
Perforce 2005.1
User’s Guide

May 2005

This manual copyright 1997-2005 Perforce Software.

All rights reserved.

Perforce software and documentation is available from http://www.perforce.com. You may download and use
Perforce programs, but you may not sell or redistribute them. You may download, print, copy, edit, and redistribute
the documentation, but you may not sell it, or sell any documentation derived from it. You may not modify or
attempt to reverse engineer the programs.

Perforce programs and documents are available from our Web site as is. No warranty or support is provided.
Warranties and support, along with higher capacity servers, are sold by Perforce Software.

Perforce Software assumes no responsibility or liability for any errors or inaccuracies that may appear in this book.

By downloading and using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce Software. Perforce software includes software
developed by the University of California, Berkeley and its contributors.

All other brands or product names are trademarks or registered trademarks of their respective companies or
organizations.

Table of Contents
Preface About This Manual ... 11
Administering Perforce?..11
Please Give Us Feedback ...11

Chapter 1 Product Overview... 13
Perforce Server and Perforce Client Programs...14

Moving files between the clients and the server14
File conflicts...15
Labeling groups of files ...15
Branching files ..16
Job tracking ...16
Change review ..16
Protections ...17

Other Perforce Client Programs ...17
P4V ...17
P4Win ...17
P4Web...17

Merge Tools ...18
P4V ...18
P4 resolve...18
P4WinMerge..18
Other merge utilities ..18

Defect Tracking Systems..19
Perforce jobs ..19
P4DTI integrations with third-party defect trackers...............................19

Plug-ins, reporting and tool integrations..20
IDE Plug-ins ..20
P4Report and P4SQL ...20
P4OFC ..20
P4EXP...20
Perforce 2005.1 User’s Guide 3

Table of Contents
Chapter 2 Connecting to the
Perforce Server... 21
Before you begin .. 21
Setting up your environment to use Perforce.. 21

Verifying the connection to the Perforce server 23
Logging in to Perforce... 24

Chapter 3 Perforce Basics:
Quick Start..25
Underlying concepts ... 25
Setting up a client workspace .. 25

Naming your client workspace ... 26
Describing your client workspace to the Perforce server 26

Copying depot files into your workspace.. 28
Updating the depot with files from your workspace 29

Adding files to the depot.. 29
Editing files in the depot .. 31
Deleting files from the depot ... 31
Submitting your changes to the depot ... 32

Backing out: reverting files to their unopened states 34
Basic reporting commands ... 35

Chapter 4 Perforce Basics:
The Details..37
What is a Client Workspace?.. 37
Mapping Depot files to your Client Workspace.. 38

Client workspace views.. 39
Using wildcards in views ... 40
Types of mappings used in views ... 40

Client Workspace Specification Options .. 45
Changing workspace views or moving your workspace root 47
Configuring line-ending conventions (CR/LF translation) 47
Multiple workspace roots for cross-platform work................................ 48
Deleting a client workspace specification.. 49

Referring to Files on the Command Line ... 49
Local syntax and Perforce syntax.. 49
4 Perforce 2005.1 User’s Guide

Table of Contents
Using wildcards in Perforce commands and views................................51
Name and string limitations for filenames and Perforce objects51

Specifying File Revisions...53
Specifying file revisions with filenames ...53
Specifying file revisions without filenames..56
Specifying ranges of revisions ..56

Perforce File Types..57
Base file types..58
File type modifiers ...59
File type keywords...61
Overriding file types with the typemap table..61
Preserving timestamps with the +m modifier ...62
Expanding RCS keywords with the +k modifier.....................................62

Forms and Perforce Commands...63
Changing the default forms editor ..63
Scripting with Perforce forms...63
General Reporting Commands ..64

Chapter 5 Perforce Basics:
Resolving File Conflicts.. 67
Scheduling Resolves of Conflicting Files ..68

Why “p4 sync” to schedule a resolve? ..68
How do I know when a resolve is needed?..69

Performing Resolves of Conflicting Files..69
File revisions used and generated by “p4 resolve”69
Types of conflicts between file revisions...70
How the merge file is generated ..71
The “p4 resolve” options...71
Command line flags to automate the resolve process74
Binary files and “p4 resolve”..75

Locking Files to Minimize File Conflicts...75
Preventing multiple resolves with p4 lock ...76
Preventing multiple checkouts with +l files...76

Resolves and Branching...77
Resolve Reporting ..77
Perforce 2005.1 User’s Guide 5

Table of Contents
Chapter 6 Perforce Basics:
Miscellaneous Topics .. 79
Perforce Passwords.. 79

Setting passwords.. 79
Perforce passwords and authentication ... 80

Perforce tickets: logging in and out... 80
Reconfiguring the Perforce Environment with $P4CONFIG 81
Command-Line Flags Common to All Perforce Commands 83
Working Detached ... 84

Finding changed files.. 85
Updating the depot with changed files.. 85
Refreshing files... 85

Renaming Files ... 86
Revision histories and renamed files.. 86

Recommendations for Organizing the Depot.. 87

Chapter 7 Changelists ... 89
Working with the Default Changelist ... 89
Creating Numbered Changelists Manually ... 90
Working With Numbered Changelists ... 90
Automatic Creation and Renumbering of Changelists 92

When Perforce renumbers changelists ... 92
Deleting Changelists.. 93
Changelist Reporting... 93

Chapter 8 Labels .. 95
Labels or changelist numbers?... 95
Using labels... 95

Tagging files with a label.. 96
Untagging files... 96
Previewing tag’s results.. 96
Listing files tagged by a label .. 96
Listing labels that have been applied to files .. 97
Referring to files using a label ... 97
Deleting labels.. 97
Creating a label for future use ... 98
6 Perforce 2005.1 User’s Guide

Table of Contents
Using label views ...98
Using labels to record workspace configurations99
Preventing inadvertent tagging and untagging of files..........................99

Differences between p4 tag and p4 labelsync...100
How p4 tag works ..100
How p4 labelsync works ...101

Label Reporting...102

Chapter 9 Branching ... 105
What is Branching?...105
When to Create a Branch ...105
Perforce’s Branching Mechanisms: Introduction106
Branching and Merging, Method 1:

Branching with File Specifications ...107
Creating branched files..107
Propagating changes between branched files ..108
Propagating changes from branched files to the original files109

Branching and Merging, Method 2:
Branching with Branch Specifications ...109

Branch Specification Usage Notes.. 111
Integration Usage Notes ..112
Deleting Branches...113
Advanced Integration Functions..113

Integrating specific file revisions ...113
Re-integrating and re-resolving files ...114

How Integrate Works ...114
The yours, theirs, and base files ...114
The integration algorithm ...115
Integrate’s actions...115

Integration Reporting...116
For More Information ..116

Chapter 10 Job Tracking ... 117
Job Usage Overview...117

Using the default job specification...118
Using a custom job specification..119

Viewing jobs by content with jobviews...120
Perforce 2005.1 User’s Guide 7

Table of Contents
Finding jobs containing particular words.. 120
Finding jobs by field values ... 121
Using and escaping wildcards in jobviews ... 121
Negating the sense of a query ... 121
Using dates in jobviews.. 122
Comparison operators and field types... 122

Linking Jobs to Changelists.. 123
Linking jobs to changelists with the JobView: field 123
Linking jobs to changelists with p4 fix... 124
Linking jobs to changelists when submitting.. 124
Automatic update of job status ... 125
What if there’s no status field? .. 126

Deleting Jobs... 126
Integrating with External Defect Tracking Systems 126
Job Reporting Commands .. 126

Chapter 11 Reporting and Data Mining..................................... 129
Files .. 129

File metadata .. 129
Relationships between client and depot files .. 131
File contents.. 132

Changelists.. 136
Viewing changelists that meet particular criteria 136
Files and jobs affected by changelists ... 137

Labels... 138
Branch and Integration Reporting... 139
Job Reporting.. 139

Basic job information .. 139
Jobs, fixes, and changelists ... 140

Reporting for Daemons... 141
Listing Users, Workspaces, and Depots ... 141
Special Reporting Flags... 142

Appendix A Installing Perforce ... 143
Getting Perforce ... 143
UNIX Installation... 143

Download the files and make them executable 144
8 Perforce 2005.1 User’s Guide

Table of Contents
Creating a Perforce server root directory..144
Telling the Perforce server which port to listen to.................................144
Starting the Perforce server...144
Telling Perforce clients which port to talk to..145
Stopping the Perforce server...145

Windows Installation ...145
Windows services and servers ...146
Starting and stopping Perforce...146

Appendix B Environment Variables ... 147
Setting and viewing environment variables...148

Appendix C Glossary.. 149

Index ... 159
Perforce 2005.1 User’s Guide 9

Table of Contents
10 Perforce 2005.1 User’s Guide

Preface About This Manual
This is the Perforce 2005.1 User’s Guide.

This guide documents the Perforce Command-Line Client. Other Perforce client
programs, such as P4V, P4Win, and P4Web, are not discussed here. To learn about other
Perforce client programs, please see the documentation available on our web site at
http://www.perforce.com.

The Perforce User’s Guide uses a tutorial approach to document the commands and flags
you’re most likely to use when working with Perforce. For complete documentation of
every command and every option, consult the Perforce Command Reference, or use the built-
in command line help system by typing p4 help.

Administering Perforce?

If you’re responsible for installing and administering a Perforce server, see the Perforce
System Administrator’s Guide. The System Administrator’s Guide describes how to operate
and maintain a Perforce server.

Please Give Us Feedback

We are interested in feedback from our users. In particular, we’d like to hear from users
who have never used Perforce before. Does this guide teach the topic well? Please let us
know what you think; we can be reached at manual@perforce.com.
Perforce 2005.1 User’s Guide 11

Preface: About This Manual
12 Perforce 2005.1 User’s Guide

Chapter 1 Product Overview
Perforce is a software configuration management (SCM) tool that enables developers to
version files, track changes to software development, manage releases, track defects,
manage builds, and so on. Specifically:

• Perforce offers version control: multiple revisions of the same file are stored and older
revisions are always accessible.

• Perforce provides facilities for concurrent development; multiple users can edit their own
copies of the same file.

• Perforce supports distributed development; users can work with files stored on a central
server or with copies of files cached on a proxy server.

• Perforce offers release management facilities; you can use Perforce to track the file
revisions that constitute a particular release.

• Bugs and system improvement requests can be tracked from entry to fix; this capability
is known as defect tracking or change management.

• Perforce supplies lifecycle management functionality; files can be kept in release
branches, development branches, or in any sort of needed file set.

• Perforce supports change review; users can be notified by email when particular files are
changed.

• Although a build management tool is not built into Perforce, Perforce offers a
companion open source product called Jam. The Jam tool and Perforce are independent
of each other; source files managed by Perforce are easily built by Jam.

Although Perforce was built to manage source files, you can use Perforce to manage any
sort of content, including source code, binary files, other digital assets, HTML pages,
formatted documents, or operating system configuration files.
Perforce 2005.1 User’s Guide 13

Chapter 1: Product Overview
Perforce Server and Perforce Client Programs

Perforce is based on a client/server architecture, in which users at client workstations are
connected to a central server. Each user works on a client workstation; Perforce client
programs on user workstations transfer files between the workstations and the Perforce
server. Perforce client programs communicate with the server using TCP/IP.

Workstations running Perforce client programs can be distributed around a local area
network, wide area network, dialup network, or any combination thereof. Perforce client
programs can also reside on the same host as the server.

The following programs do the bulk of Perforce’s work:

• The Perforce Server (p4d) runs on the Perforce server machine. This program manages
the shared file repository and keeps track of users, workspaces, and other Perforce
metadata.

The Perforce Server must run on a UNIX, Mac OS X, or Windows machine.

• Perforce client programs (such as p4) run on Perforce client machines. Client programs
send user requests to the Perforce Server (p4d) for processing, and communicate with
p4d using TCP/IP.

Perforce supplies client software for UNIX, Linux, Windows, Mac OS X, and many other
platforms.

This manual assumes that you or your system administrator have already installed both
p4 and p4d. You’ll find installation instructions in the Perforce System Administrator’s
Guide, also available at our Web site.

Moving files between the clients and the server

When you use Perforce, you create, edit, and delete files on your own workstation in
directories you specify to Perforce as client workspaces. You use Perforce commands to
move files between the shared file repository (the depot) and your local workstation.

When you retrieve files from the depot into your client workspace, you can read, edit, and
resubmit the files to the depot to make your changes accessible to other users. When a
new revision of a file is stored in the depot, the old revisions of the file are preserved and
are still accessible.

Files that you edit in your client workspace are aggregated and sent to the depot using
changelists, which are lists of files and instructions that tell the depot what changes you
made to those files. For example, one file might have been edited in your client
workspace, another added, and another deleted. These file changes are sent to the depot
in a single changelist, which is processed atomically: either all the changes are made to the
14 Perforce 2005.1 User’s Guide

Chapter 1: Product Overview
files in the depot, or none are. This approach enables you to simultaneously update all
files related to a bug fix or a new feature.

Each client workspace has its own client workspace view, which determines what files in the
depot are mapped into its owner’s client workspace. One client workspace might be able
to access all the files in the depot, while another client workspace might access only a
single development branch. The Perforce Server tracks the state of all client workspaces,
including the files in each client workspace, where they reside in the depot, and which
files are being worked on by which users.

For basic information about using Perforce, see Chapter 3, Perforce Basics: Quick Start and
Chapter 4, Perforce Basics: The Details.

File conflicts

When two users edit the same file, their changes can conflict. For example, suppose two
users copy the same file from the depot into their workspaces, and each edits his copy of
the file in different ways. The first user sends his version of the file back to the depot, and
then the second user tries to do the same thing. If Perforce were to unquestioningly accept
the second user’s file into the depot, the first user’s changes would not be included in the
latest revision of the file (known as the head revision).

When a file conflict is detected, Perforce asks the user experiencing the conflict to perform
a resolve of the conflicting files. The resolve process enables you to decide what needs to be
done: should your file overwrite the other user’s? Should your own changes be
discarded? Or should the two conflicting files be merged into one? At your request,
Perforce performs a three-way merge between the two conflicting files and the single file
that on which both files were based. This process generates a merge file from the
conflicting files that contains all the changes from both conflicting versions. You can also
edit the merged file before submitting the it to the depot.

To learn how to resolve file conflicts, see Chapter 5, Perforce Basics: Resolving File
Conflicts.

Labeling groups of files

It is often useful to mark a particular set of file revisions for later access. For example, the
release engineers might want to keep a list of all the file revisions that comprise a
particular release of their program. This list of files can be assigned a name, such as
release2.0.1; this name is a label for the user-determined list of files. At any subsequent
time, the label can be used to copy its revisions into a client workspace.

For more about labels, see Chapter 8, Labels.
Perforce 2005.1 User’s Guide 15

Chapter 1: Product Overview
Branching files

Suppose that one source file needs to evolve in two separate directions; perhaps one set of
changes are required for UNIX support, and a second set of changes are required for OS X
support. In such cases, two separately-evolving copies of the same files are necessary.

Perforce’s Inter-File Branching™ mechanism enables you to copy any set of files to a new
location in the depot. The new file set, or codeline, evolves separately from the old
codeline, but changes in either codeline can be propagated to the other.

For details about branching, see Chapter 9, Branching.

Job tracking

A job is a description of some change that needs to be made to a body of content or source
code. A job might be a bug description, like “the system crashes when I press return”, or it
might be a system improvement request, like “please make the program run faster.”

Perforce’s job tracking mechanism links jobs to the changelists that implement the job. (A
job represents work that is intended to be performed, a changelist represents work
actually done.) A job can later be examined to determine if and when it was fixed, what
files were modified to implement the fix, who fixed it, and whether the fix was
propagated to other codelines. The fields contained in your system’s jobs can be defined
by the Perforce system administrator.

Perforce’s job tracking mechanism does not implement all the functionality that is
normally supplied by full-scale defect tracking systems. Perforce’s job tracking
functionality can be used as is, or you can integrate Perforce jobs with third-party job
tracking systems by using P4DTI - Perforce Defect Tracking and Integration.

For more about jobs, please see Chapter 10, Job Tracking.

Change review

Perforce’s change review mechanism enables users to receive email notifying them when
particular files have been updated in the depot. The files for which a particular user
receives notification are determined by that user. Change review in Perforce is
implemented by an external program, or daemon, which can be customized.

Perforce can be made to run external scripts when changelists are submitted or forms are
changed. These scripts, called triggers, enable you to validate changelists and forms, start
build processes or perform other tasks related to workflow.

To learn how to set up the change review daemon, integrate Perforce with third-party
defect tracking systems, or develop your own custom daemons and triggers, see the
Perforce System Administrator’s Guide.
16 Perforce 2005.1 User’s Guide

Chapter 1: Product Overview
Protections

Perforce provides a protection scheme to prevent unauthorized or inadvertent access to
the depot. The protection mechanism determines which Perforce commands can be run
by any particular user. Permissions can be granted or denied based on usernames,
workstation IP addresses, and administrator-defined user groups.

Perforce protections are discussed in the Perforce System Administrator’s Guide.

Other Perforce Client Programs

The Perforce Command-Line Client (p4) is not the only Perforce client program. Other
Perforce client programs are available on the Perforce web site, including P4V, P4Win,
and P4Web.

P4V

The Perforce Visual Client (P4V) is a graphical user interface to Perforce on Mac OS X,
UNIX, Linux, and Windows. P4V provides quick and easy access to Perforce-managed
files through a user interface that is consistent across many operating systems.

For more about P4V, see the product page at:
http://www.perforce.com/perforce/products/p4v.html

P4Win

The Perforce Windows Client (P4Win) provides a native Microsoft Windows user
interface for all SCM tasks. Using the familiar Windows Explorer look and feel, P4Win
shows your work in progress at a glance and provides easy access to Perforce tasks.

For more about P4Win, see the product page at:
http://www.perforce.com/perforce/products/p4win.html

P4Web

The Perforce Web Client (P4Web) turns any Web browser into a complete SCM tool.
P4Web works with a Perforce Server at Release 99.2 or higher, and runs on UNIX, Linux,
Mac OS X, and Windows platforms.

For more about P4Web, see the product page at:
http://www.perforce.com/perforce/products/p4web.html
Perforce 2005.1 User’s Guide 17

Chapter 1: Product Overview
Merge Tools

Interactive merge tools enable you to display the differences between file versions,
simplifying the process of resolving conflicts that result from parallel or concurrent
development efforts. Merge tools often use color-coding to highlight differences and some
even include the option to automatically merge non-conflicting changes.

Perforce offers full support for both parallel and concurrent development environments.
In situations where concurrent file check-out is not desirable, Perforce can be configured
to restrict this capability to specific file types or file locations (for instance, management of
digital assets in environments where concurrent development is not encouraged).

P4V

The Perforce Visual Client provides built-in merge capability for Mac OS X, UNIX, Linux,
and Windows.

P4 resolve

Perforce’s “p4 resolve” command includes built-in merge capability for the console
environment.

P4WinMerge

P4WinMerge is Perforce’s graphical three-way merge and conflict resolution tool for
Windows. P4WinMerge uses the familiar three-pane approach to display and edit files
during the merge process.

P4WinMerge is a stand-alone Windows application; it does not require a Perforce Server
when used by itself. However, when invoked from within a Perforce client program like
the Perforce Command-Line Client, P4Win, or P4Web, a Perforce Server is necessary.

For more about P4WinMerge, see:
http://www.perforce.com/perforce/products/p4winmerge.html

Other merge utilities

Perforce is easily integrated with third-party merge tools and diff utilities. You need only
change an environment variable (such as P4MERGE or P4DIFF) to point to your merge tool
of choice.

For more about using third-party merge tools with Perforce, see:
http://www.perforce.com/perforce/products/merge.html
18 Perforce 2005.1 User’s Guide

Chapter 1: Product Overview
Defect Tracking Systems

Perforce provides a number of options for defect tracking. In addition to providing basic
built-in defect tracking, Perforce is integrated with several leading defect tracking
systems. Activity performed by Perforce users can be automatically sent to your defect
tracking system. Conversely, issues and status entered into your defect tracking system
can be accessed by Perforce users.

Perforce jobs

Perforce’s built-in defect tracking and reporting features are available to all Perforce users.

P4DTI integrations with third-party defect trackers

Although Perforce provides built-in defect tracking, some companies prefer to use the
defect tracking system they already have in place, or want to install a different defect
tracker for use with Perforce.

Perforce Defect Tracking Integration (P4DTI) is an open source project specifically
designed to integrate Perforce with other defect tracking systems by replicating Perforce
jobs and changelist numbers to their equivalents in the other system.

P4DTI connects your defect tracking system to Perforce, so that you don’t have to switch
between your defect tracker and SCM tool and enter duplicate information about your
work. P4DTI also links changes made in Perforce with defect tracker issues, making it easy
to find out why a change was made, what work that was done to resolve an issue, or to
generate reports relating issues to files or codelines.

Activity in your Perforce depot - such as enhancements, bug fixes, propagation of changes
into release branches, and so forth - can be automatically entered into your defect tracking
system by P4DTI. Conversely, issues and status entered into your defect tracking system -
bug reports, change orders, work assignments, and so on, can be converted automatically
to Perforce metadata for access by Perforce users. With P4DTI, you can integrate Perforce
with any third-party defect tracking or process management software.

P4DTI uses Perforce’s built-in jobs feature to mirror defect tracking systems. While
Perforce jobs can be used without additional software for straightforward issue tracking,
P4DTI lets you take advantage of third-party user interfaces, reporting tools, databases,
and workflow rules to manage complex processes.

P4DTI runs on Unix and Windows and can be used with a Perforce Server on any platform
at Release 2000.2 or higher. For more about using third-party defect tracking systems with
Perforce, including a list of defect tracking systems for which P4DTI integrations have
already been built, see:

http://www.perforce.com/perforce/products/defecttracking.html
Perforce 2005.1 User’s Guide 19

Chapter 1: Product Overview
Plug-ins, reporting and tool integrations

IDE Plug-ins

Perforce IDE Plug-ins enable developers to work with Perforce from within integrated
development environments (IDEs) such as Visual Studio .NET, JBuilder, Eclipse,
WebSphere Studio, CodeWarrior, and many more.

For more about Perforce IDE Plug-ins, see:
http://www.perforce.com/perforce/products/plugins-ide.html

P4Report and P4SQL

The Perforce Reporting System (P4Report) offers query and reporting capability for
Perforce depots. P4Report also includes the Perforce SQL Command-Line Client (P4SQL).
P4SQL can be used to execute SQL statements interactively or using scripts.

Based on P4ODBC, the Perforce ODBC Data Source, P4Report can be used by ODBC-
compliant reporting tools including Crystal Reports®, Microsoft® Access® and Excel®.
P4Report can also be integrated with some defect tracking systems.

For more about P4Report and P4SQL, see:
http://www.perforce.com/perforce/products/p4report.html

P4OFC

The Perforce Plug-in for Microsoft Office (P4OFC) adds a “Perforce” menu to Microsoft
Word, Microsoft Excel, and Microsoft Powerpoint. This menu provide easy access to
common Perforce SCM commands, so that users never have to leave familiar applications
to work with documents under Perforce control.

For more about P4OFC, see:
http://www.perforce.com/perforce/products/plugins-ofc.html

P4EXP

The Perforce Plug-in for Windows Explorer (P4EXP) enables one-click access to Perforce
operations (including add, edit, diff, view revision history, and more) from within the
familiar Windows Explorer environment.

For more about P4EXP, see:
http://www.perforce.com/perforce/products/p4exp.html
20 Perforce 2005.1 User’s Guide

Chapter 2 Connecting to the
Perforce Server
Perforce is based on a client/server architecture. Users work on files in client workspace
directories on their own machines; these files are transferred to and from a shared file
repository located on a Perforce server. Every Perforce system uses one server and can
have many client workstations.

The following programs do the bulk of Perforce’s work:

• The Perforce Server (p4d) runs on the Perforce server machine, manages the shared file
repository, and keeps track of users, workspaces, and other Perforce metadata.

• Perforce client programs (such as p4) run on Perforce client machines, sending user
requests to the Perforce Server (p4d) for processing.

Perforce client programs use TCP/IP to communicate with the Perforce Server. To use
Perforce, you must supply your client program with the address and port of the Perforce
server to which you want to connect. See “Setting up your environment to use Perforce”
on page 21 for details.

Before you begin

This chapter assumes that your system administrator has already installed and configured
a Perforce server (p4d) for you, and that the server is up and running.

If this is not the case (for instance, if you’re installing Perforce for the first time), you must
install the Perforce server before continuing. For an overview of how to set up a server,
see “Installing Perforce” on page 143.

The installation information in this manual is intended to help you install a server for
evaluation purposes. If you’re installing a production server, or are planning on extensive
testing of your evaluation server, read the full installation instructions in the System
Administrator’s Guide.

Setting up your environment to use Perforce

In order to connect to a Perforce server, you must supply your Perforce client program
with two pieces of information:

• the name of the host on which p4d is running, and

• the port on which p4d is listening
Perforce 2005.1 User’s Guide 21

Chapter 2: Connecting to the Perforce Server
To connect to a Perforce server, specify the host and port number by setting the P4PORT
environment variable to host:port, where host is the name of the host on which the p4d
server is running, and port is the port on which the p4d server is listening.

For example:

For information about setting environment variables for most operating systems and
shells, see “Setting and viewing environment variables” on page 148.

If your site is already using Perforce, your system administrator might have already set
P4PORT for you; if not, you’ll need to set P4PORT yourself.

• If you’ve just installed the Perforce server yourself, you already know the host and port
number, having configured the server on a specific host to listen to a specific port.

• If you’re connecting to an existing Perforce installation, ask your system administrator
for the host and port of the Perforce server. By default, a Perforce server listens on port
1666.

After you have set P4PORT to point to your server, test your connection to the Perforce
server by using the p4 info command. See “Verifying the connection to the Perforce
server” on page 23.

If your Perforce client program is running on the same host as the server, you can omit the
host and specify only the port number. If the Perforce server is listening to the default port
1666, you need only specify the host name in P4PORT. If the Perforce server is running on a
host named or aliased perforce, and is listening on the default port 1666, the definition
of P4PORT for the p4 client can be dispensed with altogether.

For example:

If the server is running on... and is listening to port... set P4PORT to:

dogs 3435 dogs:3435

x.com 1818 x.com:1818

If the server is running on... and is listening to port... set P4PORT to:

<same host as the p4 client> 1543 1543

perforce 1666 <no value needed>
22 Perforce 2005.1 User’s Guide

Chapter 2: Connecting to the Perforce Server
Verifying the connection to the Perforce server

To verify your connection to the Perforce server, enter p4 info at the command line. If the
P4PORT environment variable is set correctly, you’ll see something like this:

The Server address: field shows the Perforce server to which p4 has connected, as well
as the host and port number on which p4d is listening.

In the above example, the connection was successfully tested. If you receive an error
message like this:

then the p4 client program failed to connect to p4d, either because the Perforce server
wasn’t running, or because your setting for P4PORT was incorrect.

If the value shown in the third line of the error message is perforce:1666 (as above), then
P4PORT was unset; if the value is anything else, P4PORT was incorrectly set. In either case,
you must change the value of P4PORT to point to your Perforce server.

User name: edk
Client name: wrkstn12
Client host: wrkstn12
Client unknown.
Current directory: /usr/edk
Client address: 192.168.0.123:1818
Server address: p4server:1818
Server root: /usr/depot/p4d
Server date: 2004/06/10 12:11:47 -0700 PDT
Server version: P4D/FREEBSD/2004.2/62360 (2004/06/10)
Server license: P4 Admin <p4adm> 20 users (expires 2005/01/01)

Perforce client error:
 Connect to server failed; check $P4PORT.
 TCP connect to perforce:1666 failed.
 perforce: host unknown.

Windows On Windows platforms, use the command p4 set to set registry keys,
rather than environment variables.

For instance, to connect to the server in the example above, use the
command p4 set P4PORT=p4server:1818 from the Command Prompt.
Perforce 2005.1 User’s Guide 23

Chapter 2: Connecting to the Perforce Server
Logging in to Perforce

Depending on how your system administrator has defined your server’s security policy,
you may need to log in to Perforce before you can run Perforce commands. For more
about Perforce passwords and authentication, see “Perforce Passwords” on page 79.

Perforce system administrators should consult the System Administrator’s Guide for details
on how to determine what type of authentication is best for the users at your site.
24 Perforce 2005.1 User’s Guide

Chapter 3 Perforce Basics:
Quick Start
This chapter teaches basic Perforce usage. You’ll learn how to set up your workspace,
populate it with files from the common file repository (the depot), edit these files and
submit the changes back to the repository, back out of any unwanted changes, and use
some basic Perforce reporting commands.

This chapter gives a broad overview of these concepts and commands; for details, see
Chapter 4, Perforce Basics: The Details.

Underlying concepts

Working in Perforce is simple: you create, edit, and work on files a set of directories on
your local machine. These directories make up your client workspace. You use Perforce
commands to move files to and from the shared file repository, called the depot. Other
Perforce users retrieve files from the depot into their own client workspaces, where they
can read, edit, and submit their changes to the depot for other users to access. When a new
revision of a file is stored in the depot, the old revisions are kept and remain accessible.

Perforce was written to be as unobtrusive as possible, so that few changes to your normal
work habits are required. You work on files in your own directories using your editor or
IDE of choice; Perforce commands supplement your normal work actions instead of
replacing them.

Perforce commands are always entered in the form p4 command [arguments].

Setting up a client workspace

To move files between the depot and a client workspace, the Perforce server requires two
pieces of information:

• A name that uniquely identifies the client workspace, and

• The top-level directory of this workspace.

Note Many p4 commands display a form for editing in a standard text editor.
You can specify your text editor of choice by setting the P4EDITOR
environment variable.
Perforce 2005.1 User’s Guide 25

Chapter 3: Perforce Basics: Quick Start
Naming your client workspace

To name your client workspace, or to use a different workspace, set the environment
variable P4CLIENT to the name of the client workspace.

Example: Naming the client workspace

Ed is working on the code for a project called Elm. He wants to refer to the set of files he’s
working on (his client workspace) by the name eds_elm. In the Korn or Bourne shells, he
types:

Subsequent p4 commands will use the client workspace named eds_elm.

Different operating systems and shell have their own methods of setting environment
variables. See “Setting and viewing environment variables” on page 148 for details.

Describing your client workspace to the Perforce server

To define the new client workspace that you specified by setting P4CLIENT, or to edit an
existing client workspace, use the p4 client command. Enter:

p4 client

Typing p4 client brings up the client definition form in a text editor. After you have
filled out the form and exited the text editor, you can use Perforce client programs to
move files between the depot and your client workspace.

The p4 client form contains a number of fields; at this point, the important fields are the
Root: and View: fields:

$ P4CLIENT=eds_elm ; export P4CLIENT

Field Meaning

Root: Your client workspace root is the topmost subdirectory of your client
workspace. Set your client workspace root to a directory under your
control; you will be doing most of your development work on files located
in your client workspace.

View: The client workspace view determines which files and directories in the depot
are mapped to your client workspace, and where the files appear beneath
your client workspace root.

Note In the text forms used by Perforce, field names always start in the leftmost
column of text, and field values are indented with tabs or spaces. Perforce
requires that there be at least one space or a tab prior to the contents of a
form field.
26 Perforce 2005.1 User’s Guide

Chapter 3: Perforce Basics: Quick Start
Example: Setting the client workspace root and the client workspace view:

Ed is working with his Elm files in a setting as described above. He’s set the environment
variable P4CLIENT to eds_elm. He then types p4 client from his home directory, and sees
the following form:

With these default settings, all files in Ed’s home directory of /usr/edk (including files
unrelated to Ed’s work) are mapped to the depot, and all files in the depot are mapped to Ed’s
home directory, likely cluttering it with files that Ed isn’t interested in seeing.

