforce: Installing and Upgrading
	Getting Perforce
	UNIX Installation
	Download the files and make them executable
	Create a Perforce server root directory
	Telling Perforce servers on which port to listen
	Telling Perforce client programs which port to connect to
	Starting the Perforce server
	Stopping the Perforce server

	Windows Installation
	Windows services and servers
	Starting and stopping Perforce

	Upgrading a Perforce Server
	Using old client programs with a new server
	Important notes for 2001.1 and later
	UNIX upgrades
	Windows upgrades

	Installation and Administration Tips
	Release and license information
	Observe proper backup procedures
	Use separate physical drives for server root and journal
	Use protections and passwords
	Allocate disk space for anticipated growth
	Managing disk space after installation
	Large filesystem support
	UNIX and NFS support
	Windows: Username and password required for network drives
	UNIX: Run p4d as a non-privileged user
	Logging errors
	Case sensitivity issues
	Tune for performance

	Chapter 2 Supporting Perforce: Backup and Recovery
	Backup and Recovery Concepts
	Checkpoint files
	Journal files
	Versioned files

	Backup Procedures
	Recovery Procedures
	Database corruption, versioned files unaffected
	Both database and versioned files lost or damaged
	Ensuring system integrity after any restoration

	Chapter 3 Administering Perforce: Superuser Tasks
	Basic Perforce Administration
	Authentication methods: passwords and tickets
	Server security levels
	Resetting user passwords
	Creating users
	Preventing creation of users
	Deleting obsolete users
	Reverting files left open by obsolete users
	Reclaiming disk space by obliterating files
	Deleting changelists and editing changelist descriptions
	File verification by signature
	Defining filetypes with p4 typemap
	Forcing operations with the -f flag

	Advanced Perforce Administration
	Running Perforce through a firewall
	Specifying IP addresses in P4PORT
	Running from inetd on UNIX
	Case sensitivity and multi-platform development
	Monitoring server activity
	Perforce server trace flags

	Moving a Perforce Server to a new machine
	Moving your versioned files and Perforce database
	Changing the IP address of your server
	Changing the hostname of your server

	Using Multiple Depots
	Defining new depots
	Other depot operations

	Remote depots and distributed development
	When to use remote depots
	How remote depots work
	Using remote depots for code drops

	Chapter 4 Administering Perforce: Protections
	When Should Protections Be Set?
	Setting Protections with “p4 protect”
	The permission lines’ five fields
	Access levels
	Which users should receive which permissions?
	Default protections
	Interpreting multiple permission lines
	Exclusionary protections

	Granting Access to Groups of Users
	Creating and editing groups
	Groups and protections
	Deleting groups

	How Protections are Implemented
	Access Levels Required by Perforce Commands

	Chapter 5 Customizing Perforce: Job Specifications
	The Default Perforce Job Template
	The Job Template’s Fields
	The Fields: field
	The Values: fields
	The Presets: field
	The Comments: field

	Caveats, Warnings, and Recommendations
	Example: A Custom Template
	Working with third-party defect tracking systems
	Using P4DTI - Perforce Defect Tracking Integration
	Building your own integration
	Getting more information

	Chapter 6 ��Scripting Perforce: Triggers and Daemons
	Triggers
	The trigger table
	Triggering on changelists
	Triggering on specifications
	Using multiple triggers
	Writing triggers to support multiple Perforce Servers
	Triggers and security
	Triggers and Windows

	Daemons
	Perforce’s change review daemon
	Creating other daemons
	Commands used by daemons
	Daemons and counters
	Scripting and buffering

	Chapter 7 Tuning Perforce for Performance
	Tuning for Performance
	Memory
	Filesystem performance
	Disk space allocation
	Network
	CPU

	Diagnosing Slow Response Times
	Hostname vs. IP address
	Try p4 info vs. P4Win
	Windows wildcards
	DNS lookups and the hosts file
	Location of the “p4” executable

	Preventing Server Swamp
	Using tight views
	Assigning protections
	Limiting database queries
	Scripting efficiently
	Using compression efficiently

	Checkpoints for Database Tree Rebalancing

	Chapter 8 Perforce and Windows
	Using the Perforce installer
	Upgrade notes
	Installation options
	Scripted deployment and unattended installation

	Windows services vs. Windows servers
	Starting and stopping the Perforce service
	Starting and stopping the Perforce server
	Installing the Perforce service on a network drive

	Multiple Perforce services under Windows
	Windows configuration parameter precedence
	Resolving Windows-related instabilities
	Users having trouble with P4EDITOR or P4DIFF

	Chapter 9 Perforce Proxy
	System Requirements
	Installing P4P
	UNIX
	Windows

	Running P4P
	Running as a Windows service

	P4P flags
	Administering P4P
	No backups required
	Stopping P4P
	Managing disk space consumption
	Determining if your Perforce client is using the proxy
	P4P and protections
	Determining if specific files are being delivered from the proxy

	Maximizing performance improvement
	Network topologies versus P4P
	Pre-loading the cache directory for optimal initial performance
	Distributing disk space consumption
	Reducing server CPU usage by disabling file compression

	Appendix A Perforce Server (p4d) Reference
	Synopsis
	Syntax
	Description
	Exit Status
	Options
	Usage Notes
	Related Commands

	Index

