
Perforce 2005.2
P4 User’s Guide

December 2005

This manual copyright 2005 Perforce Software.

All rights reserved.

Perforce software and documentation is available from http://www.perforce.com. You can download and use
Perforce programs, but you can not sell or redistribute them. You can download, print, copy, edit, and redistribute the
documentation, but you can not sell it, or sell any documentation derived from it. You can not modify or attempt to
reverse engineer the programs.

Perforce programs and documents are available from our Web site as is. No warranty or support is provided.
Warranties and support, along with higher capacity servers, are sold by Perforce Software.

Perforce Software assumes no responsibility or liability for any errors or inaccuracies that might appear in this book.

By downloading and using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce Software. Perforce software includes software
developed by the University of California, Berkeley and its contributors.

All other brands or product names are trademarks or registered trademarks of their respective companies or
organizations.

Table of Contents
Table of Contents... 3

List of Examples .. 9

Preface About This Manual ... 13
Command line versus GUIs..13
Getting started with Perforce..13
Perforce documentation...14
Please give us feedback ...14

Chapter 1 Installing P4 ... 15
Installing P4 on UNIX and OS X ..15
Installing P4 on Windows ...15
Verifying the installation ...16

Chapter 2 Configuring P4 .. 17
Configuration overview ..17

What is a client workspace?..17
How Perforce manages the workspace ...18

Configuring Perforce settings ...19
Using the command line ...19
Using config files ..19
Using the Windows registry ...21
Using environment variables ...21

Defining client workspaces ...21
Verifying connections...23
Refining client views..23

Specifying mappings ...24
Using wildcards in client views ...25
Mapping files to different locations in the workspace............................26
Mapping files to different filenames ...26
Perforce 2005.2 P4 User’s Guide 3

Table of Contents
Excluding files and directories .. 26
Mapping Windows workspaces across multiple drives 28
Using the same workspace from different machines 28

Changing the location of your workspace ... 29
Configuring workspace options .. 29
Configuring line-ending settings... 31
Deleting client workspace specifications ... 31
Security.. 32

Passwords ... 32
Connection time limits.. 33

Chapter 3 Issuing P4 Commands.. 35
Command-line syntax... 35

Specifying filenames on the command line... 36
Perforce wildcards... 37
Restrictions on filenames and identifiers... 38
Specifying file revisions.. 40
Reporting commands.. 43

Using Perforce forms... 43

Chapter 4 Managing Files and Changelists 45
Managing files .. 45

Syncing (retrieving) files... 46
Adding files .. 47
Changing files .. 48
Discarding changes (reverting) ... 49
Deleting files... 49

Managing changelists.. 50
Creating numbered changelists... 51
Submitting changelists.. 52
Deleting changelists .. 52
Renaming and moving files ... 53
Displaying information about changelists... 53

Diffing files ... 54
Working detached.. 55

Finding changed files.. 55
Submitting your changes.. 55
4 Perforce 2005.2 P4 User’s Guide

Table of Contents
Chapter 5 Resolving Conflicts ... 57
How conflicts occur..57
How to resolve conflicts ..58

Your, theirs, base and merge files...58
Options for resolving conflicts ...59
Accepting yours, theirs, or merge..60
Editing the merge file ..61
Merging to resolve conflicts..61
Full list of resolve options ...62
Resolve command-line flags...64
Resolve reporting commands...65

Locking files ..65
Preventing multiple resolves by locking files ..65
Preventing multiple checkouts...66

Chapter 6 Codelines and Branching... 67
Basic terminology ...67
Organizing the depot ...68
Branching...69

When to branch ..69
Creating branches...70

Integrating changes ..71
Integrating using branch specifications ..72
Integrating between unrelated files...73
Integrating specific file revisions ...73
Reintegrating and reresolving files..74
Integration reporting ...74

Using labels ...74
Tagging files with a label...75
Untagging files..75
Previewing tagging results ...76
Listing files tagged by a label ...76
Listing labels that have been applied to files ...76
Using a label to specify file revisions ..76
Deleting labels ..77
Creating a label for future use ..77
Restricting files that can be tagged ..78
Perforce 2005.2 P4 User’s Guide 5

Table of Contents
Using labels to archive workspace configurations 78
Preventing inadvertent tagging and untagging of files......................... 79

Chapter 7 Defect Tracking.. 81
Managing jobs .. 81
Searching jobs ... 82

Searching job text... 82
Searching specific fields.. 83
Using comparison operators.. 84
Searching date fields ... 85

Fixing jobs ... 85
Linking automatically... 85
Linking manually .. 86
Linking jobs to changelists ... 86

Chapter 8 Scripting and Reporting ... 87
Common flags used in scripting and reporting .. 87
Scripting with Perforce forms .. 87
File reporting .. 88

Displaying file status... 89
Displaying file revision history ... 90
Listing open files.. 90
Displaying file locations ... 90
Displaying file contents .. 91
Displaying annotations (details about changes to file contents) 91
Monitoring changes to files.. 92

Changelist reporting.. 93
Listing changelists ... 93
Listing files and jobs affected by changelists... 94

Label reporting... 94
Branch and integration reporting .. 95
Job reporting ... 95

Listing jobs.. 95
Listing jobs fixed by changelists.. 96

System configuration reporting... 96
Displaying users .. 96
Displaying workspaces... 97
6 Perforce 2005.2 P4 User’s Guide

Table of Contents
Listing depots ...97
Sample script ...98

Appendix A Glossary.. 99

Appendix B Perforce File Types .. 109
Perforce file types ...109
File type modifiers..110
Specifying how files are stored in the server.. 111
Overriding file types ..112
Preserving timestamps...112
Expanding RCS keywords...113

Index ... 115
Perforce 2005.2 P4 User’s Guide 7

Table of Contents
8 Perforce 2005.2 P4 User’s Guide

List of Examples
Table of Contents... 3

List of Examples .. 9

Preface About This Manual ... 13

Chapter 1 Installing P4 ... 15

Chapter 2 Configuring P4 .. 17
Using config files to handle switching between two workspaces.............20
Setting the client workspace view..22
Mapping part of the depot to the client workspace25
Multiple mappings in a single client workspace view................................26
Files with different names in the depot and client workspace26
Using views to exclude files from a client workspace26
Erroneous mappings that conflict ..27
Overlaying multiple directories in the same workspace27

Chapter 3 Issuing P4 Commands.. 35
Using different syntaxes to refer to the same file...37
Retrieving files using revision specifiers...41
Removing all files from the client workspace ..42
Listing changes using revision ranges...42

Chapter 4 Managing Files and Changelists............................... 45
Copying files from the depot to a client workspace....................................46
Adding files to a changelist...47
Submitting a changelist to the depot ...48
Opening a file for edit ..48
Perforce 2005.2 P4 User’s Guide 9

List of Examples
Reverting a file ... 49
Deleting a file from the depot .. 49
Working with multiple changelists ... 51
Automatic renumbering of changelists .. 51

Chapter 5 Resolving Conflicts ... 57
Resolving file conflicts .. 63
Automatically accepting particular revisions of conflicting files 64

Chapter 6 Codelines and Branching ... 67
Creating a branch using a file specification ... 71
Propagating changes between branched files ... 71
Integrating changes to a single file in a branch ... 72
Integrating specific file revisions... 73
Retrieving files tagged by a label into a client workspace......................... 76
Using a label view to control which files can be tagged 78

Chapter 7 Defect Tracking.. 81
Creating a job.. 81
Searching jobs for specific words .. 83
Finding jobs that contain any of a set of words in any field...................... 83
Finding jobs that contain words in specific fields....................................... 83
Excluding jobs that contain specified values in a field 83
Using dates within expressions ... 85
Automatically linking jobs to changelists .. 86
Manually linking jobs to changelists .. 86

Chapter 8 Scripting and Reporting ... 87
Using p4 annotate to display changes to a file ... 91
Sample shell script showing parsing of p4 fstat command output...... 98
10 Perforce 2005.2 P4 User’s Guide

List of Examples
Appendix A Glossary.. 99

Appendix B Perforce File Types .. 109

Index ... 115
Perforce 2005.2 P4 User’s Guide 11

List of Examples
12 Perforce 2005.2 P4 User’s Guide

Preface About This Manual
This guide tells you how to use the Perforce Command-Line Client (p4). If you’re new to
SCM (software configuration management), you don’t know basic Perforce concepts, or
you’ve never used Perforce before, read Introducing Perforce before reading this guide.
This guide assumes a good basic understanding of SCM.

Command line versus GUIs

Perforce provides many client applications that enable you to manage your files,
including the Perforce Command-Line Client, GUIs such as P4V, and plug-ins. The
Perforce Command-Line Client enables you to script and to perform administrative tasks
that are not supported by Perforce GUIs.

Getting started with Perforce

If this is your first time working with Perforce, here’s how to get started:

1. Read Introducing Perforce to learn the basics.

At a minimum, learn the following concepts: changelist, depot, client workspace, sync,
and submit. For short definitions, refer to the glossary at the back of this guide.

2. Ask your Perforce administrator for the host and port of your Perforce server.

If you intend to experiment with Perforce and don’t want to risk damaging your
production depot, ask the Perforce administrator to start another server for test
purposes. For details about installing the Perforce server, refer to the Perforce System
Administrator’s Guide.

3. Use this guide to help you install the Perforce Command-Line Client and configure
your client workspace, unless your system administrator has already configured
your machine. See Chapter 2, Configuring P4, for details.

4. Learn to perform the following tasks:

• sync (transfer selected files from the repository to your computer)

• submit (transfer changed files from your workspace to the repository)

• revert (discard changes)

See Chapter 4, Managing Files and Changelists, for details.

5. Learn to refine your client view. See “Refining client views” on page 23 for details.
Perforce 2005.2 P4 User’s Guide 13

Preface: About This Manual
These basic skills enable you to do much of your daily work. Other tasks involving code
base maintenance (branching and labeling) and workflow (jobs) tend to be less frequently
done. This guide includes details about performing these tasks using p4 commands.

Perforce documentation

This guide, the Perforce Command Reference, and the p4 help command are the primary
documentation for the Perforce Command-Line Client. This guide describes the current
release. For documentation for older releases, refer to the Perforce web site.

For documentation on other Perforce client programs, see our documentation web page,
available from our web site at http://www.perforce.com.

Please give us feedback

We are interested in receiving opinions on this guide from our users. In particular, we’d
like to hear from users who have never used Perforce before. Does this guide teach the
topic well? Please let us know what you think; we can be reached at
manual@perforce.com.

For specific information about... See this documentation

The basics of Perforce Introducing Perforce

Installing and administering the Perforce server,
the proxy server, and security settings

Perforce System Administrator’s Guide

p4 command line flags and options (reference) Perforce Command Reference,
p4 help

P4V, the cross-platform Perforce Visual Client Getting Started with P4V,
P4V online help

P4Web, the browser-based Perforce client
application

How to use P4Web,
P4Web online help

P4Win, the Perforce Windows GUI Getting Started with P4Win,
P4Win online help

Perforce plug-ins IDEs: Using IDE Plug-ins

Others: online help from the Perforce
menu

Developing Perforce client applications using
the Perforce C/C++ API

C/C++ API User's Guide
14 Perforce 2005.2 P4 User’s Guide

Chapter 1 Installing P4
This chapter tells you how to install the Perforce Command-Line Client (p4) on a client
machine. For details about installing the Perforce Server, refer to the Perforce System
Administrator’s Guide.

Installing P4 on UNIX and OS X

To install the Perforce Command-Line Client (p4) on a UNIX or Macintosh OS X machine,
perform the following steps:

1. Download the p4 executable file from the Perforce web site:

http://www.perforce.com/perforce/loadprog.html

The Perforce client programs are typically downloaded to /usr/local/bin.

2. Make the p4 file executable (chmod +x p4)

3. Configure the server port setting, client workspace name, and user name. You can
specify these settings by configuring the P4PORT, P4CLIENT, and P4USER environment
variables. (For details, see Chapter 2, Configuring P4.)

Installing P4 on Windows

To install the Perforce Command-Line Client (p4.exe) on Windows, download and run
the Perforce Windows installer (perforce.exe) from the Downloads page of the Perforce
web site:

http://www.perforce.com/perforce/loadprog.html

The Perforce installer enables you to install and uninstall the Perforce Command-Line
Client and other Perforce Windows components.
Perforce 2005.2 P4 User’s Guide 15

Chapter 1: Installing P4
Verifying the installation

To verify that you have successfully installed the Perforce Command-line Client, type p4
info at the command line and press ENTER. If you have a server running on the
specified host and port, the following message is displayed:

If your configuration settings are incorrect, the following message is displayed::

User name: ona
Client name: ona-agave
Client host: agave
Client root: /home/ona/p4-ona
Current directory: /home/ona/p4-ona
Client address: 10.0.0.196:2345
Server address: ida:1818
Server root: /usr/depot/p4d
Server date: 2005/06/13 08:46:34 -0700 PDT
Server version: P4D/FREEBSD4/2005.1/79540 (2005/05/10)
Server license: Perforce Software 200 users (expires 2007/01/31)

Perforce client error:
 Connect to server failed; check $P4PORT.
 TCP connect to <hostname> failed.
 <hostname>: host unknown.
16 Perforce 2005.2 P4 User’s Guide

Chapter 2 Configuring P4
This chapter tells you how to configure connection settings.

Configuration overview

Perforce uses a client/server architecture: you sync files from the server repository, called
the depot, and edit them on your client machine in your client workspace. This chapter
assumes that your system administrator has a Perforce server running. For details about
installing the Perforce Server, refer to the Perforce System Administrator’s Guide.

To set up your client workspace so you can work with the server, perform the following
steps.

After you configure your workspace, you can populate it by syncing files that are stored
in the depot. For details, see “Syncing (retrieving) files” on page 46 and the description of
the p4 sync command in the Perforce Command Reference.

Before you start to configure your client machine, ask your Perforce administrator for the
server host and port setting. Also ask whether a workspace has already been configured
for your client machine.

What is a client workspace?

A Perforce client workspace is a set of directories on the client machine where you work on
file revisions that are managed by Perforce. Each workspace is given a name that
identifies the client workspace to the Perforce Server. If no workspace name is specified
(by setting the P4CLIENT environment variable) the default workspace name is the name
of the client machine. To specify the effective workspace name, set the P4CLIENT
environment variable. A client machine can contain multiple workspaces.

Step# For details, see...

1. Configure settings for your server
host and port (to specify where the
Perforce Server is running).

“Configuring Perforce settings” on page 19.

2. Define your client workspace (at a
minimum, assign a name and specify a
workspace root where you want local
copies of depot files stored).

“Defining client workspaces” on page 21.

3. Verify the connection. “Verifying connections” on page 23.
Perforce 2005.2 P4 User’s Guide 17

Chapter 2: Configuring P4
All files within a Perforce client workspace share a root directory, called the client root. The
client root is the highest-level directory of the workspace under which the managed
source files reside.

If you configure multiple workspaces on the same machine, keep workspace locations
separate to avoid inadvertently overwriting files. Ensure that client roots are located in
different folders and that their client views do not map depot files to overlapping
locations on the client machine.

After you configure your workspace, you can sync files from the depot and submit
changes. For details about these tasks, refer to Chapter 4, Managing Files and Changelists.

How Perforce manages the workspace

Perforce manages the files in a client workspace as follows:

• Files in the workspace are created, updated, and deleted as determined by your
changes.

• Write permission is enabled when you edit a file, and disabled when you submit your
changes.

The state of your client workspace is tracked and managed by the Perforce server. To
avoid conflicts with the file management that is performed by the server, do not manually
change read-only permission settings on files. You can verify that the state of the client
workspace corresponds to the server’s record of that state. For details, refer to Technote 2
on the Perforce web site.

Files in the workspace that you have not put under Perforce control are ignored by
Perforce. For example, compiled objects, libraries, executables, and developers’ temporary
files that are created while developing software but not added to the depot are not
affected by Perforce commands.

After defining your client workspace, you can fine-tune the workspace definition.
Probably most important, you can restrict the portion of the depot that is visible to you, to
prevent you from inadvertently syncing the entire depot. For details, refer to “Refining
client views” on page 23.
18 Perforce 2005.2 P4 User’s Guide

Chapter 2: Configuring P4
Configuring Perforce settings

This guide refers to Perforce settings using environment variables (for example, “set
P4CLIENT”), but you can specify Perforce settings such as server port, user, and
workspace names using the following methods, listed in order of precedence:

1. On the command line, using flags

2. In a config file

3. In Windows, by issuing the p4 set command to store settings in the registry

4. Setting environment variables

To configure your client machine to connect to a Perforce server, you specify the name of
the host where the server is running, and the port on which the server is listening. The
default server host is perforce and default server port is 1666. If the server is running on
your client machine, specify localhost as the host name. If the server is running on port
1666, you can omit the port specification.

You can specify these settings as described in the following sections. For details about
working detached (without a connection to a Perforce server), see “Working detached” on
page 55.

Using the command line

To specify server settings on the command line, use the -p flag. For example:
p4 -p localhost:1776 sync //depot/dev/main/jam/Jambase

Server settings specified on the command line override any settings specified in config
files, environment variables, or the Windows registry. For more details about command-
line flags, refer to the discussion of global options in the Perforce Command Reference.

Using config files

Config files are text files containing Perforce settings that are in effect for files in and below
the directory where the config file resides. Config files are useful if you have multiple
client workspaces on the same machine. By specifying the settings in config files, you
avoid the inconvenience of changing system settings every time you want to work with a
different workspace.

To use config files, you define the P4CONFIG environment variable, specifying a file name
(for example, .p4config). When you issue a command, Perforce searches the current
working directory and its parent directories for the specified file and uses the settings it
contains (unless the settings are overridden by command-line flags).

Each setting in the file must be specified on its own line, using the following format:
setting=value
Perforce 2005.2 P4 User’s Guide 19

Chapter 2: Configuring P4
The following settings can be specified in a config file.

For details about these settings, refer to the Perforce Command Reference.

Example: Using config files to handle switching between two workspaces

Ona switches between two workspaces on the same machine. The first workspace is ona-ash.
It has a client root of /tmp/user/ona and connects to the Perforce server at ida:1818. The
second workspace is called ona-agave. Its client root is /home/ona/p4-ona, and it uses the
Perforce server at warhol:1666.

Ona sets the P4CONFIG environment variable to .p4settings. She creates a file called
.p4settings in //tmp/user/ona containing the following text:

P4CLIENT=ona-ash
P4PORT=ida:1818

She creates a second .p4settings file in/home/ona/p4-ona. It contains the following
text:

P4PORT=warhol:1666
P4CLIENT=graphicwork

Setting Description

P4CHARSET Character set used for translation of Unicode files.

P4COMMANDCHARSET Non-UTF-16 character set used by Command-Line Client when
P4CHARSET is set to a UTF-16 character set.

P4CLIENT Name of the current client workspace.

P4DIFF The name and location of the diff program used by p4 resolve
and p4 diff.

P4EDITOR The editor invoked by those Perforce commands that use
forms.

P4HOST Hostname of the client workstation. Only useful if the Host:
field of the current client workspace has been set in the p4
client form.

P4LANGUAGE This environment variable is reserved for system integrators.

P4MERGE The name and location of the third-party merge program to be
used by p4 resolve's merge option.

P4PASSWD Supplies the current Perforce user's password for any Perforce
client command.

P4PORT The host and port number of the Perforce server or proxy with
which to communicate.

P4USER Current Perforce user name.
20 Perforce 2005.2 P4 User’s Guide

Chapter 2: Configuring P4
Any work she does on files under /tmp/user/ona is managed by the Perforce server at
ida:1818 and work she does on files under /home/ona/p4-ona is managed by the Perforce
server at warhol:1666.