Ed chooses to work on all Elm-related material in an /elm subdirectory beneath his home
directory of /usr/edk, and he would like this directory (/usr/edk/elm) to contain only
files in the elm_proj portion of the depot. He changes the values in the Root: and View:
fields as follows:

The revised form specifies /usr/edk/elm as the top level directory of Ed’s client workspace,
and that the files in this workspace directory are to be mapped to the depot’s elm_proj
subtree.

When Ed is done, he exits from the editor, and the p4 client command saves his changes.

In the p4 client form, the read-only Client: field contains the string stored in the
P4CLIENT environment variable. The Description: is a free-form text field where you
can add a description of the workspace. The View: field describes the relationship
between files in the depot and files in the client workspace. To use Perforce properly, it is
crucial to understand how views work. Views are discussed in greater detail in “Mapping
Depot files to your Client Workspace” on page 38.

Creating a client specification has no immediate visible effect; no files are created when a
client specification is created or edited. The client workspace specification merely defines
where files are located when you populate your workspace with files from the server.

Client: eds_elm
Owner: edk
Description:
 Created by edk.
Root: /usr/edk
Options: nomodtime noclobber
View:
 //depot/... //eds_elm/...

Client: eds_elm
Owner: edk
Description:
 Created by edk.
Root: /usr/edk/elm
Options: nomodtime noclobber
View:
 //depot/elm_proj/... //eds_elm/...
Perforce 2005.1 User’s Guide 27

Chapter 3: Perforce Basics: Quick Start
Copying depot files into your workspace

To retrieve files from the depot into a client workspace, use the p4 sync command.

The p4 sync command maps depot files through your client workspace view, compares
the result against the contents of your client workspace, and then adds, updates, or
deletes files in your workspace as needed to bring the contents of your workspace into
sync with the depot.

If a file exists within a particular subdirectory in the depot, but that directory does not yet
exist in your client workspace, the directory is created in the client workspace when you
run p4 sync. If a file in your client workspace has been deleted from the depot, p4 sync
removes the file from your client workspace.

By default, p4 sync updates your entire client workspace. To limit the update to only a
portion of your client workspace, you can supply filenames or wildcards to p4 sync.

Example: Copying files from the depot to a client workspace.

Lisa is responsible for the documentation for the Elm project. Her client workspace root is a
directory called elm_ws, and she has set her client workspace view to include only the
elm_proj documentation tree. To populate her client workspace, she enters her client
workspace root, runs p4 sync, and sees:

After the p4 sync command completes, the most recent revisions of the Elm project’s
documentation files as mapped through Lisa’s client workspace view, are available in her
workspace.

Note If you’ve just installed a Perforce server for the first time, p4 sync won’t do
anything, because an empty depot contains no files to copy to client
workspaces.

If you have just installed a Perforce server, use p4 add, as described in
“Adding files to the depot” on page 29, to populate the depot by copying
files from your client workspace to the depot.

$ cd ~/elm_ws
$ p4 sync
//depot/elm_proj/doc/elmdoc.0#2 - added as /usr/lisag/elm_ws/doc/elmdoc.0
//depot/elm_proj/doc/elmdoc.1#2 - added as /usr/lisag/elm_ws/doc/elmdoc.1
<etc.>
28 Perforce 2005.1 User’s Guide

Chapter 3: Perforce Basics: Quick Start
Updating the depot with files from your workspace

Any file in your client workspace can be added to, updated in, or deleted from the depot
in a two-step process:

1. You add information about changes to files in your client workspace to a changelist by
using the commands p4 add filenames, p4 edit filenames, or p4 delete
filenames. A Perforce changelist is a list of files and operations (such as adding a
new file to the depot, editing an existing file, or deleting a file from the depot) to be
performed in the depot.

2. You use the p4 submit command to commit your changes to the depot. When the p4
submit command successfully completes, the changes to the files in your workspace
are reflected in the depot.

The commands p4 add, p4 edit, and p4 delete do not immediately add, edit, or delete
files in the depot. Instead, the affected file and the corresponding operation are listed in
the default changelist, and changes to the files in the depot occur only after the changelist is
submitted to the depot with p4 submit.

Changelists enable you to send updated sets of files to the depot in indivisible, or atomic,
transactions: when a changelist is submitted, either all of the files in the changelist are
committed, or none of the files are committed.

When a file has been opened with p4 add, p4 edit, or p4 delete, but the corresponding
changelist has not yet been submitted in the depot, the file is said to be open (for add, for
edit, or for delete) in the client workspace.

Adding files to the depot

To add a file (or files) to the depot, type p4 add filename(s). The p4 add command
opens the file(s) for add and includes the files in the default changelist.

After you have added files to the changelist, you must submit your changelist to the depot
by using the p4 submit command. See “Submitting your changes to the depot” on
page 32 for details.

Note This chapter discusses only the default changelist, which is automatically
maintained by Perforce.

Changelists are a key concept in Perforce. For a full discussion, see Chapter
7, Changelists.
Perforce 2005.1 User’s Guide 29

Chapter 3: Perforce Basics: Quick Start
Example: Adding files to a changelist.

Ed is writing a help manual for Elm. The files are named elmdoc.0 through elmdoc.3, and
they’re sitting in the doc subdirectory of his client workspace root. He wants to add these files
to the depot.

At this point, four files have been added to his default changelist. The files are not actually
stored in the depot until Ed uses the p4 submit command to submit the changelist.

In the example shown, the filenames are displayed as filename#1. The #n suffix is used
by Perforce to indicate the nth revision of this file. The first revision of any file is revision
#1. Revision numbers are always assigned sequentially.

Adding more than one group of files at once

You can supply multiple file arguments on the command line. For example:

Example: Using multiple file arguments on a single command line.

Ed wants to add all of his Elm library, documentation, and header files to the depot.

Files in the three specified directories are added to the default changelist.

Populating an empty depot

In Perforce, there is no difference between adding files to an empty depot and adding files
to a depot that already contains other files. You can populate a new, empty depot by
adding files from a client workspace with p4 add as described above.

$ cd ~/elm/doc
$ p4 add elmdoc.*
//depot/elm_proj/doc/elmdoc.0#1 - opened for add
//depot/elm_proj/doc/elmdoc.1#1 - opened for add
//depot/elm_proj/doc/elmdoc.2#1 - opened for add
//depot/elm_proj/doc/elmdoc.3#1 - opened for add

$ cd ~
$ p4 add elm/lib/* elm/hdrs/* elm/doc/*
//depot/elm_proj/lib/Makefile.SH#1 - opened for add
//depot/elm_proj/lib/add_site.c#1 - opened for add
//depot/elm_proj/lib/addrmchusr.c#1 - opened for add
<etc.>
30 Perforce 2005.1 User’s Guide

Chapter 3: Perforce Basics: Quick Start
Editing files in the depot

To open a file for edit, use the p4 edit command to open the file for edit in the default
changelist. Opening a file for edit has three effects:

• Write permissions are turned on in your client workspace for the file(s) being edited,
enabling you to change the copy of the file residing in your workspace.

• The Perforce server records the fact that you are working on a file, so that other users
are aware that someone else is working on the file.

• The file(s) you are editing are added to your default changelist, so that you can submit
your work when you are done.

After you have opened a file for edit and made the required changes in your client
workspace, use the p4 submit command make your changes available to other users by
submitting the changelist. See “Submitting your changes to the depot” on page 32.

Example: Opening a file for edit:

Ed wants to make changes to his elmdoc.3 file. He opens the file for edit.

Ed then edits the file with his preferred text editor. When he’s finished making his changes to
the file, he makes his changes available to other users by using p4 submit to submit the
changelist to the depot.

Deleting files from the depot

To delete a file from the depot, use the p4 delete command to open the file for delete in
the default changelist.

The p4 delete command deletes the file from your client workspace as soon as you run
the p4 delete command, but deletion of the file in the depot does not occur until you use
p4 submit to submit the changelist containing the delete operation to the depot.

After you submit a changelist with a file deletion, it appears to all users as though the file
is deleted from the depot. Actually, only the most recent revision (or head revision) of the
file is marked as deleted. Older revisions of the file are not removed, and by specifying
these older revisions, you can always recover old revisions of “deleted” files back into
your client workspace.

Note Before you can open a file for edit, someone must have already added the
file to the depot with p4 add, or copied into your client workspace from the
depot with p4 sync.

$ cd ~/elm
$ p4 edit doc/elmdoc.3
//depot/elm_proj/doc/elmdoc.3#1 - opened for edit
Perforce 2005.1 User’s Guide 31

Chapter 3: Perforce Basics: Quick Start
Example: Deleting a file from the depot.

Ed’s file doc/elmdoc.3 is no longer needed. He deletes it from both his client workspace and
from the depot as follows:

The file is deleted from Ed’s client workspace immediately, but it is not deleted from the depot
until Ed submits the changelist with the p4 submit command.

Submitting your changes to the depot

In Perforce, changelists are used to group related changes (for example, a bug fix, or the
addition of a new feature to a product) in a logical fashion. Most changelists contain more
than one file. None of the operations you perform on files (such as opening for add, edit,
or delete) take effect in the depot until you commit your changes to the depot by
submitting the changelist.

Submitting a changelist to the depot works atomically: either all the files in the changelist
are updated in the depot, or none of them are. (In Perforce terminology, this is called an
atomic change transaction).

To submit a changelist, use the p4 submit command.

Example: Adding, updating, and deleting files in a single changelist:

Ed is writing the portion of Elm that is responsible for multiple folders (multiple mailboxes).
He has added a new source file src/newmbox.c, and he needs to edit the header file
hdrs/s_elm.h and some of the doc/elmdoc files to reflect his changes.

Ed adds the new file and prepares to edit the existing files as follows:

$ cd ~/elm/doc
$ p4 delete elmdoc.3
//depot/elm_proj/doc/elmdoc.3#1 - opened for delete

$ cd ~
$ p4 add elm/src/newmbox.c
//depot/elm_proj/src/newmbox.c#1 - opened for add
<etc.>
$ p4 edit elm/hdrs/s_elm.h doc/elmdoc.*
//depot/elm_proj/hdrs/s_elm.h#1 - opened for edit
//depot/elm_proj/doc/elmdoc.0#1 - opened for edit
//depot/elm_proj/doc/elmdoc.1#1 - opened for edit
//depot/elm_proj/doc/elmdoc.2#2 - opened for edit
32 Perforce 2005.1 User’s Guide

Chapter 3: Perforce Basics: Quick Start
He edits the header file and the documentation files in his workspace. When he is ready to
submit the changelist, he types p4 submit and sees the following form in a standard text
editor:

Ed changes the contents of the Description: field in the p4 submit form to describe the
changes he’s made as follows:

All of Ed’s changes are grouped together in a single changelist. When Ed quits from the editor,
either all of these files are updated in the depot, or, if the submission fails for any reason, none
of them are.

The p4 submit form includes a Description: field; you must supply a description in
order for your changelist to be accepted.

The Files: field contains the list of files in the changelist. If you remove files from this
field, any files not included in the changelist are carried over to a new default changelist,
and reappear the next time you use p4 submit.

If a directory containing a new file does not exist in the depot, the directory is
automatically created in the depot when you submit the changelist.

Change: new
Client: eds_elm
User: edk
Status: new
Description:
 <enter description here>
Files:
 //depot/elm_proj/doc/elmdoc.0 # edit
 //depot/elm_proj/doc/elmdoc.1 # edit
 //depot/elm_proj/doc/elmdoc.2 # edit
 //depot/elm_proj/hdrs/s_elm.h # edit
 //depot/elm_proj/src/newmbox.c # add

Change: new
Client: eds_elm
User: edk
Status: new
Description:
 Changes to Elm’s mailbox functionality
Files:
 //depot/elm_proj/doc/elmdoc.0 # edit
 //depot/elm_proj/doc/elmdoc.1 # edit
 //depot/elm_proj/doc/elmdoc.2 # edit
 //depot/elm_proj/hdrs/s_elm.h # edit
 //depot/elm_proj/src/newmbox.c # add
Perforce 2005.1 User’s Guide 33

Chapter 3: Perforce Basics: Quick Start
When you run p4 submit, the operating system’s write permission on the submitted files
in your client workspace is turned off. Write permissions are restored when you open a
file for editing with p4 edit.

Backing out: reverting files to their unopened states

To back out unwanted changes made for files that you opened for add, edit, or delete,
use the p4 revert command. This command restores the file in the client workspace to its
unopened state, and any local modifications to the file are lost.

Example: Reverting a file back to the last synced version.

Ed wants to edit a set of files in his src directory: leavembox.c, limit.c, and signals.c.
He opens the files for edit:

and then realizes that signals.c is not one of the files he plans to change, and that he did not
intend to open it. He reverts signals.c to its unopened state with p4 revert:

If you use p4 revert on a file you opened with p4 delete, the file reappears in your
client workspace immediately. If you revert a file opened with p4 add, the file is removed
from the changelist, but is left intact in your client workspace.

If you revert a file you originally opened with p4 edit, the last synced version is written
back to the client workspace, overwriting the edited version of the file. To reduce the risk
of accidentally overwriting your changes, you can preview any revert by using p4 revert
-n before running p4 revert. The -n option reports what files would be reverted by p4
revert without actually reverting the files.

Warning! If a submit fails due to a file conflict, the default changelist is assigned a
number, and you’ll need to submit that changelist in a slightly different
way.

See Chapter 5, Perforce Basics: Resolving File Conflicts for details on
submitting numbered changelists.

$ cd ~elm/src
$ p4 edit leavembox.c limit.c signals.c
//depot/elm_proj/src/leavembox.c#2 - opened for edit
//depot/elm_proj/src/limit.c#2 - opened for edit
//depot/elm_proj/src/signals.c#1 - opened for edit

$ p4 revert signals.c
//depot/elm_proj/src/signals.c#1 - was edit, reverted
34 Perforce 2005.1 User’s Guide

Chapter 3: Perforce Basics: Quick Start
Basic reporting commands

Perforce provides many reporting commands. Each chapter in this manual ends with a
description of the reporting commands relevant to the chapter topic. All the reporting
commands are discussed in greater detail in Chapter 11, Reporting and Data Mining.

The most basic reporting commands are p4 help and p4 info.

Two other reporting commands are useful when getting started with Perforce:

Command Meaning

p4 help commands Lists all Perforce commands with a brief description of each.

p4 help command For any command provided, gives detailed help about that
command. For example, p4 help sync provides detailed
information about the p4 sync command.

p4 help usage Describes command-line flags common to all Perforce
commands.

p4 help views Gives a discussion of Perforce view syntax.

p4 help Describes all the arguments that can be given to p4 help.

p4 info Reports information about the current Perforce system: the
server address, client root directory, client name, user name,
Perforce version, and licensing information.

Command Meaning

p4 have Lists all file revisions synced to your client workspace.

p4 sync -n Report the set of files that would be updated in the client
workspace by a p4 sync command without actually
performing the sync operation.
Perforce 2005.1 User’s Guide 35

Chapter 3: Perforce Basics: Quick Start
36 Perforce 2005.1 User’s Guide

Chapter 4 Perforce Basics:
The Details
This chapter covers the Perforce rules in detail. The topics discussed include views,
mapping depots to client workspaces, Perforce wildcards, rules for referring to older file
revisions, file types, and form syntax. For a brief overview of Perforce, see Chapter 3,
Perforce Basics: Quick Start.

What is a Client Workspace?

A Perforce client workspace is a collection of files on a user’s workstation that are
managed by a Perforce client program. You can have more than one Perforce client
workspace per workstation. The Perforce server tracks the state of all client workspaces
owned by all users, including what files are on which users’ workspaces and which users
are working on which files.

Every client workspace on every user’s workstation has a unique name that identifies the
workspace to the Perforce server. If you do not specify a name for your client workspace,
the name defaults to your workstation’s name. You can override the default value by
setting the P4CLIENT environment variable.

All files within a client workspace share a common root directory called the client
workspace root. The client workspace root is the highest-level directory on your workspace
under which the managed source files reside. Files under your client workspace root that
are not managed by Perforce are ignored by Perforce client programs, enabling you to use
Perforce to manage the source files in your client workspace while ignoring non-
versioned files such as compiled object files and other temporary files created by your
development tools.

Perforce client programs manage versioned files in your client workspace in three ways:

• When you use p4 sync to synchronize your client workspace with the depot, your
client program creates, updates, and deletes files in your workspace as required

• When you open a file for editing with p4 edit, your client program restores write
permission to the copy of the file in your client workspace.

• When you submit your changes back to the depot with p4 submit, your client program
transmits your changes back to the depot and deactivates write permission on your
local copy of the file.

It’s possible to circumvent Perforce by manually altering permissions on files in your
workspace, but using Perforce is easier than circumventing it. For instance, if you need to
make a temporary change to a file in your workspace, it is easier to use Perforce to open
Perforce 2005.1 User’s Guide 37

Chapter 4: Perforce Basics: The Details
the file for edit, make your change, and then use p4 revert to discard your change, rather
than to manually override file permissions or copy and restore the file.

To avoid confusion caused by inadvertent changes to workspace files, Perforce client
programs include commands to verify that the state of your client workspace matches the
Perforce server’s record of your workspace state.

Mapping Depot files to your Client Workspace

The Perforce server manages the depot - the central repository containing every revision
of every file under Perforce control. Depot files are stored in folder hierarchies, rather like
those on a large hard drive.

To control where depot files appear under your client workspace root, you must map the
files and directories on the Perforce server to the corresponding areas of your client
workspace. These mappings constitute your client workspace view.

Setting up a client workspace view doesn’t transfer any files from the server to your
computer. The view only sets up the mapping that controls the relationship between the
depot and your client workspace when files are transferred.

You configure your client workspace view with p4 client command. When you use the
p4 client command, Perforce displays a form similar to this one:

The contents of the View: field determine where files in the depot appear on your
workstation when you use p4 sync to synchronize your workspace, and where files in
your client workspace are stored in the depot when you use p4 submit to update the
depot with your changes.

Client: eds_elm
Owner: edk
Description:
 Created by ed.
Root: /usr/edk/elm
Options: nomodtime noclobber
View:
 //depot/... //eds_elm/...

Note The p4 client form has more fields than those described here. For a
complete list, see the Perforce Command Reference.
38 Perforce 2005.1 User’s Guide

Chapter 4: Perforce Basics: The Details
Client workspace views

Views consist of multiple lines, or mappings, and each mapping has two parts. The left-
hand side specifies one or more files or directories in the depot, and has the form:

//depotname/file_specification

The right-hand side of each mapping specifies one or more files or directories in a client
workspace, and has the form:

//clientname/file_specification

The left-hand side of a client view mapping is called the depot side, and the right-hand side
is the client side.

All client views, regardless of how many mappings they contain, perform the same two
functions:

• Define the set of files in the depot that can appear in a client workspace.

The files that appear in a client workspace are determined by the sum of the depot sides
of the mappings within a view. A view might include every file in the depot in a client
workspace, only the files within two directories, or even a single file.

• Construct a one-to-one mapping between files in the depot and files in the client workspace.

Each mapping within a view describes a subset of the complete mapping. Regardless of
how many lines there are in a client view, there is always a one-to-one mapping
between depot files and client workspace files.

The one-to-one mapping can be straightforward. For instance, the default view in the p4
client form is quite simple:

//depot/... //clientname/...

This mapping maps the entire depot to the entire client workspace; you can edit the
default mapping to include only the portion of the depot with which you’re working.

More complex mappings are possible. For instance, you can have files in the depot appear
in different subdirectories in your client workspace, or even rename files by configuring
the mapping. For a complete list of ways to control how and where the depot files appear
in your workspace, see “Types of mappings used in views” on page 40.

To determine the exact location of any client file on a workstation, substitute the value of
the p4 client form’s Root: field for the client name on the client side of the mapping.
For example, if the p4 client form’s Root: field for the client workspace eds_elm is set
to /usr/edk/elm, then the depot file //eds_elm/doc/elmdoc.1 appears in
/usr/edk/elm/doc/elmdoc.1 whenever the eds_elm workspace is synced.
Perforce 2005.1 User’s Guide 39

Chapter 4: Perforce Basics: The Details
Using wildcards in views

Perforce uses three wildcards for pattern matching on the command line and in views.
Any combination of these wildcards can be used together.

Any wildcard used on the depot side of a mapping must be matched with an identical
wildcard in the mapping’s client side. Any string matched by the wildcard is identical on
both sides.

In the client view
//depot/elm_proj/... //eds_elm/...

the single mapping contains Perforce’s “...” wildcard, which matches everything
including slashes. The result is that any file in the eds_elm client workspace will be
mapped to the same location within the depot’s elm_proj file tree. For example, the file
//depot/elm_proj/nls/gencat/README is mapped to the client workspace file
//eds_elm/nls/gencat/README.

To properly specify file trees, use the “...” wildcard after a trailing slash. (If you specify
only //depot/elm_proj..., then the resulting view also includes files and directories
such as //depot/elm_project_coredumps, which is probably not what you intended.)

Types of mappings used in views

To control the mapping between depot files and your client workspace, set up your client
workspace view by editing the View: field in the p4 client form. You can configure your
client workspace to contain only the subset of files you’re interested in, map files in one
depot subdirectory to different subdirectories in your workspace, name files differently in
the depot and your client workspace, and even map in files from other depots.

Direct client-to-depot views

The default view in the p4 client form maps the entire depot into an identical directory
tree in the your client workspace. For example, the default view of:

//depot/... //eds_elm/...

indicates that any file in the directory tree under the client eds_elm will be stored in the
identical subdirectory in the depot. For a large site, such a view is inconvenient, as most
users only need to see a small subset of the files in the depot.

Wildcard Meaning

* Matches anything except slashes; matches files in a single directory.

... Matches anything including slashes; matches in the current directory all
subdirectories.

%%d Used for parametric substitution in views. See “Changing the order of
filename substrings” on page 42 for a full explanation.
40 Perforce 2005.1 User’s Guide

Chapter 4: Perforce Basics: The Details
Including only part of the depot in your client workspace

To have only the portion of the depot in which you’re interested appear in your client
workspace, change the left-hand side of the View: field to include only the relevant
portions of the depot.

Example: Mapping part of the depot to the client workspace.

Bettie is rewriting the documentation for Elm, which is found in the depot within its doc
subdirectory. Her client is named elm_docs, and her client root is /usr/bes/docs; she
types p4 client and sets the View: field as follows:

//depot/elm_proj/doc/... //elm_docs/...

The files in //depot/elm_proj/doc are mapped to /usr/bes/docs. Files not beneath the
//depot/elm_proj/doc directory no longer appear in Bettie’s workspace.

Mapping files in the depot to different parts of the client workspace

Views can consist of multiple mappings, which are used to map portions of the depot file
tree to different parts of the client file tree. If there is a conflict in the mappings, later
mappings have precedence over the earlier ones.

Example: Multiple mappings in a single client view.

The elm_proj subdirectory of the depot contains a directory called doc, which has all of the
Elm documents. Included in this directory are four files named elmdoc.0 through
elmdoc.3. Mike wants to separate these four files from the other documentation files in his
client workspace, which is called mike_elm.

To do this, he creates a new directory in his client workspace called help, which is located at
the same level as his doc directory. The four elmdoc files will go here, so he fills in the View:
field of the p4 client form as follows:

Any file whose name starts with elmdoc within the depot’s doc subdirectory is caught by the
later mapping and appears in Mike’s workspace’s help directory; all other files are caught by
the first mapping and appear in their normal location. Conversely, any files beginning with
elmdoc within Mike’s client workspace help subdirectory are mapped to the doc
subdirectory of the depot.

View:
 //depot/... //mike_elm/...
 //depot/elm_proj/doc/elmdoc.* //mike_elm/help/elmdoc.*

Note Whenever you map two sections of the depot to different parts of the client
workspace, some depot and client files will remain unmapped. See “When
two mappings conflict” on page 43 for details.
Perforce 2005.1 User’s Guide 41

Chapter 4: Perforce Basics: The Details
Excluding files and directories from the view

Exclusionary mappings enable you to exclude files and directories from a client workspace
by prefacing the mapping with a minus sign (-). Whitespace is not permitted between
the minus sign and the mapping.

Example: Using views to exclude files from a client workspace.

Bill, whose client is named billm, wants to view only source code; he’s not interested in the
documentation files. His client view would look like this:

Because later mappings have precedence over earlier ones, no files from the depot’s doc
subdirectory are copied into Bill’s workspace. Conversely, if Bill has a doc subdirectory in his
client, no files from that subdirectory are ever copied to the depot.

Allowing filenames in the client to differ from depot filenames

Mappings can be used to make the filenames in the client workspace differ from those in
the depot.

Example: Files with different names in the depot and client workspace.

Mike wants to store the files as above, but he wants to take the elmdoc.X files in the depot
and call them helpfile.X in his client workspace. He uses the following mappings:

Each wildcard on the depot side of a mapping must have a corresponding wildcard on the
client side of the same mapping. The wildcards are replaced in the copied-to direction by
the substring that the wildcard represents in the copied-from direction.

There can be multiple wildcards; the nth wildcard in the depot specification corresponds
to the nth wildcard in the client description.

Changing the order of filename substrings

The %%d wildcard matches strings similarly to the * wildcard, but %%d can be used to
rearrange the order of the matched substrings.

View:
 //depot/elm_proj/... //billm/...
 -//depot/elm_proj/doc/... //billm/doc/...

View:
 //depot/elm_proj... //mike_elm/...
 //depot/elm_proj/doc/elmdoc.* //mike_elm/help/helpfile.*
42 Perforce 2005.1 User’s Guide

Chapter 4: Perforce Basics: The Details
Example: Changing string order in client workspace names.

Mike wants to change the names of any files with a dot in them within his doc subdirectory in
such a way that the file’s suffixes and prefixes are reversed in his client workspace. For
example, he’d like to rename the Elm.cover file in the depot cover.Elm in his client
workspace. He uses the following mappings:

When two mappings conflict

When you use multiple mappings in a single view, some files can map to two separate
places in the depot or on the client. When two mappings conflict in this way, the later
mapping overrides the earlier mapping.

Example: Mappings that conflict.

Joe has constructed a view as follows:

The second mapping //depot/proj2/... maps to //joe/project, and conflicts with the
first mapping. Because these mappings conflict, the first mapping is ignored; no files in
//depot/proj1 are mapped into the workspace: //depot/proj1/file.c is not mapped,
even if //depot/proj2/file.c does not exist.

Overlaying multiple mappings into one workspace

Overlay mappings enable you to map files from more than one depot directory in the same
place in a client workspace. To overlay the contents of a second directory in your client
workspace, use a + in front of the mapping.

Example: Overlaying multiple directories in the same workspace.

Joe has constructed a view as follows:

The overlay mapping +//depot/proj2/... maps to //joe/project, and overlays the
first mapping. Overlay mappings do not conflict. Files in //depot/proj2 take precedence
over files in //depot/proj1: if //depot/proj2/file.c is missing,
//depot/proj1/file.c is mapped into the workspace instead.

View:
 //depot/elm_proj/... //mike_elm/...
 //depot/elm_proj/doc/%%1.%%2 //mike_elm/doc/%%2.%%1

View:
 //depot/proj1/... //joe/project/...
 //depot/proj2/... //joe/project/...

View:
 //depot/proj1/... //joe/project/...
 +//depot/proj2/... //joe/project/...
Perforce 2005.1 User’s Guide 43

Chapter 4: Perforce Basics: The Details
Overlay mappings are often useful for applying sparse patches within the context of build
environments.

Mapping Windows workspaces across multiple drives

To specify a Perforce client workspace that spans multiple Windows drives, use a Root:
of null, and specify the drive letters in the client workspace view. Use uppercase drive
letters when specifying workspaces across multiple drives. For example:

Mappings that include files from multiple depots

By default, each Perforce server contains a single depot, and the name of the depot is
depot. Perforce servers can be configured to use multiple depots. If your administrator
has configured more than one depot on your server, the default client workspace form
looks like this:

If your system administrator has created multiple depots on your server, you can include
files from more than one depot in the same client workspace. The rules for setting up
client workspaces that map files from multiple depots are the same as those for client
workspace views that map files from a single depot.

See the System Administrator’s Guide for information on how to configure multiple depots
on a Perforce server.

Client: eds_win
Owner: edk
Description:
 Ed’s Windows Workspace
Root: null
Options: nomodtime noclobber
View:
 //depot/main/... "//eds_win/C:/Current Release/..."
 //depot/rel1.0/... //eds_win/D:/old/rel1.0/...
 //depot/rel2.0/... //eds_win/D:/old/rel2.0/...

View:
 //depot/... //eds_elm/depot/...
 //testing/... //eds_elm/testing/...
 //archive/... //eds_elm/archive/...
44 Perforce 2005.1 User’s Guide

Chapter 4: Perforce Basics: The Details
Client Workspace Specification Options

To change your client workspace specification, use the p4 client command. The
Options: field in the p4 client form contains six values, separated by spaces. Each of
the six options has two possible settings:

Option Choice Default

[no]allwrite Should unopened files be left writable on the
client?

noallwrite

[no]clobber Should p4 sync overwrite (clobber) writable but
unopened files in the client with the same name as
the newly synced files?

noclobber

[no]compress Should the data sent between the client and the
server be compressed? Both client and server must
be version 99.1 or higher, or this setting will be
ignored.

nocompress

[no]crlf Note: 2000.2 or earlier only!

Should CR/LF translation be performed
automatically when copying files between the
depot and the client workspace? (On UNIX, this
setting is ignored).

crlf

[un]locked Do other users have permission to edit the client
specification? (To make a locked client specification
truly effective, be sure to set a password for the
client’s owner with p4 passwd.)

If locked, only the owner is able to use, edit, or
delete the client spec. Note that a Perforce
administrator is still able to override the lock with
the -f (force) flag.

unlocked
Perforce 2005.1 User’s Guide 45

Chapter 4: Perforce Basics: The Details
[no]modtime For files without the +m (modtime) file type
modifier:

• For Perforce clients at the 99.2 level or earlier, if
modtime is set, the modification date (on the
local filesystem) of a newly synced file is the
date and time at the server when the file was sub-
mitted to the depot.

• For Perforce clients at the 2000.1 level or higher,
if modtime is set, the modification date (on the
local filesystem) of a newly synced file is the dat-
estamp on the file when the file was submitted to
the depot.

• If nomodtime is set, the modification date is the
date and time of sync, regardless of Perforce cli-
ent version.

For files with the +m (modtime) file type modifier:

• For Perforce clients at the 99.2 level or earlier, the
+m modifier is ignored, and the behavior of mod-
time and nomodtime is as documented above.

• For Perforce clients at the 2000.1 level or higher,
the modification date (on the local filesystem) of
a newly synced file is the datestamp on the file
when the file was submitted to the depot, regard-
less of the setting of modtime or nomodtime on
the client.

nomodtime
(i.e. date and
time of sync) for
most files.

Ignored for files
with the +m file
type modifier.

[no]rmdir Should p4 sync delete empty directories in a client
if all files in the directory have been removed?

normdir

Option Choice Default
46 Perforce 2005.1 User’s Guide

Chapter 4: Perforce Basics: The Details
Changing workspace views or moving your workspace root

You can use p4 client to change your workspace specification at any time, but changes
to client workspace specifications do not take effect when you use p4 client. Your
changes to a workspace specification take effect only when you use that specification after
having updated it.

Because client workspace changes take effect only after you use a changed client
specification, changing your workspace view or root can sometimes lead to confusing
behavior. To avoid confusion:

• If you change your client workspace View: field with p4 client, perform a p4 sync
immediately after doing so. The files in your client workspace will then be removed
from their old locations and written to their new locations.

• If you use p4 client to move your client workspace Root:, use p4 sync #none to
remove versioned files from their old location in your workspace before using p4
client to change the client root. After you have used p4 client to change the client
root, perform a p4 sync to copy the files to their new locations within the client view.
(If you forget to perform the p4 sync #none before changing the client view, you can
always remove the files from their old client workspace locations manually).

• Avoid changing your workspace root and client view at the same time. Change either
the Root: or the View: field, perform a sync to ensure that the files are in place in your
new client workspace (or removed from your old workspace), and then change the
other field.

Configuring line-ending conventions (CR/LF translation)

Use the LineEnd: field to define what translation (if any) of line-ending character(s) takes
place when transferring text files to and from the depot and your client workspace.

The LineEnd: field accepts one of five values:

Note The LineEnd: option is new to Perforce 2001.1, and replaces the old
convention of specifying crlf or nocrlf in the Options: field.

Option Meaning

local Use mode native to the client (default)

unix UNIX-style line endings: LF only

mac Macintosh-style: CR only
Perforce 2005.1 User’s Guide 47

Chapter 4: Perforce Basics: The Details
Multiple workspace roots for cross-platform work

If you are working on more than one operating system, but want to use the same client
workspace for each machine, use the AltRoots: field in the p4 client form to specify up
to two alternate client workspace root directories.

If you have any AltRoots: configured, your Perforce client program compares the
current working directory against the main Root: first, and then against the alternate
roots, and uses the first root that matches the current working directory as the workspace
root for that command. If no roots match, the main workspace root is used.

For example, if edk’s current working directory is under /usr/edk/elm, then Perforce
uses the UNIX path as his client workspace root, rather than e:\porting\edk\elm,
enabling edk to use the same workspace specification for UNIX and Windows work:

win Windows-style: CR, LF

share Shared mode: Line endings are LF with any CR/LF pairs translated to LF-
only style before storage or syncing with the depot.

In shared mode, when you sync your client workspace, line endings will be
LF. If you edit a text file on a Windows machine, and your editor inserts CRs
before each LF, the extra CRs are removed upon file submission and do not
appear in the archived file.

The most common use of the share option is for users of Windows
workstations who mount their UNIX home directories as network drives; if
you sync files onto a UNIX directory mounted as a network drive and edit
your files on a Windows workstation, the share option eliminates problems
caused by Windows-based editors’ insertion of carriage returns in text files.

Note If you are using a Windows directory in any of your client workspace
roots, you must specify the Windows directory as your main workspace
Root: and your other workspace root directories in the AltRoots: field.

Client: eds_elm
Owner: edk
Description:
 Created by ed.
Root: e:\porting\edk\elm
AltRoots:
 /usr/edk/elm
Options: nomodtime noclobber
View:
 //depot/src/... //eds_elm/src/...

Option Meaning
48 Perforce 2005.1 User’s Guide

Chapter 4: Perforce Basics: The Details
If you are using multiple workspace roots, you can always find out which workspace root
is in effect by examining the Client root: as reported by p4 info.

Deleting a client workspace specification

Use p4 client -d clientname to delete a client workspace specification. Deleting a
client specification has no effect on any files in the client workspace or depot; it simply
removes the Perforce server’s record of the mapping between the depot and the client
workspace.

To free up disk space on your local workstation by removing versioned files from an old
client workspace, either use p4 sync #none (described in “Specifying File Revisions” on
page 53) on the files before deleting the client specification, or delete the files manually
using your operating system’s file deletion commands after deleting the client
specification.

Referring to Files on the Command Line

When you provide file names as arguments to Perforce commands, you can do so either
by using the names of the files as they exist in your client workspace (local syntax), or by
using Perforce’s cross-platform syntax (Perforce syntax).

Local syntax and Perforce syntax

To use local syntax, specify files as you would in your local operating system shell. You can
specify file names as absolute paths or relative to your current working directory. If you
use relative path components, provide relative paths at the beginning of the file name
(that is, ./dir/file.c is allowed, but dir/../dir/file.c is not allowed).

To use Perforce syntax, specify files relative to either a client workspace root (“client
syntax”), or the top of the depot tree (“depot syntax”). Unlike local syntax, which uses the
conventions of your operating system or command shell, Perforce syntax is identical
across different operating systems.

Filenames specified in Perforce syntax always begin with two slashes (//), followed by
the client workspace or depot name, followed by the full path of the file relative to the
client workspace root or the top of the depot tree. Path components in client and depot
syntax are always separated by forward slashes (/), regardless of the component
separator used by the local operating system.
Perforce 2005.1 User’s Guide 49

Chapter 4: Perforce Basics: The Details
The following table shows how to use both forms of Perforce syntax, as well as one form
of local syntax, to specify the same file:

Using local syntax and Perforce syntax on the command line

You can use any combination of client syntax, depot syntax, or local syntax to specify files
to Perforce commands. Your Perforce client program evaluates any necessary mappings
to determine which file is actually used.

For instance, if you supply a filename in client syntax or local syntax, your Perforce client
program uses your client workspace view to locate the corresponding file in the depot. If
you refer to a filename using depot syntax, your Perforce client program uses your client
workspace view to locate the corresponding file in the client workspace.

Client workspace names and depot names on the same Perforce server share the same
namespace; it is impossible for a client workspace name to be the same as a depot name.

Example: Using different syntax forms to refer to a file.

Ed wants to delete the src/lock.c file. He can issue the required p4 delete command in a
number of ways:

From his client root directory, he could type
p4 delete src/lock.c

or, while in the src subdirectory, he could type
p4 delete lock.c

or, while in any directory on his workstation, he could type any of the following commands:
p4 delete //eds_elm/src/lock.c
p4 delete //depot/elm_proj/src/lock.c
p4 delete /usr/edk/elm/src/lock.c

You can provide filenames to any Perforce command in client syntax, depot syntax, or local
syntax. The examples in this manual use all three syntax forms interchangeably.

Syntax Example

Depot syntax //depot/main/src/module/file.c

Client syntax //myworkspace/module/file.c

Local syntax C:\Projects\working\module\file.c
50 Perforce 2005.1 User’s Guide

Chapter 4: Perforce Basics: The Details
Using wildcards in Perforce commands and views

Perforce wildcards can be used in both local and Perforce syntax. For example:

Perforce wildcards and the command line

The p4 command passes “...” wildcards directly to the Perforce server, where the server
expands the wildcard to match against files available on the server. Most command shells
ignore the ... and %%d wildcards, but expand the * wildcard, passing the files that match
the * as multiple arguments to the p4 command. To have Perforce match the * wildcard
against the contents of the depot, escape the * wildcard with quotation marks,
backslashes, or whatever convention is used by your shell.

To add multiple files with p4 add, use the * wildcard. You cannot use the “...” wildcard
with p4 add to add all files and subdirectories beneath a directory, because the “...”
wildcard is expanded by the Perforce server: as files being added do not exist on the
server, the server has no means of expanding the “...” wildcard when it is used with the
p4 add command. The * wildcard is expanded by the local OS shell, not by the Perforce
server, and works with p4 add.

Name and string limitations for filenames and Perforce objects

The pathname component separator (/) and recursive subdirectory wildcards (...) are
not permitted in file names, label names, or other identifiers.

Wildcard Meaning

J* Files in the current directory starting with J

*/help All files called help in current subdirectories

... All files in the current directory and its subdirectories

....c All files in the current directory and its subdirectories ending in .c

/usr/edk/... All files in /usr/edk and its subdirectories.

//weasel/... All files on client (or depot) weasel

//depot/... All files in the depot named depot

//... All files in all depots (when used to specify files on the command
line)

Character Reason

... Perforce wildcard: matches anything, works at the current directory level
and includes files in all directory levels below the current level.

/ Perforce separator for pathname components.
Perforce 2005.1 User’s Guide 51

Chapter 4: Perforce Basics: The Details
To refer to files containing the Perforce revision specifier wildcards (@ and #), file
matching wildcard (*), or positional substitution wildcard (%%) in either the file name or
any directory component, use the ASCII expression of the character’s hexadecimal value.
ASCII expansion applies only to the following four characters:

To add a file such as status@june.txt, force a literal interpretation of special characters
by using:

p4 add -f //depot/path/status@june.txt

When you submit the changelist, the characters are automatically expanded and appear in
the change submission form as follows:

//depot/path/status%40june.txt

After submitting the changelist with the file’s addition, you must use the ASCII expansion
in order to sync the file to your workspace or edit it within your workspace. For example:

p4 sync //depot/path/status%40june.txt
p4 edit //depot/path/status%40june.txt

Most special characters tend to be difficult to use in filenames in cross-platform
environments: UNIX separates path components with /, while many DOS commands
interpret / as a command line switch. Most UNIX shells interpret # as the beginning of a
comment. Both DOS and UNIX shells automatically expand * to match multiple files, and
the DOS command line uses % to refer to variables.

Using spaces in file and path names

Use quotation marks to enclose depot-side or client side mappings of files or directories
that contain spaces. For instance, the mapping:

"//depot/release 1.2/doc/..." "//eds_ws/1.2 documentation/..."

maps all files in //depot/main/release 1.2/doc into the 1.2 documentation
subdirectory of client workspace eds_ws.

Other Perforce objects, such as branch names, client names, label names, and so on, can be
specified with spaces, but these spaces are automatically converted to underscores by the
Perforce server.

Character ASCII
expansion

@ %40

%23

* %2A

% %25
52 Perforce 2005.1 User’s Guide

Chapter 4: Perforce Basics: The Details
Name and description lengths

Descriptions in the forms used by p4 client, p4 branch, and so on, can be of any length.
All names given to Perforce objects such as branches, clients, and so on, are limited to 1024
characters.

Internationalization and non-ASCII characters in filenames

In order to support internationalization, Perforce permits the use of “unprintable” (that is,
non-ASCII) characters in filenames, label names, client workspace names, and other
identifiers. Although non-ASCII characters are permitted in filenames and Perforce
identifiers, entering such characters on a command line might require platform-specific
solutions. Users of GUI-based file managers can manipulate such files with drag-and-drop
operations.

In internationalized environments, there are additional limitations on how Perforce client
programs display filenames in non-ASCII character sets. To ensure that all filenames are
displayed consistently across all localized machines in an organization using
internationalized character sets, all users must use a common code page setting (under
Windows, use the Regional Settings applet in the Control Panel; under UNIX, set the
LOCALE environment variable).

If you are using Perforce in an internationalized environment, all users must also have
P4CHARSET set properly. For details, see the Command Reference.

Specifying File Revisions

Perforce uses the # character to identify file revisions. File revisions in Perforce are
denoted by sequentially-increasing integers, beginning from #1 for the first revision, and
so on.

The most recent revision of a file is the highest-numbered revision on the server, and is
called the head revision. The revision you last synced to your workspace is called the have
revision. The zeroth revision of a file is called the null revision, and contains no data.

Specifying file revisions with filenames

All of the commands and examples shown so far have been used against the most recent
version of the files to which they apply, but many Perforce commands can act on older file
versions.

For instance, if you type p4 sync //workspace/src/lock.c, the latest revision, or head
revision, of lock.c is retrieved into your workspace, but you can use revision specifiers
Perforce 2005.1 User’s Guide 53

Chapter 4: Perforce Basics: The Details
against lock.c to obtain the first revision, the revision as of a certain date and time, or the
revision of the file as of the submission of a changelist number.

Warning! Some OS shells treat the revision character # as a comment character if it
starts a new word. If your shell is one of these, escape the # before use.

Revision
Specifier

Meaning Examples

file#n Revision number p4 sync lock.c#3

Refers to revision 3 of file lock.c

file@changenum A change number p4 sync lock.c@126

Refers to the version of lock.c when
changelist 126 was submitted, even if no
changes to lock.c were submitted in
changelist 126.

The file specification used in a command like

p4 sync //depot/...@126

refers to the entire depot (//depot/...) as of
the changes in changelist 126. (Numbered
changelists are explained in Chapter 7,
Changelists).

file@labelname A label name p4 sync lock.c@beta

The revision of lock.c in the label called
beta (labels are explained in Chapter 8,
Labels).

file@clientname A client name.

The revision of file
last taken into
client workspace
clientname.

p4 sync lock.c@lisag_ws

The revision of lock.c last taken into client
workspace lisag_ws

file#none The nonexistent
revision.

p4 sync lock.c#none

Says that there should be no version of
lock.c in the client workspace, even if one
exists in the depot.

file#head The head revision,
or latest version,
of the file.

p4 sync lock.c#head

Except for explicitly noted exceptions, this is
identical to referring to the file with no
revision specifier.
54 Perforce 2005.1 User’s Guide

Chapter 4: Perforce Basics: The Details
Date and time specifications are always interpreted in terms of the local time zone of the
Perforce server. Because the server represents timestamps in terms of number of seconds
since the Epoch (00:00:00 GMT Jan. 1, 1970), if you move your server across time zones, the
times recorded on the server will be correct in the new timezone.

You can discover the date, time, offset from GMT, and time zone in effect at your Perforce
server by examining the “Server date:” line in the output of p4 info.

file#have The revision on
the current client.

This is
synonymous to
@client where
client is the
current client
name.

p4 sync lock.c#have

The revision of lock.c found in the current
client.

file@date The head revision
of the file at
00:00:00 on the
morning of that
date. Dates are
specified as
YYYY/MM/DD.

p4 sync lock.c@1998/05/18

The head revision of lock.c as of 00:00:00,
May 18, 1998.

file@"date time" The head revision
of the file in the
depot on the
given date at the
given time. The
date is specified as
above; the time is
specified as
HH:MM:SS.

p4 sync lock.c@"1998/05/18 15:21:34"
p4 sync lock.c@1998/05/18:15:21:34

The head revision of lock.c as of May 18,
1998, at 3:21:34 pm. Both forms shown above
are equivalent.

The date and the time must be separated by a
single space or a colon, and the entire string
should be quoted. The time is specified on
the 24-hour clock.

Use four digits when specifying years. If you
use dates with two-digit years, the year is
assumed to be in the twentieth century.

Revision
Specifier

Meaning Examples
Perforce 2005.1 User’s Guide 55

Chapter 4: Perforce Basics: The Details
Specifying file revisions without filenames

Revision specifications can be provided without file names. If you do not specify a
filename with a revision specifier, the command is assumed to apply to the specified
revision of all files in the depot or in the client’s workspace. For instance, #head refers to
the head revisions of every file in the depot, and @labelname refers to the revisions of
every file tagged with the label labelname.

Example: Retrieving files using revision specifiers.

Ed wants to retrieve all the doc files into his Elm doc subdirectory, but he wants to see only
those revisions that existed at change number 30. He types:

p4 sync //eds_elm/doc/*@30

Lisa wants to populate her client workspace with the file revisions that Ed last synced to his
workspace. She types:

p4 sync //depot/elm_proj/doc/...@eds_elm

All files in //depot/elm_proj/doc/... are synced to Lisa’s workspace at the revisions at
which they were last synced to Ed’s workspace: in this case, as of the submission of changelist
30.

Example: Removing files from a client workspace.

Ed wants to remove all Perforce-controlled files from his client workspace. He types:
p4 sync #none

All files in his client workspace that are managed by Perforce are removed from his workspace
(“synced to the nonexistent revision”), but are not removed from the depot.

Specifying ranges of revisions

Some Perforce commands can be applied to a range of revisions, rather than just a single
revision. A revision range is two revision specifications, separated by a comma.

The commands that accept revision range specifications are:

If you provide a revision specifier where a revision range is expected, the specified
revision is assumed to be the end of the revision range, and the start of the revision range
is assumed to be revision #1. If no revision number or range is given where a revision
range is expected, all revisions are assumed (that is, revision #1 through #head).

p4 changes p4 file p4 integrate p4 jobs

p4 print p4 sync p4 verify
56 Perforce 2005.1 User’s Guide

Chapter 4: Perforce Basics: The Details
Example: Listing changes with revision ranges.

A release manager needs to see a list of all changes to the Elm project in July, and types:
p4 changes //depot/elm_proj/...@2000/7/1,2000/8/1

The resulting list of changes looks like this:
Change 632 on 2000/07/1 by edk@eds_elm ’Started work’
Change 633 on 2000/07/1 by edk@eds_elm ’First build w/bug fix’
...
Change 673 on 2000/07/31 by edk@eds_elm ’Final build for QA’

The manager can then use p4 describe change against any desired changelist number to
obtain a full description.

Perforce File Types

Perforce supports six base file types: text files, binary files, unicode files, native apple
files on the Macintosh, Mac resource forks, and UNIX symlinks. File type modifiers can
be applied to the base types to enable preservation of timestamps, support for RCS
keyword expansion, file compression on the server, and more.

When you add a new file to the depot, Perforce attempts to automatically determine the
type of the file. For instance, you use p4 add on a new file, your Perforce client program
determines whether or not the file is a regular file or a symbolic link, and then examines
the first part of the file to determine whether it’s text or binary. If any non-text
characters are found, the file is assumed to be binary; otherwise, the file is assumed to be
text. (Files of type unicode are detected only when the server is running in unicode
mode; for details, see your system administrator.)

After it is set, a file’s type is preserved from one revision to the next. You can change or
override Perforce’s record of a file’s type by opening the file with the -t filetype flag:

• p4 add -t filetype filespec adds the files as the type you specify.

• p4 edit -t filetype filespec opens the file for edit; when the files are submitted,
the new filetype takes effect.

• p4 reopen -t filetype filespec changes the type of a file that’s already open for
add or edit.

File types are specified as [basetype]+modifiers, or through the use of file type
keywords. File type modifiers can be combined; for instance, to change the file type of
your Perl script myscript.pl to executable text with RCS keyword expansion, use p4
edit -t text+kx myscript.pl. You can determine the type of an existing file by using
p4 opened or p4 files on the file.
Perforce 2005.1 User’s Guide 57

Chapter 4: Perforce Basics: The Details
Partial filetypes are also acceptable. For example, to change an existing text file to
text+x, use p4 reopen -t +x myscript.pl. Most partial filetype modifiers are added to
the filetype, but the storage modifiers (+C, +D, and +F) replace the file’s storage method. To
remove a modifier, you must specify the full filetype.

A file’s type determines whether full file or delta storage is used on the Perforce server. By
default, binary files are stored in full on the server. For text files, only the changes (the
“deltas’) associated with each revision are stored: this is called delta storage. Perforce uses
RCS format to store deltas. When delta storage is used, you can perform merges and line-
by-line file comparisons between file revisions. Files that are stored in their full form
cannot be merged or compared.

Some file types are automatically compressed to gzip format when stored in the depot.
The compression occurs when you submit the file, and decompression happens when you
sync (copy the file from the server to the workspace). The client workspace always
contains the file as it was submitted to the depot.

Base file types

The base Perforce file types are:

Warning! Do not try to use delta storage against binary files by manually changing
the file type to text. Unpredictable results may occur if you attempt to
submit a binary file with its filetype manually set to text.

Keyword Description Comments Server Storage
Type

text Text file Treated as text on the client. Line-ending
translations are performed automatically
on Windows and Macintosh clients.

delta

binary Non-text file Accessed as binary files on the client.
Stored compressed within the depot.

full file,
compressed

symlink Symbolic link UNIX clients (and the BeOS client) access
these as symbolic links. Non-UNIX
clients treat them as (small) text files.

delta

apple Multi-forked
Macintosh file

AppleSingle storage of Mac data fork,
resource fork, file type and file creator.
New to Perforce 99.2.

For full details, please see the Mac
platform notes at
http://www.perforce.com/perforce/
technical.html

full file,
compressed,
AppleSingle
format.
58 Perforce 2005.1 User’s Guide

Chapter 4: Perforce Basics: The Details
File type modifiers

The file type modifiers are:

resource Macintosh
resource fork

The only file type for Mac resource forks
in Perforce 99.1 and before. This is still
supported, but we recommend using the
new apple file type instead.

For full details, please see the Mac
platform notes at
http://www.perforce.com/perforce/
technical.html

full file,
compressed

unicode Unicode file Perforce servers operating in
internationalized mode support a
Unicode file type. These files are
translated into the local character set.

For details, see the System Administrator’s
Guide.

Stored as UTF-8

Modifier Description Comments

+x Execute bit set on client Used for executable files.

+w File is always writable on
client

+ko Old-style keyword expansion Expands only the Id and $Header$
keywords:

This pair of modifiers exists primarily for
backwards compatibility with versions of
Perforce prior to 2000.1, and corresponds
to the +k (ktext) modifier in earlier
versions of Perforce.

Keyword Description Comments Server Storage
Type
Perforce 2005.1 User’s Guide 59

Chapter 4: Perforce Basics: The Details
+k RCS keyword expansion Expands RCS (Revision Control System)
keywords. RCS keywords are case-
sensitive.

When using keywords in files, a colon after
the keyword (e.g., $Id:$) is optional.

Supported keywords are:

• Id

• $Header$

• $Date$

• $DateTime$

• $Change$

• $File$

• $Revision$

• $Author$

+l Exclusive open (locking) If set, only one user at a time will be able to
open a file for editing.

Useful for binary file types (e.g., graphics)
where merging of changes from multiple
authors is meaningless.

+C Server stores the full
compressed version of each
file revision

Default server storage mechanism for
binary files.

+D Server stores deltas in RCS
format

Default server storage mechanism for text
files.

+F Server stores full file per
revision

Useful for long ASCII files that aren’t read
by users as text, such as PostScript files.

+S Only the head revision is
stored on the server

Older revisions are purged from the depot
upon submission of new revisions. Useful
for executable or .obj files.

+m Preserve original modtime The file’s timestamp on the local filesystem
is preserved upon submission and restored
upon sync. Useful for third-party DLLs in
Windows environments.

Modifier Description Comments
60 Perforce 2005.1 User’s Guide

Chapter 4: Perforce Basics: The Details
File type keywords

The following table lists the Perforce file type keywords and their equivalent base file
types and modifiers:

Overriding file types with the typemap table

Some file formats (for example, Adobe PDF files and Rich Text Format files) are actually
binary files, but can sometimes be erroneously detected by Perforce as being of type
text. Your system administrator can use the p4 typemap command to set up a table that
matches file names to specific Perforce file types.

Whenever you open a new file for add, Perforce checks the typemap table. If the file
matches an entry in the table, Perforce uses the file type specified in the table rather than
attempting to guess the file’s type by examining its contents. To override file types in the
typemap table, specify the file type on the command line with the -t filetype flag.

Old Keyword Description Base Filetype Modifiers

text Text file text none

xtext Executable text file text +x

ktext Text file with RCS keyword expansion text +k

kxtext Executable text file with RCS keyword
expansion

text +kx

binary Non-text file binary none

xbinary Executable binary file binary +x

ctext Compressed text file text +C

cxtext Compressed executable text file text +Cx

symlink Symbolic link symlink none

resource Macintosh resource fork resource none

uresource Uncompressed Macintosh resource fork resource +F

ltext Long text file text +F

xltext Executable long text file text +Fx

ubinary Uncompressed binary file binary +F

uxbinary Uncompressed executable binary file binary +Fx

tempobj Temporary object ubinary +FSw

ctempobj Temporary object (compressed) cbinary +Sw

xtempobj Temporary executable object ubinary +FSwx

xunicode Executable unicode unicode +x
Perforce 2005.1 User’s Guide 61

Chapter 4: Perforce Basics: The Details
Preserving timestamps with the +m modifier

The default behavior of Perforce is to update the timestamp on files in your client
workspace when you sync the files. If you need to preserve a file’s original timestamp, use
the modtime (+m) file type modifier. Doing so enables you to ensure that the timestamp of
a file in a client workspace after a p4 sync is the original timestamp existing on the file at
the time of changelist submission (that is, not the time at the Perforce server at time of
submission, and not the time on the client workstation at the time of sync).

The +m modifier is useful when developing using the third-party DLLs often encountered
in Windows environments. Because the timestamps on such files are often used as proxies
for versioning information (both within the development environment and also by the
operating system), it is sometimes necessary to preserve the files’ original timestamps
regardless of a Perforce user’s client settings. If you use the +m modifier on a file, Perforce
ignores the modtime (“file’s timestamp at time of submission”) or nomodtime (“date and
time on the client at time of sync”) options in the p4 client form when syncing the file,
and always restores the file’s original timestamp at the time of changelist submission.

Expanding RCS keywords with the +k modifier

If you use the +k modifier to activate RCS keyword expansion for a file, RCS keywords are
expanded as follows:

Keyword Expands To Example

Id File name and revision
number in depot syntax

$Id: //depot/path/file.txt#3 $

$Header$ Synonymous with Id $Header: //depot/path/file.txt#3 $

$Date$ Date of last submission in
format YYYY/MM/DD

$Date: 2000/08/18 $

$DateTime$ Date and time of last
submission in format
YYYY/MM/DD hh:mm:ss

Date and time are as of the
local time on the Perforce
server at time of
submission.

$DateTime: 2000/08/18 23:17:02 $

$Change$ Perforce changelist
number under which file
was submitted

$Change: 439 $

$File$ File name only, in depot
syntax (without revision
number)

$File: //depot/path/file.txt $
62 Perforce 2005.1 User’s Guide

Chapter 4: Perforce Basics: The Details
Forms and Perforce Commands

Certain Perforce commands, such as p4 client and p4 submit, display a form that you
must fill in while using a text editor. When you change the form and exit the editor, the
form is parsed by Perforce, checked for errors, and used to complete the command. If
there are errors in the form, Perforce displays an error message and you must edit the
form again.

The rules of form syntax are as follows: field names must be against the left margin and
end with a colon, and field values must either be on the same line as the field name, or
indented on the lines beneath the field name. Some keywords, such as the Client: field in
the p4 client form, take a single value; other fields, such as Description:, take a block
of text; and others, like View:, take multiple values, one per line.

Certain fields, like Client: in p4 client, are read-only and cannot have their values
changed; other fields, like Description: in p4 submit, must have their values changed.
When in doubt about which fields can (or must) be modified, see the Command Reference
or use p4 help command.

Changing the default forms editor

To override the default editor on either Windows or UNIX, set the Perforce environment
variable P4EDITOR to the full path of your editor of choice.

On Windows, the default text editor for Perforce forms is Notepad. On UNIX, the default
text editor for Perforce forms is whatever editor is specified by the EDITOR environment
variable, or vi if no EDITOR is specified.

Scripting with Perforce forms

Any commands that require you to fill in a form, such as p4 client and p4 submit, can
read a from standard input with the -i flag. Similarly, you can use the -o flag to direct a
form to standard output.

These two flags are primarily used in scripts that access Perforce: use the -o flag to read a
form, process the strings representing the form’s fields within your script, and then use
the -i flag to send the processed form back to the Perforce client program.

$Revision$ Perforce revision number $Revision: #3 $

$Author$ Perforce user submitting
the file

$Author: edk $

Keyword Expands To Example
Perforce 2005.1 User’s Guide 63

Chapter 4: Perforce Basics: The Details
For instance, to create a new job by means of a script, use p4 job -o > tempfile to write
a blank job specification to a temporary file, then add information to the proper lines in
tempfile, and then use a command such as p4 job -i < tempfile to read the edited
form and store the job data in Perforce, just as if a user had entered the job data from
within an editor.

The commands that display forms and support the -i and -o flags are:

General Reporting Commands

Many reporting commands have specialized functions, and these are discussed in later
chapters. The following reporting commands give the most generally useful information;
all of these commands can take file name arguments, with or without wildcards, to limit
reporting to specific files. Without the file arguments, the reports are generated for all
files.

The following Perforce reporting commands generate information on depot files, not files
within the client workspace. When files are specified in local or client syntax on the
command line, Perforce uses the client workspace view to map the specified files to their
locations in the depot.

p4 branch p4 change p4 client

p4 job p4 label p4 protect

p4 submit p4 typemap p4 user

Note p4 submit can take the -i flag, but not the -o flag.

Command Meaning

p4 filelog Generates a report on each revision of the file(s), in reverse
chronological order.

p4 files Lists file name, latest revision number, file type, and other information
about the named file(s).

p4 sync -n Tells you what p4 sync would do, without doing it.

p4 have Lists all the revisions of the named files within the client that were last
gotten from the depot. Without any files specifier, it lists all the files in
the depot that the client has.

p4 opened Reports on all files in the depot that are currently open for edit, add,
delete, branch, or integrate within the client workspace.

p4 print Lists the contents of the named file(s) to standard output.

p4 where Given a file argument, displays the mapping of that file within the
depot, the client workspace, and the local OS.
64 Perforce 2005.1 User’s Guide

Chapter 4: Perforce Basics: The Details
Revision specifiers can be used with all of these reporting commands, for example p4
files @clientname can be used to report on all the files in the depot that are currently
found in client workspace clientname. See Chapter 11, Reporting and Data Mining, for a
more detailed discussion of each of these commands.
Perforce 2005.1 User’s Guide 65

Chapter 4: Perforce Basics: The Details
66 Perforce 2005.1 User’s Guide

Chapter 5 Perforce Basics:
Resolving File Conflicts
File conflicts can occur when two users edit and submit two versions of the same file.

Consider the following scenario:

1. Ed opens file.c for edit in his client workspace.

2. Lisa opens the same file for edit in her client workspace.

3. Ed and Lisa both work on their respective versions of file.c.

4. Ed submits a changelist containing his version of file.c, and the submit succeeds.

5. Lisa submits a changelist with her version of file.c. Her submit fails because of a
file conflict with Ed’s version.

If the Perforce server were to accept Lisa’s version into the depot, the head revision would
contain none of Ed’s changes. Therefore, Lisa’s changelist is rejected and she must resolve
the conflict. To resolve the conflict, she can:

• Submit her version of the file, overriding Ed’s version.

• Discard her changes to the file in favor of Ed’s version.

• Generate a merged version of the file that contains both sets of changes, and submit the
merged version.

• Review and edit the merged version of the file before submitting it.

Resolving a file conflict is a two-step process: first, the resolve is scheduled, and after
scheduling the resolve, the user who submitted the changelist that scheduled the resolve
must perform the resolve.

The Perforce server automatically schedules a resolve whenever you submit a changelist
fails due to a file conflict. You can also schedule a resolve manually by syncing the head
revision of a file over an opened revision within your client workspace. To perform a
resolve, use the p4 resolve command. Perforce also provides facilities to prevent file
conflicts by locking files when they are edited.
Perforce 2005.1 User’s Guide 67

Chapter 5: Perforce Basics: Resolving File Conflicts
Scheduling Resolves of Conflicting Files

Whenever you try to submit a file to the depot that is not an edit of the file’s current head
revision, a file conflict exists, and you must resolve the conflict.

The file revision that was most recently synced to your client workspace is the base file
revision. If the base file revision for a particular file in your workspace is not the same as
the head revision of the same file in the depot, you must perform a resolve the new file
revision can be accepted into the depot.

Before you can perform a resolve with the p4 resolve command, you must schedule the
resolve. You can schedule a resolve with p4 sync, or by submitting a changelist that
contains the newly conflicting files. If a resolve is necessary, your submit fails, and the
resolve is automatically scheduled for you.

Why “p4 sync” to schedule a resolve?

When you use p4 sync, you are projecting the state of the depot onto your client
workspace. For each file on which p4 sync operates:

• If the file does not exist in your workspace, or it is found in your workspace but is
unopened, the file is copied from the depot to your workspace.

• If the file has been deleted from the depot, it is deleted from your workspace.

• If you have opened the file in your workspace with p4 edit, the Perforce server cannot
copy the file into your workspace, because doing so would overwrite any changes you
had made. The Perforce server schedules a resolve between the file revision in the depot,
the revision in your workspace, and the base file revision (that is, the revision you last
synced to your workspace).