Using the Windows registry

On Windows machines, you can store connection settings in the registry by issuing the p4
set command. For example:

p4 set P4PORT=tea:1667

There are two ways you can configure Perforce settings in the registry:

• p4 set setting=value: for the current Windows login.

• p4 set -s setting=value: for all users on the local machine. Overrides any registry
settings made for the local user. Requires Perforce admin privilege.

To see which settings are in effect, type the p4 set command. For details about the p4
set command, see the Perforce Command Reference.

Using environment variables

To configure server connection settings using environment variables, set P4PORT to
host:port, as in the following examples.

Defining client workspaces

To define a client workspace:

1. Specify the workspace name by setting P4CLIENT; for example, on a UNIX system:
$ P4CLIENT=bruno_ws ; export P4CLIENT

2. Issue the p4 client command.

Perforce displays the client specification form in your text editor. (For details about
Perforce forms, refer to “Using Perforce forms” on page 43.)

3. Specify (at least the minimum) settings and save the specification.

If the server is running on and is listening to port set P4PORT to

your computer 1666 1666

houston 3435 houston:3435

deneb.com 1818 deneb.com:1818
Perforce 2005.2 P4 User’s Guide 21

Chapter 2: Configuring P4
No files are synced when you create a client specification. To find out how to sync files
from the depot to your workspace, refer to “Syncing (retrieving) files” on page 46. For
details about relocating files on your machine, see “Changing the location of your
workspace” on page 29.

The minimum settings you must specify to configure a client workspace are:

• Workspace name

The workspace name defaults to the client machine’s hostname, but a client machine
can contain multiple workspaces. To specify the effective workspace, set P4CLIENT.

• Client root

The client root is the top directory of your client workspace, where Perforce stores your
working copies of depot files. Be sure to set the client root, or you might inadvertently
sync files to your client machine’s root directory.

Your client view determines which files in the depot are mapped to a client workspace and
enables the server to construct a one-to-one mapping between individual depot and
workspace files. You can map files to have different names and locations in your
workspace than they have in the depot, but you cannot map files to multiple locations in
the workspace or the depot. By default, the entire depot is mapped to your workspace.
You can define a client view to map only files and directories of interest, so that you do
not inadvertently sync the entire depot into your workspace. For details, see “Refining
client views” on page 23.

Example: Setting the client workspace view

Bruno issues the p4 client command and sees a form containing this default client
workspace view definition:

He modifies the view to map only the development portion of the depot.

Client: bruno_ws
Update: 2004/11/29 09:46:53
Access: 2005/03/02 10:28:40
Owner: bruno
Root: c:\bruno_ws
Options: noallwrite noclobber nocompress unlocked nomodtime normdir
LineEnd: local
View:
 //depot/... //bruno_ws/...

View:
 //depot/dev/... //bruno_ws/dev/...
22 Perforce 2005.2 P4 User’s Guide

Chapter 2: Configuring P4
He further modifies the view to map files from multiple depots into his workspace.

Verifying connections

To verify a connection, issue the p4 info command. If P4PORT is set correctly, information
like the following is displayed:

The Server address: field shows the Perforce server to which p4 connected and also
displays the host and port number on which the Perforce server is listening. If P4PORT is
set incorrectly, you receive a message like the following:

If the value you see in the third line of the error message is perforce:1666 (as above),
P4PORT has not been set. If the value is anything else, P4PORT is set incorrectly.

Refining client views

By default, when you create a client workspace, the entire depot is mapped to your
workspace. You can refine this mapping to view only a portion of the depot and to change
the correspondence between depot and workspace locations.

View:
 //depot/dev/... //bruno_ws/depot/dev/...
 //testing/... //bruno_ws/testing/...
 //archive/... //bruno_ws/archive/...

User name: bruno
Client name: bruno_ws
Client host: workstation_12
Client root: c:\bruno_ws
Current directory: c:\bruno_ws
Client address: 127.0.0.1:28
Server address: localhost:1667
Server root: c:\p4root
Server date: 2005/03/02 11:16:11 -0800 Pacific Standard Time
Server version: P4D/NTX86/2005.1/75548 (2005/02/07)
Server license: 100 clients 100 users (expires 206/09/06)

Perforce client error:
Connect to server failed; check $P4PORT.
TCP connect to perforce:1666 failed.
perforce: host unknown.
Perforce 2005.2 P4 User’s Guide 23

Chapter 2: Configuring P4
To display or modify a client workspace view, issue the p4 client command. Perforce
displays the client specification form, which lists mappings in the View: field:

The following sections provide details about specifying the client view. For more
information, see the p4 client command description and the description of views in the
Perforce Command Reference.

Specifying mappings

Views consist of multiple mappings. Each mapping has two parts.

• The left-hand side specifies one or more files in the depot and has the form:
//depotname/file_specification

• The right-hand side specifies one or more files in the client workspace and has the form:
//clientname/file_specification

The left-hand side of a client view mapping is called the depot side, and the right-hand side
is the client side.

To determine the location of any client file on the host machine, substitute the client root
for the client name on the client side of the mapping. For example, if the client root is
C:\bruno_ws, the file //depot/dev/main/jam/Jamfile resides in the workspace as
C:\bruno_ws\dev\main\jam\Jamfile.

Later mappings override earlier ones. In the following example, the second line overrides
the first line, mapping the files in //depot/dev/main/docs/manuals/ up two levels.
When files in //depot/dev/main/docs/manuals/ are synced, they reside in
c:\bruno_ws\docs\.

Client: bruno_ws
Owner: bruno
Description:
 Created by bruno.
Root: C:\bruno_ws
Options: noallwrite noclobber nocompress unlocked nomodtime normdir
View:
 //depot/... //bruno_ws/...

View:
 //depot/dev/... //bruno_ws/dev/...
 //depot/dev/main/docs/... //bruno_ws/docs/...
24 Perforce 2005.2 P4 User’s Guide

Chapter 2: Configuring P4
Using wildcards in client views

To map groups of files in client views, you use Perforce wildcards. Any wildcard used on
the depot side of a mapping must be matched with an identical wildcard in the mapping’s
client side. You can use the following wildcards to specify client view mappings.

In this simple client view:
//depot/dev/... //bruno_ws/dev/...

all files in the depot’s dev branch are mapped to the corresponding locations in the
workspace. For example, the file //depot/dev/main/jam/Makefile is mapped to the
client workspace file C:\bruno_ws\dev\main\jam\Makefile.

Mapping part of the depot

If you are interested only in a subset of the depot files, map that portion. Reducing the
scope of the client view also ensures that your commands do not inadvertently affect the
entire depot. To restrict the client view, change the left-hand side of the View: field to
specify the relevant portion of the depot.

Example: Mapping part of the depot to the client workspace

Dai is working on the Jam project and maintaining the web site, so she sets the View: field as
follows:
//depot/dev/main/jam/... //dai-beos-locust/jam/...
//depot/www/live/... //dai-beos-locust/www/live/...

Wildcard Description

* Matches anything except slashes. Matches only within a single directory.
Case sensitivity depends on your server platform

... Matches anything including slashes. Matches recursively (everything in and
below the specified directory).

Note To avoid mapping unwanted files, always precede the “...” wildcard with
a forward slash.
Perforce 2005.2 P4 User’s Guide 25

Chapter 2: Configuring P4
Mapping files to different locations in the workspace

Views can consist of multiple mappings, which are used to map portions of the depot file
tree to different parts of the workspace file tree. If there is a conflict in the mappings, later
mappings have precedence over the earlier ones.

Example: Multiple mappings in a single client workspace view

The following view ensures that Microsoft Word files in the manuals folder reside in the
workspace in a top-level folder called wordfiles.

Mapping files to different filenames

Mappings can be used to make the filenames in the client workspace differ from those in
the depot.

Example: Files with different names in the depot and client workspace

The following view maps the depot file RELNOTES to the workspace file rnotes.txt:

Excluding files and directories

Exclusionary mappings enable you to explicitly exclude files and directories from a client
workspace. To exclude a file or directory, precede the mapping with a minus sign (-).
White space is not allowed between the minus sign and the mapping.

Example: Using views to exclude files from a client workspace

Earl, who is working on the Jam project, does not want any HTML files synced to his
workspace. His client view looks like this:

View:
 //depot/... //bruno_ws/...
 //depot/dev/main/docs/manuals/*.doc //bruno_ws/wordfiles/...

View:
 //depot/... //bruno_ws/...
 //depot/dev/main/jam/RELNOTES //bruno_ws/dev/main/jam/rnotes.txt

View:
 //depot/dev/main/jam/... //earl-dev-beech/jam/...
 -//depot/dev/main/jam/....html //earl-dev-beech/jam/....html
26 Perforce 2005.2 P4 User’s Guide

Chapter 2: Configuring P4
Avoiding mapping conflicts

When you use multiple mappings in a single view, a single file can inadvertently be
mapped to two different places in the depot or workspace. When two mappings conflict
in this way, the later mapping overrides the earlier mapping.

Example: Erroneous mappings that conflict

Joe has constructed a view as follows:

The second mapping //depot/proj2/... maps to //joe/project and conflicts with the
first mapping. Because these mappings conflict, the first mapping is ignored; no files in
//depot/proj1 are mapped into the workspace: //depot/proj1/file.c is not mapped,
even if //depot/proj2/file.c does not exist.

Mapping different depot locations to the same workspace location

Overlay mappings enable you to map files from more than one depot directory to the same
place in a client workspace. To overlay the contents of a second directory in your client
workspace, use a plus sign (+) in front of the mapping.

Example: Overlaying multiple directories in the same workspace

Joe wants to combine the files from his projects when they are synced to his workspace, so he
has constructed a view as follows:

The overlay mapping +//depot/proj2/... maps to //joe/project, and overlays the
first mapping. Overlay mappings do not conflict. Files in //depot/proj2 take precedence
over files in //depot/proj1. If //depot/proj2/file.c is missing,
//depot/proj1/file.c is mapped into the workspace instead.

Overlay mappings are useful for applying sparse patches in build environments.

View:
 //depot/proj1/... //joe/project/...
 //depot/proj2/... //joe/project/...

View:
 //depot/proj1/... //joe/project/...
 +//depot/proj2/... //joe/project/...
Perforce 2005.2 P4 User’s Guide 27

Chapter 2: Configuring P4
Mapping Windows workspaces across multiple drives

To specify a Perforce client workspace that spans multiple Windows drives, use a Root:
of null and specify the drive letters (uppercase) in the client workspace view. For
example:

Using the same workspace from different machines

By default, you can only use a workspace on the machine that is specified by the Host:
field. If you want to use the same client workspace on multiple machines with different
platforms, delete the Host: entry and set the AltRoots: field in the client specification.
You can specify a maximum of two alternate client workspace roots. The locations must
be visible from all machines that will be using them, for example through NFS or Samba
mounts.

Perforce compares the current working directory against the main Root: first, and then
against the two AltRoots: if specified. The first root to match the current working
directory is used. If no roots match, the main root is used.

In the following example, if user bruno’s current working directory is located under
/usr/bruno, Perforce uses the UNIX path as his client workspace root, rather than
c:\bruno_ws. This approach allows bruno to use the same client workspace specification
for both UNIX and Windows development.

Client: bruno_ws
Update: 2004/11/29 09:46:53
Access: 2005/03/02 10:28:40
Owner: bruno
Root: null
Options: noallwrite noclobber nocompress unlocked nomodtime normdir
LineEnd: local
View:
 //depot/dev/... "//bruno_ws/C:/Current Release/..."
 //depot/release/... "//bruno_ws/D:/Prior Releases/..."
 //depot/www/... "//bruno_ws/D:/website/..."

Note If you are using a Windows directory in any of your client roots, specify
the Windows directory as your main client Root: and specify your other
workspace root directories in the AltRoots: field.

Client: bruno_ws
Owner: bruno
Description:
 Created by bruno.
Root: c:\bruno_ws
AltRoots:
 /usr/bruno/
28 Perforce 2005.2 P4 User’s Guide

Chapter 2: Configuring P4
To find out which workspace root is in effect, issue the p4 info command and check the
Client root: field.

If you edit text files in the same workspace from different platforms, ensure that the
editors and settings you use preserve the line endings. For details about line-endings in
cross-platform settings, refer to the Perforce System Administrator’s Guide.

Changing the location of your workspace

To change the location of files in your workspace, issue the p4 client command and
change either or both of the Root: and View: fields. Before changing these settings,
ensure that you have no files checked out (by submitting or reverting open files).

If you intend to modify both fields, perform the following steps to ensure that your
workspace files are located correctly:

1. To remove the files from their old location in the workspace, issue the p4 sync
#none command.

2. Change the Root: field.

3. To copy the files to their new locations in the workspace, perform a p4 sync. (If you
forget to perform the p4 sync #none before you change the client view, you can
always remove the files from their client workspace locations manually).

4. Change the View: field.

5. Again, perform a p4 sync. The files in the client workspace are synced to their new
locations.

Configuring workspace options

The following table describes workspace options in detail.

Option Description Default

[no]allwrite Specifies whether unopened files are always
writable. By default, the Perforce server makes
unopened files read-only. To avoid inadvertently
overwriting changes or causing syncs to fail,
specify noallwrite.

noallwrite

[no]clobber Specifies whether p4 sync overwrites writable but
unopened workspace files. (By default, Perforce
does not overwrite unopened files if they are
writable.)

noclobber
Perforce 2005.2 P4 User’s Guide 29

Chapter 2: Configuring P4
[no]compress Specifies whether data is compressed when it is
sent between the client and the server.

nocompress

[un]locked Specifies whether other users can use, edit, or
delete the client workspace specification. A
Perforce administrator can override the lock with
the -f (force) flag.

If you lock your client workspace specification, be
sure to set a password for the workspace’s owner
using the p4 passwd command.

unlocked

[no]modtime For files without the +m (modtime) file type
modifier:

• If modtime is set, the modification date (on the
local filesystem) of a newly synced file is the dat-
estamp on the file when the file was submitted to
the depot.

• If nomodtime is set, the modification date is the
date and time of sync, regardless of Perforce cli-
ent version.

For files with the +m (modtime) file type, the
modification date (on the local filesystem) of a
newly synced file is the datestamp on the file when
the file was submitted to the depot, regardless of
the setting of modtime or nomodtime on the client.

nomodtime
(date and time
of sync).

Ignored for files
with the +m file
type modifier.

[no]rmdir Specifies whether p4 sync deletes empty
directories in a workspace if all files in the
directory have been removed.

normdir

Option Description Default
30 Perforce 2005.2 P4 User’s Guide

Chapter 2: Configuring P4
Configuring line-ending settings

To specify how line endings are handled when you sync text files, set the LineEnd: field.
Valid settings are as follows.

Deleting client workspace specifications

To delete a client workspace specification, issue the p4 client -d clientname
command. Deleting a client specification removes the Perforce server’s record of the
workspace but does not remove files from the workspace or the depot.

When you delete a workspace specification:

1. Revert (or submit) any pending changelists that have been opened from the
workspace.

2. Delete existing files from a client workspace (p4 sync #none). (optional)

3. Delete the workspace specification.

If you delete the workspace specification before you delete files in the workspace, you can
delete workspace files using your operating system’s file deletion command.

Option Description

local Use mode native to the client (default)

mac Macintosh: CR only

share Line endings are LF with any CR/LF pairs translated to LF-only style
before storage or syncing with the depot.

When you sync your client workspace, line endings are set to LF. If you
edit the file on a Windows machine, and your editor inserts CRs before
each LF, the extra CRs do not appear in the archive file.

The most common use of the share option is for users of Windows
workstations who mount their UNIX home directories as network drives;
if you sync files from UNIX, but edit the files on a Windows machine, the
share option eliminates problems caused by Windows-based editors that
insert carriage returns in text files.

unix UNIX-style line endings: LF

win Windows- style: CR, LF
Perforce 2005.2 P4 User’s Guide 31

Chapter 2: Configuring P4
Security

For security purposes, your Perforce administrator can configure the Perforce server to
require passwords and to impose a connection time limit. The following sections provide
details.

Passwords

Depending on the security level at which your Perforce server is running, you might need
to log in to Perforce before you can run Perforce commands. Without passwords, any user
can assume the identity of any other Perforce user by setting P4USER to a different user
name or specifying the -u flag when you issue a p4 command. To improve security, use
passwords.

Setting passwords

To create a password for your Perforce user, issue the p4 passwd command.

Your system administrator can configure your Perforce server to require “strong”
passwords. A password is considered strong if it is at least eight characters long and
contains at least two of the following:

• Uppercase letters

• Lowercase letters

• Non-alphabetic characters

For example, a1b2c3d4, A1B2C3D4, aBcDeFgH are strong passwords.

To reset or remove a password (without knowing the password), Perforce superuser
privilege is required. If you need to have your password reset, contact your Perforce
administrator. See the Perforce System Administrator’s Guide for details.

Using your password

If your Perforce user has a password set, you must use it when you issue p4 commands.
To use the password, you can:

• Log into the server by issuing the p4 login command, before issuing other commands

• Set P4PASSWD to your password, either in the environment or in a config file

• Specify the -P password flag when you issue p4 commands (for instance,
p4 -P mypassword submit)

• Windows: store your password in the registry using the p4 set -s command. Not
advised for sites where security is high. Perforce administrators can disable this feature.
32 Perforce 2005.2 P4 User’s Guide

Chapter 2: Configuring P4
Connection time limits

Your Perforce administrator can configure the Perforce server to enforce time limits for
users. Perforce uses ticket-based authentication to enforce time limits. Because ticket-
based authentication does not rely on environment variables or command-line flags, it is
more secure than password-based authentication.

Tickets are stored in a file in your home directory. After you have logged in, your ticket is
valid for a limited period of time (by default, 12 hours).

Logging in and logging out

If time limits are in effect for your server, you must issue the p4 login command to
obtain a ticket. Enter your password when prompted. If you log in successfully, a ticket is
created for you in the ticket file in your home directory, and you are not prompted to log
in again until either your ticket expires or you log out by issuing the p4 logout
command.

To see how much time remains before your login expires, issue the following command:
p4 login -s

If your ticket is valid, the length of time remaining is displayed.

To log out of Perforce, issue the following command:
p4 logout

Working on multiple machines

By default, your ticket is valid only for the IP address of the machine from which you
logged in. If you use Perforce from multiple machines that share a home directory (typical
in many UNIX environments), log in with:

p4 login -a

Using p4 login -a creates a ticket in your home directory that is valid from all IP
addresses, enabling you to remain logged into Perforce from more than one machine.

To log out from all machines simultaneously, issue the following command:
p4 logout -a

For more information about the p4 login and p4 logout commands, see the Perforce
Command Reference.
Perforce 2005.2 P4 User’s Guide 33

Chapter 2: Configuring P4
34 Perforce 2005.2 P4 User’s Guide

Chapter 3 Issuing P4 Commands
This chapter provides basic information about p4 commands, including command-line
syntax, arguments, and flags. For full details about command syntax, refer to the Perforce
Command Reference.

Certain commands require administrator or superuser permission. For details, consult the
Perforce System Administrator’s Guide

Command-line syntax

The basic syntax for commands is as follows:
p4 [global options] command [command-specific flags] [command arguments]

The following flags can be used with all p4 commands.

Global options Description and Example

-c clientname Specifies the client workspace associated with the command.
Overrides P4CLIENT.

p4 -c bruno_ws edit //depot/dev/main/jam/Jambase

-d directory Specifies the current directory, overriding the environment variable
PWD.

p4 -d ~c:\bruno_ws\dev\main\jam\Jambase Jamfile

-G Format all output as marshaled Python dictionary objects (for
scripting with Python).

p4 -G info

-H host Specifies the hostname of the client workstation, overriding P4HOST.

p4 -H deneb print //depot/dev/main/jam/Jambase

-p server Specifies the Perforce server’s host and port number, overriding
P4PORT.

p4 -p deneb:1818 clients

-P password Supplies a Perforce password, overriding P4PASSWD. Usually used in
combination with the -u username flag.

p4 -u earl -P secretpassword job

-s Prepend a tag to each line of output (for scripting purposes).

p4 -s info
Perforce 2005.2 P4 User’s Guide 35

Chapter 3: Issuing P4 Commands
To display the flags for a specific command, issue the p4 help command. For example:

For the full list of global options, commands, and command-specific flags, see the Perforce
Command Reference.

Specifying filenames on the command line

Much of your everyday use of Perforce consists of managing files. You can specify
filenames in p4 commands as follows:

• Local syntax: the file’s name as specified in your local shell or operating system.

Filenames can be specified using an absolute path (for example,
c:\bruno_ws\dev\main\jam\fileos2.c) or a path that is relative to the current
directory (for example, .\jam\fileos2.c).

Relative components (. or ..) cannot be specified following fixed components. For
example, mysub/mydir/./here/file.c is invalid, because the dot (.) follows the fixed
mysub/mydir components.

• Depot syntax: use the following format: //depotname/file_path, specifying the
pathname of the file relative to the depot root directory. Separate the components of the
path using forward slashes. For example: //depot/dev/main/jam/Jambase.

• Client syntax: use the following format: //workspacename/file_path, specifying the
pathname of the file relative to the client root directory. Separate the components of the
path using forward slashes. For example: //ona-agave/dev/main/jam/Jambase.

-u username Specifies a Perforce user, overriding P4USER.

p4 -u bill user

-x filename Read arguments, one per line, from the specified file. To read
arguments from standard input, specify “-x -”.

p4 -x myargs.txt

-V Displays the version of the p4 executable.

p4 help add

 add -- Open a new file to add it to the depot

 p4 add [-c changelist#] [-t filetype] file ...

 Open a new file for adding to the depot. If the file exists
 on the client it is read to determine if it is text or binary.
 If it does not exist it is assumed to be text. The file must
 either not exist in the depot, or it must be deleted at the
 current head revision. Files may be deleted and re-added.
[...]

Global options Description and Example
36 Perforce 2005.2 P4 User’s Guide

Chapter 3: Issuing P4 Commands
Example: Using different syntaxes to refer to the same file

Local syntax: p4 delete c:\bruno_ws\dev\main\jam\Jambase

Depot syntax: p4 delete //depot/dev/main/jam/Jambase

Client syntax: p4 delete //bruno_ws/dev/main/jam/Jambase

Perforce wildcards

For commands that operate on sets of files, Perforce supports two wildcards.

Perforce wildcards can be used with local or Perforce syntax, as in the following
examples.

The * wildcard is expanded locally by the operating system before the command is sent to
the server. To prevent the local operating system from expanding the * wildcard, enclose
it in quotes or precede it with a backslash.

Wildcard Description

* Matches anything except slashes. Matches only within a single directory.
Case sensitivity depends on your server platform

... Matches anything including slashes. Matches recursively (everything in and
below the specified directory).

Expression Matches

J* Files in the current directory starting with J

*/help All files called help in current subdirectories

/... All files under the current directory and its subdirectories

/.../*.c All such files ending in .c

/usr/bruno/... All files under /usr/bruno

//bruno_ws/... All files in the workspace or depot that is named bruno_ws

//depot/... All files in the depot

//... All files in all depots

Note The “...” wildcard cannot be used with the p4 add command. The “...”
wildcard is expanded by the Perforce server, and, because the server
cannot determine which files are being added, it can’t expand the
wildcard. The * wildcard can be used with p4 add, because it is expanded
by the operating system shell and not by the Perforce Server.
Perforce 2005.2 P4 User’s Guide 37

Chapter 3: Issuing P4 Commands
Restrictions on filenames and identifiers
Spaces in filenames, pathnames, and identifiers

Use quotation marks to enclose files or directories that contain spaces. For example:
"//depot/dev/main/docs/manuals/recommended configuration.doc"

If you specify spaces in names for other Perforce objects, such as branch names, client
names, label names, and so on, the spaces are automatically converted to underscores by
the Perforce server.

Length limitations

Names assigned to Perforce objects such as branches, client workspaces, and so on, cannot
exceed 1024 characters.

Reserved characters

By default, the following reserved characters are not allowed in Perforce identifiers or
names of files managed by Perforce.

These characters have conflicting and secondary uses. Conflicts include the following:

• UNIX separates path components with /, but many DOS commands interpret / as a
command-line switch.

• Most UNIX shells interpret # as the beginning of a comment.

• Both DOS and UNIX shells automatically expand * to match multiple files, and the DOS
command line uses % to refer to variables.

Reserved Character Reason

@ File revision specifier for date, label name, or changelist number

File revision numbers

* Wildcard

... Wildcard (recursive)

% Wildcard

/ Separator for pathname components
38 Perforce 2005.2 P4 User’s Guide

Chapter 3: Issuing P4 Commands
To specify these characters in filenames or paths, use the ASCII expression of the
character’s hexadecimal value, as shown in the following table.

Specify the filename literally when you add it; then use the ASCII expansion to refer to it
thereafter. For example, to add a file called recommended@configuration.doc, issue the
following command:

p4 add -f //depot/dev/main/docs/manuals/recommended@configuration.doc

When you submit the changelist, the characters are automatically expanded and appear in
the change submission form as follows:

//depot/dev/main/docs/manuals/recommended%40configuration.doc

After you submit the changelist with the file’s addition, you must use the ASCII expansion
to sync the file to your workspace or to edit it within your workspace. For example:

p4 sync//depot/dev/main/docs/manuals/recommended%40configuration.doc

Filenames containing extended (non-ASCII) characters

Non-ASCII characters are allowed in filenames and Perforce identifiers, but entering them
from the command line might require platform-specific solutions. If you are using
Perforce in internationalized mode, all users must have P4CHARSET set properly to prevent
corruption of the files in the depot. For details about setting P4CHARSET, see the Perforce
Command Reference and the Internationalization Notes.

In international environments, use a common code page or locale setting to ensure that all
filenames are displayed consistently across all machines in your organization. To set the
code page or locale:

• Windows: use the Regional Settings applet in the Control Panel

• UNIX: set the LOCALE environment variable

Character ASCII

@ %40

%23

* %2A

% %25
Perforce 2005.2 P4 User’s Guide 39

Chapter 3: Issuing P4 Commands
Specifying file revisions

Each time you submit a file to the depot, its revision number is incremented. To specify
revisions prior to the most recent, use the # revision specifier to specify a revision number,
or @ to specify a date, changelist, client workspace, or label corresponding to the version
of the file you are working on. Revision specifications can be used to limit the effect of a
command to specified file revisions.

The following table describes the various ways you can specify file revisions.

Warning! Some operating system shells treat the Perforce revision character # as a
comment character if it starts a word. If your shell is one of these, escape the
when you use it in p4 commands.

Revision needed Syntax and example

Revision number file#n

Example:

p4 sync //depot/dev/main/jam/Jambase#3

Refers to revision 3 of file Jambase

The revision submitted
as of a specified
changelist

file@changelist_number

Examples:

p4 sync //depot/dev/main/jam/Jambase@126

Refers to the version of Jambase when changelist 126 was
submitted, even if it was not part of the change.

p4 sync //depot/...@126

Refers to the state of the entire depot at changelist 126
(numbered changelists are explained in “Managing
changelists” on page 50).

The revision in a
specified label

file@labelname

Example:

p4 sync //depot/dev/main/jam/Jambase@beta

The revision of Jambase in the label called beta. For details
about labels, refer to “Using labels” on page 74.

The revision last synced
to a specified client
workspace

file@clientname

Example:

p4 sync //depot/dev/main/jam/Jambase@bruno_ws

The revision of Jambase last synced to client workspace
bruno_ws
40 Perforce 2005.2 P4 User’s Guide

Chapter 3: Issuing P4 Commands
Example: Retrieving files using revision specifiers

Bruno wants to retrieve all revisions that existed at changelist number 30. He types
p4 sync //depot/dev/main/jam/Jambase@30

Another user can sync their workspace so that it contains the same file revisions Bruno has
synced by specifying Bruno’s workspace, as follows:

p4 sync @bruno_ws

Remove the file file#none

Example:

p4 sync //depot/dev/main/jam/Jambase#none

Removes Jambase from the client workspace.

The most recent version
of the file

file#head

Example:

p4 sync //depot/dev/main/jam/Jambase#head

Same as p4 sync //depot/dev/main/jam/Jambase

(If you omit the revision specifier, the head revision is
synced.)

The revision last synced
to your workspace

file#have

Example:

p4 files //depot/dev/main/jam/Jambase#have

The head revision of the
file in the depot on the
specified date

file@date

Example:

p4 sync //depot/dev/main/jam/Jambase@2005/05/18

The head revision of Jambase as of midnight May 18, 2005.

The head revision of the
file in the depot on the
specified date at the
specified time

file@"date[:time]"

Example:

p4 sync //depot/dev/main/jam/Jambase@”2005/05/18”

Specify dates in the format YYYY/MM/DD. Specify time in the
format HH:MM:SS using the 24-hour clock. Time defaults to
00:00:00

Separate the date and the time by a single space or a colon. (If
you use a space to separate the date and time, you must also
enclose the entire date-time specification in double quotes.)

Revision needed Syntax and example
Perforce 2005.2 P4 User’s Guide 41

Chapter 3: Issuing P4 Commands
Example: Removing all files from the client workspace
p4 sync #none

The files are removed from the workspace but not from the depot.

Date and time specifications

Date and time specifications are obtained from the time zone of the Perforce server. To
display the date, time, offset from GMT, and time zone in effect at your Perforce server,
issue the p4 info command. The Perforce server stores times as the number of seconds
since 00:00:00 GMT Jan. 1, 1970), so if you move your server across time zones, the times
stored on the server are correctly reported in the new time zone.

Revision ranges

Some commands can operate on a range of file revisions. To specify a revision range,
specify the start and end revisions separated by a comma, for example, #3,4.

The commands that accept revision range specifications are:

• p4 changes

• p4 files

• p4 integrate

• p4 jobs

• p4 print

• p4 sync

For the preceding commands:

• If you specify a single revision, the command operates on revision #1 through the
revision you specify (except for p4 sync, p4 print, and p4 files, which operate on
the highest revision in the range).

• If you omit the revision range entirely, the command affects all file revisions.

Example: Listing changes using revision ranges

A release manager needs to see a quick list of all changes made to the jam project in July 2000.
He types:

p4 changes//depot/dev/main/jam/...@2000/7/1,2000/8/1

The resulting list of changes looks like this:
Change 673 on 2000/07/31 by bruno@bruno_ws ’Final build for QA’
Change 633 on 2000/07/1 by bruno@bruno_ws ’First build w/bug fix’
Change 632 on 2000/07/1 by bruno@bruno_ws ’Started work’
42 Perforce 2005.2 P4 User’s Guide

Chapter 3: Issuing P4 Commands
Reporting commands

The following table lists some useful reporting commands.

Using Perforce forms

Some Perforce commands, for example p4 client and p4 submit, use a text editor to
display a form into which you enter the information that is required to complete the
command (for example, a description of the changes you are submitting). After you
change the form, save it, and exit the editor, Perforce parses the form and uses it to
complete the command. (To configure the text editor that is used to display and edit
Perforce forms, set P4EDITOR.)

 When you enter information into a Perforce form, observe the following rules:

• Field names (for example, View:) must be flush left (not indented) and must end with a
colon.

• Values (your entries) must be on the same line as the field name, or indented on the
lines beneath the field name.

Some field names, such as the Client: field in the p4 client form, require a single value;
other fields, such as Description:, take a block of text; and others, like View:, take a list
of lines.

Certain values, like Client: in the client workspace form, cannot be changed. Other
fields, like Description: in p4 submit, must be changed. If you don’t change a field that
needs to be changed, or vice versa, Perforce displays an error. For details about which
fields can be modified, see the Perforce Command Reference or use p4 help command.

To display Use this command

A list of p4 commands with a brief description p4 help commands

Detailed help about a specific command p4 help command

 Command line flags common to all Perforce commands p4 help usage

Details about Perforce view syntax p4 help views

All the arguments that can be specified for the p4 help
command

p4 help

The Perforce settings configured for your client machine p4 info

The file revisions in the client workspace p4 have

Preview the results of a p4 sync (to see which files would
be transferred)

p4 sync -n

Preview the results of a p4 delete (to see which files
would be marked for deletion)

p4 delete -n files
Perforce 2005.2 P4 User’s Guide 43

Chapter 3: Issuing P4 Commands
44 Perforce 2005.2 P4 User’s Guide

Chapter 4 Managing Files and
Changelists
This chapter tells you how to manage files and work in a team development environment,
where multiple users who are working on the same files might need to reconcile their
changes.

Managing files

To change files in the depot (file repository), you open the files in changelists and submit
the changelists with a description of your changes. Perforce assigns numbers to
changelists and maintains the revision history of your files. This approach enables you to
group related changes and find out who changed a file and why and when it was
changed. Here are the basic steps for working with files.

Task Description

Syncing (retrieving
files from the depot)

Issue the p4 sync command, specifying the files and directories
you want to retrieve from the depot. You can only sync files
that are mapped in your client view.

Adding files to the
depot

1. Create the file in the workspace.

2. Open the file for add in a changelist (p4 add).

3. Submit the changelist (p4 submit).

Editing files and
checking in changes

1. If necessary, sync the desired file revision to your
workspace (p4 sync).

2. Open the file for edit in a changelist (p4 edit).

3. Make your changes.

4. Submit the changelist (p4 submit). To discard changes,
issue the p4 revert command.

Deleting files from the
depot

1. Open the file for delete in a changelist (p4 delete). The file
is deleted from your workspace.

2. Submit the changelist (p4 submit). The file is deleted from
the depot.
Perforce 2005.2 P4 User’s Guide 45

Chapter 4: Managing Files and Changelists
Files are added to, deleted from, or updated in the depot only when you successfully
submit the pending changelist in which the files are open. A changelist can contain a
mixture of files open for add, edit and delete.

For details about the syntax that you use to specify files on the command line, refer to
“Specifying filenames on the command line” on page 36. The following sections provide
more details about working with files.

Syncing (retrieving) files

To retrieve files from the depot into your client workspace, issue the p4 sync command.
You cannot sync files that are not in your client view. For details about specifying client
views, see “Refining client views” on page 23.

Example: Copying files from the depot to a client workspace

The following command retrieves the most recent revisions of all files in the client view from
the depot into the workspace. As files are synced, they are listed in the command output.

The p4 sync command adds, updates, or deletes files in the client workspace to bring the
workspace contents into agreement with the depot. If a file exists within a particular
subdirectory in the depot, but that directory does not exist in the client workspace, the
directory is created in the client workspace when you sync the file. If a file has been
deleted from the depot, p4 sync deletes it from the client workspace.

Discarding changes Revert the files or the changelist in which the files are open.
Reverting has the following effects on open files:

Add: no effect—the file remains in your workspace.

Edit: the revision you opened is resynced from the depot,
overwriting any changes you made to the file in your
workspace.

Delete: the file is resynced to your workspace.

C:\bruno_ws>p4 sync

//depot/dev/main/bin/bin.linux24x86/readme.txt#1 - added as
c:\bruno_ws\dev\main\bin\bin.linux24x86\readme.txt

//depot/dev/main/bin/bin.ntx86/glut32.dll#1 - added as
c:\bruno_ws\dev\main\bin\bin.ntx86\glut32.dll

//depot/dev/main/bin/bin.ntx86/jamgraph.exe#2 - added as
c:\bruno_ws\dev\main\bin\bin.ntx86\jamgraph.exe

[...]

Task Description
46 Perforce 2005.2 P4 User’s Guide

Chapter 4: Managing Files and Changelists
To sync revisions of files prior to the latest revision in the depot, use revision specifiers.
For example, to sync the first revision of Jamfile, which has multiple revisions, issue the
following command:

p4 sync//depot/dev/main/jam/Jamfile#1

For more details, refer to “Specifying file revisions” on page 40.

To sync groups of files or entire directories, use wildcards. For example, to sync
everything in and below the “jam” folder, issue the following command:

p4 sync //depot/dev/main/jam/...

For more details, see “Perforce wildcards” on page 37.

The Perforce server tracks the revisions that you sync (in a database located on the server
machine). For maximum efficiency, Perforce does not resync an already-synced file
revision. To resync files you (perhaps inadvertently) deleted manually, specify the -f flag
when you issue the p4 sync command.

Adding files

To add files to the depot, create the files in your workspace, then issue the p4 add
command. The p4 add command opens the files for add in the default pending changelist.
The files are added when you successfully submit the default pending changelist. You can
open multiple files for add using a single p4 add command by using wildcards. You
cannot use the Perforce ...wildcard to add files recursively. For platform-specific details
about adding files recursively (meaning files in subdirectories), see Tech Note 12 on the
Perforce web site.

Example: Adding files to a changelist

Bruno has created a couple of text files that he needs to add to the depot. To add all the text
files at once, he uses the “*” wildcard when he issues the p4 add command.

Now the files he wants to add to the depot are open in his default changelist. The files are
stored in the depot when the changelist is submitted.

C:\bruno_ws\dev\main\docs\manuals>p4 add *.txt
//depot/dev/main/docs/manuals/installnotes.txt#1 - opened for add
//depot/dev/main/docs/manuals/requirements.txt#1 - opened for add
Perforce 2005.2 P4 User’s Guide 47

Chapter 4: Managing Files and Changelists
Example: Submitting a changelist to the depot

Bruno is ready to add his files to the depot. He types p4 submit and sees the following form
in a standard text editor:

Bruno changes the contents of the Description: field to describe his file updates. When he’s
done, he saves the form and exits the editor, and the new files are added to the depot.

You must enter a description in the Description: field. You can delete lines from the
Files: field. Any files deleted from this list are moved to the next default changelist, and
are listed the next time you submit the default changelist.

If you are adding a file to a directory that does not exist in the depot, the depot directory is
created when you successfully submit the changelist.

Changing files

To open a file for edit, issue the p4 edit command. When you open a file for edit,
Perforce enables write permission for the file in your workspace and adds the file to a
changelist. If the file is in the depot but not in your workspace, you must sync it before
you open it for edit. You must open a file for edit before you attempt to edit the file.

Example: Opening a file for edit

Bruno wants to make changes to command.c, so he syncs it and opens the file for edit.

He then edits the file with any text editor. When he’s finished, he submits the file to the depot
with p4 submit, as described above.

Change: new
Client: bruno_ws
User: bruno
Status: new
Description:

<enter description here>
Files:

//depot/dev/main/docs/manuals/installnotes.txt # add
//depot/dev/main/docs/manuals/requirements.txt # add

p4 sync //depot/dev/command.c
//depot/dev/command.c#8 - added as c:\bruno_ws\dev\command.c

p4 edit //depot/dev/command.c
//depot/dev/command.c#8 - opened for edit
48 Perforce 2005.2 P4 User’s Guide

Chapter 4: Managing Files and Changelists
Discarding changes (reverting)

To remove an open file from a changelist and discard any changes you made, issue the p4
revert command. When you revert a file, the Perforce server restores the last version
you synced to your workspace. If you revert a file that is open for add, the file is removed
from the changelist but is not deleted from your workspace.

Example: Reverting a file

Bruno decides not to add his text files after all.

To preview the results of a revert operation without actually reverting files, specify the -n
flag when you issue the p4 revert command.

Deleting files

To delete files from the depot, you open them for delete by issuing the p4 delete
command, then submit the changelist in which they are open. When you delete a file from
the depot, previous revisions remain, and a new head revision is added, marked as
“deleted.” You can still sync previous revisions of the file.

When you issue the p4 delete command, the files are deleted from your workspace but
not from the depot. If you revert files that are open for delete, they are restored to your
workspace. When you successfully submit the changelist in which they are open, the files
are deleted from the depot.