Example: Scheduling resolves with p4 sync

Ed is making a series of changes to the *.guide files in the elm doc subdirectory. He has
synced the //depot/elm_proj/doc/*.guide files to his workspace and has opened the
files with p4 edit. He edits the files, but before he has a chance to submit them, Lisa submits
new versions of some of the same files to the depot. The versions Ed has been editing are no
longer the head revisions, and resolves must be scheduled and performed for each of the
conflicting files before Ed’s edits can be accepted.

Ed schedules the resolves with p4 sync //edk/doc/*.guide. Because these files are
already open in his workspace, his workspace files are not overwritten. The p4 client program
schedules the resolves between Ed’s workspace files and the head revisions in the depot.

Alternatively, Ed could have submitted the //depot/elm_proj/doc/*.guide files in a
changelist; the file conflicts would have caused the p4 submit to fail, and the resolves would
have been scheduled as a result of the submission failure.
68 Perforce 2005.1 User’s Guide

Chapter 5: Perforce Basics: Resolving File Conflicts
How do I know when a resolve is needed?

The p4 submit command fails when it determines that any of the files in the submitted
changelist need to be resolved, and displays a message that includes the names of the files
that you must resolve. If the changelist provided to p4 submit was the default changelist,
the changelist is assigned a number that you must use in all future references to the
changelist. Numbered changelists are discussed in Chapter 7, Changelists.

Another way to determine if a resolve is needed is to run p4 sync -n filename before
performing the submit, using the open files in your changelist as the arguments to the
command. If resolves on files are necessary, p4 sync -n reports them. If you use this
approach, the files in your default changelist remain in your default changelist (that is,
you do not need to create a numbered changelist).

Performing Resolves of Conflicting Files

You resolve file conflicts with p4 resolve [filenames]. Provide files to be resolved as
arguments to the p4 resolve command. Each file is resolved separately.

The p4 resolve process starts with three revisions of the same file and generates a fourth
version; you can accept any of these versions in place of the file in your workspace, and
you can edit the generated version before accepting it into your workspace. Whatever
version of the file you choose, after you have resolved the conflict, use p4 submit to
submit the file to the depot.

The p4 resolve command is interactive, and presents a series of prompts:

The remainder of this section explains what this means, and how to use this dialog.

File revisions used and generated by “p4 resolve”

p4 resolve [filenames] starts with three revisions of the same file (yours, theirs, and
base), generates a new version (merged) that merges elements of all three revisions,
provides you with an opportunity to edit the merged file, and writes the resulting file
(either yours, theirs, merged, or your edited merged file) to your client workspace.

/usr/edk/elm/doc/answer.1 - merging //depot/elm_proj/doc/answer.1#5
Diff chunks: 4 yours + 2 theirs + 1 both + 1 conflicting
Accept(a) Edit(e) Diff(d) Merge (m) Skip(s) Help(?) [e]:
Perforce 2005.1 User’s Guide 69

Chapter 5: Perforce Basics: Resolving File Conflicts
The file revisions used by p4 resolve are as follows:

The remainder of this chapter will use the terms theirs, yours, base, merge, and result
to refer to the corresponding file revisions. The definitions given above are somewhat
different when resolve is used to integrate branched files.

Types of conflicts between file revisions

The diff program that underlies the Perforce resolve mechanism determines differences
between file revisions on a line-by-line basis. After the differences are located, they are
grouped into chunks: for example, three new lines that are adjacent to each other are
grouped into a single chunk. Yours and theirs are both generated by a series of edits to
base; for each set of lines in yours, theirs, and base, p4 resolve asks the following
questions:

• Is this line set the same in yours, theirs, and base?

• Is this line set the same in theirs and base, but different in yours?

• Is this line set the same in yours and base, but different in theirs?

• Is this line set the same in yours and theirs, but different in base?

• Is this line set different in all three files?

yours The newly-edited revision of the file in the client workspace.
This file is overwritten by result once the resolve process is
complete.

theirs The revision in the depot that the client revision conflicts with.
Usually, this is the head revision, but p4 sync can be used to
schedule a resolve with any revision between the head revision
and base.

base The file revision in the depot that yours was edited from. Note
that base and theirs are different revisions; if they were the
same, there would be no reason to perform a resolve.

merge File variation generated by Perforce from theirs, yours, and
base.

result The file resulting from the resolve process. result is written to
the client workspace, overwriting yours, and must subsequently
be submitted by the user. The instructions given by the user
during the resolve process determine exactly what is contained
in this file. The user can simply accept theirs, yours, or merge
as the result, or can edit merge to have more control over the
result.
70 Perforce 2005.1 User’s Guide

Chapter 5: Perforce Basics: Resolving File Conflicts
Any line sets that are the same in all three files do not need to be resolved. The number of
line sets that apply to the other four questions are reported by p4 resolve in this form:

2 yours + 3 theirs + 1 both + 5 conflicting

In this case, two line sets are identical in theirs and base but are different in yours; three
line sets are identical in yours and base but are different in theirs; one line set was
changed identically in yours and theirs; and five line sets are different in yours, theirs,
and base.

How the merge file is generated

p4 resolve generates a preliminary version of the merge file, which can be accepted as is,
edited and then accepted, or rejected. A simple algorithm is followed to generate this file:
any changes found in yours, theirs, or both yours and theirs are applied to the base
file and written to the merge file; and any conflicting changes will appear in the merge file
in the following format:

Editing the Perforce-generated merge file is often as simple as opening the merge file,
searching for the difference marker “>>>>”, and editing that portion of the text. This isn’t
always the case, as it is often necessary to examine the changes made to theirs to make
sure they’re compatible with other changes that you made. You can speed this process by
calling p4 resolve with the -v flag; p4 resolve -v tells Perforce to generate difference
markers for all changes made in either file being resolved, instead of only for changes that
conflict between the yours and theirs files. When resolving conflicts, remember that the
absence of conflicting diff chunks does not imply correctness of code.

The “p4 resolve” options

The p4 resolve command offers the following options:

>>>> ORIGINAL VERSION file#n
(text from the original version)
==== THEIR VERSION file#m
(text from their file)
==== YOUR VERSION file
(text from your file)
<<<<

Option Short Meaning What it Does

e edit merged Edit the preliminary merge file generated by Perforce

ey edit yours Edit the revision of the file currently in the client

et edit theirs Edit the revision in the depot that the client revision
conflicts with (usually the head revision). This edit is
read-only.

dy diff yours Diff line sets from yours that conflict with base
Perforce 2005.1 User’s Guide 71

Chapter 5: Perforce Basics: Resolving File Conflicts
Only a few of these options are visible on the command line, but all options are always
accessible and can be viewed by choosing help. The merge file is generated by p4d’s
internal diff routine, but the differences displayed by dy, dt, dm, and d are generated by a
diff algorithm built into the p4 client program. To use a third-party diff utility in place of
the p4 client program’s diff algorithm, specify the third-party utility in the P4DIFF
environment variable.

dt diff theirs Diff line sets from theirs that conflict with base

dm diff merge Diff line sets from merge that conflict with base

d diff Diff line sets from merge that conflict with yours

m merge Invoke the command P4MERGE base theirs yours
merge. To use this option, you must set the
environment variable P4MERGE to the name of a third-
party program that merges the first three files and
writes the fourth as a result.

? help Display help for p4 resolve

s skip Don’t perform the resolve right now.

ay accept yours Accept yours into the client workspace as the resolved
revision, ignoring any changes made in theirs.

at accept theirs Accept theirs into the client workspace as the
resolved revision. The revision that was in the client
workspace is overwritten.

am accept merge Accept merge into the client workspace as the resolved
revision. The version originally in the client workspace
is overwritten.

ae accept edit If you edited the merge file (by selecting “e” from the
p4 resolve dialog), accept the edited version into the
client workspace. The version originally in the client
workspace is overwritten.

a accept If theirs is identical to base, accept yours,

if yours is identical to base, accept theirs,

if yours and theirs are different from base, and there
are no conflicts between yours and theirs; accept
merge,

otherwise, there are conflicts between yours and
theirs, so skip this file

Option Short Meaning What it Does
72 Perforce 2005.1 User’s Guide

Chapter 5: Perforce Basics: Resolving File Conflicts
The p4 resolve prompt has the following format:

A recommended choice is displayed in brackets at the end of the prompt. Pressing Return
or choosing Accept accepts the default option. The recommended option is chosen
according the following algorithm: if there were no changes to yours, accept theirs. If
there were no changes to theirs, accept yours. Otherwise, accept merge.

Example: Resolving file conflicts

In the last example, Ed scheduled the doc/*.guide files for resolve. This was necessary
because both he and Lisa had been editing the same files; Lisa had already submitted versions,
and Ed needs to reconcile his changes with Lisa’s. To perform the resolves, he types p4
resolve //depot/elm_proj/doc/*.guide, and sees the following:

This is the resolve dialog for doc/Alias.guide, the first of the four doc/*.guide files. Ed
sees that he’s made four changes to the base file that don’t conflict with any of Lisa’s changes.
He also notes that Lisa has made two changes that he’s unaware of. He types dt (for
“display theirs”) to view Lisa’s changes; he looks them over and sees that they’re fine. Of
most concern to him, of course, is the one conflicting change. He types e to edit the Perforce-
generated merge file and searches for the difference marker “>>>>”. The following text is
displayed:

He and Lisa have both tried to add a zip code to an address in the file, but Ed had typed it
wrong. He edits this portion of the merge file so it reads as follows:

Accept(a) Edit(e) Diff(d) Merge (m) Skip(s) Help(?) [am]:

/usr/edk/elm/doc/Alias.guide - merging
//depot/elm_proj/doc/Alias.guide#5
Diff chunks: 4 yours + 2 theirs + 1 both + 1 conflicting
Accept(a) Edit(e) Diff(d) Merge (m) Skip(s) Help(?) [e]:

Acme Technology
Mountain View, California
>>>> ORIGINAL VERSION
==== THEIR VERSION
94041
==== YOUR VERSION
98041
<<<<

Acme Technology
Mountain View, California
94041
Perforce 2005.1 User’s Guide 73

Chapter 5: Perforce Basics: Resolving File Conflicts
The merge file is now acceptable to him: he’s viewed Lisa’s changes, seen that they’re
compatible with his own, and the only line conflict has been resolved. He quits from the editor
and types am; the edited merge file is written to the client, and the resolve process continues
on the next doc/*.guide file.

When a version of the file is accepted into your workspace, your previous workspace file
is overwritten, and you must still submit the revised file to the depot. It is possible for
another user to have submitted yet another revision of the same file to the depot between
the time p4 resolve completes and when you call p4 submit; if this has happened, you
will have to perform another resolve. (You can prevent this from happening by
performing a p4 lock on the file before starting the resolve. See “Preventing multiple
resolves with p4 lock” on page 76 for details.)

Command line flags to automate the resolve process

Five optional p4 resolve flags tell the command to work non-interactively. When these
flags are used, particular revisions of the conflicting files are automatically accepted.

“p4 resolve” flag Meaning

-ay Automatically accept yours.

-at Automatically accept theirs. Use this option with caution, as the file
revision in the client workspace will be overwritten with no chance of
recovery.

-am Automatically accept the Perforce-recommended file revision:

If theirs is identical to base, accept yours,

if yours is identical to base, accept theirs,

if yours and theirs are different from base, and there are no conflicts
between yours and theirs, accept merge,

otherwise, there are conflicts between yours and theirs, so skip this
file.

-af Accept the Perforce-recommended file revision, no matter what. If
this option is used, the resulting file in the client should be edited to
remove any difference markers.

-as If theirs is identical to base, accept yours;

if yours is identical to base, accept theirs;

Changes that are common to theirs and yours are not considered to
belong to either file, and are accepted;

otherwise skip this file.
74 Perforce 2005.1 User’s Guide

Chapter 5: Perforce Basics: Resolving File Conflicts
Example: Automatically accepting particular revisions of conflicting files

Ed has been editing the files in doc/*.guide, and knows that some of them will require
resolving. He types p4 sync doc/*.guide, and all of these files that conflict with files in
the depot are scheduled for resolve.

He then types p4 resolve -am, and the merge files for all scheduled resolves are generated,
and those merge files that contain no line set conflicts are written to his client workspace.

He’ll still need to manually resolve all the other conflicting files, but the amount of work he
needs to do is substantially reduced.

Binary files and “p4 resolve”

If any of the three file revisions participating in the merge are binary instead of text, a
three-way merge is not possible. In these circumstances, p4 resolve performs a two-way
merge: the two conflicting file versions are presented, and you can edit and choose
between them.

Locking Files to Minimize File Conflicts

After you have opened a file, you can lock it with p4 lock so that only you can submit the
next revision of that file to the depot. After you submit a locked file, it is automatically
unlocked. You can also manually unlock files you have locked by using the p4 unlock
command.

The benefit of p4 lock is that after a file is locked, the user who locked it experiences no
further conflicts on that file, and never needs to resolve the file. This benefit comes at a
price: other users can open the file for edit, but are unable to submit changes affecting the
file until the file is unlocked, and will have to do their own resolves once they submit their
revision. Under most circumstances, a user who locks a file is essentially saying to other
users “I don’t want to deal with any resolves; you do them.”

There is an exception to this rule: Perforce also supports a +l file type modifier to support
exclusive-open (pessimistic locking). If you have a +l file open for edit, other users who
attempt to edit the file receive an error message.

The difference between p4 lock and +l is that p4 lock permits anyone to open a file for
edit, but only the person who locked the file can submit a changelist containing that file to
the depot. By contrast, files of type +l can be opened for edit by only one user at a time.
Perforce 2005.1 User’s Guide 75

Chapter 5: Perforce Basics: Resolving File Conflicts
Preventing multiple resolves with p4 lock

Without file locking, there is no guarantee that the resolve process will ever end. The
following scenario demonstrates the problem:

1. Ed opens file file for edit.

2. Lisa opens the same file in her client for edit.

3. Ed and Lisa both edit their client workspace versions of file.

4. Ed submits a changelist containing that file, and his submit succeeds.

5. Lisa submits a changelist with her version of the file; her submit fails because of file
conflicts with the new depot’s file.

6. Lisa starts a resolve.

7. Ed edits and submits a new version of the same file.

8. Lisa finishes the resolve and attempts to submit; the submit fails and must now be
merged with Ed’s latest file.

...and so on

File locking can be used in conjunction with resolves to avoid this sort of headache. The
sequence would be implemented as follows:

1. Before scheduling a resolve, lock the file.

2. Then sync the file, resolve the file, and submit the file.

As long as the locked file is open, new versions can’t be submitted by other users until the
resolved file is either submitted or unlocked.

Locked files appear in the output of p4 opened with an indication of *locked*. On UNIX,
you can find all locked files you have open with the following command:

p4 opened | grep "*locked*"

This lists all open files you have locked with p4 lock.

Preventing multiple checkouts with +l files

If you know in advance that a certain file is only going to be worked on by a single user,
you can use the +l (exclusive-open) filetype modifier to ensure that only one user at a
time can work on the file.

You can change a file’s type to exclusive-open by reopening it with the +l modifier. For
instance:

p4 reopen -t binary+l file.gif
76 Perforce 2005.1 User’s Guide

Chapter 5: Perforce Basics: Resolving File Conflicts
Although using the +l modifier prevents concurrent development, for some file types
(usually binary files), merging and resolving might not be meaningful, and some sites
require pessimistic locking as a matter of policy.

Your Perforce administrator can use the p4 typemap command (see the Perforce Command
Reference) to ensure that all files matching a file specification (or even all files sitewide) are
assigned type +l by default.

Resolves and Branching

You also use p4 resolve to integrate changes between branches; for details about
resolving branched files, see Chapter 9, Branching.

Resolve Reporting

Four reporting commands are related to file conflict resolution: p4 diff, p4 diff2, p4
sync -n, and p4 resolved.

The reporting chapter (Chapter 11, Reporting and Data Mining) has a longer description
of each of these commands. Use the p4 help command for a complete listing of the flags
and options available with these reporting commands.

Command Meaning

p4 diff [filenames] Runs a diff program between the file revision currently in
the client and the revision that was last gotten from the
depot. If the file is not open for edit in the client, the two file
revisions should be identical, so p4 diff fails. Comparison
of the revisions can be forced with p4 diff -f, even when
the file in the client is not open for edit

Although p4 diff runs a diff routine internal to Perforce,
this routine can be overridden by specifying an external
diff in the P4DIFF environment variable.

p4 diff2 file1 file2 Runs p4d’s diff subroutine on any two Perforce depot files.
The specified files can be any two file revisions, even
revisions of entirely different files.

The diff routine used by p4d cannot be overridden.

p4 sync -n [filenames] Reports what the result of running p4 sync would be,
without actually performing the sync. This is useful to see
which files have conflicts and need to be resolved.

p4 resolved Reports which files have been resolved but not yet
submitted.
Perforce 2005.1 User’s Guide 77

Chapter 5: Perforce Basics: Resolving File Conflicts
78 Perforce 2005.1 User’s Guide

Chapter 6 Perforce Basics:
Miscellaneous Topics
So far, this manual has provided an introduction to the basic functionality provided by
Perforce. Subsequent chapters cover the more advanced features. Included here is
information on the following miscellaneous topics likely to be encountered while working
with Perforce:

• Using passwords and logging in and out of Perforce,

• Controlling your Perforce environment with the P4CONFIG environment variable,

• Command-line flags common to all p4 commands,

• How to work on files while not connected to a Perforce server,

• Renaming files, and

• Recommendations for organizing files within the depot.

Perforce Passwords

Without passwords, any user can assume the identity of any other Perforce user by setting
the value of P4USER to a different username, either by using the -u flag with the p4
command, or by setting P4USER in a P4CONFIG configuration file. To improve security and
accountability, use passwords.

Setting passwords

To prevent someone else from impersonating you within Perforce, set a password with
the p4 passwd command. No one, including the user who set the password, will be able
to use any Perforce commands under your username without providing the password to
Perforce.

Your system administrator may have configured your Perforce server to require “strong”
passwords. A password is considered strong if it is at least eight characters long, and at
least two of the following are true:

• Password contains uppercase letters

• Password contains lowercase letters

• Password contains non-alphabetic characters.

For example, the passwords a1b2c3d4, A1B2C3D4, aBcDeFgH are considered strong.

Be careful when setting passwords. If you forget your password after having set it, a
Perforce superuser will have to reset or remove your password for you.
Perforce 2005.1 User’s Guide 79

Chapter 6: Perforce Basics: Miscellaneous Topics
If you need to have your password reset, contact your Perforce administrator. If you are a
Perforce administrator, see the Perforce System Administrator’s Guide for information on
resetting passwords and other user management tasks.

Perforce passwords and authentication

To authenticate to a Perforce server with a password, set your password with p4 passwd,
and use the password with every Perforce command you run. To use the password you
have set, either:

• set the value of the environment or registry variable P4PASSWD to your password, or

• set the value of P4PASSWD within the file described by P4CONFIG, or

• use the -P password flag between p4 and the actual command when calling Perforce
commands (for instance, p4 -P mypassword submit).

If you are using ticket-based authentication, changing your password automatically logs
out all of your existing tickets.

Perforce tickets: logging in and out

In addition to password-based authentication, Perforce supports ticket-based
authentication. Because ticket-based authentication does not rely on environment
variables or command-line flags, it is more secure than password-based authentication,
and your system administrator may have configured your server to require its use.

By default, tickets are stored in a file in your home directory. To specify a different ticket
file, set the P4TICKETS environment variable to the location of your ticket file.

After you have logged in, your ticket is valid for a limited period of time (by default, 12
hours). Your administrator may have changed this setting. By default, your ticket is valid
only for the IP address of the workstation from which you logged in, but you can create
tickets that are valid for any IP address if you are working from more than one machine
and using a shared ticket file.

To use ticket-based authentication, set a password with p4 passwd, and log in by getting
a ticket from the Perforce server by using the p4 login command.

p4 login

Enter your password at the prompt. If you log in successfully, a ticket is created for you in
your ticket file, and you are not prompted to log in again until either your ticket expires
(by default, in 12 hours), or until you log out of Perforce.

To extend a ticket’s lifespan, run p4 login while already logged in. Running p4 login
while already logged in extends your ticket’s lifespan by 1/3 of its initial timeout period,
subject to a maximum of its initial timeout period.
80 Perforce 2005.1 User’s Guide

Chapter 6: Perforce Basics: Miscellaneous Topics
If you are in an environment where you are using Perforce from more than one machine
while sharing the same ticket file (for example, many UNIX environments with shared
home directories), log in with:

p4 login -a

Using p4 login -a creates a ticket in your ticket file that is valid from all IP addresses,
enabling you to remain logged in to Perforce from more than one workstation.

To see if your ticket is still valid, use:
p4 login -s

If your ticket is valid, the length of time for which it will remain valid is displayed.

To log out of Perforce by deleting your ticket, use:
p4 logout

If you are logged in from more than one machine at once, you can log out from all
machines simultaneously by invalidating your ticket with:

p4 logout -a

For more information, see the Command Reference.

Reconfiguring the Perforce Environment with $P4CONFIG

Some Perforce users have multiple client workspaces, each of which can connect to a
different Perforce server. There are three ways you can change your Perforce environment
on the fly:

• Reset your environment or registry variables each time you want to move to a new
workspace.

• Use command-line flags (discussed in the next section) to override the value of the
environment variables P4PORT, P4CLIENT, and P4USER.

• Use the environment variable or registry variable P4CONFIG to point to a file containing
a specification for the current Perforce environment.

P4CONFIG specifies a file (for example, .p4env) that is used to store variable settings.
Whenever a Perforce command is executed, the current working directory and its parent
directories are searched for a file with the name stored in P4CONFIG. If a file with that
name is found, the values of P4PORT, P4CLIENT, P4TICKETS, and so on, are read from that
file. If no file of the given name is found, the current values of the Perforce environment
variables are used.
Perforce 2005.1 User’s Guide 81

Chapter 6: Perforce Basics: Miscellaneous Topics
Each variable setting in the file stands alone on a line and must be in the form:
P4VAR=value

Values that can be stored in the P4CONFIG file are:

Example: Using P4CONFIG to automatically reconfigure the Perforce environment

Ed often switches between two workspaces on the same machine. The first workspace is
elmproj. It has a client root of /usr/edk/elm, and connects to the Perforce server at
ida:1818. The second workspace is called graphicwork. Its client root is
/usr/edk/other/graphics, and it uses the Perforce server at warhol:1666.

Ed sets the P4CONFIG environment variable to .p4settings. He creates a file called
.p4settings in /usr/edk/elm containing the following text:

P4CLIENT=elmproj
P4PORT=ida:1818

He creates a second .p4settings file in /usr/edk/other/graphics. It contains:
P4PORT=warhol:1666
P4CLIENT=graphicwork

He always works within the directories where his files are located. Whenever Ed is anywhere
beneath /usr/edk/other/graphics, his Perforce client is graphicwork, and when he’s
in /usr/edk/elmproj, his client is elmproj.

The values found in the file specified by P4CONFIG override any environment or registry
variables you may have set. Command-line flags (discussed in the next section) override
the values found in the P4CONFIG file.

The P4CONFIG variable is particularly useful if you use multiple client workspaces on the
same workstation, because it automates the process of changing the Perforce environment
variables whenever you switch your current working directory from one client workspace
directory to another.

P4CLIENT P4DIFF P4EDITOR P4USER P4CHARSET P4HOST

P4PORT P4MERGE P4PASSWD P4TICKETS P4LANGUAGE
82 Perforce 2005.1 User’s Guide

Chapter 6: Perforce Basics: Miscellaneous Topics
Command-Line Flags Common to All Perforce Commands

Some flags are available for use with all Perforce commands. These flags are given
between the system command p4 and the command argument taken by p4. The flags are
as follows:

Flag Meaning Example

-c clientname Runs the command on the
specified client. Overrides the
P4CLIENT environment
variable.

p4 -c joe edit //depot/file.c

Opens file file.c for editing under
client workspace joe.

-C charset For servers in unicode mode,
override the P4CHARSET
variable.

p4 -C utf8 print //depot/file

-d directory Specifies the current directory,
overriding the environment
variable PWD.

p4 -d ~elm/src edit one two

Opens files one and two for edit;
these files are found relative to
~elm/src.

-G Cause all output (and batch
input for form commands
using the -i option) to be
formatted as marshalled
Python dictionary objects

p4 -G info

-H host Specify the host name,
overriding the environment
variable P4HOST.

p4 -H host print //depot/file

-L language For servers with non-English
error messages, override the
P4LANGUAGE variable.

Reserved for system integrators.

-p server Gives the Perforce server’s
listening address, overriding
P4PORT.

p4 -p mama:1818 clients

Reports a list of clients on the server
on host mama, port 1818.

-P password Supplies a Perforce password,
overriding the value of
P4PASSWD. Usually used in
combination with the -u user
flag.

p4 -u ida -P idas_pw job

Create a new job as user ida, using
ida’s Perforce password.
Perforce 2005.1 User’s Guide 83

Chapter 6: Perforce Basics: Miscellaneous Topics
All Perforce commands can take these flags, even commands for which these flag usages
are useless (for instance, p4 -u bill -d /usr/joe help). Other flags are available as
well; these additional flags are command dependent. See the Perforce Command Reference
or use p4 help commandname to see the flags for each command.

Working Detached

Under normal circumstances, you work in your client workspace with a functioning
network connection to a Perforce server. As you edit files, you announce your intentions
to the server with p4 edit, and the server responds by noting the edit in the depot’s
metadata, and by making the file writable in your client workspace.

If you expect not to have network connectivity to the server for a prolonged period of
time, you will need to work detached from the server. To work detached, use the
following techniques:

1. Work on files without using Perforce commands. Instead, use native OS commands
to manually change the permissions on files, and then edit or delete the files.

2. If you did not edit the files within a client workspace, copy the files to your client
workspace when the network connection is reestablished.

3. Use p4 diff -se and p4 diff -sd to find files in your workspace that have
changed without Perforce’s knowledge (that is, without the use of Perforce
commands). Use the information provided by the p4 diff -se and p4 diff -sd
commands to bring the depot in sync with the client workspace.

-s Prepend a tag to each line of
output so as to make output
more amenable to scripting.

p4 -s info

-u username Specifies a Perforce user,
overriding the P4USER
environment variable.

The user can run only those
commands to which he or she
has access.

p4 -u bill user

Presents the p4 user form to edit the
specification for user bill. The
command works without the -P flag
only if bill has not set a Perforce
password.

-x filename Instructs p4 to read
arguments, one per line, from
the named file.

See “Working Detached” on page 84.

-V Displays the version of the p4
executable.

p4 -V

Flag Meaning Example
84 Perforce 2005.1 User’s Guide

Chapter 6: Perforce Basics: Miscellaneous Topics
Finding changed files

Use the p4 diff reporting command to compare a file in the client workspace with the
corresponding file in the depot. The behavior of p4 diff can be modified with two flags:

Updating the depot with changed files

You can use the -x flag in combination with the output of the p4 diff -se and -sd
commands to bring the state of the depot in sync with the changes you made to your
workspace while disconnected.

To open changed files for edit after working detached, use:

To delete files from the depot that you removed from your client workspace, use:

As always, your edit and delete requests are stored in changelists, which Perforce does
not process until you type p4 submit.

Refreshing files

If you accidentally use the local OS file deletion or permission modification command, the
Perforce server can lose track of the state of your client workspace. For example, suppose
you accidentally delete a file in your workspace with the UNIX rm command. Even after
you submit the changelist, p4 have still lists the file as being present in the workspace.

“p4 diff” Variation Meaning

p4 diff -se Tells the names of unopened files that are present on the client,
but whose contents are different than the files last taken by the
client with p4 sync. These files are candidates for p4 edit.

p4 diff -sd Reports the names of unopened files missing from the client.
These files are candidates for p4 delete.

Note You can use p4 edit on any file, even files you don’t want to edit; this
command gives the local file write permissions, but does not otherwise
alter it.

p4 diff -se > CHANGED_FILES
p4 -x CHANGED_FILES edit

p4 diff -sd > DEL_FILES
p4 -x DEL_FILES delete
Perforce 2005.1 User’s Guide 85

Chapter 6: Perforce Basics: Miscellaneous Topics
In such a situation, you can use p4 sync -f files to bring the client workspace in sync
with the files the Perforce server thinks you have. Using p4 sync -f is mostly a recovery
tool for bringing the client workspace back into sync with the depot after accidentally
removing or changing files managed by Perforce.

Renaming Files

To rename files, use p4 integrate to copy the file from one location in the depot to
another, delete the file from the original location, and then submit the changelist that
includes the integrate and the delete. The process is as follows:

The from_file is moved to the directory and renamed according to the to_file specifier.
For example, if from_file is d1/one and to_file is d2/two, then one is moved to the d2
directory, and is renamed two. The from_file and to_file specifiers can include
wildcards, as long as they are matched on both sides.

Revision histories and renamed files

When you rename a file (or move it from one directory to another) with p4 integrate,
you create the new file by creating an integration record that links the file to its deleted
predecessor.

As a result, if you run p4 changes newfile, you’ll see only changes to newfile. Only
changes that have taken place after the renaming will be listed:

In order to see the full history of changes to the file (including changes made before the file
was renamed or moved), you must specify the -i (include changes from integrations) flag
to p4 changes, as follows:

Specifying the -i flag tells p4 changes to trace back through the integration records and
retrieve all change information, regardless of how many times the file (or the directory in
which it lives) has been renamed or moved.

p4 integrate from_files to_files
p4 delete from_files
p4 submit

$ p4 changes newfile.c
Change 4 on 2000/10/24 by user@client ’Latest bugfix’
Change 3 on 2000/10/23 by user@client ’Renamed file’

$ p4 changes -i newfile.c
Change 4 on 2000/10/24 by user@client ’Latest bugfix’
Change 3 on 2000/10/23 by user@client ’Renamed file’
Change 2 on 2000/10/21 by user@client ’second version’
change 1 on 2000/10/20 by user@client ’initial check-in’
86 Perforce 2005.1 User’s Guide

Chapter 6: Perforce Basics: Miscellaneous Topics
Recommendations for Organizing the Depot

The default view brought up by p4 client maps the entire depot to the entire client
workspace. If the client workspace is named eds_elm, the default view looks like this:

//depot/... //eds_elm/...

This is the easiest mapping, and can be used for the most simple Perforce depots, but
mapping the entire depot to the workspace can lead to problems later on. Suppose your
server currently stores files for only one project, but another project is added later:
everyone who has a client workspace mapped as above will wind up receiving all the files
from both projects into their workspaces. Additionally, the default workspace view does
not facilitate branch creation.

The safest way to organize the depot, even from the start, is to create one subdirectory per
project within the depot. For example, if your company is working on three projects
named zeus, athena, and apollo, three subtrees might be created within the depot:
//depot/zeus, //depot/athena, and //depot/apollo. If Joe is working on the zeus
project, his mapping might look like this:

And Sarah, who’s working on the athena and apollo projects, might set up her client
workspace as:

This sort of organization can be easily extended to as many projects and branches as are
needed.

Another way of solving the same problem is to have the Perforce system administrator
create one depot for each project or branch. See the Perforce System Administrator’s Guide
for details about setting up multiple depots.

//depot/zeus/... //joe/...

//depot/athena/... //sarah/athena/...
//depot/apollo/... //sarah/apollo/...
Perforce 2005.1 User’s Guide 87

Chapter 6: Perforce Basics: Miscellaneous Topics
88 Perforce 2005.1 User’s Guide

Chapter 7 Changelists
A Perforce changelist is a list of files, their revision numbers, and operations to be
performed on these files. You add files to a changelist with commands such as p4 add
filenames or p4 edit filenames, and the changed files are stored in the depot when
you submit the changelist with p4 submit.