Example: Deleting a file from the depot

Bruno deletes vendor.doc from the depot as follows:

The file is deleted from the client workspace immediately, but it is not deleted from the depot
until he issues the p4 submit command.

C:\bruno_ws\dev\main\docs\manuals>p4 revert *.txt

//depot/dev/main/docs/manuals/installnotes.txt#none - was add,
abandoned
//depot/dev/main/docs/manuals/requirements.txt#none - was add,
abandoned

p4 delete //depot/dev/main/docs/manuals/vendor.doc
//depot/dev/main/docs/manuals/vendor.doc#1 - opened for delete
Perforce 2005.2 P4 User’s Guide 49

Chapter 4: Managing Files and Changelists
Managing changelists

To change files in the depot, you open them in a changelist, make any changes to the files,
and then submit the changelist. A changelist contains a list of files, their revision numbers,
and the operations to be performed on the files. Unsubmitted changelists are referred to as
pending changelists.

Submission of changelists is an all-or-nothing operation; that is, either all of the files in the
changelist are updated in the depot, or, if an error occurs, none of them are. This approach
guarantees that code alterations that affect multiple files occur simultaneously.

Perforce assigns numbers to changelists and also maintains a default changelist, which is
numbered when you submit it. You can create multiple changelists to organize your
work. For example, one changelist might contain files that are changed to implement a
new feature, and another changelist might contain a bug fix. When you open a file, it is
placed in the default changelist unless you specify an existing changelist number on the
command line using the -c flag. For example, to edit a file and submit it in changelist
number 4, use p4 edit -c 4 filename. To open a file in the default changelist, omit the
-c flag

The Perforce server might renumber a changelist when you submit it, depending on other
users’ activities; if your changelist is renumbered, its original number is never reassigned
to another changelist.

The commands that add or remove files from changelists are:

• p4 add

• p4 delete

• p4 edit

• p4 integrate

• p4 reopen

• p4 revert

To submit a numbered changelist, specify the -c flag when you issue the p4 submit
command. To submit the default changelist, omit the -c flag. For details, refer to the p4
submit command description in the Perforce Command Reference.

To move files from one changelist to another, issue the p4 reopen -c changenum
filenames command, where changenum specifies the number of the target changelist. If
you are moving files to the default changelist, use p4 reopen -c default filenames.
50 Perforce 2005.2 P4 User’s Guide

Chapter 4: Managing Files and Changelists
Creating numbered changelists

To create a numbered changelist, issue the p4 change command. This command displays
the changelist form. Enter a description and make any desired changes; then save the
form and exit the editor.

All files open in the default changelist are moved to the new changelist. When you exit the
text editor, the changelist is assigned a number. If you delete files from this changelist, the
files are moved back to the default changelist.

Example: Working with multiple changelists

Bruno is fixing two different bugs, and needs to submit each fix in a separate changelist. He
syncs the head revisions of the files for the first fix and opens the for edit in the default
changelist

Now he issues the p4 change command and enters a description in the changelist form.
After he saves the file and exits the editor, Perforce creates a numbered changelist containing
the files.

For the second bug fix, he performs the same steps, p4 sync, p4 edit, and p4 change.
Now he has two numbered changelists, one for each fix.

The numbers assigned to submitted changelists reflect the order in which the changelists
were submitted. When a changelist is submitted, the Perforce server might renumber it, as
shown in the following example.

Example: Automatic renumbering of changelists

Bruno has finished fixing the bug that he’s been using changelist 777 for. After he created that
changelist, he submitted another changelist, and two other users also submitted changelists.
Bruno submits changelist 777 with p4 submit -c 777, and sees the following message:

Change 777 renamed change 783 and submitted.

C:\bruno_ws\>p4 sync //depot/dev/main/jam/*.c
[list of files synced...]

C:\bruno_ws>p4 edit //depot/dev/main/jam/*.c
[list of files opened for edit...]

C:\bruno_ws\dev\main\docs\manuals>p4 change

 [Enter description and save form]

Change 777 created with 33 open file(s).
Perforce 2005.2 P4 User’s Guide 51

Chapter 4: Managing Files and Changelists
Submitting changelists

To submit a pending changelist, issue the p4 submit command. When you issue the p4
submit command, a form is displayed, listing the files in the changelist. You can remove
files from this list. The files you remove remain open in the default pending changelist
until you submit them or revert them.

To submit specific files that are open in the default changelist, issue the p4 submit
filename command. To specify groups of files, use wildcards. For example, to submit all
text files open in the default changelist, type p4 submit "*".txt. (Use quotation marks
as an escape code around the * wildcard to prevent it from being interpreted by the local
command shell).

After you save the changelist form and exit the text editor, the changelist is submitted to
the Perforce server, and the server updates the files in the depot. After a changelist has
been successfully submitted, only a Perforce administrator can change it, and the only
fields that can be changed are the description and user name.

If an error occurs when you submit the default changelist, Perforce creates a numbered
changelist containing the files you attempted to submit. You must then fix the problems
and submit the numbered changelist using the -c flag.

Perforce enables write permission for files that you open for edit and disables write
permission when you successfully submit the changelist containing the files. To prevent
conflicts with the Perforce server’s management of your workspace, do not change file
write permissions manually.

Deleting changelists

To delete a pending changelist, you must first remove all files and jobs associated with it
and then issue the p4 change -d changenum command. Related operations include the
following:

• To move files to another changelist, issue the p4 reopen -c changenum command.

• To remove files from the changelist and discard any changes, issue the p4 revert -c
changenum command.

Changelists that have already been submitted can be deleted only by a Perforce
administrator. See the Perforce System Administrator’s Guide for more information.
52 Perforce 2005.2 P4 User’s Guide

Chapter 4: Managing Files and Changelists
Renaming and moving files

To rename or move files, you use the p4 delete and p4 integrate commands to
simultaneously create the new file and delete the original file, thereby preserving its
revision history. The process is as follows:

To rename groups of files, use matching wildcards in the source_file and target_file
specifiers. To rename files, you must have Perforce write permission for the specified
files. (For details about Perforce permissions, see the Perforce System Administrator’s Guide.)

When you rename or move a file using p4 integrate, the Perforce server creates an
integration record that links it to its deleted predecessor, preserving the file’s history.
(Integration is also used to create branches and to propagate changes. For details, see
“Integrating changes” on page 71.

Displaying information about changelists

To display brief information about changelists, use the p4 changes command. To display
full information, use the p4 describe command. The following table describes some
useful reporting commands and options.

For more information, see “Changelist reporting” on page 93.

p4 integrate source_file target_file
p4 delete source_file
p4 submit

Command Description

p4 changes Displays a list of all pending and submitted changelists,
one line per changelist, and an abbreviated description.

p4 changes -m count Limits the number of changelists reported on to the last
specified number of changelists.

p4 changes -s status Limits the list to those changelists with a particular
status; for example, p4 changes -s submitted lists only
already submitted changelists.

p4 changes -u user Limits the list to those changelists submitted by a
particular user.

p4 changes -c workspace Limits the list to those changelists submitted from a
particular client workspace.

p4 describe changenum Displays full information about a single changelist. If the
changelist has already been submitted, the report
includes a list of affected files and the diffs of these files.
(You can use the -s flag to exclude the file diffs.)
Perforce 2005.2 P4 User’s Guide 53

Chapter 4: Managing Files and Changelists
Diffing files

Perforce provides a program that enables you to diff (compare) revisions of text files. By
diffing files, you can display:

• Changes that you made after opening the file for edit

• Differences between any two revisions

• Differences between file revisions in different branches

To diff a file that is synced to your workspace with a depot revision, issue the p4 diff
filename#rev command. If you omit the revision specifier, the file in your workspace is
compared with the revision you last synced, to display changes you made after syncing
the file.

To diff two revisions that reside in the depot but not in your workspace, use the p4 diff2
command. To diff a set of files, specify wildcards in the filename argument when you
issue the p4 diff2 command.

The p4 diff command performs the diff on your client machine, but the p4 diff2
command performs the diff on the server machine and sends the results to your client
machine.

The following table lists some common uses for diff commands.

By default, the p4 diff command launches the Perforce client’s internal diff program. To
use a different diff program, set the P4DIFF environment variable to specify the path and
executable of the desired program. To specify arguments for the external diff program,
use the -d flag. For details, refer to the Perforce Command Reference.

To diff Against Use this command

The workspace
file

The head
revision

p4 diff file
or
p4 diff file#head

The workspace
file

Revision 3 p4 diff file#3

The head
revision

Revision 134 p4 diff2 file file#134

File revision at
changelist 32

File revision at
changelist 177

p4 diff2 file@32 file@177

All files in
release 1

All files in
release 2

p4 diff2 //depot/rel1/... //depot/rel2/...
54 Perforce 2005.2 P4 User’s Guide

Chapter 4: Managing Files and Changelists
Working detached

If you need to work detached (without access to your Perforce server) on files under
Perforce control, you must reconcile your work with the Perforce server when you regain
access to the server. The following method for working detached assumes that you work
on files in your client workspace or update the workspace with your additions, changes,
and deletions before you update the depot.

See Tech Note 2 on the Perforce web site for platform-specific details about working
detached.

To work detached:

1. Work on files without issuing p4 commands. Instead, use operating system
commands to change the permissions on files.

2. After the network connection is reestablished, use p4 diff to find all files in your
workspace that have changed. (You need to track new files manually.)

3. Update the depot by opening files for add, edit, or delete as required and submitting
the resulting changelists.

The following sections provide more details.

Finding changed files

To detect changed files, issue the p4 diff command. The following flags enable you to
locate files that you changed or deleted manually, without opening them for edit or delete
in Perforce.

Submitting your changes

To update the depot with the changes that you made to the client workspace while
working detached, use the p4 diff flags described above with the -x flag, as shown in the
following examples. The -x flag directs the p4 edit command to accept arguments from
the pipe (or a file).

Flag Description

p4 diff -se Lists workspace files that are not open for edit but have been
changed since being synced. To update the depot with these
files, open them for edit and submit them.

p4 diff -sd Lists files that are not open for delete but have been manually
deleted from the workspace. To update the depot with these file
deletions, open them for delete and submit them.
Perforce 2005.2 P4 User’s Guide 55

Chapter 4: Managing Files and Changelists
To open changed files for edit after working detached, issue the following command:
p4 diff -se | p4 -x - edit

To delete files from the depot that were removed from the client workspace, issue the
following command:

p4 diff -sd | p4 -x - delete

Open any new files for add; then submit the changelist containing your additions,
changes, and deletions.
56 Perforce 2005.2 P4 User’s Guide

Chapter 5 Resolving Conflicts
This chapter tells you how to work in a team development environment, where multiple
users who are working on the same files might need to reconcile their changes.

In settings where multiple users are working on the same set of files, conflicts can occur.
Perforce enables your team to work on the same files simultaneously and resolve any
conflicts that arise. For example, conflicts occur if two users change the same file (the
primary concern in team settings) or you edit a previous revision of a file rather than the
head revision.

When you attempt to submit a file that conflicts with the head revision in the depot,
Perforce requires you to resolve the conflict. Merging changes from a development branch
to a release branch is another typical task that requires you to resolve files.

To prevent conflicts, Perforce enables you to lock files when they are edited. However,
locking can restrict team development. Your team needs to choose the strategy that
maximizes file availability while minimizing conflicts. For details, refer to “Locking files”
on page 65.

You might prefer to resolve files using graphical tools like P4V, the Perforce Visual Client,
and its associated visual merge tool P4Merge.

How conflicts occur

File conflicts can occur when two users edit and submit two versions of the same file.
Conflicts can occur in a number of ways, for example:

1. Bruno opens //depot/dev/main/jam/command.c#8 for edit.

2. Gale subsequently opens the same file for edit in her own client workspace.

3. Bruno and Gale both edit //depot/dev/main/jam/command.c#8.

4. Bruno submits a changelist containing //depot/dev/main/jam/command.c, and the
submit succeeds.

5. Gale submits a changelist with her version of //depot/dev/main/jam/command.c.
Her submit fails.

If Perforce accepts Gale’s version into the depot, her changes will overwrite Bruno’s
changes. To prevent Bruno’s changes from being lost, the Perforce server rejects the
changelist and schedules the conflicting file to be resolved. If you know of file conflicts in
advance and want to schedule a file for resolution, sync it. Perforce detects the conflicts
and schedules the file for resolution.
Perforce 2005.2 P4 User’s Guide 57

Chapter 5: Resolving Conflicts
How to resolve conflicts

To resolve a file conflict, you determine the contents of the files you intend to submit by
issuing the p4 resolve command and choosing the desired method of resolution for each
file. After you resolve conflicts, you submit the changelist containing the files.

By default, Perforce uses its diff program to detect conflicts. You can configure a third-
party diff program. For details, see “Diffing files” on page 54.

To resolve conflicts and submit your changes, perform the following steps:

1. Sync the files (for example p4 sync //depot/dev/main/jam/...). Perforce detects
any conflicts and schedules the conflicting files for resolve.

2. Issue the p4 resolve command and resolve any conflicts. See “Options for resolving
conflicts” on page 59 for details about resolve options.

3. Test the resulting files (for example, compile code and verify that it runs).

4. Submit the changelist containing the files.

Your, theirs, base and merge files

The p4 resolve command uses the following terms during the merge process.

Note If you open a file for edit, then sync a subsequently submitted revision
from the depot, Perforce requires you to resolve to prevent your own
changes from being overwritten by the depot file.

Note If any of the three file revisions participating in the merge are binary
instead of text, a three-way merge is not possible. Instead, p4 resolve
performs a two-way merge: the two conflicting file versions are
presented, and you can choose between them or edit the one in your
workspace before submitting the changelist.

File revision Description

yours The revision of the file in your client workspace, containing
changes you made.

theirs The revision in the depot, edited by another user, that yours
conflicts with. (Usually the head revision, but you can schedule a
resolve with another revision using p4 sync.)

base The file revision in the depot that yours and theirs were edited
from (the closest common ancestor file).
58 Perforce 2005.2 P4 User’s Guide

Chapter 5: Resolving Conflicts
Options for resolving conflicts

To specify how a conflict is to be resolved, you issue the p4 resolve command, which
displays a dialog for each file scheduled for resolve. The dialog describes the differences
between the file you changed and the conflicting revision. For example:

The differences between each pair of files are summarized by p4 resolve. Groups of lines
(chunks) in the yours, theirs, and base files can differ in various ways. Chunks can be:

• Diffs: different between two of the three files: yours, theirs, or base

• Conflicts: different in all three files

In the preceding example:

• Four chunks are identical in theirs and base but are different in yours.

• Two chunks are identical in yours and base but are different in theirs.

• One chunk was changed identically in yours and theirs.

• One chunk is different in yours, theirs, and base.

Perforce’s recommended choice is displayed at the end of the command line. Pressing
ENTER or choosing Accept performs the recommended choice.

You can resolve conflicts in three basic ways:

• Accept a file without changing it (see “Accepting yours, theirs, or merge” on page 60)

• Edit the merge file with a text editor (see “Editing the merge file” on page 61)

• Merge changes selectively using a merge program (see “Merging to resolve conflicts”
on page 61)

The preceding options are interactive. You can also specify resolve options on the p4
resolve command line, if you know which file you want to accept. For details, see
“Resolve command-line flags” on page 64.

To reresolve a resolved but unsubmitted file, specify the -f flag when you issue the p4
resolve command. You cannot reresolve a file after you submit it.

merge The file generated by Perforce from theirs, yours, and base.

result The final file resulting from the resolve process.

p4 resolve //depot/dev/main/jam/command.c
c:\bruno_ws\dev\main\jam\command.c - merging //depot/dev/main/jam/command.c#9

Diff chunks: 4 yours + 2 theirs + 1 both + 1 conflicting
Accept(a) Edit(e) Diff(d) Merge (m) Skip(s) Help(?) e:

File revision Description
Perforce 2005.2 P4 User’s Guide 59

Chapter 5: Resolving Conflicts
The following sections describe the resolve options in more detail.

Accepting yours, theirs, or merge

To accept a file without changing it, specify one of the following options.

Accepting yours, theirs, edit, or merge overwrites changes, and the generated merge
file might not be precisely what you want to submit to the depot. The most precise way to
ensure that you submit only the desired changes is to use a merge program or edit the
merge file.

Option Description Remarks

a Accept
recommended
file

• If theirs is identical to base, accept yours.
• If yours is identical to base, accept theirs.
• If yours and theirs are different from base, and

there are no conflicts between yours and theirs;
accept merge.

• Otherwise, there are conflicts between yours and
theirs, so skip this file.

ae Accept edit If you edited the merge file (by selecting e from the p4
resolve dialog), accept the edited version into the
client workspace. The version in the client workspace is
overwritten.

am Accept merge Accept merge into the client workspace as the resolved
revision. The version in the client workspace is
overwritten.

at Accept theirs Accept theirs into the client workspace as the
resolved revision. The version in the client workspace
is overwritten.

ay Accept yours Accept yours into the client workspace as the resolved
revision, ignoring changes that might have been made
in theirs.
60 Perforce 2005.2 P4 User’s Guide

Chapter 5: Resolving Conflicts
Editing the merge file

To resolve files by editing the merge file, choose the e option. Perforce launches your
default text editor, displaying the merge file. In the merge file, diffs and conflicts appear
in the following format:

To locate conflicts and differences, look for the difference marker “>>>>” and edit that
portion of the text. Examine the changes made to theirs to make sure that they are
compatible with your changes. Make sure you remove all conflict markers before saving.
After you make the desired changes, save the file. At the p4 resolve prompt, choose ay.

By default, only the conflicts between the yours and theirs files are marked. To generate
difference markers for all differences, specify the -v flag when you issue the p4 resolve
command.

Merging to resolve conflicts

A merge program displays the differences between yours, theirs, and the base file, and
enables you to select and edit changes to produce the desired result file. To configure a
merge program, set P4MERGE to the desired program. To use the merge program during a
resolve, choose the m option. For details about using a specific merge program, consult its
online help.

After you merge, save your results and exit the merge program. At the p4 resolve
prompt, choose am.

>>>> ORIGINAL file#n
(text from the original version)
==== THEIR file#m
(text from their file)
==== YOURS file
(text from your file)
<<<<
Perforce 2005.2 P4 User’s Guide 61

Chapter 5: Resolving Conflicts
Full list of resolve options

The p4 resolve command offers the following options.

Option Action Remarks

? Help Display help for p4 resolve.

a Accept
automatically

Accept the autoselected file:

• If theirs is identical to base, accept yours.
• If yours is identical to base, accept theirs.
• If yours and theirs are different from base, and

there are no conflicts between yours and theirs;
accept merge.

• Otherwise, there are conflicts between yours and
theirs, so skip this file.

ae Accept edit If you edited the merge file (by selecting e from the p4
resolve dialog), accept the edited version into the
client workspace. The version in the client workspace is
overwritten.

am Accept merge Accept merge into the client workspace as the resolved
revision. The version in the client workspace is
overwritten.

at Accept theirs Accept theirs into the client workspace as the
resolved revision. The version in the client workspace
is overwritten.

ay Accept yours Accept yours into the client workspace as the resolved
revision, ignoring changes that might have been made
in theirs.

d Diff Show diffs between merge and yours.

dm Diff merge Show diffs between merge and base.

dt Diff theirs Show diffs between theirs and base.

dy Diff yours Show diffs between yours and base.

e Edit merged Edit the preliminary merge file generated by Perforce.

et Edit theirs Edit the revision in the depot that the client revision
conflicts with (usually the head revision). This edit is
read-only.

ey Edit yours Edit the revision of the file currently in the workspace.
62 Perforce 2005.2 P4 User’s Guide

Chapter 5: Resolving Conflicts
Example: Resolving file conflicts

To resolve conflicts between his work on a Jam readme file and Earl’s work on the same file,
Bruno types p4 resolve //depot/dev/main/jam/README and sees the following:

Bruno sees that that he and Earl have made a conflicting change to the file. He types e to edit
the merge file and searches for the difference marker “>>>>”. The following text is displayed:

Bruno and Earl have updated the copyright date differently. Bruno edits the merge file so that
the header is correct, exits from the editor and types am. The edited merge file is written to the
client workspace, and he proceeds to resolve the next file.