When you submit a changelist to the depot, the depot is updated atomically: either all of
the files in the changelist are updated in the depot, or none of them are. This grouping of
files as a single unit guarantees that all files grouped together in a changelist are updated
simultaneously. A Perforce changelist is an atomic change transaction.

Perforce attempts to make working with changelists as transparent as possible. Perforce
commands such as p4 edit add the affected files to the default changelist, and p4 submit
sends the default changelist to the server for processing. Sometimes, the default changelist
is not sufficient, and you must use a numbered changelist. Use numbered changelist when:

• You are working on two or more unrelated changes at the same time.

For example, suppose you’re fixing two bugs, each of which affects a separate set of
files. Rather than submit the fixes to both bugs in a single changelist, you might create
one changelist for the files that fix the first bug, and a second changelist for the files that
fix the second bug, and use two p4 submit commands to submit your work to the
depot.

• The p4 submit command fails.

For example, if you are working on a file in the default changelist, but another user has
locked the file, or submitted a changelist that affects your file, your submit fails.
Whenever a submit of the default changelist fails, the changelist is assigned a number,
is no longer the default changelist, and must be referred to by its assigned number.

Working with the Default Changelist

A changelist is a list of files, revision numbers of those files, and operations to be
performed on those files. For example, a single changelist might contain the following:

Each file in a changelist is said to be open in the client workspace and in the changelist: the
first file in the example is open for edit, and the second file is open for deletion.

The depot is updated with the files in the changelist when you call p4 submit to send
your changes to the Perforce server.

/doc/elm-help.1 revision 3 edit
/utils/elmalias.c revision 2 delete
Perforce 2005.1 User’s Guide 89

Chapter 7: Changelists
The commands that add or remove files from changelists are:

By default, these commands, and p4 submit, operate on the default changelist. For
example, if you type p4 add filename, this file is added to the default changelist.

When you type p4 submit, a change form is displayed, showing the files in the default
changelist. In order to submit a changelist, you must also supply a description of the
changes being made. When you save the p4 submit form, the files shown in the form are
submitted to the server and the server attempts to update the files in the depot.

If there are no problems with the submission, the changelist is assigned a sequential
number, and its status changes from new or pending to submitted. Any files you
removed from the default changelist by editing the p4 submit form reappear in a new
default changelist. After a changelist has been submitted, it becomes a permanent part of
the depot’s metadata, and is unchangeable except by Perforce administrators.

Creating Numbered Changelists Manually

You can create a numbered changelist manually by using the p4 change command. This
command brings up the same form that you see during p4 submit.

All files in the default changelist are included in the new changelist. When you exit the
form, the new changelist is assigned the next changelist number in sequence, and the
changelist must be subsequently referred to by this change number. You can delete files
from the changelist by editing the p4 change form; files deleted from the new changelist
reappear in the default changelist. The status for a changelist created by the p4 change
command is pending until you submit the changelist.

Files in your workspace may appear in only one pending changelist at a time.

Working With Numbered Changelists

To add files to numbered changelists (as opposed to the default changelist), use the -c
changenum flag when you use Perforce commands such as p4 edit filename. For
example, if you have just created a changelist 34, use p4 edit -c 34 filename to add
filename to pending changelist 34.

You can move files from one changelist to another with p4 reopen -c changenum
filename, where changenum is the number of the moving-to changelist. To move a file
from a numbered changelist to the default changelist, use p4 reopen -c default
filename.

p4 add p4 delete p4 edit

p4 integrate p4 reopen p4 revert
90 Perforce 2005.1 User’s Guide

Chapter 7: Changelists
Example: Working with multiple changelists.

Ed is working on two bug fixes simultaneously. One of the bugs involves mail filtering and
requires updates of files in the filter subdirectory; the other problem is in the aliasing
system, and requires an update of utils/elmalias.c.

Ed wants to fix each bug in its own changelist; doing so enables him to refer to one bug fix by
one change number and the other bug fix by another change number. He’s already started
fixing both bugs, and has opened some of the affected files for edit. He types p4 change, and
sees

Ed wants to use this changelist to submit only the fix to the filter problems. He changes the
form, deleting the last file revision from the file list. When he’s done, the form looks like this:

When he quits from the editor, he’s told
 Change 29 created with 2 open file(s).

The file that he removed from the list, utils/elmalias.c, is now found in the default
changelist. He could include that file in another numbered changelist, but decides to leave it
where it is.

He fixes both bugs, and realizes that the filter problem requires updates to another file:
filter/lock.c. He opens this file for edit with p4 edit -c 29 filter/lock.c;
opening the file with the -c 29 flag puts the file in changelist 29, which he created above. (If
the file had already been open for edit in the default changelist, he could have moved it to
changelist 29 with p4 reopen -c 29 filter/lock.c).

Change: new
Client: eds_elm
User: edk
Status: new
Description:
 <enter description here>
Files:
 //depot/elm_proj/filter/filter.c # edit
 //depot/elm_proj/filter/lock.c # edit
 //depot/elm_proj/utils/elmalias.c # edit

Change: new
Client: eds_elm
User: edk
Status: new
Description:
 Fixes filtering problems
Files:
 //depot/elm_proj/filter/filter.c # edit
 //depot/elm_proj/filter/lock.c # edit
Perforce 2005.1 User’s Guide 91

Chapter 7: Changelists
Ed finishes fixing the aliasing bug, and because the affected files are in the default changelist,
he submits the default changelist with p4 submit and no arguments. When Ed finishes
fixing the filtering bug, he submits that changelist with p4 submit -c 29.

Automatic Creation and Renumbering of Changelists

Changelist submission can fail for a number of reasons:

• A file in the changelist has been locked by another user with p4 lock.

• Your client workspace no longer contains a file included in the changelist.

• There is a server error, such as not enough disk space.

• You were not editing the head revision of a particular file. (If another user submits a
change to a file you’re working on, the revision in your client workspace is no longer
the head revision.)

If any of the files in a changelist is rejected for any reason, the entire changelist is backed
out, and none of the files in the changelist are updated in the depot. If the submitted
changelist was the default changelist, the Perforce server assigns the next available
changelist number to the changelist, and this change number must be used to refer to the
changelist in the future. Perforce also locks the files to prevent others from changing them
while you resolve the reason for the failed submit.

If a submit fails because your revision of the file is not the head revision, this is called a file
conflict. You must resolve the conflict before the changelist can be accepted. (For details, see
Chapter 5, Perforce Basics: Resolving File Conflicts).

When Perforce renumbers changelists

The changelist numbers of submitted changelists always reflect the order in which
changelists were submitted to the depot. Whenever a numbered changelist is submitted
out of sequence, the server automatically renumbers the changelist to reflect the order in
which changelists were submitted.

Example: Automatic renumbering of changelists

Ed has finished fixing the filtering bug that he’s been working on in numbered changelist 29.
After Ed created that changelist, he submitted another changelist (change 30), and two other
users have also submitted changelists. Ed submits change 29 with p4 submit -c 29, and is
informed of a changelist renumbering as follows:

Change 29 renamed change 33 and submitted.
92 Perforce 2005.1 User’s Guide

Chapter 7: Changelists
Deleting Changelists

To remove a pending changelist that has no files or jobs associated with it, use p4 change
-d changenum. You must remove all files and jobs from a pending changelist before you
can delete it. Use p4 reopen to move files to another changelist, p4 revert to remove
files from the changelist (and to revert them back to their old versions), and p4 fix -d to
remove jobs from the changelist.

Changelists that have already been submitted can be deleted by a Perforce administrator
only under very specific circumstances. Please see the Perforce System Administrator’s Guide
for more information.

Changelist Reporting

The two reporting commands associated with changelists are p4 changes and p4
describe. Use p4 changes to obtain lists of changelists with short descriptions, and p4
describe to obtain verbose information pertaining to a specified changelist.

Command Meaning

p4 changes Displays a list of all pending and submitted
changelists, one line per changelist, and an
abbreviated description.

p4 changes -m count Limits the number of changelists reported on to the
last count changelists.

p4 changes -s status Limits the list to those changelists with a particular
status; for example, p4 changes -s submitted will
list only already submitted changelists.

p4 changes -u user Limits the list to those changelists submitted by a
particular user.

p4 changes -c workspace Limits the list to those changelists submitted from a
particular client workspace.

p4 describe changenum Displays full information about a single changelist. If
the changelist has already been submitted, the report
includes a list of affected files and the diffs of these
files. (You can use the -s flag to exclude the file diffs.)
Perforce 2005.1 User’s Guide 93

Chapter 7: Changelists
94 Perforce 2005.1 User’s Guide

Chapter 8 Labels
Labels provide a method of naming important sets of file revisions for future reference.
You can use labels to reproduce the state of a client workspace, to branch files, and to
compare files. For example, you might want to tag the file revisions that compose a
particular release with the label release2.0.1. At a later time, you can retrieve all the
tagged revisions into a client workspace by syncing the workspace to the label.

Use a label when you want to:

• keep track of all the file revisions contained in a particular release of software,

• distribute a particular set of file revisions to other users, or

• branch from a known set of file revisions.

Labels or changelist numbers?

Labels share certain important characteristics with changelist numbers, as both refer to
particular sets of file revisions, and both can be used to refer to all the revisions in the set.
Labels and changelists have some important distinctions:

• The files and revisions tagged by a label can be changed at any point in the label’s
existence.

• Changelists are always referred to by Perforce-assigned numbers, but labels are named
by the user.

• A changelist is an implicit revision marker, but labels must be applied in order to be
used as revisions.

• A changelist is a revision marker that applies to all files in the depot, but labels are
typically limited to a subset of depot files.

Using labels

Note Versions of Perforce prior to release 2004.2 used the p4 labelsync
command to tag files with a label. The p4 tag command, introduced in
Release 2004.2, simplifies this process. The p4 labelsync command
remains available for specialized purposes.

For details, see “Differences between p4 tag and p4 labelsync” on
page 100.
Perforce 2005.1 User’s Guide 95

Chapter 8: Labels
Tagging files with a label

To tag a set of file revisions (in addition to any revisions that have already been tagged),
use p4 tag, specifying a label name and the desired file revisions. New label names must
be distinct from any existing client workspace, branch, or depot names.

For example, to tag the head revisions of files that reside under
//depot/proj/rel1.0/hdrs with the label my_label, use the following:

p4 tag -l my_label //depot/proj/rel1.0/hdrs/...

The head revisions of files under //depot/proj/rel1.0/hdrs/... are tagged with the
name my_label.

To tag revisions other than the head revision, specify a changelist number in the file
pattern:

p4 tag -l my_label //depot/proj/rel1.0/hdrs/...@1234

Untagging files

You can untag revisions with:
p4 tag -d -l labelname filepattern

This command removes the association between labelname and all files tagged by
labelname, regardless of the revision specified in the filepattern.

To untag a subset of tagged files, supply a file specification. For example, if you have
previously tagged all revisions under //depot/proj/rel1.0/... with my_label, you
can untag only the header files with:

p4 tag -d -l my_label //depot/proj/rel1.0/hdrs/*.h

Revisions of the *.h header files are no longer tagged with my_label.

Previewing tag’s results

You can preview the results of p4 tag with p4 tag -n. This command lists the revisions
that would be tagged, untagged, or retagged by the tag command without actually
performing the operation.

Listing files tagged by a label

To list the revisions tagged with labelname, use p4 files, specifying the label name as
follows:

p4 files @labelname

All revisions tagged with labelname are listed with their file type, change action, and
changelist number. (This command is equivalent to p4 files //...@labelname)
96 Perforce 2005.1 User’s Guide

Chapter 8: Labels
Listing labels that have been applied to files

To list the labels that have been applied to any of the files in a filepattern, use the
command:

p4 labels filepattern

Referring to files using a label

You can use a label name anywhere you can refer to files by revision (#1, #head),
changelist number (@7381), or date (@2003/07/01).

If p4 sync @labelname is called with no file parameters, all files in the workspace view
that are tagged by the label are synced to the revision specified in the label. All files in the
workspace that do not have revisions tagged by the label are deleted from the workspace.
Open files or files not under Perforce control are unaffected. This command is equivalent
to p4 sync //...@labelname.

If p4 sync @labelname is called with file arguments, as in p4 sync files@labelname,
files in the user’s workspace that are specified on the command line and also tagged by
the label are updated to the tagged revisions.

Example: Retrieving files tagged by a label into a client workspace.

Lisa wants to retrieve some of the binaries tagged by Ed’s build1.0 label into her client
workspace. To get all files tagged by build1.0, she could type:

p4 sync //depot/...@build1.0

or even:
p4 sync @build1.0

Instead, she’s interested in seeing only one platform’s build from that label, so she types:
p4 sync //depot/proj/rel1.0/bin/osx/*@build1.0

and sees:

All files under //depot/proj/rel1.0/bin/osx that are tagged with Ed’s build1.0 label
and are also in Lisa’s client workspace view are retrieved into her workspace.

Deleting labels

To delete a label, use the following command:
p4 label -d labelname

//depot/proj/rel1.0/bin/osx/server#6 - added as /usr/lisa/osx/server#6
//depot/proj/rel1.0/bin/osx/logger#12 - added as /usr/lisa/osx/logger#12
//depot/proj/rel1.0/bin/osx/install#2 - added as /usr/lisa/osx/install#2
<etc>
Perforce 2005.1 User’s Guide 97

Chapter 8: Labels
Deleting a label has no effect on the tagged files other than to remove the ability to refer to
the files with the @labelname revision specifier.

Creating a label for future use

The p4 tag command both creates a label and applies it to files. To create a label without
tagging any file revisions, use p4 label labelname. This command brings up a form
similar to the p4 client form. After you have created a label, you can use p4 tag or p4
labelsync to apply the label to file revisions.

Label names share the same namespace as client workspaces, branches, and depots. A
new label name must be distinct from any existing client workspace, branch, or depot
name.

For example, you can create a new label my_label by typing:
p4 label my_label

The following form is displayed:

Enter description for the label, and save the form. (You do not need to change the View:
field.)

After creating the label, you are able use the p4 tag and p4 labelsync commands to
apply the label to file revisions. Only one revision of a given file can be tagged with a
given label, but the same file revision can be tagged by multiple labels.

Using label views

The View: field in the p4 label form limits the files that can be tagged with a label. To
include files and directories in a label view, specify the files and directories to be included
using depot syntax.

To prevent yourself from inadvertently tagging your entire workspace with a label, set the
label’s View: field to a subset of the depot. The default label view includes the entire
depot (//depot/...), which tags any (and every) file in the depot with p4 labelsync.

Example: Using a label view to control what files can be tagged

Ed wishes to tag a recently built set of binaries with the label build1.0. He wants to ensure
that only the files in the build path can be tagged with the build1.0 label.

Label: my_label
Owner: edk
Description:
 Created by edk.
Options: unlocked
View:
 //depot/...
98 Perforce 2005.1 User’s Guide

Chapter 8: Labels
He types p4 label build1.0 and uses the label’s View: field to restrict the scope of the
label as follows:

After he saves from the editor, a new label build1.0 is created. This label can tag only files in
the /rel1.0/bin directory.

With the default View: of //depot/..., Ed must type:
p4 tag -l build1.0 //depot/proj/rel1.0/bin/...

With the new label view, he can use the simpler p4 tag -l build1.0 //... to tag the
desired files.

Using labels to record workspace configurations

The p4 labelsync command is a variant of p4 tag that you can use to record a
workspace configuration. For example, to record the configuration of your current client
workspace using the pre-existing ws_config label, use the following command:

p4 labelsync -l ws_config

All file revisions synced to your current workspace are tagged with the ws_config label.
Files previously tagged with ws_config are untagged unless they are also synced to your
workspace.

To recreate the workspace tagged by the ws_config label, sync your workspace to the
label with:

p4 sync @ws_config

Preventing inadvertent tagging and untagging of files

Using p4 labelsync with no file arguments tags the eligible files in your client
workspace and any applicable label view, and untags all other files. This means that it is
possible to accidentally lose the information that a label is meant to preserve.

To prevent the inadvertent tagging and untagging of files, lock the label by setting the
value of the Options: field of the p4 label labelname form to locked. Other users will
be unable to use p4 labelsync or p4 tag to tag files with that label until you or a
Perforce superuser unlocks the label.

Label: build1.0
Owner: edk
Description:
 Created by edk.
Options: unlocked
View:
 //depot/proj/rel1.0/bin/...
Perforce 2005.1 User’s Guide 99

Chapter 8: Labels
Differences between p4 tag and p4 labelsync

The differences between p4 tag and p4 labelsync are as follows:

• The p4 tag command automatically creates and applies a new label to specified files if
no label exists. The p4 labelsync command can only be used to tag files with an
existing label.

• The p4 tag command requires a file pattern argument. The p4 labelsync command
does not require a file pattern argument; if you call p4 labelsync without a file pattern
argument, the command applies to your entire client workspace view.

• By default, p4 tag tags the #head revisions of files in the depot. By default, p4
labelsync tags the revisions of files most recently synced to your client workspace;
that is, to the #have revision.

• A single call to p4 tag can tag or untag files, but never both. The p4 labelsync
command can tag some files while untagging others in order to make a label match a
client workspace.

How p4 tag works

The full syntax of the p4 tag command is:
p4 tag [-d -n] -l labelname filename...

The rules followed by p4 tag to tag files with a label are as follows:

1. If labelname does not exist, create labelname. By default, you are the owner of the
new label, the label is unlocked, and has a view of the entire depot. After creating the
label, you can change these default options by using p4 label labelname.

2. If labelname already exists, you must be the owner of the label to use p4 tag on it,
and the label must be unlocked. If you are not the owner of a label, you can
(assuming you have sufficient permissions) make yourself the owner by running:

p4 label labelname

and changing the Owner: field to your Perforce user name in the p4 label form. If
you are the owner of a label, you can unlock the label by setting the Options: field
(also in the p4 label form) to unlocked.

3. All files tagged with a pre-existing label must be in the label view. Any files or
directories not included in a label view are ignored by p4 tag.

4. When p4 tag files is used to tag specified file revisions with a label, revisions not
tagged with the label are tagged. If another revision of the file has already been
tagged with the label, it is untagged and the newly specified revision is tagged. Any
given file revision can be tagged by one or more labels, but only one revision of any
file can be tagged with a given label at any one time.
100 Perforce 2005.1 User’s Guide

Chapter 8: Labels
5. If you call p4 tag with file pattern arguments that contain no revision specifications,
the #head revisions are tagged with the label.

6. If you call p4 tag with file pattern arguments and those arguments contain revision
specifications, the specified file revisions are tagged with the label.

How p4 labelsync works

The full syntax of the p4 labelsync command is:
p4 labelsync [-a -d -n] -l labelname [filename...]

The rules followed by labelsync to tag files with a label are as follows:

1. A label must exist, and you must be the owner of the label to use p4 labelsync on it,
and the label must be unlocked.

2. All files tagged with a label must be in the label view specified in the p4 label form.
Any files or directories not included in a label view are ignored by p4 labelsync.

3. When p4 labelsync is used to tag a file revision with a label, the revision is tagged
with the label if it is not already tagged with the label. If a different revision of the file
is already tagged with the label, it is untagged and the newly specified revision is
tagged. Any given file revision can be tagged by one or more labels, but only one
revision of any file can be tagged with a given label at any one time.

4. If labelsync is called with no filename arguments, as in:
p4 labelsync -l labelname

then all the files in both the label view and the client workspace view are tagged with
the label. The revisions tagged by the label are those last synced into the client
workspace; these revisions (“the #have revisions”) can be seen in the p4 have list.
Calling p4 labelsync this way removes the label from revisions it previously tagged
unless those revisions are in your workspace.

5. When you call p4 labelsync with file pattern arguments, but the arguments contain
no revision specifications, the #have revision is tagged with the label.

6. If you call p4 labelsync with file pattern arguments and those arguments contain
revision specifications, the specified file revisions are tagged with the label.

Specifying a revision in this manner overrides all other ways of specifying a revision
with a label; whether the client workspace contains a different revision than the one
specified, (or doesn’t contain the file at all), the revision specified on the command
line is tagged with the label.
Perforce 2005.1 User’s Guide 101

Chapter 8: Labels
The following table lists variations of p4 labelsync as typed on the command line, their
implicit arguments as parsed by the Perforce Server, and the sets of files from which p4
labelsync selects the intersection for tagging.

Label Reporting

The commands that list information about labels are:

Call p4 labelsync with Implicit Arguments

-l label

(no files specified)
-l label //myworkspace/...#have

Tags every file in your client workspace at the
revision currently in your client workspace.

-l label files

(files specified in local syntax, no
revision specified)

-l label [cwd]/files#have

Tags only the files in your client workspace that
you specify, at the revision currently in your client
workspace.

-l label files#rev

(files specified in local syntax,
specific revision requested)

-l label [cwd]/files#rev

Tags only the files in your client workspace that
you specify, at the revision you specify.
Files must be in your client workspace view.
You can use numeric revision specifiers here, or
#none to untag files, or #head to tag the latest
revision of a file, even if you haven’t synced that
revision to your workspace.

-l label //files

(files specified in depot syntax, no
revision specified)

-l label //files#have

Tags only the files in the depot that you specify, at
the revision currently in your client workspace,
whether the files are in your client workspace view
or not.

-l label //files#rev

(files specified in depot syntax,
specific revision requested)

-l label //files#rev

Tags only the files in the depot that you specify, at
the revision at the revision you specify, whether the
files are in your client workspace view or not.

Command Description

p4 labels List the names, dates, and descriptions of all labels
known to the server

p4 labels file#revrange List the names, dates, and descriptions of all labels that
tag the specified revision(s) of file.
102 Perforce 2005.1 User’s Guide

Chapter 8: Labels
p4 files @labelname Lists all files and revisions tagged by labelname.

p4 sync -n @labelname Lists the revisions tagged by the label that would be
brought into your client workspace, (as well as files
under Perforce control that would be deleted from your
client workspace because they are not tagged by the
label), without updating your client workspace.

Command Description
Perforce 2005.1 User’s Guide 103

Chapter 8: Labels
104 Perforce 2005.1 User’s Guide

Chapter 9 Branching
Perforce’s Inter-File Branching mechanism enables you to copy any set of files within the
depot and to track the changes between the copies. When you branch a set of files (or
codeline) from one area of the depot to another, the new set of files evolves separately from
the original files, but you can propagate changes in either codeline to the other with the p4
integrate command.

What is Branching?

Branching is a means of keeping two or more sets of similar (but not identical) files
synchronized. Most software configuration management systems have some form of
branching; Perforce’s mechanism is particularly efficient because it mimics the style in
which users create their own file copies when no branching mechanism is available.

Suppose for a moment that you’re writing a program and are not using an SCM system.
You’re ready to release your program: what would you do with your code? Chances are
that you’d copy all your files to a new location. One of your file sets would become your
release codeline, and bug fixes to the release would be made to that file set; your other
files would be your development file set, and new functionality to the code would be
added to these files.

What would you do when you find a bug that’s shared by both file sets? You’d fix it in one
file set, and then copy the edits that you made into the other file set.

The only difference between this homegrown method of branching and Perforce’s
branching methodology is that Perforce manages the file copying and edit propagation for you.
In Perforce’s terminology, copying the files is called making a branch. Each file set is known
as a codeline, and copying an edit from one file set to the other is called integration. The
entire process is called branching.

When to Create a Branch

Create a branch when two sets of code files have different rules governing when code can
be submitted, or whenever a set of code files needs to evolve along different paths. For
example:

• The members of the development group want to submit code to the depot whenever
their code changes, whether or not it compiles, but the release engineers don’t want
code to be submitted until it’s been debugged, verified, and signed off on.
Perforce 2005.1 User’s Guide 105

Chapter 9: Branching
At the time of release, branch a release codeline from the development codeline. When
the development codeline is ready, it is integrated into the release codeline. Afterwards,
patches and bug fixes are made in the release code, and at some point in the future,
integrated back into the development code.

• A company is writing a driver for a new multi-platform printer. It has written a UNIX
device driver, and is now going to begin work on a Mac OS X driver using the UNIX
code as a starting point.

The developers create a branch from the existing UNIX code, and now have two copies
of the same code. These two codelines can then evolve separately. If bugs are found in
either codeline, bug fixes can be propagated from one codeline to the other with the p4
integrate command.

One basic strategy is to develop code in //depot/main/ and create branches for releases
(for example, //depot/rel1.1/). Make bug fixes in the release branch and integrate
changes intended to apply to all releases of the software back into the //depot/main/
codeline.

Perforce’s Branching Mechanisms: Introduction

Perforce provides two mechanisms for branching. One method requires no special setup,
but requires the user to manually track the mappings between the two sets of files. The
second method remembers the mappings between the two file sets, but requires some
additional work to set up.

In the first method, the user specifies both the files that changes are being copied from and
the files that the changes are being copied into. The command looks like this:

p4 integrate fromfiles tofiles

In the second method, Perforce stores a mapping that describes which set of files get
branched to other files, and this mapping, or branch specification, is given a name. The
command the user runs to copy changes from one set of files to the other looks like this:

p4 integrate -b branchname [tofiles]

These methods are described in the following two sections.
106 Perforce 2005.1 User’s Guide

Chapter 9: Branching
Branching and Merging, Method 1:
Branching with File Specifications

Use p4 integrate fromfiles tofiles to propagate changes from one set of files (the
source files) to another set of files (the target files). The target files need to be contained
within the current client workspace view. The source files do not need to be, so long as the
source files are specified in depot syntax. If the target files do not yet exist, the entire
contents of the source files are copied to the target files. If the target files have already
been created, changes can be propagated from one set of files to the other with p4
resolve. In both cases, p4 submit must be used to store the new file changes in the depot.
Examples and further details are provided below.

Creating branched files

To create a copy of a file that will be tracked for branching, use the following procedure:

1. Determine where you want the copied (or branched) file(s) to reside within the depot
and within the client workspace. Add the corresponding mapping specification to
your client view.

2. Run p4 integrate fromfiles tofiles. The source files are copied from the server
to target files in the client workspace.

3. Run p4 submit. The new files are created within the depot, and are now available for
general use.

Example: Creating a branched file.

Version 2.0 of Elm has just been released, and work on version 3.0 is about to commence.
Work on the current development release always proceeds in //depot/elm_proj/..., and
it is determined that maintenance of version 2.0 will take place in //depot/elm_r2.0/...
The files in //depot/elm_proj/... must be branched into the //depot/elm_r2.0/...
portion of the depot.

Ed’s client workspace root is /usr/edk/elm_proj. Ed decides to work on the new
//depot/elm_r2.0/... files in /usr/edk/elm_proj/r2.0. He uses the p4 client
command to add the following mapping to his workspace view:

//depot/elm_r2.0/... //eds_elm/r2.0/...

He then runs:
p4 integrate //depot/elm_proj/... //depot/elm_r2.0/...

to copy all the files under //depot/elm_proj/... to //eds_elm/r2.0 in his client
workspace. Finally, he runs p4 submit to add the newly branched files to the depot.
Perforce 2005.1 User’s Guide 107

Chapter 9: Branching
Why not just copy the files?

Although it is possible to accomplish everything that has been done so far by copying the
files within the client workspace and using p4 add to add the files to the depot, when you
use p4 integrate, Perforce is able to track the connections between related files in an
integration record, enabling you to easily and consistently track and propagate changes
between one set of files and another.

Branching not only enables you to more easily track changes, it creates less overhead on
the server. When you copy files with p4 add, you create two copies of the same file on the
server. When you use branching, Perforce performs a “lazy copy” of the file, so that the
depot holds only one copy of the original file and a record that a branch was created.

Propagating changes between branched files

After a file has been branched from another with p4 integrate, Perforce can track
changes that have been made in either set of files and merge them using p4 resolve into
the corresponding branch files. (You’ll find a general discussion of the resolve process in
Chapter 5, Perforce Basics: Resolving File Conflicts. File resolution with branching is
discussed in “How Integrate Works” on page 114).

The procedure is as follows:

1. Run p4 integrate fromfiles tofiles to tell Perforce that changes in the source
files need to be propagated to the target files.

2. Use p4 resolve to copy changes from the source files to the target files. The changes
are made to the target files in the client workspace.

3. Run p4 submit to store the changed target files in the depot.

Example: Propagating changes between branched files.

Ed has created a release 2.0 branch of the Elm source files as above, and has fixed a bug in the
original codeline’s src/elm.c file. He wants to merge the same bug fix to the release 2.0
codeline. From his home directory, Ed types

p4 integrate elm_proj/src/elm.c //depot/elm_r2.0/src/elm.c

and sees
//depot/elm_r2.0/src/elm.c#1 - integrate from //depot/elm_proj/src/elm.c#9

The file has been scheduled for resolve. He types p4 resolve, and the standard merge dialog
appears on his screen.

/usr/edk/elm_r2.0/src/elm.c - merging //depot/elm_proj/src/elm.c#2
Diff chunks: 0 yours + 1 theirs + 0 both + 0 conflicting
Accept(a) Edit(e) Diff(d) Merge (m) Skip(s) Help(?) [at]:
108 Perforce 2005.1 User’s Guide

Chapter 9: Branching
He resolves the conflict with the standard use of p4 resolve. When he’s done, the result file
overwrites the file in his branched client, and it still must be submitted to the depot.

There is one fundamental difference between resolving conflicts in two revisions of the
same file, and resolving conflicts between the same file in two different codelines. The
difference is that Perforce will detect conflicts between two revisions of the same file and
then schedule a resolve, but there are always differences between two versions of the same
file in two different codelines, and these differences usually don’t need to be resolved
manually. (In these cases, a p4 resolve -as or p4 resolve -am to accept the Perforce-
recommended revision is usually sufficient. See “Command line flags to automate the
resolve process” on page 74 for details.)

In most cases, there is no difference between branched files and non-branched files. Use
the standard Perforce commands like sync, edit, delete, submit, and so on with all files,
and permit both codelines to evolve separately. If changes to one codeline need to be
propagated to another, use p4 integrate to propagate the changes. If the codelines
evolve separately, and changes never need to be propagated, you’ll never need to
integrate or resolve the files in the two codelines.

Propagating changes from branched files to the original files

You can propagate a change in the reverse direction, from branched files to the original
files, by supplying the branched files as the source files, and the original files as the target
files.

Example: Propagating changes from branched files to the original files.

Ed wants to integrate some changes in //depot/elm_r2.0/src/screen.c file to the
original version of the same file. He types

p4 integrate //depot/elm_r2.0/src/screen.c //depot/elm_proj/src/screen.c

and then runs p4 resolve. The changes in the branched file can now be merged into his
source file.

Branching and Merging, Method 2:
Branching with Branch Specifications

To map a set of source files to target files, you can create a branch specification and use it as
an argument to p4 integrate. To create and use a branch specification, do the following:

1. Use p4 branch branchname to create a view that indicates which target files map to
which source files.

2. Make sure that the new files and directories are included in the p4 client view of
the client workspace that will hold the new files.
Perforce 2005.1 User’s Guide 109

Chapter 9: Branching
3. Use p4 integrate -b branchname to create the new files.

4. To propagate changes from source files to target files, use p4 integrate -b
branchname [tofiles]. Perforce uses the branch specification to determine which
files the merged changes come from

5. Use p4 submit to submit the changes to the target files to the depot.

The following example demonstrates the same branching that was performed in the
example above, this time using a branch specification.

Example: Creating a branch.

Version 2.0 of Elm has just been released, and work on version 3.0 is about to commence.
Work on the current development release always proceeds in //depot/elm_proj/..., and
it is determined that maintenance of version 2.0 will take place in //depot/elm_r2.0/...
The files in //depot/elm_proj/... need to be branched into //depot/elm_r2.0/...,
so Ed does the following:

Ed creates a branch specification called elm2.0 by typing p4 branch elm2.0. The
following form is displayed:

The view maps the original codeline’s files (on the left) to branched files (on the right). Ed
changes the View: and Description: fields as follows:

Ed wants to work on the new //depot/elm_r2.0/... files within his client workspace at
/usr/edk/elm_proj/r2.0. He uses p4 client to add the following mapping to his client
view: //depot/elm_r2.0/... //eds_elm/r2.0/...

He runs p4 integrate -b elm2.0, which copies all the files under
//depot/elm_proj/... to //depot/r2.0/... and creates copies of those files in his
client workspace under //eds_elm/r2.0. He then runs p4 submit to add the newly
branched files to the depot.

Branch: elm2.0
Date: 1997/05/25 17:43:28
Owner: edk
Description:
 Created by edk.
View:
 //depot/... //depot/...

Branch: elm2.0
Date: 1997/05/25 17:43:28
Owner: edk
Description:
 Elm release 2.0 maintenance codeline
View:
 //depot/elm_proj/... //depot/elm_r2.0/...
110 Perforce 2005.1 User’s Guide

Chapter 9: Branching
After the branch has been created and the files have been copied into the branched
codeline, you can propagate changes from the source files to the target files with p4
integrate -b branchname.

Example: Propagating changes to files with p4 integrate.

A bug has been fixed in the original codeline’s src/elm.c file. Ed wants to propagate the
same bug fix to the branched codeline he’s been working on. He types

p4 integrate -b elm2.0 ~edk/elm_r2.0/src/elm.c

and sees:
//depot/elm_r2.0/src/elm.c#1 - integrate from //depot/elm_proj/src/elm.c#9

The file has been scheduled for resolve. He types p4 resolve, and the standard merge dialog
appears on his screen.

/usr/edk/elm_r2.0/src/elm.c - merging //depot/elm_proj/src/elm.c#9
Diff chunks: 0 yours + 1 theirs + 0 both + 0 conflicting
Accept(a) Edit(e) Diff(d) Merge (m) Skip(s) Help(?) [at]:

He resolves the conflict with the standard use of p4 resolve. When he’s done, the result file
overwrites the file in his branched client, and it still must be submitted to the depot.

Branch Specification Usage Notes

• Creating or altering a branch specification has absolutely no immediate effect on any files within
the depot or client workspace. The branch specification merely specifies which files are
affected by subsequent p4 integrate commands.

• Like client views, branch specifications can contain multiple mappings. For example,
the following branch specification branches the Elm 2.0 source code and documents to
two separate locations within the depot:

• Exclusionary mappings can be used within branch specifications.

• To reverse the direction of an integration that uses a branch specification, use the -r
flag.

Branch: elm2.0
Date: 1997/05/25 17:43:28
Owner: edk
Description:
 Elm release 2.0 maintenance codeline
View:
 //depot/elm_proj/src/... //depot/elm_r2.0/src/...
 //depot/elm_proj/docs/... //depot/docs/2.0/...
Perforce 2005.1 User’s Guide 111

Chapter 9: Branching
Integration Usage Notes

• p4 integrate only acts on files that are the intersection of target files in the branch
view and the client view. If file patterns are given on the command line, integrate
further limits its actions to files matching the patterns. The source files supplied as
arguments to integrate need not be in the client view.

• The basic syntax of the integrate command when using a branch specification is:
p4 integrate -b branchname [tofiles]

If you omit the tofiles argument, all the files in the branch are affected.

• The direction of integration through a branch specification can be reversed with the -r
flag. For example, to integrate changes from a branched file to the original source file,
use p4 integrate -b branchname -r [tofiles]

• The p4 integrate command, like p4 add, p4 edit, and p4 delete, does not actually
affect the depot immediately; instead, it adds the affected files to a changelist, which
must be submitted with p4 submit. This keeps the integrate operation atomic: either
all the named files are affected at once, or none of them are.

• The actual action performed by p4 integrate is determined by particular properties of
the source files and the target files:

If the target file doesn’t exist, the source file is copied to target, target is opened for branch,
and Perforce begins tracking the integration history between the two files. The next
integration of the two files will treat this revision of source as base.

If the target file exists, and was originally branched from the source file with p4 integrate,
then a three-way merge is scheduled between target and source. The base revision is the
previously integrated revision of source.

If the target file exists, but was not branched from the source, then these two file revisions did
not begin their lives at a common, older file revision, so there can be no base file, and
p4 integrate rejects the integration. This is referred to as a baseless merge. To force the
integration, use the -i flag; p4 integrate will use the first revision of source as base.
(Actually, p4 integrate uses the most recent revision of source that was added to the
depot as base. Because most files are only opened for add once, this will almost always
be the first revision of source.)

Note In previous versions of Perforce (99.1 and earlier), integration of a target
that was not originally branched from the source would schedule a two-
way merge, in which the only resolve choices were accept yours and
accept theirs. As of Perforce 99.2, it is no longer possible to perform a
two-way merge of a text file (even when possible, it was never desirable).
112 Perforce 2005.1 User’s Guide

Chapter 9: Branching
• By default, a file that has been newly created in a client workspace by p4 integrate
cannot be edited before its first submission. To make a newly-branched file available for
editing before submission, perform a p4 edit of the file after the resolve process is
complete.

• To run the p4 integrate command, you need Perforce write access on the target files,
and read access on the source files. (See the Perforce System Administrator’s Guide for
information on Perforce protections).

Deleting Branches

To delete a branch, use
p4 branch -d branchname

Deleting a branch deletes only the branch specification, making the branch specification
inaccessible from any subsequent p4 integrate commands. The files themselves can still
be integrated with p4 integrate fromfiles tofiles, and the branch specification can
always be redefined. If the files in the branched codeline are to be removed, they must be
deleted with p4 delete.

Advanced Integration Functions

Perforce’s branching mechanism also enables you to integrate specific file revisions, to re-
integrate and re-resolve previously-integrated code, and to merge two files that have no
shared history.

Integrating specific file revisions

By default, the integrate command integrates into the target all the revisions of the
source since the last source revision that integrate was performed on. A revision range
can be specified when integrating; this prevents unwanted revisions from having to be
manually deleted from the merge while editing. In this case, the revision used as base is
the first revision below the specified revision range.

The argument to p4 integrate is the target, the file revision specifier is applied to the
source.

Example: Integrating Specific File Revisions.

Ed has made two bug fixes to his file src/init.c, and Kurt wants to integrate the change
into his branched version, which is called newinit.c. Unfortunately, init.c has gone
through 20 revisions, and Kurt doesn’t want to have to delete all the extra code from all 20
revisions while resolving.
Perforce 2005.1 User’s Guide 113

Chapter 9: Branching
Kurt knows that the bug fixes he wants were made to file revisions submitted in changelist 30.
From the directory containing his newinit.c file in his branched workspace, he types

p4 integrate -b elm_r1 newinit.c@30,@30

The target file is given as an argument, but the file revisions are applied to the source. When
Kurt runs p4 resolve, only the revision of Ed’s file that was submitted in changelist 30 is
scheduled for resolve. That is, Kurt only sees the changes that Ed made to init.c in
changelist 30. The file revision that was present in the depot at changelist 29 is used as base.

Re-integrating and re-resolving files

After a revision of a source file has been integrated into a target, that revision is usually
skipped in subsequent integrations with the same target. If all the revisions of a source
have been integrated into a particular target, p4 integrate returns the error message All
revisions already integrated. To force the integration of already-integrated files,
specify the -f flag to p4 integrate.

Similarly, a target that has been resolved but not (yet) submitted can be re-resolved by
specifying the -f flag to p4 resolve, which forces re-resolution of already resolved files.
When this flag is used, the original client target file has been replaced with the result file
by the original resolve process; when you re-resolve, yours is the new client file, the result
of the original resolve.

How Integrate Works

The following sections describe the mechanism behind the integration process.

The yours, theirs, and base files

The following table explains the terminology yours, theirs, and base files.

Term Meaning

yours The file to which changes are being propagated (also called the
target file). This file in the client workspace is overwritten by the
result when you resolve.

theirs The file from which changes are read (also known as the source
file). This file resides in the depot, and is not changed by the
resolve process.

base The last integrated revision of the source file. When you use
integrate to create the branched copy of the file in the depot,
the newly-branched copy is base.
114 Perforce 2005.1 User’s Guide

Chapter 9: Branching
The integration algorithm

p4 integrate performs the following steps:

1. Apply the branch view to any target files provided on the command line to produce a
list of source/target file pairs. If no files are provided on the command line, a list of
all source/target file pairs is generated, including each revision of each source file
that is to be integrated.

2. Discard any source/target pairs for which the source file revisions have already been
integrated. Each revision of each file that has been integrated is recorded, to avoid
making you merge changes more than once.

3. Discard any source/target pairs whose source file revisions have integrations
pending in files that are already opened in the client.

4. Integrate all remaining source/target pairs. The target file is opened on the client for
the appropriate action and merging is scheduled.

Integrate’s actions

The integrate command will take one of three actions, depending on particular
characteristics of the source and target files:

By default, when you integrate using a branch specification, the original codeline contains
the source files, and the branched codeline is the target. However, if you reverse the
direction of integration by specifying the -r flag, the branched codeline contains the
source, and the original files are the targets.

Action Meaning

branch If the target file does not exist, it is opened for branch. The
branch action is a variant of add, but Perforce keeps a record of
which source file the target file was branched from. This allows
three-way merges to be performed between subsequent source
and target revisions with the original source file revision as
base.

integrate If both the source and target files exist, the target is opened for
integration, which is a variant of edit. Before a user can submit
a file that has been opened for integration, the source and target
must be merged with p4 resolve.

delete When the target file exists but no corresponding source file is
mapped through the branch view, the target is marked for
deletion. This is consistent with integrate’s semantics: it
attempts to make the target tree reflect the source tree.
Perforce 2005.1 User’s Guide 115

Chapter 9: Branching
Integration Reporting

The branching-related reporting commands are:

For More Information

Although Perforce’s branching mechanism is relatively simple, the theory of branching
can be very complex. When should a branch be created? At what point should code
changes be propagated from one codeline to another? Who is responsible for performing
merges? These questions will arise no matter what SCM system you’re using, and the
answers are not simple. Three on-line documents can provide some guidance in these
matters.

A white paper on InterFile Branching, which describes Perforce’s branching mechanism in
technical detail, is available from:

http://www.perforce.com/perforce/branch.html

Christopher Seiwald and Laura Wingerd’s Best SCM Practices paper provides a discussion
of many source configuration management issues, including an overview of basic
branching techniques. This paper is available at:

http://www.perforce.com/perforce/bestpractices.html

Streamed Lines: Branching Patterns for Parallel Software Development is an extremely detailed
paper on branching techniques. The paper is available from:

http://www.cmcrossroads.com/bradapp/acme/branching/

Command Function

p4 integrate -n [filepatterns] Previews the results of the specified integration,
but does not perform the integration. (To
perform the integration, omit the -n flag.)

p4 resolve -n [filepatterns] Displays files that are scheduled for resolve by
p4 integrate, but does not perform the resolve.
(To perform the resolve, omit the -n flag.)

p4 resolved Displays files that have been resolved but not yet
submitted.

p4 branches Displays all branches.

p4 integrated filepatterns Displays the integration history of the specified
files.

p4 filelog -i [filepatterns] Displays the revision histories of the specified
files, including the integration histories of files
from which the specified files were branched.
116 Perforce 2005.1 User’s Guide

Chapter 10 Job Tracking
A job is a written description of some modification to be made to a source code set. A job
might be a bug description, like “the system crashes on invalid input”, or it might be a
system improvement request, like “please make the program run faster.”

Whereas a job represents work that is intended, a changelist represents work actually
done. Perforce’s job tracking mechanism enables you to link jobs to the changelists that
implement the work requested by the job. A job can later be looked up to determine if and
when it was fixed, which file revisions implemented the fix, and who fixed it. A job linked
to a numbered changelist is marked as completed when the changelist is submitted.

Jobs perform no functions internally to Perforce; rather, they are provided as a method of
keeping track of information such as what changes to the source are needed, which user is
responsible for implementing the job, and which file revisions contain the implementation
of the job. The type of information tracked by the jobs system can be customized; fields in
the job form can be added, changed, and deleted by Perforce administrators.

Job Usage Overview

There are five related but distinct aspects of using jobs.

• The Perforce superuser or administrator decides what fields are to be tracked in your
system’s jobs, the possible values of a job’s fields, and their default values. This job
template is edited with the p4 jobspec command. (See the System Administrator’s Guide
for details on how to edit the job specification. The job specification need not be
changed before users can create jobs).

• Jobs can be created and edited by any user with p4 job.

• The p4 jobs command can be used to look up all the jobs that meet specified criteria.

• Jobs can be linked to changelists automatically or manually; when a job is linked to a
changelist, the job is marked as closed when the changelist is submitted.

• The jobs that have been fixed can be displayed with Perforce reporting commands.
These commands can list all jobs that fixed particular files or file revisions, all the jobs
that were fixed in a particular changelist, or all the changelists that were linked to a
particular job fix.

The remainder of this chapter discusses how these tasks are accomplished.
Perforce 2005.1 User’s Guide 117

Chapter 10: Job Tracking
Using the default job specification

Jobs are created with the p4 job command.

Example: Creating a job

Sarah’s Perforce server uses Perforce’s default jobs specification. Sarah knows about a job in
Elm’s filtering subsystem, and she knows that Ed is responsible for Elm filters. Sarah creates a
new job with p4 job and fills in the resulting form as follows:

Sarah has filled in a description and has changed User: to edk.

Because job fields differ from site to site, the fields in jobs at your site might be very
different than what you see above. The default p4 job form’s fields are:

Job: new
Status: open
User: edk
Date: 1998/05/18 17:15:40
Description:
 Filters on the “Reply-To:” field
 don’t work.

Field Name Description Default

Job The name of the job. Whitespace is not permitted
in job names.

new

Status open, closed, suspended, or new.

An open job is one that has been created but has
not yet been fixed.

A closed job is one that has been completed.

A suspended job is an open job that is not
currently being worked on.

Jobs with status new exist only while a new job is
being created; they change to status open as soon
as the form has been completed and the job added
to the database.

new; changes to
open after job
creation form is
closed.

User The user whom the job is assigned to, usually the
username of the person assigned to fix this
particular problem.

Perforce username
of the person
creating the job.

Date The date the job was last modified, displayed as
YYYY/MM/DD HH/MM/SS

The date and time at
the moment this job
was last modified.
118 Perforce 2005.1 User’s Guide

Chapter 10: Job Tracking
If p4 job is called with no parameters, a new job is created. The name that appears on the
form is new, but this can be changed by the user to any desired string. If the Job: field is
left as new, Perforce will assign the job the name jobN, where N is a sequentially-assigned
six-digit number.

Existing jobs can be edited with p4 job jobname. The user and description can be
changed arbitrarily; the status can be changed to any of the three valid status values open,
closed, or suspended. When you call p4 job jobname with a nonexistent jobname,
Perforce creates a new job. (A job, if submitted with a Status: of new, has this status
automatically changed to open upon completion of the job form.)

Using a custom job specification

A Perforce administrator can add and change fields within your server’s jobs template
with the p4 jobspec command. If this has been done, there might be additional fields in
your p4 job form, and the names of the fields described above might have changed.

A sample customized job specification might look like this:

Description Arbitrary text assigned by the user. Usually a
written description of the problem that is meant
to be fixed.

Text that must be
changed

Custom Job fields:
Job: The job name. ’new’ generates a sequenced job number.
Status: Either ’open’, ’closed’, or ’suspended’. Can be changed
User: The user who created the job. Can be changed.
Date: The date this specification was last modified.
Type: The type of the job. Acceptable values are
’bug’, ’sir’, ’problem’ or ’unknown’
Priority: How soon should this job be fixed?
Values are ’a’, ’b’, ’c’, or ’unknown’
Subsystem: One of server/gui/doc/mac/misc/unknown
Owned_by: Who’s fixing the bug
Description: Comments about the job. Required.

Job: new
Status: open
User: setme
Type: setme
Priority: unknown
Subsystem: setme
Owned_by: edk
Description:
 <enter description here>

Field Name Description Default
Perforce 2005.1 User’s Guide 119

Chapter 10: Job Tracking
Some of the fields have been set by the administrator to use one value out of a set of
values; for example, Priority: must be one of a, b, c, or unknown. The p4 job fields don’t
tell you what the valid values of the fields are; your Perforce administrator can tell you
this in comments at the top of the job form. If you find the information in the comments
for your jobs to be insufficient to enter jobs properly, please tell your Perforce
administrator.

Viewing jobs by content with jobviews

Jobs can be reported with p4 jobs. In its simplest form, with no arguments, p4 jobs will
list every job stored in your Perforce server. However, p4 jobs -e jobview will list all
jobs that match the criteria contained in jobview.

Throughout the following discussion, the following rules apply:

• Textual comparisons within jobviews are case-insensitive, as are the field names that
appear in jobviews,

• only alphanumeric text and punctuation can appear in a jobview,

• there is currently no way to search for particular phrases. Jobviews can search jobs only
by individual words.

Finding jobs containing particular words

The jobview 'word1 word2 ... wordN' can be used to find jobs that contain all of word1
through wordN in any field (excluding date fields).

Example: Finding jobs that contain all of a set of words in any field.

Ed wants to find all jobs that contain the words filter, file, and mailbox. He types:
p4 jobs -e 'filter file mailbox'

Spaces between search terms in jobviews act as boolean and’s. You can use ampersands
instead of spaces in jobviews, so the jobviews 'joe sue' and 'joe&sue' are identical.

To find jobs that contain any of the terms, separate the terms with the '|' character.

Example: Finding jobs that contain any of a set of words in any field.

Ed wants to find jobs that contains any of the words filter, file or mailbox. He types:
p4 jobs -e 'filter|file|mailbox'
120 Perforce 2005.1 User’s Guide

Chapter 10: Job Tracking
Finding jobs by field values

Search results can be narrowed by matching values within specific fields with the jobview
syntax 'fieldname=value'. Value must be a single alphanumeric word.

Example: Finding jobs that contain words in specific fields

Ed wants to find all open jobs related to filtering of which he is the owner. He types:
p4 jobs -e 'status=open user=edk filter.c'

This will find all jobs with a Status: of open, a User: of edk, and the word filter.c in
any non-date field.

Using and escaping wildcards in jobviews

The wildcard “*” enables you to perform partial word matches. The jobview
“fieldname=string*” matches “string”, “stringy”, “stringlike”, and so on.

To search for words that happen to contain wildcards, escape them at the command line.
For instance, to search for “*string” (perhaps in reference to char *string), you’d use
the following:

p4 jobs -e '*string'

Negating the sense of a query

The sense of a search term can be reversed by prefacing it with ^, the not operator.

Example: Finding jobs that don’t contain particular words.

Ed wants to find all open jobs related to filtering of which he is not the owner. He types:
p4 jobs -e 'status=open ^user=edk filter'

This displays all jobs with a Status: of open, a User: of anyone but edk, and the word
filter in any non-date field.

The not operator ^ can be used only directly after an and (space or &). For instance, the
command p4 jobs -e '^user=edk' is not permitted.

You can use the * wildcard to work around this restriction: p4 jobs -e 'job=*
^user=edk' returns all jobs with a user field not matching edk.
Perforce 2005.1 User’s Guide 121

Chapter 10: Job Tracking
Using dates in jobviews

Jobs can be matched by date by expressing the date as yyyy/mm/dd or
yyyy/mm/dd:hh:mm:ss. If you don’t provide a specific time, the equality operator =
matches the entire day.

Example: Using dates within jobviews.

Ed wants to view all jobs modified on July 13, 1998. He enters
p4 jobs -e 'mod_date=1998/07/13'

Comparison operators and field types

The usual comparison operators are available. They are:

The behavior of these operators depends upon the type of the field in the jobview.The
field types are:

Field types are often obvious from context; a field called mod_date, for example, is most
likely a date field. If you’re not sure of a field’s type, run p4 jobspec -o, which outputs
the job specification your local jobspec. The field called Fields: lists the job fields’ names
and datatypes.

= > < >= <=

Field Type Explanation Examples

word A single word A user name: edk

text A block of text A job’s description

line A single line of text. Differs from text fields
only in that line values are entered on the
same line as the field name, and text values
are entered on the lines beneath the field
name.

An email address

A user’s real name, for
example Linda Hopper

select One of a set of values A job’s status:

open/suspended/closed

date A date value The date and time of job
creation:

1998/07/15:13:21:4
122 Perforce 2005.1 User’s Guide

Chapter 10: Job Tracking
The jobview comparison operators behave differently depending upon the type of field
they’re used with. The comparison operators match the different field types as follows:

Linking Jobs to Changelists

Perforce automatically changes the value of a job’s status field to closed when the job is
linked to a particular changelist, and the changelist is submitted.

Jobs can be linked to changelists in one of three ways:

• Automatically, by setting the JobView: field in the p4 user form to a jobview that
matches the job, and

• manually, with the p4 fix command.

• manually, by editing them within the p4 submit form.

Linking jobs to changelists with the JobView: field

The p4 user form can be used to automatically include particular jobs on any new
changelists created by that user. To do this, call p4 user and change the JobView: field
value to any valid jobview.

Field Type Use of Comparison Operators in Jobviews

word The equality operator = must match the value in the word field exactly.

The inequality operators perform comparisons in ASCII order.

text The equality operator = matches the job if the word given as the value is
found anywhere in the specified field.

The inequality operators are of limited use here, since they’ll match the
job if any word in the specified field matches the provided value. For
example, if a job has a text field ShortDescription: that contains only
the phrase gui bug, and the jobview is 'ShortDesc<filter', the job will
match the jobview, because bug<filter.

line See text, above.

select The equality operator = matches a job if the value of the named field is the
specified word. Inequality operators perform comparisons in ASCII order.

date Dates are matched chronologically. If a specific time is not provided, the
operators =, <=, and >= will match the whole day.
Perforce 2005.1 User’s Guide 123

Chapter 10: Job Tracking
Example: Automatically linking jobs to changelists with the p4 user form’s JobView field.

Ed wants to see all open jobs that he owns in all changelists he creates. He types p4 user and
adds a JobView: field:

All of Ed’s jobs that meet these JobView: criteria automatically appear on all changelists he
creates. He can, and should, delete jobs that aren’t fixed by the changelist from the changelist
form before submission. When a changelist is submitted, the jobs linked to it will have their
status: field’s value changed to closed.

Linking jobs to changelists with p4 fix

p4 fix -c changenum jobname can be used to link any job to any changelist. If the
changelist has already been submitted, the value of the job’s Status: field is changed to
closed. Otherwise, the job keeps its current status.

Example: Manually attaching jobs to changelists.

You can use p4 fix to link a changelist to a job owned by another user.

Sarah has submitted a job called options-bug to Ed. Unbeknownst to Sarah, the bug
reported by the job was fixed in Ed’s previously submitted changelist 18. Ed links the job to
the previously submitted changelist by typing:

Because changelist 18 has already been submitted, the job’s status is changed to closed.

Linking jobs to changelists when submitting

You can also add jobs to changelists by editing the Jobs: field (or creating a Jobs: field if
none exists) in the p4 submit form.

Any job can be linked to a changelist by adding it to a changelist’s change form, or
unlinked from a changelist by deleting the job from the changelist’s change form.

User: edk
Update: 1998/06/02 13:11:57
Access: 1998/06/03 20:11:07
JobView: user=edk&status=open

p4 fix -c 18 options-bug
124 Perforce 2005.1 User’s Guide

Chapter 10: Job Tracking
Example: Including and excluding jobs from changelists.

Ed has set his p4 user’s JobView: field as in the example above. He is unaware of a job that
Sarah has made Ed the owner of (when she entered the job, she set the User: field to edk). He
is currently working on an unrelated problem; he types p4 submit and sees the following:

Because this job is unrelated to the work he’s been doing, and since it hasn’t been fixed, he
deletes job000125 from the form and then quits from the editor. The changelist is submitted
without job000125 being associated with the changelist.

Automatic update of job status

The value of a job’s Status field is automatically changed to closed when one of its
associated changelists is successfully submitted.

Example: Submitting a changelist with an attached job.

Ed uses the reporting commands to read the details about job job000125. He fixes this
problem, and a number of other bugs; when he next types p4 submit, he sees:

Because the job is fixed in this changelist, Ed leaves the job on the form. When he quits from
the editor, the job’s status is changed to closed.

Change: new
Client: eds_ws
User: edk
Status: new
Description:
 Updating "File" I/O files
Jobs:
 job000125 # Filters on "Reply-To" field don’t work

Files:
 //depot/src/file.c # edit
 //depot/src/file_util.c # edit
 //depot/src/fileio.c # edit

Change: new
Client: eds_ws
User: edk
Status: new
Description:
 Fixes a number of filter problems
Jobs:
 job000125 # Filters on "Reply-To" field don’t work
Files:
 //depot/filter/actions.c # edit
 //depot/filter/audit.c # edit
 //depot/filter/filter.c # edit
Perforce 2005.1 User’s Guide 125

Chapter 10: Job Tracking
What if there’s no status field?

The discussion in this section has assumed that the server’s job specification still contains
the default Status: field. If the job specification has been altered so that this is no longer
true, jobs can still be linked to changelists, but nothing in the job changes when the
changelist is submitted. (In most cases, this is not a desired form of operation.) Please see
the chapter on editing job specifications in the Perforce System Administrator’s Guide for
more details.

Deleting Jobs

A job can be unlinked from any changelist with p4 fix -d -c changenum jobname.

Jobs can be deleted entirely with p4 job -d jobname.

Integrating with External Defect Tracking Systems

If you want to integrate Perforce with your in-house defect tracking system, or develop an
integration with a third-party defect tracking system, P4DTI is probably the best place to
start.

To get started with P4DTI, see the P4DTI product information page at:
http://www.perforce.com/perforce/products/p4dti.html

Available from this page are the TeamShare and Bugzilla implementations, an overview
of the P4DTI’s capabilities, and a kit (including source code and developer documentation)
for building integrations with other products or in-house systems.

Even if you don’t use the P4DTI kit as a starting point, you can still use Perforce’s job
system as the interface between Perforce and your defect tracker. See the Perforce System
Administrator’s Guide for more information.

Job Reporting Commands

The job reporting commands can be used to show the relationship between files,
changelists, and their associated jobs.

To See a Listing of... Use This Command:

...all jobs that match particular criteria p4 jobs -e jobview

...all the jobs that were fixed by changelists that affected
particular file(s)

p4 jobs filespec

...all changelists and file revisions that fixed a particular job p4 fixes -j jobname
126 Perforce 2005.1 User’s Guide

Chapter 10: Job Tracking
Other job reporting variations are available. For more examples, please see “Job
Reporting” on page 139, as well as the Perforce Command Reference.

...all jobs linked to a particular changelist p4 fixes -c changenum

...all jobs fixed by changelists that contain particular files or
file revisions

p4 fixes filespec

To See a Listing of... Use This Command:
Perforce 2005.1 User’s Guide 127

Chapter 10: Job Tracking
128 Perforce 2005.1 User’s Guide

Chapter 11 Reporting and Data Mining
Perforce’s reporting commands supply information on all data stored within the depot.
Many of these reporting commands have already been mentioned in this manual; this
chapter presents the same commands and provides additional information for each
command. Tables in each section contain answers to questions of the form “How do I find
information about...?”

Many of the reporting commands have numerous options, but discussion of all options
for each command is beyond the scope of this manual. For a full description of all the
commands, see the Perforce Command Reference, or type p4 help command at the command
line.

When you use file specifications with Perforce commands, filespec arguments such as:
p4 files filespec

match any file pattern that is supplied in local syntax, depot syntax, or client syntax, with
any Perforce wildcards. Brackets around [filespec] mean that the file specification is
optional. Additionally, many of the reporting commands can take revision specifiers as
part of the filespec. See “Specifying File Revisions” on page 53 for more about revision
specifiers.

Files

Commands that report on files fall into three categories: commands that provide
information about file contents, (for instance, p4 print, p4 diff), commands that provide
information about the state of the mapping between your depot and the client workspace
(such as p4 where and p4 have), and commands that provide information on file
metadata, the data that describe a file without regards to file content (such as p4 files and
p4 filelog).

File metadata

Basic file information

To view information about single revisions of one or more files, use p4 files. This
command provides the locations of the files within the depot, the actions (add, edit,
delete, and so on) on those files at the specified revisions, the changelists the specified
file revisions were submitted in, and the files’ types. The output has this appearance:

//depot/README#5 - edit change 6 (text)
Perforce 2005.1 User’s Guide 129

Chapter 11: Reporting and Data Mining
The p4 files command requires one or more filespec arguments. Filespec arguments
can, as always, be provided in Perforce or local syntax, but the output always reports on
the corresponding files within the depot. If you don’t provide a revision number, Perforce
uses the head revision.

Unlike most other commands, p4 files also describes deleted revisions, rather than
suppressing information about deleted files.

File revision history

The revision history of a file is provided by p4 filelog. One or more file arguments must
be provided. Because p4 filelog lists information about each revision of the specified
file(s), file arguments to p4 filelog cannot contain revision specifications.

The output of p4 filelog has this form:

For each file that matches the filespec argument, the complete list of file revisions is
presented, along with the number of the changelist that the revision was submitted in, the
date of submission, the user who submitted the revision, the file’s type at that revision,
and the first few characters of the changelist description. With the -l flag, the entire
description of each changelist is printed:

To View File Metadata for... Use This Command:

...all files in the depot, whether or not visible
through your client view

p4 files //depot/...

...all the files currently in any client workspace p4 files @clientname

...all the files in the depot that are mapped through
your current client workspace view

p4 files //clientname/...

...a particular set of files in the current working
directory

p4 files filespec

...a particular file at a particular revision number p4 files filespec#revisonNum

...all files at change n, whether or not the file was
actually included in change n

p4 files @n

...a particular file within a particular label p4 files filespec@labelname

... #3 change 23 edit on 1997/09/26 by edk@doc <ktext> ’Fix help system’

... #2 change 9 edit on 1997/09/24 by lisag@src <text> ’Change file’

... #1 change 3 add on 1997/09/24 by edk@doc <text> ’Added filtering bug’

#3 change 23 edit on 1997/09/26 by edk@doc
Updated help files to reflect changes
in filtering system & other subsystems
...<etc.>
130 Perforce 2005.1 User’s Guide

Chapter 11: Reporting and Data Mining
Opened files

To see which files are currently opened within a client workspace, use p4 opened. For
each opened file within the client workspace that matches a file pattern argument, p4
opened prints a line like the following:

//depot/elm_proj/README - edit default change (text)

Each opened file is described by its depot name and location, the operation that the file is
opened for (add, edit, delete, branch, or integrate), which changelist the file is
included in, and the file’s type.

Relationships between client and depot files

It is often useful to know how the client and depot are related at a particular moment in
time. Perhaps you want to know where a particular client file is mapped to within the
depot, or whether or not the head revision of a particular depot file has been copied to a
client workspace.

The commands that reveal the relationship between client and depot files are p4 where,
p4 have, and p4 sync -n. The first of these commands, p4 where, shows the mappings
between client workspace files, depot files, and local OS syntax. p4 have tells you which
revisions of files you’ve last synced to your client workspace, and p4 sync -n describes
which files would be read into your client workspace the next time you perform a p4
sync. All of these commands can be used with or without filespec arguments. p4 sync
-n is the only command in this set that permits the use of revision specifications on the
filespec arguments.