When a version of the file is accepted during a resolve, the file in the workspace is
overwritten, and the new client file must still be submitted to the depot. New conflicts can
occur if new versions of a file are submitted after you resolve but before you submit the
resolved files. This problem can be prevented by locking the file before you perform the
resolve. For details, see “Locking files” on page 65.

m Merge Invoke the command P4MERGE base theirs yours
merge. To use this option, you must set P4MERGE to the
name of a third-party program that merges the first
three files and writes the fourth as a result.

s Skip Skip this file and leave it scheduled for resolve.

Note The merge file is generated by the Perforce server, but the differences
displayed by dy, dt, dm, and d are generated by the client machine’s diff
program. To configure another diff program to be launched when you
choose a d option during a resolve, set P4DIFF. For more details, see
“Diffing files” on page 54.

Diff chunks: 0 yours + 0 theirs + 0 both + 1 conflicting
Accept(a) Edit(e) Diff(d) Merge (m) Skip(s) Help(?) e: e

Jam/MR (formerly "jam - make(1) redux")
/+\
>>>> ORIGINAL README#26
 +\Copyright 1993, 1997 Christopher Seiwald.
==== THEIRS README#27
 +\Copyright 1993, 1997, 2004 Christopher Seiwald.
==== YOURS README
 +\Copyright 1993, 1997, 2005 Christopher Seiwald.
<<<<
 \+/

Option Action Remarks
Perforce 2005.2 P4 User’s Guide 63

Chapter 5: Resolving Conflicts
Resolve command-line flags

The following p4 resolve flags enable you to resolve directly instead of interactively.
When you specify one of these flags in the p4 resolve command, files are resolved as
described in the following table.

Example: Automatically accepting particular revisions of conflicting files

Bruno has been editing the documentation files in /doc and knows that some of them require
resolving. He types p4 sync doc/*.guide, and all of these files that conflict with files in
the depot are scheduled for resolve.

He then types p4 resolve -am and the merge files for all scheduled resolves are generated,
and those merge files that contain no line set conflicts are written to his client workspace.
He’ll still need to manually resolve any conflicting files, but the amount of work he needs to
do is substantially reduced.

Flag Description

-a Accept the autoselected file.

-ay Accept yours.

-at Accept theirs. Use this option with caution, because the file revision
in your client workspace is overwritten with the head revision from
the depot, and you cannot recover your changes.

-am Accept the recommended file revision according to the following
logic:

• If theirs is identical to base, accept yours.
• If yours is identical to base, accept theirs.
• If yours and theirs are different from base, and there are no con-

flicts between yours and theirs, accept merge.
• Otherwise, there are conflicts between yours and theirs, so skip

this file, leaving it unresolved.

-af Accept the recommended file revision, even if conflicts remain. If this
option is used, edit the resulting file in the workspace to remove any
difference markers.

-as Accept the recommended file revision according to the following
logic:

• If theirs is identical to base, accept yours.
• If yours is identical to base, accept theirs.
• Otherwise skip this file.
64 Perforce 2005.2 P4 User’s Guide

Chapter 5: Resolving Conflicts
Resolve reporting commands

The following reporting commands are helpful when you are resolving file conflicts.

Locking files

After you open a file, you can lock it to prevent other users from submitting it before you
do. The benefit of locking a file is that conflicts are prevented, but when you lock a file,
you might prevent other team members from proceeding with their work on that file.

Preventing multiple resolves by locking files

Without file locking, there is no guarantee that the resolve process ever ends. The
following scenario demonstrates the problem:

1. Bruno opens file for edit.

2. Gale opens the same file in her client for edit.

3. Bruno and Gale both edit their client workspace versions of the file.

4. Bruno submits a changelist containing that file, and his submit succeeds.

5. Gale submits a changelist with her version of the file; her submit fails because of file
conflicts with the new depot’s file.

6. Gale starts a resolve.

7. Bruno edits and submits a new version of the same file.

8. Gale finishes the resolve and attempts to submit; the submit fails and must now be
merged with Bruno’s latest file.

...and so on.

Command Meaning

p4 diff [filenames] Diffs the file revision in the workspace with the last
revision you synced, to display changes you have made.

p4 diff2 file1 file2 Diffs two depot files. The specified files can be any two file
revisions and different files.

When you diff depot files, the Perforce server uses its own
diff program, not the diff program configured by setting
P4DIFF.

p4 sync -n [filenames] Previews the specified sync, listing which files have
conflicts and need to be resolved.

p4 resolved Reports files that have been resolved but not yet submitted.
Perforce 2005.2 P4 User’s Guide 65

Chapter 5: Resolving Conflicts
To prevent such problems, you can lock files, as follows.

1. Before scheduling a resolve, lock the file.

2. Sync the file (to schedule a resolve).

3. Resolve the file.

4. Submit the file.

5. Perforce automatically unlocks the file after successful changelist submission.

To list open locked files on UNIX, issue the following command:
p4 opened | grep "*locked*"

Preventing multiple checkouts

To ensure that only one user at a time can work on the file, use the +l (exclusive-open) file
type modifier. For example:

p4 reopen -t binary+l file

Although exclusive locking prevents concurrent development, for some file types (binary
files), merging and resolving are not meaningful, so you can prevent conflicts by
preventing multiple users from working on the file simultaneously.

Your Perforce administrator can use the p4 typemap command to ensure that all files of a
specified type (for instance, //depot/.../*.gif for all .gif files) can only be opened by
one user at a time. See the Perforce Command Reference for details.

The difference between p4 lock and +l is that p4 lock allows anyone to open a file for
edit, but only the person who locked the file can submit it. By contrast, a file of type +l
prevents more than one user from opening the file.
66 Perforce 2005.2 P4 User’s Guide

Chapter 6 Codelines and Branching
This chapter describes the tasks required to maintain groups of files in your depot. The
following specific issues are addressed:

• Depot directory structure and how to best organize your repository

• Moving files and file changes among codeline and project directories

• Identifying specific sets of files using either labels or changelists

This chapter focuses on maintaining a software code base, but many of the tasks are
relevant to managing other groups of files, such as a web site. For advice about best
practices, see the white papers on the Perforce web site.

Basic terminology

To enable you to understand the following sections, here are definitions of some relevant
terms as they are used in Perforce.

Term Definition

branch (noun) A set of related files created by copying files, as opposed
to adding files. A group of related files is often referred to as a
codeline.

(verb) To create a branch.

integrate To create new files from existing files, preserving their ancestry
(branching), or to propagate changes from one set of files to
another (merging).

merge The process of combining the contents of two conflicting file
revisions into a single file, typically using a merge tool like
P4Merge.

resolve The process you use to reconcile the differences between two
revisions of a file. You can choose to resolve conflicts by
selecting a file to be submitted or by merging the contents of
conflicting files.
Perforce 2005.2 P4 User’s Guide 67

Chapter 6: Codelines and Branching
Organizing the depot

You can think of a depot as a top-level directory. Consider the following factors as you
decide how to organize your depot:

• Type of content: create depots or mainline directories according to the nature of your
projects and their relationships (for example, applications with multiple components
developed on separate schedules).

• Release requirements: within a project, create branches for each release and integrate
changes between branches to control the introduction of features and bug fixes.

• Build management: use labels and changelists to control the file revisions that are built;
use client specifications and views to ensure clean build areas.

A basic and logical way to organize the depot is to create one subdirectory (codeline) for
each project. For example, if your company is working on Jam, you might devote one
codeline to the release presently in development, another to already-released software,
and perhaps one to your corporate web site. Your developers can modify their client
views to map the files in their project, excluding other projects that are not of interest. For
example, if Earl maintains the web site, his client view might look like this:

And Gale, who’s working on Jam, sets up her client view as:

You can organize according to projects or according to the purpose of a codeline. For
example, to organize the depot according to projects, you can use a structure like the
following:

Or, to organize the depot according to the purpose of each codeline, you can use a
structure like the following:

//depot/www/dev/... //earl-web-catalpa/www/development/...
//depot/www/review/... //earl-web-catalpa/www/review/...
//depot/www/live/... //earl-web-catalpa/www/live/...

//depot/dev/main/jam/... //gale-jam-oak/jam/...

//depot/project1/main/
//depot/project1/release 1.0/
//depot/project1/release 1.1/

//depot/main/project1/
//depot/main/project2/
//depot/release1.0/project1/
//depot/release1.0/project2/
//depot/release2.0/project1/
//depot/release2.0/project2/
68 Perforce 2005.2 P4 User’s Guide

Chapter 6: Codelines and Branching
Another approach is to create one depot for each project. Choose a structure that makes
branching and integrating as simple as possible, so that the history of your activities
makes sense to you.

Branching

Branching is a method of maintaining the relationship between sets of related files.
Branches can evolve separately from their ancestors and descendants, and you can
propagate (integrate) changes from one branch to another as desired. Perforce’s Inter-File
Branching™ mechanism preserves the relationship between files and their ancestors while
consuming minimal server resources.

To create a branch, use the p4 integrate command. The p4 integrate command is also
used to propagate changes between existing sets of files. For details about integrating
changes, refer to “Integrating changes” on page 71.

When to branch

Create a branch when two sets of files have different submission policies or need to evolve
separately. For example:

• Problem: the development group wants to submit code to the depot whenever their code
changes, regardless of whether it compiles, but the release engineers don’t want code to
be submitted until it’s been debugged, verified, and approved.

Solution: create a release branch by branching the development codeline. When the
development codeline is ready, it is integrated into the release codeline. Patches and
bug fixes are made in the release code and integrated back into the development code.

• Problem: a company is writing a driver for a new multiplatform printer. The UNIX
device driver is done and they are beginning work on a Macintosh driver, using the
UNIX code as their starting point.

Solution: create a Macintosh branch from the existing UNIX code. These two codelines
can evolve separately. If bugs are found in one codeline, fixes can be integrated to the
other.

One basic strategy is to develop code in //depot/main/ and create branches for releases
(for example, //depot/rel1.1/). Make release-specific bug fixes in the release branches
and, if required, integrate them back into the //depot/main/ codeline.
Perforce 2005.2 P4 User’s Guide 69

Chapter 6: Codelines and Branching
Creating branches

To create a branch, use the p4 integrate command. When you create a branch, the
Perforce server records the relationships between the branched files and their ancestors.

You can create branches using file specifications or branch specifications. For simple
branches, use file specifications. For branches that are based on complex sets of files or to
ensure that you have a record of the way you defined the branch, use branch
specifications. Branch specifications can also be used in subsequent integrations. Branch
specifications also can serve as a record of codeline policy.

Using branch specifications

To map a set of files from source to target, you can create a branch specification and use it as
an argument when you issue the p4 integrate command. To create a branch
specification, issue the p4 branch branchname command and specify the desired
mapping in the View: field, with source files on the left and target files on the right. Make
sure that the target files and directories are in your client view. Creating or altering a
branch specification has no effect on any files in the depot or client workspace. The branch
specification merely maps source files to target files.

To use the branch specification to create a branch, issue the p4 integrate -b
branchname command; then use p4 submit to submit the target files to the depot.

Branch specifications can contain multiple mappings and exclusionary mappings, just as
client views can. For example, the following branch specification branches the Jam 1.0
source code, excluding test scripts, from the main codeline.

To create a branch using the preceding branch specification, issue the following
command:

p4 integrate -b jamgraph-1.0-dev2release

To delete a branch specification, issue the p4 branch -d branchname command.
Deleting a branch specification has no effect on existing files or branches.

Using file specifications

To branch using file specifications, issue the p4 integrate command, specifying the
source files and target files. The target files must be in the client view. If the source files
are not in your client view, specify them using depot syntax.

Branch: jamgraph-1.0-dev2release

View:
 //depot/dev/main/jamgraph/... //depot/release/jamgraph/1.0/...
 -//depot/dev/main/jamgraph/test/... //depot/release/jamgraph/1.0/test/...
 //depot/dev/main/bin/glut32.dll //depot/release/jamgraph/1.0/bin/glut32.dll
70 Perforce 2005.2 P4 User’s Guide

Chapter 6: Codelines and Branching
To create a branch using file specifications, perform the following steps:

1. Determine where you want the branch to reside in the depot and the client
workspace. Add the corresponding mapping specification to your client view.

2. Issue the p4 integrate source_files target_files command.

3. Submit the changelist containing the branched files. The branch containing the target
files is created in the depot.

Example: Creating a branch using a file specification

Version 2.2 of Jam has just been released, and work on version 3.0 is starting. Version 2.2
must be branched to //depot/release/jam/2.2/... for maintenance.

Bruno uses p4 client to add the following mapping to his client view:
//depot/release/jam/2.2/... //bruno_ws/release/jam/2.2/...

He issues the following command to create the branch:
p4 integrate //depot/dev/main/jam/... //bruno_ws/release/jam/2.2/...

Finally, he issues the p4 submit command, which adds the newly branched files to the depot.

Integrating changes

After you create branches, you might need to propagate changes between them. For
example, if you fix a bug in a release branch, you probably want to incorporate the fix
back into your main codeline. To propagate selected changes between branched files, you
use the p4 integrate command, as follows:

1. Issue the p4 integrate command to schedule the files for resolve.

2. Issue the p4 resolve command to propagate changes from the source files to the
target files.

To propagate individual changes, edit the merge file or use a merge program. The
changes are made to the target files in the client workspace.

3. Submit the changelist containing the resolved files.

Example: Propagating changes between branched files

Bruno has fixed a bug in the release 2.2 branch of the Jam project and needs to integrate it
back to the main codeline. From his home directory, Bruno types

p4 integrate //depot/release/jam/2.2/src/Jambase //depot/dev/main/jam/Jambase
Perforce 2005.2 P4 User’s Guide 71

Chapter 6: Codelines and Branching
and sees the following message:
//depot/dev/main/jam/Jambase#134 - integrate from
//depot/release/jam/2.2/src/Jambase#9

The file has been scheduled for resolve. He types p4 resolve, and the standard merge dialog
appears on his screen.

//depot/dev/main/jam/Jambase - merging
//depot/release/jam/2.2/src/Jambase#9

Diff chunks: 0 yours + 1 theirs + 0 both + 0 conflicting
Accept(a) Edit(e) Diff(d) Merge (m) Skip(s) Help(?) [at]:

He resolves the conflict. When he’s done, the result file overwrites the file in his workspace.
The changelist containing the file must be submitted to the depot.

To run the p4 integrate command, you must have Perforce write permission on the
target files, and read access on the source files. (See the Perforce System Administrator’s
Guide for information on Perforce permissions.)

By default, a file that has been newly created in a client workspace by p4 integrate
cannot be edited before being submitted. To edit a newly integrated file before
submission, resolve it, then issue the p4 edit command.

If the range of revisions being integrated includes deleted revisions (for example, a file
was deleted from the depot, then re-added), you can specify how deleted revisions are
integrated using the -d or -D flags. For details, refer to the Perforce Command Reference.

Integrating using branch specifications

To integrate changes from one set of files and directories to another, you can use a branch
specification when you issue the p4 integrate command. The basic syntax of the
integrate command when using a branch specification is:

p4 integrate -b branchname [tofiles]

Target files must be mapped in both the branch view and the client view. The source files
need not be in the client view. If you omit the tofiles argument, all the files in the branch
are affected.

To reverse the direction of integration using a branch specification, specify the -r flag.
This flag enables you to integrate in either direction between two branches without
requiring you to create a branch specification for each direction.

Example: Integrating changes to a single file in a branch

A feature has been added in the main Jam codeline and Bruno wants to propagate the feature
to release 1.0 He types:

p4 integrate -b jamgraph-1.0-dev2release *.c
72 Perforce 2005.2 P4 User’s Guide

Chapter 6: Codelines and Branching
and sees:
//depot/release/jam/1.0/src/command.c#10 - integrate from
//depot/dev/main/jam/command.c#97

The file has been scheduled for resolve. He types p4 resolve, and the standard merge dialog
appears on his screen.

//depot/release/jam/1.0/src/command.c - merging
//depot/dev/main/jam/command.c#97

Diff chunks: 0 yours + 1 theirs + 0 both + 0 conflicting
Accept(a) Edit(e) Diff(d) Merge (m) Skip(s) Help(?) [at]:

He resolves the conflict. When he’s done, the result file overwrites the file in his branched
client workspace; the file must then be submitted to the depot.

Integrating between unrelated files

If the target file was not branched from the source, there is no base (common ancestor)
revision. To integrate between unrelated files, specify the -i flag. Perforce uses the first
(most recently added) revision of the source file as its base revision. This operation is
referred to as a baseless merge.

Integrating specific file revisions

By default, the integrate command integrates all the revisions following the last-
integrated source revision into the target. To avoid having to manually delete unwanted
revisions from the merge file while editing, you can specify a range of revisions to be
integrated. The base file is the common ancestor.

Example: Integrating specific file revisions

Bruno has made two bug fixes to //depot/dev/main/jam/scan.c in the main codeline,
and Earl wants to integrate the change into the release 1.0 branch. Although scan.c has
gone through 20 revisions since the fixes were submitted, Earl knows that the bug fixes he
wants were made to file revisions submitted in changelist 30. He types

p4 integrate -b jamgraph-1.0-dev2release //depot/dev/main/jam/scan.c,@30,@30

The target file is given as an argument, but the file revisions are applied to the source. When
Earl runs p4 resolve, only the revision of Bruno’s file that was submitted in changelist 30
is scheduled for resolve. That is, Earl sees only the changes that Bruno made to scan.c in
changelist 30. The file revision that was present in the depot at changelist 29 is used as the
base file.
Perforce 2005.2 P4 User’s Guide 73

Chapter 6: Codelines and Branching
Reintegrating and reresolving files

After a revision of a source file has been integrated into a target, that revision is usually
skipped in subsequent integrations with the same target. To force the integration of
already-integrated files, specify the -f flag when you issue the p4 integrate command.

A target that has been resolved but not submitted can be resolved again by specifying the
-f flag to p4 resolve. When you reresolve a file, yours is the new client file, the result of
the original resolve.

Integration reporting

The following reporting commands provide useful information about the status of files
being branched and integrated. Note the use of the preview flag (-n) for reporting
purposes.

Using labels

A Perforce label is a set of tagged file revisions. For example, you might want to tag the file
revisions that compose a particular release with the label release2.0.1. In general, you
can use labels to:

• Keep track of all the file revisions contained in a particular release of software.

• Distribute a particular set of file revisions to other users (for example, a standard
configuration).

• Populate a clean build workspace.

• Specify a set of file revisions to be branched for development purposes.

• Sync the revisions as a group to a client workspace.

To display this information Use this command

Preview of the results of an integration p4 integrate -n [filepatterns]

Files that are scheduled for resolve p4 resolve -n [filepatterns]

Files that have been resolved but not yet
submitted.

p4 resolved

List of branch specifications p4 branches

The integration history of the specified files. p4 integrated filepatterns

The revision histories of the specified files,
including the integration histories of files from
which the specified files were branched.

p4 filelog -i [filepatterns]
74 Perforce 2005.2 P4 User’s Guide

Chapter 6: Codelines and Branching
Labels and changelist numbers both refer to particular sets of file revisions but differ as
follows:

• A label can refer to any set of file revisions. A changelist number refers to the contents
of all the files in the depot at the time the changelist was submitted. If you need to refer
to a group of file revisions from different points in time, use a label. If there is a point in
time at which the files are consistent for your purposes, use a changelist number.