The output of p4 where filename looks like this:
//depot/elm_proj/doc/Ref.guide //edk/doc/Ref.guide /usr/edk/doc/Ref.guide

The first part of the output is the location of the file in depot syntax; the second part is the
location of the same file in client syntax, and the third is the location of the file in local OS
syntax.

p4 have’s output has this form:
//depot/doc/Ref.txt#3 - /usr/edk/elm/doc/Ref.txt

To See... Use This Command:

...a listing of all opened files in the current workspace p4 opened

...a list of all opened files in all client workspaces p4 opened -a

...a list of all files in a numbered pending changelist p4 opened -c changelist#

...a list of all files in the default changelist p4 opened -c default

...whether or not a specific file is opened by you p4 opened filespec

...whether or not a specific file is opened by anyone p4 opened -a filespec
Perforce 2005.1 User’s Guide 131

Chapter 11: Reporting and Data Mining
and p4 sync -n provides output like:
//depot/doc/Ref.txt#3 - updating /usr/edk/elm/doc/Ref.txt

The following table lists other useful commands:

File contents

Contents of a single revision

You can view the contents of any file revision within the depot with p4 print. This
command simply prints the contents of the file to standard output, or to the specified
output file, along with a one-line banner that describes the file. The banner can be
removed by passing the -q flag to p4 print. When printed, the banner has this format:

//depot/elm_proj/README#23 - edit change 50 (text)

p4 print takes a mandatory file argument, which can include a revision specification. If a
revision is specified, the file is printed at the specified revision; if no revision is specified,
the head revision is printed.

To See... Use This Command:

...which revisions of which files you have in the
client workspace

p4 have

...which revision of a particular file is in your client
workspace

p4 have filespec

...where a particular file maps to within the depot,
the client workspace, and the local OS

p4 where filespec

...where a particular file in the depot maps to in the
workspace

p4 where //depot/.../filespec

...which files would be synced into your client
workspace from the depot when you do the next
sync

p4 sync -n

To See the Contents of Files... Use This Command:

...at the current head revision p4 print filespec

...without the one-line file header p4 print -q filespec

...at a particular change number p4 print filespec@changenum
132 Perforce 2005.1 User’s Guide

Chapter 11: Reporting and Data Mining
Annotated file contents

Use p4 annotate to find out which file revisions or changelists affected lines in a text file.

By default, p4 annotate displays the file, each line of which is prepended by a revision
number indicating the revision that made the change. The -a option displays all lines,
including lines no longer present at the head revision, and associated revision ranges. The
-c option displays changelist numbers, rather than revision numbers.

Example: Using p4 annotate to track changes to a file

A file is added (file.txt#1) to the depot, containing the following lines:

The third line is deleted and the second line edited so that file.txt#2 reads:

Finally, a third changelist is submitted, that includes no changes to file.txt. After the
third changelist, the output of p4 annotate and p4 annotate -c look like this:

The first line of file.txt has been present since file.txt#1, as submitted in changelist
151. The second line has been present since file.txt#2, as submitted in changelist 152.

To show all lines (including deleted lines) in the file, use p4 annotate -a as follows:

The first line of output shows that the first line of the file has been present for revisions 1
through 3. The next two lines of output show lines of file.txt present only in revision 1.
The last line of output shows that the line added in revision 2 is still present in revision 3.

This is a text file.
The second line has not been changed.
The third line has not been changed.

This is a text file.
The second line is new.

$ p4 annotate file.txt

//depot/files/file.txt#3 - edit change 153 (text)
1: This is a text file.
2: The second line is new.

$ p4 annotate -c file.txt

//depot/files/file.txt#3 - edit change 153 (text)
151: This is a text file.
152: The second line is new.

$ p4 annotate -a file.txt

//depot/files/file.txt#3 - edit change 12345 (text)
1-3: This is a text file.
1-1: The second line has not been changed.
1-1: The third line has not been changed.
2-3: The second line is new.
Perforce 2005.1 User’s Guide 133

Chapter 11: Reporting and Data Mining
You can combine the -a and -c options to display all lines in the file and the changelist
numbers (rather than the revision numbers) at which the lines existed.

File content comparisons

A client workspace file can be compared to any revision of the same file within in the
depot with p4 diff. This command takes a filespec argument; if no revision specification
is supplied, the workspace file is compared against the revision last read into the
workspace.

The p4 diff command has many options available; only a few are described in the table
below. For more details, see the Perforce Command Reference.

Whereas p4 diff compares a client workspace file against depot file revisions, p4 diff2
can be used to compare any two revisions of a file, or even revisions of different files. The
p4 diff2 command takes two file arguments: wildcards are permitted, but any wildcards
in the first file argument must be matched with a corresponding wildcard in the second.
Using matching wildcards in p4 diff2 makes it possible to compare entire trees of files.

There are many more flags to p4 diff than described below. For a full listing, please type
p4 help diff at the command line, or consult the Perforce Command Reference.

To See the Differences
between...

Use This Command:

...an open file within the client
workspace and the revision
last taken into the workspace

p4 diff file

...any file within the client
workspace and the revision
last taken into the workspace

p4 diff -f file

...a file within the client
workspace and the same file’s
current head revision

p4 diff file#head

...a file within the client
workspace and a specific
revision of the same file within
the depot

p4 diff file#revnumber

...the n-th and head revisions
of a particular file

p4 diff2 filespec filespec#n

...all files at changelist n and
the same files at changelist m

p4 diff2 filespec@n filespec@m
134 Perforce 2005.1 User’s Guide

Chapter 11: Reporting and Data Mining
The last example above bears further explanation; to understand how diff -dw works, it
is necessary to discuss how Perforce implements and calls underlying diff routines.

Perforce uses two separate diff routines: one that is built into the p4d server, and another
is used by the p4 client. Both diffs contain identical, proprietary code, but are used by
separate sets of commands. The client-side diff is used by p4 diff and p4 resolve, and
the server-side diff is used by p4 describe, p4 diff2, and p4 submit.

The diff algorithm accepts multiple options, including a -d flag that enables you to
generate RCS-style diffs, context diffs, unified diffs, and to determine what forms of
whitespace (if any) are accounted for during file comparison.

The Perforce server always uses Perforce’s diff algorithm, but Perforce client programs
can also use third-party diff utilities. To use a third-party diff utility, set the P4DIFF
environment variable to the full path name of the utility, and pass flags to the specified
diff program with the -d flag, just as you pass flags to the built-in diff routine. Flags
passed to the underlying diff are subject to the following rules:

• If the character immediately following the -d is not a single quote, then all the
characters between the -d and whitespace are prepended with a dash and sent to the
underlying diff.

• If the character immediately following the -d is a single quote, then all the characters
between the opening quote and the closing quote are prepended with a dash and sent
to the underlying diff.

The following examples demonstrate the use of these rules in practice.

...all files within two branched
codelines

p4 diff2 //depot/path1/... //depot/path2/...

...a file within the client
workspace and the revision
last taken into the workspace,
ignoring whitespace

p4 diff -dw file

To pass the following flag to an external client
diff program:

Then call p4 diff this way:

-u p4 diff -du

--brief p4 diff -d-brief

-C 25 p4 diff -d’C 25’

To See the Differences
between...

Use This Command:
Perforce 2005.1 User’s Guide 135

Chapter 11: Reporting and Data Mining
Changelists

Two separate commands are used to describe changelists. The first, p4 changes, lists
changelists that meet particular criteria, without describing the files or jobs that make up
the changelist. The second command, p4 describe, lists the files and jobs affected by a
single changelist. These commands are described below.

Viewing changelists that meet particular criteria

To view a list of changelists that meet certain criteria, such as changelists with a certain
status, or changelists that affect a particular file, use p4 changes.

The output looks like this:

By default, p4 changes displays an aggregate report containing one line for every
changelist known to the system, but command line flags and arguments can be used to
limit the changelists displayed to those of a particular status, those affecting a particular
file, or the last n changelists.

Currently, the output can’t be restricted to changelists submitted by particular users,
although you can write simple shell or Perl scripts to implement this (you’ll find an
example of such a script in the Perforce System Administrator’s Guide).

Change 36 on 1997/09/29 by edk@eds_elm ’Changed filtering me’
Change 35 on 1997/09/29 by edk@eds_elm ’Misc bug fixes: fixe’
Change 34 on 1997/09/29 by lisag@lisa ’Added new header inf’

To See a List of Changelists... Use This Command:

...with the first 31 characters of the
changelist descriptions

p4 changes

...with the complete description of each
changelist

p4 changes -l

...including only the last n changelists p4 changes -m n

...with a particular status (pending or
submitted)

p4 changes -s status

...from a particular user p4 changes -u user

...from a particular client workspace p4 changes -c workspace

...limited to those that affect particular files p4 changes filespec

...limited to those that affect particular
files, but including changelists that affect
files which were later integrated with the
named files

p4 changes -i filespec
136 Perforce 2005.1 User’s Guide

Chapter 11: Reporting and Data Mining
Files and jobs affected by changelists

To view a list of files and jobs affected by a particular changelist, along with the diffs of the
new file revisions and the previous revisions, use p4 describe.

The output of p4 describe looks like this:

...limited to changelists that affect
particular files, including only those
changelists between revisions m and n of
these files

p4 changes filespec#m,#n

...limited to those that affect particular files
at each files revisions between labels lab1
and lab2

p4 changes filespec@lab1,@lab2

...limited to those between two dates p4 changes @date1,@date2

...between an arbitrary date and the
present day

p4 changes @date1,@now

Note For details about Perforce commands that support the use of revision
ranges with file specifications, see “Specifying ranges of revisions” on
page 56.

Change 43 by lisag@warhols on 1997/08/29 13:41:07

 Made grammatical changes to basic Elm documentation

Jobs fixed...

job000001 fixed on 1997/09/29 by edk@edk
 Fix grammar in main Elm help file

Affected files...

... //depot/doc/elm.1#2 edit

Differences...

==== //depot/doc/elm.1#2 (text) ====
53c53
> Way number 2, what is used common-like when, you know, like

> The second method is commonly used when transmitting

...<etc.>

To See a List of Changelists... Use This Command:
Perforce 2005.1 User’s Guide 137

Chapter 11: Reporting and Data Mining
This output is quite lengthy, but a shortened form that eliminates the diffs can be
generated with p4 describe -s changenum.

For more commands that report on jobs, see “Job Reporting” on page 139.

Labels

Reporting on labels is accomplished with a very small set of commands. The only
command that reports only on labels, p4 labels, prints its output in the following
format:

The other label reporting commands are variations of commands we’ve seen earlier.

To See: Use This Command:

...a list of files contained in a pending changelist p4 opened -c changelist#

...a list of all files submitted and jobs fixed by a
particular changelist, displaying the diffs between
the file revisions submitted in that changelist and
the previous revisions

p4 describe changenum

...a list of all files submitted and jobs fixed by a
particular changelist, without the file diffs

p4 describe -s changenum

...a list of all files and jobs affected by a particular
changelist, while passing the context diff flag to
the underlying diff program

p4 describe -dc changenum

...the state of particular files at a particular
changelist, whether or not these files were affected
by the changelist

p4 files filespec@changenum

Label release1.3 1997/5/18 ’Created by edk’
Label lisas_temp 1997/10/03 ’Created by lisag’
...<etc.>

To See: Use This Command:

...a list of all labels, the dates they were created, and the
name of the user who created them

p4 labels

...a list of all labels containing a specific revision (or
range)

p4 labels file#revrange

...a list of files that have been included in a particular
label with p4 labelsync

p4 files @labelname

...what p4 sync would do when retrieving files from a
particular label into your client workspace

p4 sync -n @labelname
138 Perforce 2005.1 User’s Guide

Chapter 11: Reporting and Data Mining
Branch and Integration Reporting

The plural form command of branch, p4 branches, lists the different branches in the
system, along with their owners, dates created, and descriptions. Separate commands are
used to list files within a branched codeline, to describe which files have been integrated,
and to perform other branch-related reporting.

The table below describes the most commonly used commands for branch- and
integration-related reporting.

Job Reporting

Two commands report on jobs. The first, p4 jobs, reports on all jobs known to the system,
while the second command, p4 fixes, reports only on those jobs that have been attached
to changelists. Both of these commands have numerous options.

Basic job information

To see a list of all jobs known to the system, use p4 jobs. This command produces output
similar to the following:

To See: Use This Command:

...a list of all branches known to the system p4 branches

...a list of all files in a particular branched
codeline

p4 files filespec

...what a particular p4 integrate variation
would do, without actually doing the
integrate

p4 integrate [args] -n [filespec]

...a list of all the revisions of a particular file p4 filelog -i filespec

...what a particular p4 resolve variation
would do, without actually doing the resolve

p4 resolve [args] -n [filespec]

...a list of files that have been resolved but
have not yet been submitted

p4 resolved [filespec]

...a list of integrated, submitted files that
match the filespec arguments

p4 integrated filespec

...a list of all the revisions of a particular file,
including revision of the file(s) it was
branched from

p4 filelog -i filespec

job000302 on 1997/08/13 by saram *open* ’FROM: headers no’
filter_bug on 1997/08/23 by edk *closed* ’Can’t read filters w’
Perforce 2005.1 User’s Guide 139

Chapter 11: Reporting and Data Mining
Its output includes the job’s name, date entered, job owner, status, and the first 31
characters of the job description.

All jobs known to the system are displayed unless command-line options are supplied.
These options are described in the table below.

Jobs, fixes, and changelists

Any jobs that have been linked to a changelist with p4 change, p4 submit, or p4 fix is
said to be fixed, and can be reported with p4 fixes.

The output of p4 fixes looks like this:

A number of options enable you to report only the set of changes that fix a particular job,
the jobs fixed by a particular changelist, or jobs fixed by changelists that are linked to
particular files.

A fixed job does not necessarily have a status of closed, because open jobs can be linked
to pending changelists, and because pending jobs can be reopened even after the
associated changelist has been submitted.

Other job reporting commands include:

To See a List of Jobs: Use This Command:

...including all jobs known to the server p4 jobs

...including the full texts of the job descriptions p4 jobs -l

...for which certain fields contain particular values (For more
about jobviews, see “Viewing jobs by content with jobviews”
on page 120)

p4 jobs -e jobview

...that have been fixed by changelists that contain specific files p4 jobs filespec

...that have been fixed by changelists that contain specific
files, including changelists that contain files that were later
integrated into the specified files

p4 jobs -i filespec

job000302 fixed by change 634 on 1997/09/01 by edk@eds_elm
filter_bug fixed by change 540 on 1997/10/22 by edk@eds_elm

To See a Listing of... Use This Command:

...all fixes for all jobs p4 fixes

...all changelists linked to a particular job p4 fixes -j jobname

...all jobs linked to a particular changelist p4 fixes -c changenum

...all jobs fixed by changelists that contain particular files p4 fixes filespec
140 Perforce 2005.1 User’s Guide

Chapter 11: Reporting and Data Mining
Reporting for Daemons

The Perforce change review mechanism uses the following reporting commands. Any of
these commands might also be used with user-created daemons. For further information
on daemons, please see the Perforce System Administrator’s Guide.

Listing Users, Workspaces, and Depots

Three commands report on the Perforce system configuration. One command reports on
all Perforce users, another prints data describing all client workspaces, and a third reports
on Perforce depots.

p4 users generates its data as follows:

Each line includes a username, an email address, the user’s “real” name, and the date that
Perforce was last accessed by that user.

To report on client workspaces, use p4 clients:

...all jobs fixed by changelists that contain particular files,
including changelists that contain files that were later
integrated with the specified files

p4 fixes -i filespec

...all jobs still open. p4 jobs -e status=open

To list... Use this Command:

...the names of all counter variables currently used by
your Perforce system

p4 counters

...the numbers of all changelists that have not yet
been reported by a particular counter variable

p4 review -t countername

...all users who have subscribed to review particular
files

p4 reviews filespec

...all users who have subscribed to read any files in a
particular changelist

p4 reviews -c changenum

...a particular user’s email address p4 users username

edk <edk@eds_ws> (Ed K.) accessed 1997/07/13
lisag <lisa@lisas_ws> (Lisa G.) accessed 1997/07/14

Client eds_elm 1997/09/12 root /usr/edk ’Ed’s Elm workspace’
Client lisa_doc 1997/09/13 root /usr/lisag ’Created by lisag.’

To See a Listing of... Use This Command:
Perforce 2005.1 User’s Guide 141

Chapter 11: Reporting and Data Mining
Each line includes the client name, the date the client was last updated, the client root, and
the description of the client.

Depots can be reported with p4 depots. All depots known to the system are reported on;
the described fields include the depot’s name, its creation date, its type (local or remote),
its IP address (if remote), the mapping to the local depot, and the system administrator’s
description of the depot. See the Perforce System Administrator’s Guide for more about using
more than one depot on a single Perforce server.

Special Reporting Flags

Two special flags, -o and -n, can be used with certain action commands to change their
behavior from action to reporting.

The -o flag is available with most of the Perforce commands that normally bring up forms
for editing. This flag tells these commands to write the form information to standard
output, instead of bringing the definition into the user’s editor. This flag is supported by
the following commands:

The -n flag prevents commands from doing their job. Instead, the commands simply tell
you what they would ordinarily do. You can use the -n flag with the following commands

To view: Use This Command:

...user information for all Perforce users p4 users

...user information for only certain users p4 users username

...brief descriptions of all client workspaces p4 clients

...a list of all defined depots p4 depots

p4 branch p4 client p4 label

p4 change p4 job p4 user

p4 integrate p4 resolve p4 labelsync p4 sync
142 Perforce 2005.1 User’s Guide

Appendix A Installing Perforce
This appendix outlines how to install a Perforce Server for the first time.

This appendix is mainly intended for people installing an evaluation copy of Perforce for
trial use; if you’re installing Perforce for production use, or are planning on extensive
testing of your evaluation server, we strongly encourage you to read the detailed
information in the Perforce System Administrator’s Guide.

Getting Perforce

Perforce requires at least two executables: the server (p4d), and at least one Perforce client
program (such as p4 on UNIX, or p4.exe or p4win.exe on Windows).

The server and client executables are available from the Downloads page on the Perforce
web site:

http://www.perforce.com/perforce/loadprog.html

Go to the web page, select the files for your platform, and save the files to disk.

UNIX Installation

Although you can install p4 and p4d in any directory, on UNIX, the Perforce client
programs typically reside in /usr/local/bin, and the Perforce server is usually located
either in /usr/local/bin or in its own server root directory. Perforce client programs can
be installed on any machine that has TCP/IP access to the p4d host.

To limit access to the Perforce server files, ensure that the p4d executable is owned and
run by a Perforce user account that has been created for the purpose of running the
Perforce server.

To start using Perforce:

1. Download the p4 and p4d files for your platform from the Perforce web site.

2. Make the downloaded p4 and p4d files executable.

3. Create a server root directory to hold the Perforce database and versioned files.

4. Tell the Perforce server what port to listen to by specifying a TCP/IP port to p4d.

5. Start the Perforce server (p4d).

6. Specify the name or TCP/IP address of the Perforce server machine and the p4d port
number to the Perforce client program(s) by setting the P4CLIENT environment
variable.
Perforce 2005.1 User’s Guide 143

Appendix A: Installing Perforce
Download the files and make them executable

On UNIX (or MacOS X), you must make the Perforce executables (p4 and p4d) executable.
After downloading the programs, use the chmod command to make them executable, as
follows:

Creating a Perforce server root directory

Perforce stores all of its data in files and subdirectories of its own root directory, which
can reside anywhere on the server system. This directory is called the server root.

To specify a server root, set the environment variable P4ROOT to point to the server root, or
use the -r root_dir flag when invoking p4d. Perforce client programs never use the
P4ROOT directory or environment variable; the p4d server is the only process that uses the
P4ROOT variable.

A Perforce server requires no privileged access; there is no need to run p4d as root or any
other privileged user. See the System Administrator’s Guide for details.

The server root can be located anywhere, but the account that runs p4d must have read,
write, and execute permissions on the server root and all directories beneath it. For
security purposes, set the umask(1) file creation-mode mask of the account that runs p4d
to a value that denies other users access to the server root directory.

Telling the Perforce server which port to listen to

The Perforce server and client programs communicate with each other using TCP/IP.
When p4d starts, it listens (by default) on port 1666. Perforce client programs assume (also
by default) that the p4d server is located on a host named perforce, listening on port
1666.

If p4d is to listen on a different port, specify that port with the -p port_num flag when
starting p4d (as in, p4d -p 1818), or set the port with the P4PORT environment or registry
variable before starting p4d.

Unlike P4ROOT, the environment variable P4PORT is used by both the Perforce server and
Perforce client programs, and must be set on both Perforce server machines and Perforce
client workstations.

Starting the Perforce server

After setting p4d’s P4PORT and P4ROOT environment variables, start the server by running
p4d in the background with the command:

p4d &

chmod +x p4
chmod +x p4d
144 Perforce 2005.1 User’s Guide

Appendix A: Installing Perforce
Although the example shown is sufficient to run p4d, other flags that control such things
as error logging, checkpointing, and journaling, can be provided. These flags (and others)
are discussed in the Perforce System Administrator’s Guide.

Telling Perforce clients which port to talk to

By this time, your Perforce server should be up and running; see “Connecting to the
Perforce Server” on page 21 for information on how to set up your environment to allow
Perforce’s client programs to talk to the server.

Stopping the Perforce server

To shut down a Perforce server, use the command:
p4 admin stop

to gracefully shut down the Perforce server. Only a Perforce superuser can use p4 admin
stop.

If you are running a release of Perforce from prior to 99.2, you must find the process ID of
the p4d server and kill the process manually from the UNIX shell. Use kill -15 (SIGTERM)
instead of kill -9 (SIGKILL), as p4d might leave the database in an inconsistent state if
p4d is in the middle of updating a file when a SIGKILL signal is received.

Windows Installation

To install Perforce on Windows, use the Perforce installer (perforce.exe) from the
Downloads page of the Perforce web site.

The Perforce installer allows you to:

• Install Perforce client software (“User install”).

This option allows you to install p4.exe (the Perforce Command-Line Client),
p4win.exe (P4Win, the Perforce Windows Client), and p4scc.dll (Perforce’s
implementation of the Microsoft common SCM interface).

• Install Perforce as either a Windows server or service as appropriate. (“Administrator
typical” and “Administrator custom” install).

These options allow you to install Perforce client programs and the Perforce Windows
server (p4d.exe) and service (p4s.exe) executables, or to automatically upgrade an
existing Perforce server or service running under Windows.

Under Windows 2000 or higher, you must have Administrator privileges to install
Perforce as a service, and Power User privileges to install Perforce as a server.
Perforce 2005.1 User’s Guide 145

Appendix A: Installing Perforce
• Uninstall Perforce: remove the Perforce server, service, and client executables, registry
keys, and service entries. The Perforce database and the depot files stored under your
server root are preserved.

Windows services and servers

The terms “Perforce server” and “p4d” are used interchangeably to refer to “the process
which handles requests from Perforce client programs”. In cases where the distinction
between an NT server and an NT service is important, the distinction is made.

On UNIX systems, there is only one Perforce “server” program (p4d) responsible for this
back-end task. On Windows, however, the back-end program can be started either as a
Windows service (p4s.exe) process that runs at boot time, or as a server (p4d.exe)
process that must be invoked from a command prompt.

The Perforce service (p4s.exe) and the Perforce server (p4d.exe) executables are copies
of each other; they are identical apart from their filenames. When run, the executables use
the first three characters of the name with which they were invoked (either p4s or p4d) to
determine their behavior. (For example, invoking copies of p4d.exe named
p4smyservice.exe or p4dmyserver.exe invoke a service and a server, respectively.)

In most cases, it is preferable to install Perforce as a service, not a server. For a more
detailed discussion of the distinction between services and servers, see the Perforce System
Administrator’s Guide.

Starting and stopping Perforce

If you install Perforce as a service under Windows, the service starts whenever the
machine boots. Use the Services applet in the Control Panel to control the Perforce
service’s behavior.

If you install Perforce as a server under Windows, invoke p4d.exe from a command
prompt. The flags for p4d under Windows are the same as those used under UNIX.

To stop a Perforce service (or server) at Release 99.2 or above, use the command:
p4 admin stop

Only a Perforce superuser can use p4 admin stop.

For older revisions of Perforce, shut down services manually by using the Services applet
in the Control Panel. Shut down servers running in command prompt windows by
typing CTRL-C in the window or by clicking on the icon to Close the command prompt
window.

Although these manual shutdown options work with Release 99.2 and earlier versions of
Perforce, they are not necessarily “clean”, in the sense that the server or service is shut
down abruptly. With the availability of the p4 admin stop command in 99.2, the manual
shutdown options are obsolete.
146 Perforce 2005.1 User’s Guide

Appendix B Environment Variables
This table lists all the Perforce environment variables and their definitions.

You’ll find a full description of each variable in the Perforce Command Reference.

Variable Definition

P4CHARSET For internationalized installations only, the character set to use for
Unicode translations

P4CLIENT Name of current client workspace

P4CONFIG File name from which values for current environment variables are to
be read

P4DIFF The name and location of the diff program used by p4 resolve and
p4 diff

P4EDITOR The editor invoked by those Perforce commands that use forms

P4HOST Name of host computer to use. Only used if the Host: field of the
current client workspace has been set in the p4 client form.

P4JOURNAL A file that holds the database journal data, or off to disable
journaling.

P4LANGUAGE This variable is reserved for system integrators.

P4LOG Name and path of the file to which Perforce server error and
diagnostic messages are to be logged.

P4MERGE A third-party merge program to be used by p4 resolve’s merge
option

P4PAGER The program used to page output from p4 resolve’s diff option

P4PASSWD Stores the user’s password as set in the p4 user form

P4PORT For the Perforce server, the port number to listen on; for the p4
client, the name and port number of the Perforce server with which
to communicate

P4ROOT Directory in which p4d stores its files and subdirectories

P4TICKETS Specifies the location of the ticket file

P4USER The user’s Perforce username

PWD The directory used to resolve relative filename arguments to p4
commands

TMP The directory to which Perforce writes its temporary files
Perforce 2005.1 User’s Guide 147

Appendix B: Environment Variables
Setting and viewing environment variables

Every operating system and shell has its own syntax for setting environment variables.
The following table shows how to set the P4CLIENT environment variable in several
operating systems and command shells.

To view a list of the values of all Perforce variables, use p4 set without any arguments.

On UNIX, p4 set displays the values of the associated environment variables. On
Windows, p4 set displays either the MS-DOS environment variable (if set), or the value as
set in the registry and whether the value was defined with p4 set (to apply to only the
current user) or p4 set -s (to apply to all users on the local machine).

OS or Shell Environment Variable Example

UNIX: ksh, sh, bash P4CLIENT=value ; export P4CLIENT

UNIX: csh setenv P4CLIENT value

VMS def/j P4CLIENT “value”

Mac MPW set -e P4CLIENT value

Windows p4 set P4CLIENT=value

(See the p4 set section of the Perforce Command Reference or run
the command p4 help set to learn more about setting
Perforce’s registry variables in Windows).

Windows administrators running Perforce as a service can set
variables for use by a specific service with p4 set -S svcname
var=value.
148 Perforce 2005.1 User’s Guide

Appendix C Glossary
Term Definition

access level A permission assigned to a user to control which Perforce
commands the user can execute. See protections.

admin access An access level that gives the user permission to run Perforce
commands that override metadata, but do not affect the state of
the server.

apple file type Perforce file type assigned to Macintosh files that are stored
using AppleSingle format, permitting the data fork and
resource fork to be stored as a single file.

atomic change
transaction

Grouping operations affecting a number of files in a single
transaction. If all operations in the transaction succeed, all the
files are updated. If any operation in the transaction fails, none
of the files are updated.

base The file revision on which two newer, conflicting file revisions
are based.

binary file type Perforce file type assigned to a non-text file. By default, the
contents of each revision are stored in full and the file is stored
in compressed format.

branch (noun) A codeline created by copying another codeline, as
opposed to a codeline that was created by adding original files.
branch is often used as a synonym for branch view.

(verb) To create a codeline branch with p4 integrate.

branch form The Perforce form you use to modify a branch.

branch specification Specifies how a branch is to be created by defining the location
of the original codeline and the branch. The branch
specification is used by the integration process to create and
update branches. Client workspaces, labels, and branch
specifications cannot share the same name.

branch view A specification of the branching relationship between two
codelines in the depot. Each branch view has a unique name,
and defines how files are mapped from the originating codeline
to the target codeline. See branch.
Perforce 2005.1 User’s Guide 149

Appendix C: Glossary
changelist An atomic change transaction in Perforce. The changes
specified in the changelist are not stored in the depot until the
changelist is submitted to the depot.

changelist form The Perforce form you use to modify a changelist.

changelist
number

The unique numeric identifier of a changelist.

change review The process of sending email to users who have registered their
interest in changes made to specified files in the depot.

checkpoint A copy of the underlying server metadata at a particular
moment in time. See metadata.

client form The Perforce form you use to define a client workspace.

client name A name that uniquely identifies the current client workspace.

client root The root directory of a client workspace. If two or more client
workspaces are located on one machine, they cannot share a
root directory.

client side The right-hand side of a mapping within a client view,
specifying where the corresponding depot files are located in
the client workspace.

client view A set of mappings that specifies the correspondence between
file locations in the depot and the client workspace.

client workspace Directories on the client computer where you work on file
revisions managed by Perforce. By default, the client
workspace name assumed to be name of the host machine on
which the client workspace is located; set the P4CLIENT
environment variable to override the default name, Client
workspaces, labels, and branch specifications cannot share the
same name.

codeline A set of files that evolve collectively. One codeline can be
branched from another, allowing each set of files to evolve
separately.

Term Definition
150 Perforce 2005.1 User’s Guide

Appendix C: Glossary
conflict One type of conflict occurs when two users open a file for edit.
One user submits the file; after which the other user can’t
submit because of a conflict. The cause of this type of conflict is
two users opening the same file.

The other type of conflict is when users try to merge one file
into another. This type of conflict occurs when the comparison
of two files to a common base yields different results, indicating
that the files have been changed in different ways. In this case,
the merge can’t be done automatically and must be done by
hand. The type of conflict is caused by non-matching diffs.

See file conflict.

counter A numeric variable used by Perforce to track changelist
numbers in conjunction with the review feature.

default changelist The changelist used by Perforce commands, unless a numbered
changelist is specified. A default pending changelist is created
automatically when a file is opened for edit.

default depot The depot name that is assumed when no name is specified.
The default depot name is depot.

deleted file In Perforce, a file with its head revision marked as deleted.
Older revisions of the file are still available.

delta The differences between two files.

depot A file repository on the Perforce server. It contains all versions
of all files ever submitted to the server. There can be multiple
depots on a single server.

depot root The root directory for a depot.

depot side The left side of any client view mapping, specifying the location
of files in a depot.

depot syntax Perforce syntax for specifying the location of files in the depot.

detached A client computer that cannot connect to a Perforce server.

diff A set of lines that don’t match when two files are compared. A
conflict is a pair of unequal diffs between each of two files and a
common third file.

donor file The file from which changes are taken when propagating
changes from one file to another.

exclusionary mapping A view mapping that excludes specific files.

Term Definition
Perforce 2005.1 User’s Guide 151

Appendix C: Glossary
exclusionary access A permission that denies access to the specified files.

file conflict In a three-way file merge, a situation in which two revisions of
a file differ from each other and from their base file.

Also: an attempt to submit a file that is not an edit of the head
revision of the file in the depot; typically occurs when another
user opens the file for edit after you have opened the file for
edit.

file pattern Perforce command line syntax that enables you to specify files
using wildcards.

file repository The master copy of all files; shared by all users. In Perforce, this
is called the depot.

file revision A specific version of a file within the depot. Each revision is
assigned a number, in sequence. Any revision can be accessed
in the depot by its revision number, for example: testfile#3.

file tree All the subdirectories and files under a given root directory.

file type An attribute that determines how Perforce stores and diffs a
particular file. Examples of file types are text and binary.

fix A job that has been linked to a changelist.

form Screens displayed by certain Perforce commands. For example,
you use the Perforce change form to enter comments about a
particular changelist and to verify the affected files.

full-file
storage

The method by which Perforce stores revisions of binary files in
the depot: every file revision is stored in full. Contrast this with
reverse delta storage, which Perforce uses for text files.

get An obsolete Perforce term: replaced by sync.

group A list of Perforce users.

have list The list of file revisions currently in the client workspace.

head revision The most recent revision of a file within the depot. Because file
revisions are numbered sequentially, this revision is the
highest-numbered revision of that file.

integrate To compare two sets of files (for example, two codeline
branches) and

• determine which changes in one set apply to the other,
• determine if the changes have already been propagated,
• propagate any outstanding changes.

Term Definition
152 Perforce 2005.1 User’s Guide

Appendix C: Glossary
Inter-File
Branching

Perforce’s proprietary branching mechanism.

job A user-defined unit of work tracked by Perforce. The job
template determines what information is tracked. The template
can be modified by the Perforce system administrator

job specification A specification containing the fields and valid values stored for
a Perforce job.

job view A syntax used for searching Perforce jobs.

journal A file containing a record of every change made to the Perforce
server’s metadata since the time of the last checkpoint.

journaling The process of recording changes made to the Perforce server’s
metadata.

label A named list of user-specified file revisions.

label view The view that specifies which file names in the depot can be
stored in a particular label.

lazy copy A method used by Perforce to make internal copies of files
without duplicating file content in the depot. Lazy copies
minimize the consumption of disk space by storing references
to the original file instead of copies of the file.

license file Ensures that the number of Perforce users on your site does not
exceed the number for which you have paid.

list access A protection level that enables you to run reporting commands
but prevents access to the contents of files.

local depot Any depot located on the current Perforce server.

local syntax The operating-system-specific syntax for specifying a file name.

lock A Perforce file lock prevents other clients from submitting the
locked file. Files are unlocked with the p4 unlock command or
submitting the changelist that contains the locked file.

log Error output from the Perforce server. By default, error output
is written to standard error. To specify a log file, set the P4LOG
environment variable, or use the p4d -L flag.

Term Definition
Perforce 2005.1 User’s Guide 153

Appendix C: Glossary
mapping A single line in a view, consisting of a left side and a right side
that specify the correspondences between files in the depot and
files in a client, label, or branch. The left side specifies the depot
file and the right side specifies the client files.

(See also client view, branch view, label view).

MD5 checksum The method used by Perforce to verify the integrity of archived
files.

merge The process of combining the contents of two conflicting file
revisions into a single file.

merge file A file generated by Perforce from two conflicting file revisions.

metadata The data stored by the Perforce server that describes the files in
the depot, the current state of client workspaces, protections,
users, clients, labels, and branches. Metadata includes all the
data stored in the server except for the actual contents of the
files.

modification time The time a file was last changed.

nonexistent
revision

A completely empty revision of any file. Syncing to a
nonexistent revision of a file removes it from your workspace.
An empty file revision created by deleting a file and the #none
revision specifier are examples of nonexistent file revisions.

numbered changelist A pending changelist to which Perforce has assigned a number.

open file A file that you are changing in your client workspace.

owner The Perforce user who created a particular client, branch, or
label.

p4 The Perforce Command-Line Client program, and the
command you issue to execute Perforce commands from the
operating system command line.

p4d The Perforce Server; a program running on a Perforce server
machine that manages the depot and the metadata for a
Perforce installation.

P4Diff A Perforce application that displays the differences between
two files. P4Diff is the default application used to compare
files during the file resolution process.

P4V The Perforce Visual Client, a graphical interface to Perforce for
Linux, Mac OS X, and Windows.

P4Web The Perforce Web Client, a web-based interface to Perforce.

Term Definition
154 Perforce 2005.1 User’s Guide

Appendix C: Glossary
P4Win The Perforce Windows Client, a Windows Explorer-style
application that enables you to perform Perforce operations
and view results graphically.

pending changelist A changelist that has not been submitted.

Perforce server The Perforce depot and metadata on a central host. Also the
program that manages the depot and metadata.

protections The permissions stored in the Perforce server’s protections
table.

RCS format Revision Control System format. Used for storing revisions of
text files. RCS format uses reverse delta encoding for file
storage. Perforce uses RCS format to store text files. See also
reverse delta storage.

read access A protection level that enables you to read the contents of files
managed by Perforce.

remote depot A depot located on a server other than the current Perforce
server.

reresolve The process of resolving a file after the file is resolved and
before it is submitted

resolve The process you use to reconcile the differences between two
revisions of a file.

resource fork One fork of a Macintosh file. (Macintosh files are composed of a
resource fork and a data fork.) You can store resource forks in
Perforce depots as part of an AppleSingle file by using
Perforce’s apple file type.

reverse delta
storage

The method that Perforce uses to store revisions of text files.
Perforce stores the changes between each revision and its
previous revision, plus the full text of the head revision.

revert To discard the changes you have made to a file in the client
workspace.

review access A special protections level that includes read and list
accesses, and grants permission to run the review command.

review daemon Any daemon process that uses the p4 review command. See
also change review.

revision number A number indicating which revision of the file is being referred
to.

Term Definition
Perforce 2005.1 User’s Guide 155

Appendix C: Glossary
revision range A range of revision numbers for a specified file, specified as the
low and high end of the range. For example, file#5,7 specifies
revisions 5 through 7 of file file.

revision specification A suffix to a filename that specifies a particular revision of that
file. Revision specifiers can be revision numbers, change
numbers, label names, date/time specifications, or client
names.

server In Perforce, the program that executes the commands sent by
client programs. The Perforce server (p4d) maintains depot files
and metadata describing the files, and tracks the state of client
workspaces.

server root The directory in which the server program stores its metadata
and all the shared files. To specify the server root, set the
P4ROOT environment variable.

status For a changelist, a value that indicates whether the changelist is
new, pending, or submitted. For a job, a value that indicates
whether the job is open, closed, or suspended. You can
customize job statuses.

submit To send a pending changelist and changed files to the Perforce
server for processing.

subscribe To register to receive email whenever changelists that affect
particular files are submitted.

super access An access level that gives the user permission to run every
Perforce command, including commands that set protections,
install triggers, or shut down the server for maintenance.

symlink file type A Perforce file type assigned to UNIX symbolic links. On non-
UNIX clients, symlink files are stored as text files.

sync To copy a file revision (or set of file revisions) from the depot to
a client workspace.

target file The file that receives the changes from the donor file when you
are integrating changes between a branched codeline and the
original codeline.

text file type Perforce file type assigned to a file that contains only ASCII text.
See also binary file type.

theirs The revision in the depot with which the client file is merged
when you resolve a file conflict. When you are working with
branched files, theirs is the donor file.

Term Definition
156 Perforce 2005.1 User’s Guide

Appendix C: Glossary
three-way merge The process of combining three file revisions. During a three-
way merge, you can identify where conflicting changes have
occurred and specify how you want to resolve the conflicts.

tip revision In Perforce, the head revision. Tip revision is a term used by some
other SCM systems.

trigger A script automatically invoked by the Perforce server when
changelists are submitted.

two-way merge The process of combining two file revisions. In a two-way
merge, you can see differences between the files but cannot see
conflicts.

typemap A Perforce table in which you assign Perforce file types to files.

user The identifier that Perforce uses to determine who is
performing an operation.

view A description of the relationship between two sets of files. See
client view, label view, branch view.

wildcard A special character used to match other characters in strings.
Perforce wildcards are:

• * matches anything except a slash
• ... matches anything including slashes
• %%d is used for parameter substitution in views

write access A protection level that enables you to run commands that alter
the contents of files in the depot. Write access includes read
and list accesses.

yours The edited version of a file in the client workspace, when you
resolve a file. Also, the target file when you integrate a
branched file.

Term Definition
Perforce 2005.1 User’s Guide 157

Appendix C: Glossary
158 Perforce 2005.1 User’s Guide

 Index
Symbols
#

forbidden in filenames 51
in filenames 52

#have

specifying the revision synced-to 55
#head

specifying the latest revision 54
#none 54
%

forbidden in filenames 51
in filenames 52

%0 .. %n 40, 42
*

in filenames 52
* (wildcard) 40, 121
+k flag

keyword expansion 57
... (wildcard) 40
=

operator in job queries 122
>

operator in job queries 122
>>>>

as diff marker 71
@

forbidden in filenames 51
in filenames 52
syncing to a label’s contents 97

^

operator in job queries 121
A
accepting

files when resolving 73
access level

defined 149
adding files to depot 29
administration

depot configuration 87

allwrite client option 45
annotate 133
architecture of Perforce 14
atomic change transactions 89

branching and integration 112
defined 14, 149
example 32

automating Perforce 63
B
base

defined 149
resolving 70

base file types 57
baseless merge 112
basics of Perforce 25
BeOS

symbolic links 58
binary files

how files are stored 58
resolving 75

branch specs
branching with 109
creating 109
deleting 113
example 110
exclusionary mappings allowed 111
usage notes 111
using with p4 integrate -b 110

branch views
creating 109
defined 149

branches
comparing files between 135
defined 149
deleting 113
listing files in 139
propagating changes between files 108,

111
when to create 105
Perforce 2005.1 User’s Guide 159

Index
branching
automatic 109
branch command 109
branch spec example 110
codelines and 105
copying files vs. 108
defined 105
files without common ancestors 112
for more information 116
introduced 16
manually, with p4 integrate 107
reporting 139
reverse integration and 112
two techniques 106
when to branch 105

bug tracking 13
build management 13
C
carriage return 45
change management 13
change review 13

defined 150
changelist

default 29
submitting 29

changelist number
defined 150

changelists
adding and removing files 90
associated jobs 93, 137, 140
atomic change transactions and 89
automatic renumbering of 92
default 89
default (defined) 151
defined 149
deleting 93
files open in 89
introduced 14
jobs 123
jobs vs. 16, 117
moving files between 90
numbered 89, 90, 95
p4 reopen command 93

pending (defined) 155
processed atomically 14
reporting 93, 136
reporting by user 93
scheduling resolves 68
status of 90

changes
conflicting 67, 71
how to propagate between codelines 109
propagating between codelines 108, 109
undoing with p4 revert 34

chunks, diff 70
client files

mapping to depot files 131
client programs 14, 21
client root

changing 47
defined 37, 150
null 44
specifying 27

client side (of mapping) 39
client specification

defining 26
deleting 49
editing 45

client syntax 49
client view

changing 47
defined 150
exclusionary mappings 42
introduced 15
specifying 27, 38

client workspace
changing client root 47
changing view 47
comparing files against depot 77, 135
defined 25, 37, 150
displaying files 64
listing 141
moving files between client and server 14
options 45
p4 have command 35
populating 28, 97
160 Perforce 2005.1 User’s Guide

Index
spanning multiple drives 44
specifying 25, 26
state of 37
switching between 26
user directories 14

client/server architecture 14
clobber client option 45
codelines

branching and 105
comparing files between 135
defined 150
listing files in 139
propagating changes between 109
resolving differences between 109
when to branch 105

command line
specifying files 49

command-line
common flags and p4 help usage 35
flags, common to all commands 83

commands
applying to multiple revisions at once 56
forms and 63
reporting 35, 64, 77, 126, 129

comparing
files 134

compress client option 45
concurrent development 13
configuration

changing 81
configuration files 81
conflicting changes 67
conflicts

file 15, 75
file (defined) 152

counter
defined 151

CR/LF translation 45, 47
creating

jobs 118
crlf client option 45
cross-platform development

line endings 47

customizing
job specification 119

D
daemons

reporting 141
default changelist 29

defined 151
using 89

default depot
defined 151

default job specification 118
default port number 22
defect tracking

interfacing with third-party products 126
jobs and 16
using jobs 117

deleting
branch specs 113
client specifications 49
files 29, 31
jobs 126
labels 97

delta
defined 151

depot
adding files from workspace 29
changelists and 14
comparing against files in workspace 135
compressing files 58
copying files to workspace 28
default (defined) 151
defined 14, 25, 151
listing 141
local (defined) 153
mapping to client files 131
multiple 44
organizing 87
remote (defined) 155
side of mapping 39
syntax (defined) 151
updating after working offline 85

depot syntax 49
detached
Perforce 2005.1 User’s Guide 161

Index
defined 151
development

concurrent 13
distributed 13

diff
chunks 70
excluding 93
markers 71
suppressing display 138
two algorithms used by Perforce 135

diffs
annotated 133

directories
and spaces 52
client workspace 14
removing empty 46

distributed development 13
donor file

defined 151
E
editing

client specifications 45
files 29, 31

email notification 150
environment variables

P4CHARSET 147
P4CLIENT 26, 147
P4CONFIG 81, 147
P4DIFF 147
P4EDITOR 25, 63, 147
P4HOST 147
P4JOURNAL 147
P4LOG 147
P4MERGE 147
P4PAGER 147
P4PASSWD 79, 147
P4PORT 22, 147
P4ROOT 147
P4TICKETS 147
P4USER 147
PWD 147
setting 148
TMP 147

error messages 23
examples

adding files to depot 29
advanced integration 113
branch spec 110
combining file type modifiers 57
creating a label 98
filling forms with -i and -o 64
linking jobs and changelists 123, 124
p4 job 118
propagating changes to branches 111
RCS keyword expansion 62
reporting on jobs 126
resolving file conflicts 73
use of %0 .. %n wildcard 42

exclusionary mappings
branch specs and 111
client views and 42
defined 151

exclusive-open
locking vs. 75

F
fields

jobviews and 122
file conflict

defined 152
introduced 15
resolving 73

file format
RCS (defined) 155

file repository
defined 152

file revision
defined 152

file specifications
branching with 107

file type modifiers
combining 57
listed 59

file types
+l 75
apple 58
binary 58
162 Perforce 2005.1 User’s Guide

Index
compressed in depot 58
determined by Perforce 57
determining 57
explained 57
keywords 61
listed 58, 61
overview 57
partial 58
resource 59
specifying 57, 59
symlink 58
text 58

filenames
and spaces 52
forbidden characters 53
spaces in 51
special characters 52

files
adding to depot 29
annotated 133
binary 75
changelist revision specifier 54
changelists and 14
changing type 57
client workspace 37
client workspace revision specifier 54
command line syntax 49
commands for reporting 129
comparing 77, 134
conflicting 67, 77
copying vs. branching 108
deleting from depot 29, 31
deleting from labels 97
displaying branch contents 139
displaying contents 132
displaying integrated and submitted 139
displaying label contents 103, 138
displaying mappings 64
displaying opened 64, 131
displaying resolved but not submitted 77,

139
displaying revision history 64
displaying workspace contents 64

donor (defined) 151
editing 29, 31
have revision 55
head revision 54
integrating 113
label revision specifier 54
listing with p4 files 64
locked 76
locking 75
managed by Perforce 37
merging 70, 71
merging (defined) 154
modifying a changelist 90
moving between changelists 90
moving between workspace and server

14, 28
multi-forked 58
nonexistent revision 54
opening 29, 89
permissions 45, 59
propagating changes between branches

108
removing from workspace 54
renaming 86
reopening in other changelist 93
re-resolving 114
resolving 69, 73
result 70
specifying revision 53, 54, 55, 56
specifying type 57, 59
submitting changes to depot 29
target (defined) 156
text 57
text (defined) 156
theirs (defined) 156
types of 57
undoing changes 34
wildcards 40
working offline 85
yours (defined) 157

fix
defined 152
jobs and changelists 140
Perforce 2005.1 User’s Guide 163

Index
flags
common to all commands 35, 83
-i flag 63
-n flag 142
-o flag 142

forms
automating processing of 63
P4EDITOR 25, 63
standard input/output and 63
using 63

G
getting started with Perforce 25
group

defined 152
H
have list

defined 152
have revision

defined 55
head revision

defined 54, 152
resolving conflicts 68

help
displaying command help 35
displaying view syntax 35
p4 help command 35

history
displaying revision history 130

host
Perforce server 21

I
-i flag

filling forms with standard input 63
installation

UNIX 143
Windows 145

installing
on Windows 145

integration
advanced functions 113
defined 152
displaying integrated files 139
displaying submitted integrated files 139

files without common ancestors 112
forcing 114
lazy copy (defined) 153
previewing 139
reporting commands 116
reverse 112
specific file revisions 113
specifying direction of 112
technical explanation 114

Inter-File Branching 16
defined 153
use of 105

J
job specification

customizing 119
default 118
defined 153

job tracking 13, 16, 117
jobs 117

* wildcard 121
changelists 123
changelists associated 126, 137, 140
changelists vs. 16, 117
creating 118
defined 117
deleting 126
editing 118
jobviews 120, 122, 123
reporting 126, 139
searching 120, 122
third-party defect trackers and 126

K
keywords

expansion 57, 60
RCS examples 62
specifying Perforce file types 61

L
label specifier

without filenames 56
label view 98

defined 153
labels

changelist numbers vs. 95
164 Perforce 2005.1 User’s Guide

Index
changing owner of 101
client workspaces and 97
defined 153
deleting 97
deleting files from 97
displaying contents 102, 103, 138
introduced 15
locking 99
reporting 102, 138
unlocking 101

labelsync
ownership required 101
syntax 101

lazy copy 108
defined 153

lifecycle management 13
limitations

description lengths 51
valid filenames 51

line endings 47
LineEnd 47
linefeed convention 45
listing

file contents 132
files in a branch 139
files in a label 138
files resolved but not submitted 139
integrated and submitted files 139
jobs in system 139
opened files 131

local syntax
defined 49, 153
wildcards and 51

locked client option 45
locked files

finding 76
locking files 75

defined 153
p4 lock vs. +l 75

logging in 80
logging out 81
M
Macintosh

file types 58
line-ending convention 47
linefeed convention 45
resource fork 59
resource fork (defined) 155

mappings
client-side (defined) 150
conflicting 43
defined 154
depot and client sides 39
depot-side (defined) 151
directories with spaces 52
displaying 64, 131
examples 40
exclusionary 111
exclusionary (defined) 151
multiple 111
overlay 43
renaming client files 42
views and 39

markers, difference 71
merge

baseless 112
defined 70, 154
three-way 15, 71
three-way (defined) 157
two-way (defined) 157

merging
conflicting changes 71
files (defined) 154

metadata 130
defined 154

mode
files in workspace 45, 59

modtime client option 46
moving files

between changelists 90
multi-forked file 58
multiple depots 44
multiple mappings 111
N
-n flag

previewing commands 34, 35, 142
Perforce 2005.1 User’s Guide 165

Index
namespace
shared for labels, clients, branches, and

depots 98
network

data compression 45
new changelist 90
noallwrite client option 45
noclobber client option 45
nocompress client option 45
nocrlf client option 45
nomodtime client option 46
normdir client option 46
numbered changelists

creating 90
O
-o flag

scripting 63, 142
offline

working with Perforce 84
opened files

listing 64
operators

job queries 122
options

client workspace 45
p4 resolve command 71

overlay mappings 43
overriding 61
owner

changing label 101
P
p4 admin

and Windows 146
stopping server with 145

p4 commands
add command 29
annotate command 133
branch command 109, 113
branches command 139
change command 93
changes command 93, 136
client command 26, 38, 45
common flags 83

counters command 141
delete command 29, 31
depots command 142
describe command 93, 137
diff command 77, 84, 85, 134
diff2 command 77, 134
edit command 29, 31
filelog command 64, 130, 139
files command 57, 64, 103, 130
fix command 93, 123, 124
fixes command 140
have command 35, 64, 132
help command 35
info command 23, 35
integrate command 86, 107, 109, 111, 112,

114, 139
job command 118
jobs command 139
label command 97
labels command 102, 138
labelsync command 97
lock command 75
login command 80
logout command 81
opened command 57, 64, 131
passwd command 79
print command 64, 132
rename command 86
reopen command 57, 93
resolve command 69, 71, 75, 109, 139
resolved command 77, 139
revert command 34
review command 141
reviews command 141
submit command 29, 69, 89, 92
sync command 28, 64, 68, 77, 97, 132
typemap command 61
user command 123
users command 141
where command 64, 132

P4CHARSET 147
P4CLIENT 26, 147
P4CONFIG 81, 147
166 Perforce 2005.1 User’s Guide

Index
p4d

host 21
port 21
purpose of 14, 21

p4d.exe 146
P4DIFF 147
P4DTI 126
P4EDITOR 25, 63, 147
P4HOST 147
P4JOURNAL 147
P4LOG 147
P4MERGE 147
P4PAGER 147
P4PASSWD 79, 147
P4PORT 22, 147

and server 144
P4ROOT 144, 147
p4s.exe 146
P4TICKETS 147
P4USER 147
parametric substitution 40, 42
passwords 79

and tickets 80
setting 79

pending changelist
defined 155
deleting 93
submitting 90

Perforce client programs
connecting to server 21
purpose 14, 21

Perforce server
and P4PORT 144
connecting to 21
defined 155
host 21
port 21
purpose of 14, 21
tracks state of client workspace 37
vs. service 146
working when disconnected from 84

Perforce service
vs. server 146

Perforce syntax 49
wildcards 51

perforce.exe 145
permissions

files in workspace 45, 59
user (defined) 149

port
for server 144
Perforce server 21

port number
default 22

pre-submit trigger
defined 157

previewing
integration results 139
label contents 96
-n flag 142
resolve results 139
revert results 34
sync results 35, 64, 77

propagating changes
branches 111

proxy 13
PWD 147
R
RCS format

defined 155
RCS keyword expansion 60

+k modifier 57
examples 62

recent changelists
p4 changelists command 93

release management 13
remote depot

defined 155
removing files

from depot 31
from workspace 54

renaming files 86
renumbering

changelists, automatic 92
reporting

basic commands 35, 64
Perforce 2005.1 User’s Guide 167

Index
branches 139
changelists 93, 136, 137
daemons and 141
file metadata 130
files 129
integration 116, 139
jobs 126, 139
labels 102, 138
overview 129
resolves 77

repository
file (defined) 152

resolve
between codelines 109
branching and 77
conflicting changes 67
default 73
defined 15, 155
detecting 69
diff chunks 70
displaying files before submission 139
multiple 114
performing 69
preventing multiple 76
previewing 139
reporting 77
scheduling 68

resource fork 59
defined 155

result
resolving 70

reverse delta storage
defined 155

reverse integration 112
revert

defined 155
example 34

revision
base (defined) 149
file (defined) 152
have 55
head 54
head (defined) 152

history 64, 130
number (defined) 155
range 56
range (defined) 156
specification 53, 56
specification (defined) 156
specifying 53
tip (defined) 157

rmdir client option 46
root

client 37
S
SCM 13
scripting

examples 64
-o flag 142

searching
jobs 120

server
connecting to 21
Perforce 14, 21
Perforce (defined) 155
port 144
stopping with p4 admin 145
verifying connection 23
vs. service 146
Windows 146

server root
and P4ROOT 144
creating 144
defined 144

setting environment variables 148
setting up

client workspaces 25
environment 21
p4 info 23

shell
parsing wildcards 51

software configuration management 13
spaces

filenames 51
within filenames 52

special characters
168 Perforce 2005.1 User’s Guide

Index
filenames 51
specification

revision (defined) 156
standard input

filling forms with 63
standard output

generating forms with 63
p4 print command 64

stopping server
with p4 admin 145

storage
full-file vs. delta (defined) 152
reverse delta (defined) 155

submit
defined 156

submitted changelist 90
subscribe

defined 156
symbolic links 58

file types and 57
non-UNIX systems 58

sync
preview 64, 77

syntax 49
client 49
depot 49
depot (defined) 151
local 49
local (defined) 153
Perforce syntax 49

system administration
checkpoint (defined) 150
groups (defined) 152
journal (defined) 153
reporting 141

T
tag

syntax 100
target files

defined 156
TCP/IP 14

and port number 144
text files 57, 58

defined 156
theirs 70

defined 156
three-way merge

binary files and 75
defined 157
merge file generation 71
when scheduled 112

tickets
and passwords 80
logging in 80
logging out 81

time zones 55
timestamps

preserving DLLs 62
tip revision

defined 157
TMP 147
tracking

defects 13
jobs 16

translation
CR/LF 45

trigger
defined 157

two-way merge
defined 157

typemap
file types 61

U
umask(1) 144
unicode 59
UNIX

line-ending convention 47
linefeed convention 45

unlocked client option 45
usage notes

integration 112
users

email addresses 141
listing submitted changelists 93
passwords 79
reporting on 141
Perforce 2005.1 User’s Guide 169

Index
V
-v flag

diff markers 71
variables

environment, how to set 148
version control 13
views

branch (defined) 149
branch, creating 109
client 15, 27, 38
client (defined) 150
conflicting mappings 43
defined 157
examples of mappings 40
exclusionary mappings 42
help on 35
jobviews 120
label 98
label (defined) 153
mappings and 39
multiple mapping lines 41
renaming client files using mappings 42
wildcards 40

W
warnings

and local shells 54
binary files and delta storage 58
changing client root 47

wildcards
%0 .. %n 40, 42
* 40
... 40
defined 40
jobviews 121
local shell considerations 51
local syntax 51
Perforce syntax 51
views 40

Windows
and p4 admin 146
installer 145
installing on 145
line-ending convention 48

linefeed convention 45
multiple drives 44
server 146
setting variables on a Windows service

148
third-party DLLs 62

working detached 84
working detached (defined) 151
workspace

client 14, 37, 97
client (defined) 150
comparing files against depot 135
copying files from depot 28
displaying files 64
spanning multiple drives 44

Y
yours 70

defined 157
170 Perforce 2005.1 User’s Guide

	Table of Contents
	Preface About This Manual
	Administering Perforce?
	Please Give Us Feedback

	Chapter 1 Product Overview
	Perforce Server and Perforce Client Programs
	Moving files between the clients and the server
	File conflicts
	Labeling groups of files
	Branching files
	Job tracking
	Change review
	Protections

	Other Perforce Client Programs
	P4V
	P4Win
	P4Web

	Merge Tools
	P4V
	P4 resolve
	P4WinMerge
	Other merge utilities

	Defect Tracking Systems
	Perforce jobs
	P4DTI integrations with third-party defect trackers

	Plug-ins, reporting and tool integrations
	IDE Plug-ins
	P4Report and P4SQL
	P4OFC
	P4EXP

	Chapter 2 Connecting to the Perforce Server
	Before you begin
	Setting up your environment to use Perforce
	Verifying the connection to the Perforce server
	Logging in to Perforce

	Chapter 3 Perforce Basics: Quick Start
	Underlying concepts
	Setting up a client workspace
	Naming your client workspace
	Describing your client workspace to the Perforce server

	Copying depot files into your workspace
	Updating the depot with files from your workspace
	Adding files to the depot
	Editing files in the depot
	Deleting files from the depot
	Submitting your changes to the depot

	Backing out: reverting files to their unopened states
	Basic reporting commands

	Chapter 4 Perforce Basics: The Details
	What is a Client Workspace?
	Mapping Depot files to your Client Workspace
	Client workspace views
	Using wildcards in views
	Types of mappings used in views

	Client Workspace Specification Options
	Changing workspace views or moving your workspace root
	Configuring line-ending conventions (CR/LF translation)
	Multiple workspace roots for cross-platform work
	Deleting a client workspace specification

	Referring to Files on the Command Line
	Local syntax and Perforce syntax
	Using wildcards in Perforce commands and views
	Name and string limitations for filenames and Perforce objects

	Specifying File Revisions
	Specifying file revisions with filenames
	Specifying file revisions without filenames
	Specifying ranges of revisions

	Perforce File Types
	Base file types
	File type modifiers
	File type keywords
	Overriding file types with the typemap table
	Preserving timestamps with the +m modifier
	Expanding RCS keywords with the +k modifier

	Forms and Perforce Commands
	Changing the default forms editor
	Scripting with Perforce forms
	General Reporting Commands

	Chapter 5 Perforce Basics: Resolving File Conflicts
	Scheduling Resolves of Conflicting Files
	Why “p4 sync” to schedule a resolve?
	How do I know when a resolve is needed?

	Performing Resolves of Conflicting Files
	File revisions used and generated by “p4 resolve”
	Types of conflicts between file revisions
	How the merge file is generated
	The “p4 resolve” options
	Command line flags to automate the resolve process
	Binary files and “p4 resolve”

	Locking Files to Minimize File Conflicts
	Preventing multiple resolves with p4 lock
	Preventing multiple checkouts with +l files

	Resolves and Branching
	Resolve Reporting

	Chapter 6 Perforce Basics: Miscellaneous Topics
	Perforce Passwords
	Setting passwords
	Perforce passwords and authentication

	Perforce tickets: logging in and out
	Reconfiguring the Perforce Environment with $P4CONFIG
	Command-Line Flags Common to All Perforce Commands
	Working Detached
	Finding changed files
	Updating the depot with changed files
	Refreshing files

	Renaming Files
	Revision histories and renamed files

	Recommendations for Organizing the Depot

	Chapter 7 Changelists
	Working with the Default Changelist
	Creating Numbered Changelists Manually
	Working With Numbered Changelists
	Automatic Creation and Renumbering of Changelists
	When Perforce renumbers changelists

	Deleting Changelists
	Changelist Reporting

	Chapter 8 Labels
	Labels or changelist numbers?
	Using labels
	Tagging files with a label
	Untagging files
	Previewing tag’s results
	Listing files tagged by a label
	Listing labels that have been applied to files
	Referring to files using a label
	Deleting labels
	Creating a label for future use
	Using label views
	Using labels to record workspace configurations
	Preventing inadvertent tagging and untagging of files

	Differences between p4 tag and p4 labelsync
	How p4 tag works
	How p4 labelsync works

	Label Reporting

	Chapter 9 Branching
	What is Branching?
	When to Create a Branch
	Perforce’s Branching Mechanisms: Introduction
	Branching and Merging, Method 1: Branching with File Specifications
	Creating branched files
	Propagating changes between branched files
	Propagating changes from branched files to the original files

	Branching and Merging, Method 2: Branching with Branch Specifications
	Branch Specification Usage Notes
	Integration Usage Notes
	Deleting Branches
	Advanced Integration Functions
	Integrating specific file revisions
	Re-integrating and re-resolving files

	How Integrate Works
	The yours, theirs, and base files
	The integration algorithm
	Integrate’s actions

	Integration Reporting
	For More Information

	Chapter 10 Job Tracking
	Job Usage Overview
	Using the default job specification
	Using a custom job specification

	Viewing jobs by content with jobviews
	Finding jobs containing particular words
	Finding jobs by field values
	Using and escaping wildcards in jobviews
	Negating the sense of a query
	Using dates in jobviews
	Comparison operators and field types

	Linking Jobs to Changelists
	Linking jobs to changelists with the JobView: field
	Linking jobs to changelists with p4 fix
	Linking jobs to changelists when submitting
	Automatic update of job status
	What if there’s no status field?

	Deleting Jobs
	Integrating with External Defect Tracking Systems
	Job Reporting Commands

	Chapter 11 Reporting and Data Mining
	Files
	File metadata
	Relationships between client and depot files
	File contents

	Changelists
	Viewing changelists that meet particular criteria
	Files and jobs affected by changelists

	Labels
	Branch and Integration Reporting
	Job Reporting
	Basic job information
	Jobs, fixes, and changelists

	Reporting for Daemons
	Listing Users, Workspaces, and Depots
	Special Reporting Flags

	Appendix A Installing Perforce
	Getting Perforce
	UNIX Installation
	Download the files and make them executable
	Creating a Perforce server root directory
	Telling the Perforce server which port to listen to
	Starting the Perforce server
	Telling Perforce clients which port to talk to
	Stopping the Perforce server

	Windows Installation
	Windows services and servers
	Starting and stopping Perforce

	Appendix B Environment Variables
	Setting and viewing environment variables

	Appendix C Glossary
	Index