• You can change the contents of a label. You cannot change the contents of a submitted
changelist.

• You can assign your own names to labels. Changelist numbers are assigned by the
Perforce server.

Changelists are suitable for many applications that traditionally use labels. Unlike labels,
changelists represent the state of a set of files at a specific time. Before you assume that a
label is required, consider whether simply referring to a changelist number might fulfill
your requirements.

Tagging files with a label

To tag a set of file revisions (in addition to any revisions that have already been tagged),
use p4 tag, specifying a label name and the desired file revisions.

For example, to tag the head revisions of files that reside under
//depot/release/jam/2.1/src/ with the label jam-2.1.0, issue the following
command:

p4 tag -l jam-2.1.0 //depot/release/jam/2.1/src/...

To tag revisions other than the head revision, specify a changelist number in the file
pattern:

p4 tag -l jam-2.1.0 //depot/release/jam/2.1/src/...@1234

Only one revision of a given file can be tagged with a given label, but the same file
revision can be tagged by multiple labels.

Untagging files

You can untag revisions with:
p4 tag -d -l labelname filepattern

This command removes the association between the specified label and the file revisions
tagged by it. For example, if you have tagged all revisions under
//depot/release/jam/2.1/src/... with jam-2.1.0, you can untag only the header
files with:

p4 tag -d -l jam-2.1.0 //depot/release/jam/2.1/src/*.h
Perforce 2005.2 P4 User’s Guide 75

Chapter 6: Codelines and Branching
Previewing tagging results

You can preview the results of p4 tag with p4 tag -n. This command lists the revisions
that would be tagged, untagged, or retagged by the tag command without actually
performing the operation.

Listing files tagged by a label

To list the revisions tagged with labelname, use p4 files, specifying the label name as
follows:

p4 files @labelname

All revisions tagged with labelname are listed, with their file type, change action, and
changelist number. (This command is equivalent to p4 files //...@labelname).

Listing labels that have been applied to files

To list all labels that have been applied to files, use the command:
p4 labels filepattern

Using a label to specify file revisions

You can use a label name anywhere you can refer to files by revision (#1, #head),
changelist number (@7381), or date (@2003/07/01).

If you omit file arguments when you issue the p4 sync @labelname command, all files in
the client workspace view that are tagged by the label are synced to the revision specified
in the label. All files in the workspace that do not have revisions tagged by the label are
deleted from the workspace. Open files or files not under Perforce control are unaffected.
This command is equivalent to p4 sync //...@labelname.

If you specify file arguments when you issue the p4 sync command (p4 sync
files@labelname), files that are in your workspace and tagged by the label are synced to
the tagged revision.

Example: Retrieving files tagged by a label into a client workspace

To retrieve the files tagged by Earl’s jam-2.1.0 label into his client workspace, Bruno issues
the following command:

p4 sync @jam-2.1.0
76 Perforce 2005.2 P4 User’s Guide

Chapter 6: Codelines and Branching
and sees:

Deleting labels

To delete a label, use the following command:
p4 label -d labelname

Deleting a label has no effect on the tagged file revisions (though, of course, the revisions
are no longer tagged).

Creating a label for future use

To create a label without tagging any file revisions, issue the p4 label labelname
command. This command displays a form in which you describe and specify the label.
After you have created a label, you can use p4 tag or p4 labelsync to apply the label to
file revisions.

Label names cannot be the same as client workspace, branch, or depot names.

For example, to create jam-2.1.0, issue the following command:
p4 label jam-2.1.0

The following form is displayed:

Enter a description for the label and save the form. (You do not need to change the View:
field.)

After you create the label, you are able to use the p4 tag and p4 labelsync commands to
apply the label to file revisions.

//depot/dev/main/jam/Build.com#5 - updating c:\bruno_ws\dev\main\jam\Build.com
//depot/dev/main/jam/command.c#5 - updating c:\bruno_ws\dev\main\jam\command.c
//depot/dev/main/jam/command.h#3 - added as c:\bruno_ws\dev\main\jam\command.h
//depot/dev/main/jam/compile.c#12 - updating c:\bruno_ws\dev\main\jam\compile.c
//depot/dev/main/jam/compile.h#2 - updating c:\bruno_ws\dev\main\jam\compile.h
<etc>

Label: jam-2.1.0
Update: 2005/03/07 13:07:39
Access: 2005/03/07 13:13:35
Owner: earl
Description:

Created by earl.
Options: unlocked
View:

//depot/...
Perforce 2005.2 P4 User’s Guide 77

Chapter 6: Codelines and Branching
Restricting files that can be tagged

The View: field in the p4 label form limits the files that can be tagged with a label. The
default label view includes the entire depot (//depot/...). To prevent yourself from
inadvertently tagging every file in your depot, set the label’s View: field to the files and
directories to be excluded, using depot syntax.

Example: Using a label view to control which files can be tagged

Earl wants to tag the revisions of source code in the release 2.1 branch, which he knows can be
successfully compiled. He types p4 label jam-2.1.0 and uses the label’s View: field to
restrict the scope of the label as follows:

This label can tag only files in the release 2.1 source code directory.

Using labels to archive workspace configurations

You can use labels to archive the state of your client workspace (meaning the currently
synced file revisions) by issuing the p4 labelsync command. The label you specify must
have the same view as your client workspace.

For example, to record the configuration of your current client workspace using the
existing ws_config label, use the following command:

p4 labelsync -l ws_config

All file revisions that are synced to your current workspace and visible through both the
client view and the label view (if any) are tagged with the ws_config label. Files that were
previously tagged with ws_config, then subsequently removed from your workspace
(sync #none), are untagged.

To sync the files tagged by the ws_config label (thereby recreating the workspace
configuration), issue the following command:

p4 sync @ws_config

Label: jam-2.1.0
Update: 2005/03/07 13:07:39
Access: 2005/03/07 13:13:35
Owner: earl
Description:

Created by earl.
Options: unlocked
View:

//depot/release/jam/2.1/src/...
78 Perforce 2005.2 P4 User’s Guide

Chapter 6: Codelines and Branching
Preventing inadvertent tagging and untagging of files

To tag the files that are in your client workspace and label view (if set) and untag all other
files, issue the p4 labelsync command with no arguments. To prevent the inadvertent
tagging and untagging of files, issue the p4 label labelname command and lock the
label by setting the Options: field of the label form to locked. To prevent other users
from unlocking the label, set the Owner: field. For details about Perforce privileges, refer
to the Perforce System Administrator’s Guide.
Perforce 2005.2 P4 User’s Guide 79

Chapter 6: Codelines and Branching
80 Perforce 2005.2 P4 User’s Guide

Chapter 7 Defect Tracking
A job is a numbered (or named) work request managed by the Perforce server. Perforce
jobs enable you to track the status of bugs and enhancement requests and associate them
with changelists that implement fixes and enhancements. You can search for jobs based
on the contents of fields, the date the job was entered or last modified, and many other
criteria.

Your Perforce administrator can customize the job specification for your site’s
requirements. For details on modifying the job specification, see the Perforce System
Administrator’s Guide.

If you want to integrate Perforce with your in-house defect tracking system, or develop an
integration with a third-party defect tracking system, see the P4DTI product information
page on the Perforce web site.

Managing jobs

To create a job using Perforce’s default job-naming scheme, issue the p4 job command.
To assign a name to a new job (or edit an existing job), issue the p4 job jobname
command.

Example: Creating a job

Gale discovers about a problem with Jam, so she creates a job by issuing the p4 job command
and describes it as follows:

The following table describes the fields in the default job specification.

Job: job000006
Status: open
User: gale
Date: 2005/11/14 17:12:21
Description:

MAXLINE on NT can't account for NT 4.0 expanded cmd buffer size.

Field Name Description Default

Job The name of the job (white space is not allowed).
By default, Perforce assigns job names using a
numbering scheme (jobnnnnnn).

Last job number + 1
Perforce 2005.2 P4 User’s Guide 81

Chapter 7: Defect Tracking
To edit existing jobs, specify the job name when you issue the p4 job command:
p4 job jobname. Enter your changes in the job form, save the form and exit.

To delete a job, issue the p4 job -d jobname command.

Searching jobs

To search Perforce jobs, issue the p4 jobs -e jobview command, where jobview
specifies search expressions described in the following sections. For more details, issue the
p4 help jobview command.

Searching job text

You can use the expression 'word1 word2 ... wordN' to find jobs that contain all of
word1 through wordN in any field (excluding date fields). Use single quotes on UNIX and
double quotes on Windows.

When searching jobs, note the following restrictions:

• When you specify multiple words separated by whitespace, Perforce searches for jobs
that contain all the words specified. To find jobs that contain any of the terms, separate
the terms with the pipe (|) character.

• Field names and text comparisons in expressions are not case-sensitive.

• Only alphanumeric text and punctuation can appear in an expression. To match the
following characters, which are used by Perforce as logical operators, precede them
with a backslash: =^&|()<>.

• You cannot search for phrases, only individual words.

Status • open: job has not yet been fixed.
• closed: job has been completed.
• suspended: job is not currently being worked

on.

open

User The user to whom the job is assigned, usually the
person assigned to fix this particular problem.

Perforce user name
of the job creator.

Date The date the job was last modified. Updated by the
Perforce server
when you save the
job.

Description Describes the work being requested, for example
a bug description or request for enhancement.

None. You must
enter a description.

Field Name Description Default
82 Perforce 2005.2 P4 User’s Guide

Chapter 7: Defect Tracking
Example: Searching jobs for specific words

Bruno wants to find all jobs that contain the words filter, file, and mailbox. He types:
p4 jobs -e 'filter file mailbox'

Example: Finding jobs that contain any of a set of words in any field

Bruno wants to find jobs that contain any of the words filter, file or mailbox. He types:
p4 jobs -e 'filter|file|mailbox'

You can use the * wildcard to match one or more characters. For example, the expression
fieldname=string* matches string, strings, stringbuffer, and so on.

To search for words that contain wildcards, precede the wildcard with a backslash in the
command. For instance, to search for *string (perhaps in reference to char *string),
issue the following command:

p4 jobs -e '*string'

Searching specific fields

To search based on the values in a specific field, specify field=value.

Example: Finding jobs that contain words in specific fields

Bruno wants to find all open jobs related to filtering. He types:
p4 jobs -e 'Status=open User=bruno filter.c'

This command finds all jobs with a Status: of open, a User: of bruno, and the word
filter.c in any nondate field.

To find fields that do not contain a specified expression, precede it with ^, which is the
NOT operator. The NOT operator ^ can be used only directly after an AND expression
(space or &). For example, p4 jobs -e '^user=bruno' is not valid. To get around this
restriction, use the * wildcard to add a search term before the ^ term; for example:
p4 jobs -e 'job=* ^user=bruno' returns all jobs not owned by Bruno.

Example: Excluding jobs that contain specified values in a field

Bruno wants to find all open jobs he does not own that involve filtering. He types:
p4 jobs -e 'status=open ^user=bruno filter'

This command displays all open jobs that Bruno does not own that contain the word filter.
Perforce 2005.2 P4 User’s Guide 83

Chapter 7: Defect Tracking
Using comparison operators

The following comparison operators are available.

The behavior of these operators depends upon the type of the field in the expression. The
following table describes the field types and how they can be searched.

= Equal

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Field Type Description Notes

word A single word The equality operator (=) matches the value
in the word field exactly.

The relational operators perform
comparisons in ASCII order.

text A block of text entered on
the lines beneath the field
name

The equality operator (=) matches the job if
the value is found anywhere in the specified
field.

The relational operators are of limited use
here, because they’ll match the job if any
word in the specified field matches the
provided value. For example, if a job has a
text field ShortDescription: that contains
only the phrase gui bug, and the expression
is 'ShortDesc<filter', the job will match
the expression, because bug<filter.

line A single line of text entered
on the same line as the field
name

Same as text

select One of a set of values. For
example, job status can be
open/suspended/closed

The equality operator (=) matches a job if the
value in the field is the specified word.
Relational operators perform comparisons in
ASCII order.

date A date and optionally a
time. For example,
2005/07/15:13:21:40

Dates are matched chronologically. If a time
is not specified, the operators =, <=, and >=
match the whole day.
84 Perforce 2005.2 P4 User’s Guide

Chapter 7: Defect Tracking
If you’re not sure of a field’s type, issue the p4 jobspec -o command, which displays
your job specification. The field called Fields: lists the job fields’ names and data types.

Searching date fields

To search date fields, specify the date using the format yyyy/mm/dd or
yyyy/mm/dd:hh:mm:ss. If you omit time, the equality operator (=) matches the entire day.

Example: Using dates within expressions

Bruno wants to view all jobs modified on July 13, 2005. He enters
p4 jobs -e 'ModifiedDate=2005/07/13'

Fixing jobs

To fix a job, you link it to a changelist and submit the changelist. Perforce automatically
changes the value of a job’s status field to closed when the changelist is submitted.

Jobs can be linked to changelists in one of three ways:

• By setting the JobView: field in the p4 user form to an expression that matches the job.

• With the p4 fix command.

• By editing the p4 submit form.

You can modify job status directly by editing the job, but if you close a job manually,
there’s no association with the changelist that fixed the job. If you have altered your site’s
job specification by deleting the Status: field, jobs can still be linked to changelists, but
status cannot be changed when the changelist is submitted. (In most cases, this is not a
desired form of operation.) See the chapter on editing job specifications in the Perforce
System Administrator’s Guide for more details.

To remove jobs from a changelist, issue the p4 fix -d command.

Linking automatically

You can modify your Perforce user specification to automatically attach open jobs to any
changelists you create. To set up automatic inclusion, issue the p4 user command and set
the JobView: field value to a valid expression that locates the jobs you want attached.
Perforce 2005.2 P4 User’s Guide 85

Chapter 7: Defect Tracking
Example: Automatically linking jobs to changelists

Bruno wants to see all open jobs that he owns in all changelists he creates. He types p4 user
and adds the JobView: field:

All of Bruno’s open jobs now are automatically attached to his default changelist. When he
submits changelists, he must be sure to delete jobs that aren’t fixed by the changelist he is
submitting.

Linking manually

To link a job to a changelist manually, issue the p4 fix -c changenum jobname
command. If the changelist has already been submitted, the value of the job’s Status:
field is changed to closed. Otherwise, the status is not changed.

Example: Manually linking jobs to changelists

You can use p4 fix to link a changelist to a job owned by another user.

Sarah has just submitted a job called options-bug to Bruno, but the bug has already been
fixed in Bruno’s previously submitted changelist 18. Bruno links the job to the changelist by
typing:

Because changelist 18 has already been submitted, the job’s status is changed to closed.

Linking jobs to changelists

To link jobs to changelists when submitting or editing the changelist, enter the job names
in the Jobs: field of the changelist specification. When you submit the changelist, the job
is (by default) closed.

To unlink a job from a pending changelist, edit the changelist and delete its name from the
Jobs: field. To unlink a job from a submitted changelist, issue the p4 fix -d -c
changenum jobname command.

User: bruno
Update: 2005/06/02 13:11:57
Access: 2005/06/03 20:11:07
JobView: user=bruno&status=open

p4 fix -c 18 options-bug
86 Perforce 2005.2 P4 User’s Guide

Chapter 8 Scripting and Reporting
This chapter provides details about using p4 commands in scripts and for reporting
purposes. For a full description of any particular command, consult the Perforce Command
Reference, or issue the p4 help command.

Common flags used in scripting and reporting

The following command-line flags enable you to specify settings on the command line
and in scripts. For full details, refer to the description of global options in the Perforce
Command Reference.

Scripting with Perforce forms

If your scripts issue p4 commands that require the user to fill in a form, such as the p4
client and p4 submit commands, use the the -o flag to write the form to standard
output and the -i flag to read the edited form from standard input .

Flag Description

-c client_workspace Specifies the client workspace name.

-G Causes all output (and batch input for form commands with
-i) to be formatted as marshaled Python dictionary objects.

-p server:port Specifies the host and port number of the Perforce server.

-P password Specifies the user password if any. If you prefer your script
to log in before running commands (instead of specifying the
password every time a command is issued), use the p4
login command. For example:

echo 'mypassword' | p4 login

-s Prepends a descriptive field (for example, text:, info:,
error:, exit:) to each line of output produced by a Perforce
command.

-u user Specifies the Perforce user name.

-x argfile Reads arguments, one per line, from the specified file. If
argfile is a single hyphen (-), then standard input is read.
Perforce 2005.2 P4 User’s Guide 87

Chapter 8: Scripting and Reporting
For example, to create a changelist using a script on UNIX:

1. Issue the p4 change -o > temp1 command to write a blank job specification into a
text file.

2. Make the necessary changes to the template. For example:
sed 's/<enter description here>/Crash when exiting./' temp1 > temp2

3. Issue the p4 change -i < temp2 command to save the job.

To accomplish the preceding without a temporary file, issue the following command:
p4 change -o | sed 's/<enter description here>/Crash when exiting./' | p4 change -i

The commands that display forms are:

• p4 branch

• p4 change

• p4 client

• p4 job

• p4 label

• p4 submit (use p4 change -o to create changelist)

• p4 user

File reporting

The following sections describe commands that provide information about file status and
location. The following table lists a few basic and highly-useful reporting commands.

To display this information Use this command

File status, including file type, latest revision number, and other
information

p4 files

File revisions from most recent to earliest p4 filelog

Currently opened files p4 opened

Preview of p4 sync results p4 sync -n

Currently synced files p4 have

The contents of specified files p4 print

The mapping of files’ depot locations to the corresponding
workspace locations.

p4 where

A list of files and full details about the files p4 fstat
88 Perforce 2005.2 P4 User’s Guide

Chapter 8: Scripting and Reporting
Displaying file status

To display information about single revisions of files, issue the p4 files command. This
command displays the locations of the files in the depot, the actions (add, edit, delete,
and so on) performed on those files at the specified revisions, the changelists in which the
specified file revisions were submitted, and the files’ types. The following example shows
typical output of the p4 files command:

//depot/README#5 - edit change 6 (text)

The p4 files command requires one or more filespec arguments. Regardless of
whether you use local, client, or depot syntax to specify the filespec arguments, the p4
file command displays results using depot syntax. If you omit the revision number,
information for the head revision is displayed. The output of p4 files includes deleted
revisions.

The following table lists some common uses of the p4 files command.

To display the status of Use this command

All files in the depot, regardless of your client
workspace view

For depots containing numerous files, you can
maximize performance by avoiding commands
that refer to the entire depot (//depot/...) when
not required. For best performance, specify only
the directories and files of interest.

p4 files //depot/...

The files currently synced to the specified client
workspace

p4 files @clientname

The files mapped by your client workspace view p4 files //clientname/...

Specified files in the current working directory p4 files filespec

A specified file revision p4 files filespec#rev

Specified files at the time a changelist was
submitted, regardless of whether the files were
submitted in the changelist

p4 files filespec@changenum

Files tagged with a specified label p4 files filespec@labelname
Perforce 2005.2 P4 User’s Guide 89

Chapter 8: Scripting and Reporting
Displaying file revision history

To display the revision history of a file, issue the p4 filelog filespec command. The
following example shows how p4 filelog displays revision history.

To display the entire description of each changelist, specify the -l flag.

Listing open files

To list the files that are currently opened in a client workspace, issue the p4 opened
filespec command. The following line is an example of the output displayed by the p4
opened command:

//depot/dev/main/jam/fileos2.c- edit default change (text)

The following table lists some common uses of the p4 opened command.

Displaying file locations

To display information about the locations of files, use the p4 where, p4 have, and p4
sync -n commands:

• To display the location of a file in depot, client, and local syntax, issue the p4 where
command.

• To list the location and revisions of files that you last synced to your client workspace,
issue the p4 have command.

p4 filelog //depot/dev/main/jam/jam.c

//depot/dev/main/jam/jam.c
... #35 change 627 edit on 2001/11/13 by earl@earl-dev-yew (text)
'Handle platform variants better'
... #34 change 598 edit on 2001/10/24 by raj@raj-althea (text) 'Reverse
previous attempt at fix'
... ... branch into //depot/release/jam/2.2/src/jam.c#1
... #33 change 581 edit on 2001/10/03 by gale@gale-jam-oak (text)
'Version strings & release notes'

To list Use this command

Opened files in the current workspace p4 opened

Opened files in all client workspaces p4 opened -a

Files in a numbered pending changelist p4 opened -c changelist

Files in the default changelist p4 opened -c default

Whether a specific file is opened by you p4 opened filespec

Whether a specific file is opened by anyone p4 opened -a filespec
90 Perforce 2005.2 P4 User’s Guide

Chapter 8: Scripting and Reporting
• To see where files will be synced in your workspace, preview the sync by issuing the p4
sync -n command.

You can use these commands with or without filespec arguments.

The following table lists some useful location reporting commands.

Displaying file contents

To display the contents of a file in the depot, issue the p4 print filespec command.
This command prints the contents of the file to standard output or to a specified output
file, with a one-line banner that describes the file. To suppress the banner, specify the -q
flag. By default, the head revision is displayed, but you can specify a file revision.

Displaying annotations (details about changes to file contents)

To find out which file revisions or changelists affected lines in a text file, issue the p4
annotate command.

By default, p4 annotate displays the file line by line, with each line preceded by a
revision number indicating the revision that made the change. To display changelist
numbers instead of revision numbers, specify the -c flag.

Example: Using p4 annotate to display changes to a file

A file is added (file.txt#1) to the depot, containing the following lines:

The third line is deleted and the second line edited so that file.txt#2 reads:

To display Use this command

The revision number of a file that you synced to
your workspace

p4 have filespec

How a particular file in the depot maps to your
workspace

p4 where //depot/filespec

To display the contents of files Use this command

At the head revision p4 print filespec

Without the banner p4 print -q filespec

At a specified changelist number p4 print filespec@changenum

This is a text file.
The second line has not been changed.
The third line has not been changed.

This is a text file.
The second line is new.
Perforce 2005.2 P4 User’s Guide 91

Chapter 8: Scripting and Reporting
The output of p4 annotate and p4 annotate -c look like this:

The first line of file.txt has been present since revision 1, which was submitted in
changelist 151. The second line has been present since revision 2, which was submitted in
changelist 152.

To show all lines (including deleted lines) in the file, use p4 annotate -a as follows:

The first line of output shows that the first line of the file has been present for revisions 1
through 3. The next two lines of output show lines of file.txt present only in revision 1.
The last line of output shows that the line added in revision 2 is still present in revision 3.

You can combine the -a and -c options to display all lines in the file and the changelist
numbers (rather than the revision numbers) at which the lines existed.

Monitoring changes to files

To track changes to files as they occur, you can use the Perforce change review daemon,
which enables Perforce users to specify files and directories of interest and receive email
when a changelist that affects the specified files is submitted. For details about
administering the review daemon, refer to the Perforce System Administrator’s Guide and to
the description of the p4 review command in the Perforce Command Reference.

The following table lists commands that display information about the status of files,
changelists, and users. These commands are often used in review daemons.

$ p4 annotate file.txt

//depot/files/file.txt#3 - edit change 153 (text)
1: This is a text file.
2: The second line is new.

$ p4 annotate -c file.txt

//depot/files/file.txt#3 - edit change 153 (text)
151: This is a text file.
152: The second line is new.

$ p4 annotate -a file.txt

//depot/files/file.txt#3 - edit change 12345 (text)
1-3: This is a text file.
1-1: The second line has not been changed.
1-1: The third line has not been changed.
2-3: The second line is new.

To list Use this command

The users who review specified files p4 reviews filespec

The users who review files in a specified changelist p4 reviews -c changenum

A specified user’s email address p4 users username
92 Perforce 2005.2 P4 User’s Guide

Chapter 8: Scripting and Reporting
Changelist reporting

The p4 changes command lists changelists that meet search criteria, and the p4
describe command lists the files and jobs associated with a specified changelist. These
commands are described below.

Listing changelists

To list changelists, issue the p4 changes command. By default, p4 changes displays one
line for every changelist known to the system. The following table lists command-line
flags that you can use to filter the list.

To list changelists Use this command

With the first 31 characters of the changelist
descriptions

p4 changes

With full descriptions p4 changes -l

The last n changelists p4 changes -m n

With a specified status p4 changes -s pending
or
p4 changes -s submitted

From a specified user p4 changes -u user

From a specified workspace p4 changes -c workspace

That affect specified files p4 changes filespec

That affect specified files, including changelists
that affect files that were later integrated with the
named files

p4 changes -i filespec

That affect specified files, including only those
changelists between revisions m and n of these
files

p4 changes filespec#m,#n

That affect specified files at each revision
between the revisions specified in labels lab1
and lab2

p4 changes filespec@lab1,@lab2

Submitted between two dates p4 changes @date1,@date2

Submitted on or after a specified date p4 changes @date1,@now
Perforce 2005.2 P4 User’s Guide 93

Chapter 8: Scripting and Reporting
Listing files and jobs affected by changelists

To list files and jobs affected by a specified changelist, along with the diffs of the changes,
issue the p4 describe command. To suppress display of the diffs (for shorter output),
specify the -s flag. The following table lists some useful changelist reporting commands.

For more commands that report on jobs, see “Job reporting” on page 95.

Label reporting

To display information about labels, issue the p4 labels command. The following table
lists some useful label reporting commands.

To list Use this command

Files in a pending changelist p4 opened -c changenum

Files submitted and jobs fixed by a particular
changelist, including diffs

p4 describe changenum

Files submitted and jobs fixed by a particular
changelist, suppressing diffs

p4 describe -s changenum

Files and jobs affected by a particular changelist,
passing the context diff flag to the underlying diff
program

p4 describe -dc changenum

The state of particular files at a particular
changelist, regardless of whether these files were
affected by the changelist

p4 files filespec@changenum

To list Use this command

All labels, with creation date and owner p4 labels

All labels containing a specific file revision (or range) p4 labels file#revrange

Files tagged with a specified label p4 files @labelname

A preview of the results of syncing to a label p4 sync -n @labelname
94 Perforce 2005.2 P4 User’s Guide

Chapter 8: Scripting and Reporting
Branch and integration reporting

The following table lists commonly used commands for branch and integration reporting.

Job reporting

Listing jobs

To list jobs, issue the p4 jobs command. The following table lists common job reporting
commands.

To list Use this command

All branch specifications p4 branches

Files in a specified branch p4 files filespec

The revisions of a specified file p4 filelog filespec

The revisions of a specified file, recursively
including revisions of the files from which it
was branched

p4 filelog -i filespec

A preview of the results of a resolve p4 resolve [args] -n [filespec]

Files that have been resolved but not yet
submitted

p4 resolved [filespec]

Integrated, submitted files that match the
filespec arguments

p4 integrated filespec

A preview of the results of an integration p4 integrate [args] -n [filespec]

To list Use this command

All jobs p4 jobs

All jobs, including full descriptions p4 jobs -l

Jobs that meet search criteria (see “Searching jobs” on page 82
for details)

p4 jobs -e jobview

Jobs that were fixed by changelists that contain specific files p4 jobs filespec

Jobs that were fixed by changelists that contain specific files,
including changelists that contain files that were later
integrated into the specified files

p4 jobs -i filespec
Perforce 2005.2 P4 User’s Guide 95

Chapter 8: Scripting and Reporting
Listing jobs fixed by changelists

Any jobs that have been linked to a changelist with p4 change, p4 submit, or p4 fix are
referred to as fixed (regardless of whether their status is closed). To list jobs that were
fixed by changelists, issue the p4 fixes command.

The following table lists useful commands for reporting fixes.

System configuration reporting

The commands described in this section display Perforce users, client workspaces, and
depots.

Displaying users

The p4 users command displays the user name, an email address, the user’s “real” name,
and the date that Perforce was last accessed by that user, in the following format:

To list Use this command

all changelists linked to jobs p4 fixes

all changelists linked to a specified job p4 fixes -j jobname

all jobs linked to a specified changelist p4 fixes -c changenum

all fixes associated with specified files p4 fixes filespec

all fixes associated with specified files, including
changelists that contain files that were later integrated with
the specified files

p4 fixes -i filespec

bruno <bruno@bruno_ws> (bruno) accessed 2005/03/07
dai <dai@p4demo.com> (Dai Sato) accessed 2005/03/04
earl <earl@p4demo.com> (Earl Ashby) accessed 2005/03/07
gale <gale@p4demo.com> (Gale Beal) accessed 2001/06/03
hera <hera@p4demo.com> (Hera Otis) accessed 2001/10/03
ines <ines@p4demo.com> (Ines Rios) accessed 2005/02/02
jack <jack@submariner> (jack) accessed 2005/03/02
mei <mei@p4demo.com> (Mei Chang) accessed 2001/11/14
ona <ona@p4demo.com> (Ona Birch) accessed 2001/10/23
quinn <quinn@p4demo.com> (Quinn Cass) accessed 2005/01/27
raj <raj@p4demo.com> (Raj Bai) accessed 2001/07/28
vera <vera@p4demo.com> (Vera Cullen) accessed 2005/01/15
96 Perforce 2005.2 P4 User’s Guide

Chapter 8: Scripting and Reporting
Displaying workspaces

To display informations about client workspaces, issue the p4 clients command, which
displays the client workspace name, the date the workspace was last updated, the
workspace root, and the description of the workspace, in the following format.

Listing depots

To list depots, issue the p4 depots command. This command lists the depot’s name, its
creation date, its type (local, remote, or spec), its host name or IP address (if remote),
the mapping to the local depot, and the system administrator’s description of the depot.

For details about defining multiple depots on a single Perforce server, see the Perforce
System Administrator’s Guide.

Client bruno_ws 2005/03/07 root c:\bruno_ws ''
Client dai-beos-locust 2002/10/03 root /boot/home/src ''
Client earl-beos-aspen 2002/04/15 root /boot/src ''
Client earl-dev-beech 2002/10/26 root /home/earl ''
Client earl-dev-guava 2002/09/08 root /usr/earl/develoment ''
Client earl-dev-yew 2004/11/19 root /tmp ''
Client earl-mac-alder 2002/03/19 root Macintosh HD:earl ''
Client earl-os2-buckeye 2002/03/21 root c:\src ''
Client earl-qnx-elm 2001/01/17 root /src ''
Client earl-tupelo 2001/01/05 root /usr/earl ''
Perforce 2005.2 P4 User’s Guide 97

Chapter 8: Scripting and Reporting
Sample script

The following sample script parses the output of the p4 fstat command to report files
that are opened where the head revision is not in the client workspace (a potential
problem).

Example: Sample shell script showing parsing of p4 fstat command output

#!/bin/sh
Usage: opened-not-head.sh files
Displays files that are open when the head revision is not
on the client workspace
echo=echo
exit=exit
p4=p4
sed=sed

if [$# -ne 1]
then

$echo "Usage: $0 files"
$exit 1

fi

$p4 fstat -Ro $1 | while read line
do

name=`$echo $line | $sed 's/^[\.]\+\([^]\+\) .*$/\1/'`
value=`$echo $line | $sed 's/^[\.]\+[^]\+ \(.*\)$/\1/'`

if ["$name" = "depotFile"]
then
 depotFile=$value

elif ["$name" = "headRev"]
then
 headRev=$value

elif ["$name" = "haveRev"]
then
 haveRev=$value

 if [$headRev != $haveRev]
 then

$echo $depotFile

 fi

fi

done
98 Perforce 2005.2 P4 User’s Guide

Appendix A Glossary
Term Definition

access level A permission assigned to a user to control which Perforce
commands the user can execute. See protections.

admin access An access level that gives the user permission to run Perforce
commands that override metadata but do not affect the state of
the server.

apple file type Perforce file type assigned to Macintosh files that are stored
using AppleSingle format, permitting the data fork and
resource fork to be stored as a single file.

atomic change
transaction

Grouping operations affecting a number of files in a single
transaction. If all operations in the transaction succeed, all the
files are updated. If any operation in the transaction fails, none
of the files are updated.

base The file revision on which two newer, conflicting file revisions
are based.

binary file type Perforce file type assigned to a nontext file. By default, the
contents of each revision are stored in full, and the file is stored
in compressed format.

branch (noun) A codeline created by copying another codeline, as
opposed to a codeline that was created by adding original files.
branch is often used as a synonym for branch view.

(verb) To create a codeline branch with p4 integrate.

branch form The Perforce form you use to modify a branch.

branch specification Specifies how a branch is to be created by defining the location
of the original codeline and the branch. The branch
specification is used by the integration process to create and
update branches. Client workspaces, labels, and branch
specifications cannot share the same name.

branch view A specification of the branching relationship between two
codelines in the depot. Each branch view has a unique name
and defines how files are mapped from the originating codeline
to the target codeline. See branch.
Perforce 2005.2 P4 User’s Guide 99

Appendix A: Glossary
changelist An atomic change transaction in Perforce. The changes
specified in the changelist are not stored in the depot until the
changelist is submitted to the depot.

changelist form The Perforce form you use to modify a changelist.

changelist
number

The unique numeric identifier of a changelist.

change review The process of sending email to users who have registered their
interest in changes made to specified files in the depot.

checkpoint A copy of the underlying server metadata at a particular
moment in time. See metadata.

client form The Perforce form you use to define a client workspace.

client name A name that uniquely identifies the current client workspace.

client root The root directory of a client workspace. If two or more client
workspaces are located on one machine, they cannot share a
root directory.

client side The right-hand side of a mapping within a client view,
specifying where the corresponding depot files are located in
the client workspace.

client workspace view A set of mappings that specifies the correspondence between
file locations in the depot and the client workspace.

client workspace Directories on the client machine where you work on file
revisions that are managed by Perforce. By default this name is
set to the name of the host machine on which the client
workspace is located; to override the default name, set the
P4CLIENT environment variable. Client workspaces, labels, and
branch specifications cannot share the same name.

codeline A set of files that evolve collectively. One codeline can be
branched from another, allowing each set of files to evolve
separately.

Term Definition
100 Perforce 2005.2 P4 User’s Guide

Appendix A: Glossary
conflict One type of conflict occurs when two users open a file for edit.
One user submits the file, after which the other user can’t
submit because of a conflict. The cause of this type of conflict is
two users opening the same file.

The other type of conflict is when users try to merge one file
into another. This type of conflict occurs when the comparison
of two files to a common base yields different results, indicating
that the files have been changed in different ways. In this case,
the merge can’t be done automatically and must be done by
hand. The type of conflict is caused by nonmatching diffs.

See file conflict.

counter A numeric variable used by Perforce to track changelist
numbers in conjunction with the review feature.

default changelist The changelist used by Perforce commands, unless a numbered
changelist is specified. A default pending changelist is created
automatically when a file is opened for edit.

default depot The depot name that is assumed when no name is specified.
The default depot name is depot.

deleted file In Perforce, a file with its head revision marked as deleted.
Older revisions of the file are still available.

delta The differences between two files.

depot A file repository on the Perforce server. It contains all versions
of all files ever submitted to the server. There can be multiple
depots on a single server.

depot root The root directory for a depot.

depot side The left side of any client view mapping, specifying the location
of files in a depot.

depot syntax Perforce syntax for specifying the location of files in the depot.

detached A client machine that cannot connect to a Perforce server.

diff (noun) A set of lines that don’t match when two files are
compared. A conflict is a pair of unequal diffs between each of
two files and a common third file.

(verb) To compare the contents of files or file revisions.

donor file The file from which changes are taken when propagating
changes from one file to another.

Term Definition
Perforce 2005.2 P4 User’s Guide 101

Appendix A: Glossary
exclusionary mapping A view mapping that excludes specific files.

exclusionary access A permission that denies access to the specified files.

file conflict In a three-way file merge, a situation in which two revisions of
a file differ from each other and from their base file.

Also: an attempt to submit a file that is not an edit of the head
revision of the file in the depot; typically occurs when another
user opens the file for edit after you have opened the file for
edit.

file pattern Perforce command line syntax that enables you to specify files
using wildcards.

file repository The master copy of all files; shared by all users. In Perforce, this
is called the depot.

file revision A specific version of a file within the depot. Each revision is
assigned a number, in sequence. Any revision can be accessed
in the depot by its revision number, for example: testfile#3.

file tree All the subdirectories and files under a given root directory.

file type An attribute that determines how Perforce stores and diffs a
particular file. Examples of file types are text and binary.

fix A job that has been linked to a changelist.

form Screens displayed by certain Perforce commands. For example,
you use the Perforce change form to enter comments about a
particular changelist and to verify the affected files.

full-file
storage

The method by which Perforce stores revisions of binary files in
the depot: every file revision is stored in full. Contrast this with
reverse delta storage, which Perforce uses for text files.

get An obsolete Perforce term: replaced by sync.

group A list of Perforce users.

have list The list of file revisions currently in the client workspace.

head revision The most recent revision of a file within the depot. Because file
revisions are numbered sequentially, this revision is the
highest-numbered revision of that file.

Term Definition
102 Perforce 2005.2 P4 User’s Guide

Appendix A: Glossary
integrate To compare two sets of files (for example, two codeline
branches) and:

• Determine which changes in one set apply to the other.
• Determine if the changes have already been propagated.
• Propagate any outstanding changes.

Inter-File
Branching

Perforce’s proprietary branching mechanism.

job A user-defined unit of work tracked by Perforce. The job
template determines what information is tracked. The template
can be modified by the Perforce system administrator

job specification A specification containing the fields and valid values stored for
a Perforce job.

job view A syntax used for searching Perforce jobs.

journal A file containing a record of every change made to the Perforce
server’s metadata since the time of the last checkpoint.

journaling The process of recording changes made to the Perforce server’s
metadata.

label A named list of user-specified file revisions.

label view The view that specifies which filenames in the depot can be
stored in a particular label.

lazy copy A method used by Perforce to make internal copies of files
without duplicating file content in the depot. Lazy copies
minimize the consumption of disk space by storing references
to the original file instead of copies of the file.

license file Ensures that the number of Perforce users on your site does not
exceed the number for which you have paid.

list access A protection level that enables you to run reporting commands
but prevents access to the contents of files.

local depot Any depot located on the current Perforce server.

local syntax The operating-system-specific syntax for specifying a filename.

lock A Perforce file lock prevents other clients from submitting the
locked file. Files are unlocked with the p4 unlock command or
submitting the changelist that contains the locked file.

Term Definition
Perforce 2005.2 P4 User’s Guide 103

Appendix A: Glossary
log Error output from the Perforce server. By default, error output
is written to standard error. To specify a log file, set the P4LOG
environment variable or use the p4d -L flag when starting the
server.

mapping A single line in a view, consisting of a left side and a right side
that specify the correspondences between files in the depot and
files in a client, label, or branch. The left side specifies the depot
files, and the right side specifies the client files.

(See also client workspace view, branch view, label view).

MD5 checksum The method used by Perforce to verify the integrity of archived
files.

merge The process of combining the contents of two conflicting file
revisions into a single file.

merge file A file generated by Perforce from two conflicting file revisions.

metadata The data stored by the Perforce server that describes the files in
the depot, the current state of client workspaces, protections,
users, clients, labels, and branches. Metadata includes all the
data stored in the server except for the actual contents of the
files.

modification time The time a file was last changed.

nonexistent
revision

A completely empty revision of any file. Syncing to a
nonexistent revision of a file removes it from your workspace.
An empty file revision created by deleting a file and the #none
revision specifier are examples of nonexistent file revisions.

numbered changelist A pending changelist to which Perforce has assigned a number.

open file A file that you are changing in your client workspace.

owner The Perforce user who created a particular client, branch, or
label.

p4 The Perforce Command-Line Client program, and the
command you issue to execute Perforce commands from the
operating system command line.

p4d The program on the Perforce server that manages the depot and
the metadata.

P4Diff A Perforce application that displays the differences between
two files. P4Diff is the default application used to compare files
during the file resolution process.

Term Definition
104 Perforce 2005.2 P4 User’s Guide

Appendix A: Glossary
P4Win The Perforce Windows Client, a Windows application that
enables you to perform Perforce operations and view results
graphically.

pending changelist A changelist that has not been submitted.

Perforce server The Perforce depot and metadata on a central host. Also the
program that manages the depot and metadata.

protections The permissions stored in the Perforce server’s protections
table.

RCS format Revision Control System format. Used for storing revisions of
text files. RCS format uses reverse delta encoding for file
storage. Perforce uses RCS format to store text files. See also
reverse delta storage.

read access A protection level that enables you to read the contents of files
managed by Perforce.

remote depot A depot located on a server other than the current Perforce
server.

reresolve The process of resolving a file after the file is resolved and
before it is submitted

resolve The process you use to reconcile the differences between two
revisions of a file.

resource fork One fork of a Macintosh file. (Macintosh files are composed of a
resource fork and a data fork.) You can store resource forks in
Perforce depots as part of an AppleSingle file by using
Perforce’s apple file type.

reverse delta
storage

The method that Perforce uses to store revisions of text files.
Perforce stores the changes between each revision and its
previous revision, plus the full text of the head revision.

revert To discard the changes you have made to a file in the client
workspace.

review access A special protections level that includes read and list accesses
and grants permission to run the p4 review command.

review daemon Any daemon process that uses the p4 review command. See
also change review.

revision number A number indicating which revision of the file is being referred
to.

Term Definition
Perforce 2005.2 P4 User’s Guide 105

Appendix A: Glossary
revision range A range of revision numbers for a specified file, specified as the
low and high end of the range. For example, myfile#5,7
specifies revisions 5 through 7 of myfile.

revision specification A suffix to a filename that specifies a particular revision of that
file. Revision specifiers can be revision numbers, change
numbers, label names, date/time specifications, or client
names.

server In Perforce, the program that executes the commands sent by
client programs. The Perforce server (p4d) maintains depot files
and metadata describing the files and also tracks the state of
client workspaces.

server root The directory in which the server program stores its metadata
and all the shared files. To specify the server root, set the
P4ROOT environment variable.

status For a changelist, a value that indicates whether the changelist is
new, pending, or submitted. For a job, a value that indicates
whether the job is open, closed, or suspended. You can
customize job statuses.

submit To send a pending changelist and changed files to the Perforce
server for processing.

subscribe To register to receive email whenever changelists that affect
particular files are submitted.

super access An access level that gives the user permission to run every
Perforce command, including commands that set protections,
install triggers, or shut down the server for maintenance.

symlink file type A Perforce file type assigned to UNIX symbolic links. On non-
UNIX clients, symlink files are stored as text files.

sync To copy a file revision (or set of file revisions) from the depot to
a client workspace.

target file The file that receives the changes from the donor file when you
are integrating changes between a branched codeline and the
original codeline.

text file type Perforce file type assigned to a file that contains only ASCII text.
See also binary file type.

theirs The revision in the depot with which the client file is merged
when you resolve a file conflict. When you are working with
branched files, theirs is the donor file.

Term Definition
106 Perforce 2005.2 P4 User’s Guide

Appendix A: Glossary
three-way merge The process of combining three file revisions. During a three-
way merge, you can identify where conflicting changes have
occurred and specify how you want to resolve the conflicts.

tip revision In Perforce, the head revision. Tip revision is a term used by some
other SCM systems.

trigger A script automatically invoked by the Perforce server when
changelists are submitted.

two-way merge The process of combining two file revisions. In a two-way
merge, you can see differences between the files but cannot see
conflicts.

typemap A Perforce table in which you assign Perforce file types to files.

user The identifier that Perforce uses to determine who is
performing an operation.

view A description of the relationship between two sets of files. See
client workspace view, label view, branch view.

wildcard A special character used to match other characters in strings.
Perforce wildcards are:

• * matches anything except a slash
• ... matches anything including slashes
• %d used for parameter substitution in views

workspace See client workspace.

write access A protection level that enables you to run commands that alter
the contents of files in the depot. Write access includes read
and list accesses.

yours The edited version of a file in the client workspace when you
resolve a file. Also, the target file when you integrate a
branched file.

Term Definition
Perforce 2005.2 P4 User’s Guide 107

Appendix A: Glossary
108 Perforce 2005.2 P4 User’s Guide

Appendix B Perforce File Types
Perforce supports a set of file types that enable it to determine how files are stored by the
Perforce server and whether the file can be diffed. When you add a file, Perforce attempts
to determine the type of the file automatically: Perforce first determines whether the file is
a regular file or a symbolic link, and then examines the first part of the file to determine
whether it’s text or binary. If any nontext characters are found, the file is assumed to be
binary; otherwise, the file is assumed to be text. (Files of type unicode are detected only
when the server is running in Unicode mode; for details, see your system administrator.)

To determine the type of a file under Perforce control, issue the p4 opened or p4 files
command. To change the Perforce file type, specify the -t filetype flag. For details
about changing file type, refer to the descriptions of p4 add, p4 edit, and p4 reopen in
the Perforce Command Reference.

Perforce file types

Perforce supports the following file types.

Keyword Description Comments How stored by
the Perforce
server

apple Macintosh file AppleSingle storage of Macintosh data
fork, resource fork, file type and file
creator.

For full details, see the Macintosh
platform notes at
http://www.perforce.com/perforce/
technical.html

full file,
compressed,
AppleSingle
format

binary Nontext file Synced as binary files in the workspace.
Stored compressed within the depot.

full file,
compressed

resource Macintosh
resource fork

(Obsolete) This type is supported for
backward compatibility, but the apple
file type is recommended.

full file,
compressed

symlink Symbolic link UNIX and BeOS client machines treat
these files as symbolic links. Non-UNIX
client machines treat them as text files.

delta

text Text file Synced as text in the workspace. Line-
ending translations are performed
automatically.

delta
Perforce 2005.2 P4 User’s Guide 109

Appendix B: Perforce File Types
File type modifiers

You can apply file type modifiers to the base types of specific files to preserve timestamps,
expand RCS keywords, specify how files are stored on the server, and more. For details
about applying modifiers to file types, see“Specifying how files are stored in the server”
on page 111.

The following table lists the file type modifiers.

unicode Unicode file Perforce servers operating in
internationalized mode support a
Unicode file type. These files are
translated into the local character set.

For details, see the Internationalization
Notes.

UTF-8 or UTF-16

Modifier Description Comments

+C Server stores the full
compressed version of each
file revision

Default server storage mechanism for
binary files.

+D Server stores deltas in RCS
format

Default server storage mechanism for text
files.

+F Server stores full file per
revision

For large ASCII files that aren’t treated as
text, such as PostScript files, where storing
the deltas is not useful or efficient.

+k RCS (Revision Control System)
keyword expansion

Supported keywords are:

• $Author$

• $Change$

• $Date$

• $DateTime$

• $File$

• $Header$

• Id

• $Revision$

RCS keywords are case-sensitive. A colon
after the keyword (for example, $Id:$) is
optional.

Keyword Description Comments How stored by
the Perforce
server
110 Perforce 2005.2 P4 User’s Guide

Appendix B: Perforce File Types
Specifying how files are stored in the server

File revisions of binary files are normally stored in full within the depot, but only changes
made to text files since the previous revision are normally stored. This approach is called
delta storage, and Perforce uses RCS format to store its deltas. The file’s type determines
whether full file or delta storage is used. When delta storage is used, file merges and file
compares can be performed. Files that are stored in their full form cannot be merged or
compared.

+ko Limited keyword expansion Expands only the Id and $Header$
keywords. Primarily for backwards
compatibility with versions of Perforce
prior to 2000.1, and corresponds to the +k
(ktext) modifier in earlier versions of
Perforce.

+l Exclusive open (locking) If set, only one user at a time can open a
file for editing.

Useful for binary file types (such as
graphics) where merging of changes from
multiple authors is not possible.

+m Preserve original modification
time

The file’s timestamp on the local file
system is preserved upon submission and
restored upon sync. Useful for third-party
DLLs in Windows environments, because
the operating system relies on the file’s
timestamp. By default, the modification
time is set to the time you synced the file.

+S Only the head revision is
stored on the server

Older revisions are purged from the depot
upon submission of new revisions. Useful
for executable or .obj files.

+w File is always writable on
client

Not recommended, because Perforce
manages the read-write settings on files
under its control.

+x Execute bit set on client Used for executable files.

Modifier Description Comments
Perforce 2005.2 P4 User’s Guide 111

Appendix B: Perforce File Types
Some file types are compressed to gzip format when stored in the depot. The
compression occurs when you submit the file, and decompression happens when you
sync (copy the file from the server to the workspace). The client workspace always
contains the file as it was submitted.

Overriding file types

Some file formats (for example, Adobe PDF files, and Rich Text Format files) are actually
binary files, but they can be mistakenly detected by Perforce as being text. To prevent
this problem, your system administrator can use the p4 typemap command to specify
how such file types are stored. You can always override the file type specified in the
typemap table by specifying the -t filetype flag.

Preserving timestamps

Normally, Perforce updates the timestamp when a file is synced. The modification time
(+m) modifier is intended for developers who need to preserve a file’s original timestamp.
This modifier enables you to ensure that the timestamp of a file synced to your client
workspace is the time on the client machine when the file was submitted.

Windows uses timestamps on third-party DLLs for versioning information (both within
the development environment and also by the operating system), and the +m modifier
enables you to preserve the original timestamps to prevent spurious version mismatches.
The +m modifier overrides the client workspace [no]modtime setting (for the files to which
it is applied). For details about this setting, refer to“File type modifiers” on page 110.

Warning! To avoid inadvertent file truncation, do not store binary files as text. If you
store a binary file as text from a Windows client and the file contains the
Windows end-of-file character ^Z, only the part of the file up to the ^Z is
stored in the depot.
112 Perforce 2005.2 P4 User’s Guide

Appendix B: Perforce File Types
Expanding RCS keywords

RCS (Revision Control System), an early version control system, defined keywords that
you can embed in your source files. These keywords are updated whenever a file is
committed to the repository. Perforce supports some RCS keywords. To activate RCS
keyword expansion for a file, use the +k modifier. RCS keywords are expanded as follows.

Keyword Expands To Example

$Author$ Perforce user submitting
the file

$Author: bruno $

$Change$ Perforce changelist
number under which file
was submitted

$Change: 439 $

$Date$ Date of last submission in
format YYYY/MM/DD

$Date: 2000/08/18 $

$DateTime$ Date and time of last
submission in format
YYYY/MM/DD hh:mm:ss

Date and time are as of the
local time on the Perforce
server at time of
submission.

$DateTime: 2000/08/18 23:17:02 $

$File$ Filename only, in depot
syntax (without revision
number)

$File: //depot/path/file.txt $

$Header$ Synonymous with Id $Header: //depot/path/file.txt#3 $

Id Filename and revision
number in depot syntax

$Id: //depot/path/file.txt#3 $

$Revision$ Perforce revision number $Revision: #3 $
Perforce 2005.2 P4 User’s Guide 113

Appendix B: Perforce File Types
114 Perforce 2005.2 P4 User’s Guide

 Index
Symbols
* wildcard 25, 37
+

overlay mappings and 27
- (minus sign)

exclusionary mappings and 26
... wildcard 25, 37, 47, 54

client views and 25
@

integrating file revisions 73
listing changelists 93
listing tagged files 94
reserved character in file names 38, 39
specifying file revisions 40, 54, 76
specifying revision range 42
syncing file revisions 78
syncing to a label’s contents 76
tagging file revisions 75

A
AltRoots field 28

C
-c flag 50, 52, 91
changelists

-c flag 50, 52, 91
creating 51
default changelist 50
deleting 52
fixing jobs 85, 86
labels vs 75
managing 45–53
moving files 50
numbering 50
RCS keyword 113
reporting and scripting 90, 91
submitting 52

client root
defined 18
null 28

client workspace
alternate roots 28
defined 17
spanning multiple drives 28
specifying on command line 35

codeline management 69
command line flags

-c flag 52, 91
-f flag 30, 59, 74
-i flag 73, 87
-l flag 90
-n flag 49, 74
-o flag 87
p4 changes command 93
p4 help usage command 43
p4 resolve command 64
-q flag 91
-r flag 72
-s flag 53, 94
-sd flag 55
-se flag 55
-t flag 109
-v flag 61
-x flag 55

commands
See p4 commands

creating
branches 67, 69, 70
changelists 50, 51
client workspaces 22
directories in the client workspace 46
fixes 85
jobs 81
labels 77
passwords 32
Perforce 2005.2 P4 User’s Guide 115

Index
D
date and time specifications 41, 42
default

client options 29
client view 22
file storage on server 99, 110
host and port 19
integration revision range 73
job naming 81
job specification 81
line ending setting 31
p4 annotate command 91
p4 changes command 93
port 19
text editor 61
time 41
workspace name 17

default changelist 47, 50, 52
deleting

branch specifications 70
changelists 52
client workspace 31
empty directories 30
files from the depot 45
jobs 82
labels 77

depots
displaying file location 90
listing 97
mapping multiple 23
mapping to workspace 22
structure 68

displaying p4 version 36

E
environment variables

LOCALE 39
P4CHARSET 20
P4CLIENT 17, 20, 21, 35
P4COMMANDCHARSET 20
P4DIFF 20, 63, 65
P4EDITOR 20, 43
P4HOST 20, 35
P4LANGUAGE 20
P4MERGE 20, 61, 63
P4PASSWD 20, 35
P4PORT 20, 21, 23, 35
P4USER 20, 36
PWD 35

exclusionary mappings 26

F
-f flag 30, 59, 74
file names

config files 19
reserved characters 38
restrictions on 38

file revisions 40
files

deleting from labels 77
moving between changelists 50

flags
See command line flags

forms 43
forward slash (/)

specifying file paths with 36

H
head revision 41

defined 102
deleted files 49
diffing 54
displaying contents 91
resolving files 64
tagging 75
116 Perforce 2005.2 P4 User’s Guide

Index
host
default 19
specifying on command line 35

I
-i flag 73, 87
integration

previewing results 74
re-resolving 74
reporting 74
using branch specifications 72

J
jobs

searching 83

L
-l flag 90
label view 78
labels

changelists vs 75
deleting 77
deleting files from 77
restrictions on names 77

length limitations 38
LineEnd field 31
local option 31
local syntax 36
LOCALE environment variable 39

M
mac option 31
Macintosh

apple file type 109
line endings 31
resource fork 109

mapping part of the depot 25
mappings

conflicting 27
defined 24
exclusionary 26
overlay 27

minus sign (-) 26

modification time 112
modtime 30

N
-n flag 49, 74
noallwrite option 29
noclobber option 29
nocompress option 30
nomodtime option 30
non-ASCII characters in file names 39
#none revision specifier 41
normdir option 30
not operator (^) 83
null root 28
numbered changelist 51

O
-o flag 87
overlay mappings 27

P
p4 commands

help command 43
label command 77
labelsync command 77
sync command 46

P4CHARSET environment variable 20
P4CLIENT environment variable 17, 20, 21, 35
P4COMMANDCHARSET environment variable 20
P4DIFF environment variable 20, 63, 65
P4EDITOR environment variable 20, 43
P4HOST environment variable 20, 35
P4LANGUAGE environment variable 20
P4MERGE environment variable 61, 63
P4MERGE environment variables 20
P4PASSWD environment variable 20, 35
P4PORT environment variable 20, 21, 23, 35
P4USER environment variable 20, 36
Perforce syntax 36
Perforce 2005.2 P4 User’s Guide 117

Index
permissions
administrative commands and 35
files in client workspace and 18, 48, 52
integration and 72
renaming files 53
working detached 55

port
configuring 15, 19, 20
default 19
error if invalid 23
specifying on command line 35

preview
delete results 43
integration results 95
-n flag 74
resolve results 95
revert results 49
sync results 43, 88, 91
syncing to a label 94
tagging results 76

PWD environment variable 35
Python scripting 35

Q
-q flag 91

R
-r flag 72
re-resolving 59
removing files from the client workspace 42
renumbering of changelists 51
reserved characters 38
restrictions

binaries stored as text 112
changing file permissions 18
entries in forms 43
file names 38
label names 77
name length 38
non-ASCII characters in file and object

names 39
relative path components 36
searching jobs 82
white space in exclusionary mappings 26

revision range 42, 73, 94, 106
root

alternate for different platforms 28
changing 29
defined 22, 100
depot 101
displaying 97
null 28
server 106

S
-s flag 53, 94
scripting 35, 87
-sd flag 55
-se flag 55
searching jobs 83
server

configuring 19, 20, 21
default 19
diffing files 54, 65
files in the workspace and 18
specifying on command line 35
timestamps and 42
verifying connection 16
working detached from 55

share option 31
spaces in file and path names 38
syntax

branch specifications 70
command line 35
file revisions 40
integrating using branch specifications 72
label view 78
local 36
Perforce 36
view 43

T
-t flag 109
118 Perforce 2005.2 P4 User’s Guide

Index
team development 45
timestamp 112

U
UNIX

alternate client roots 28
comment delimiter (#) 38
finding locked files 66
line endings on mounted drives 31
LOCALE environment variable 39
path component separator (/) 38
symlink file type 109
wildcard (*) 38

unix option 31
unlocked option 30
UTF-16 20

V
-v flag 61
version of P4 36
View field 29
views

conflicting mappings 27
label 78

W
wildcards

client views and 25
defined 107
escaping 52
overview 37
renaming files 53
reserved characters 38
restriction on adding files recursively 47
searching jobs 83
syncing files using 47

Windows
binary file storage 112
installation 15
line endings 31
multiple drives 28
regional settings 39
timestamps on DLLs 111

workspace
spanning multiple drives 28

write permission 18

X
-x flag 55
Perforce 2005.2 P4 User’s Guide 119

Index
120 Perforce 2005.2 P4 User’s Guide

	Table of Contents
	List of Examples
	Preface About This Manual
	Command line versus GUIs
	Getting started with Perforce
	Perforce documentation
	Please give us feedback

	Chapter 1 Installing P4
	Installing P4 on UNIX and OS X
	Installing P4 on Windows
	Verifying the installation

	Chapter 2 Configuring P4
	Configuration overview
	What is a client workspace?
	How Perforce manages the workspace

	Configuring Perforce settings
	Using the command line
	Using config files
	Using the Windows registry
	Using environment variables

	Defining client workspaces
	Verifying connections
	Refining client views
	Specifying mappings
	Using wildcards in client views
	Mapping files to different locations in the workspace
	Mapping files to different filenames
	Excluding files and directories
	Mapping Windows workspaces across multiple drives
	Using the same workspace from different machines

	Changing the location of your workspace
	Configuring workspace options
	Configuring line-ending settings
	Deleting client workspace specifications
	Security
	Passwords
	Connection time limits

	Chapter 3 Issuing P4 Commands
	Command-line syntax
	Specifying filenames on the command line
	Perforce wildcards
	Restrictions on filenames and identifiers
	Specifying file revisions
	Reporting commands

	Using Perforce forms

	Chapter 4 Managing Files and Changelists
	Managing files
	Syncing (retrieving) files
	Adding files
	Changing files
	Discarding changes (reverting)
	Deleting files

	Managing changelists
	Creating numbered changelists
	Submitting changelists
	Deleting changelists
	Renaming and moving files
	Displaying information about changelists

	Diffing files
	Working detached
	Finding changed files
	Submitting your changes

	Chapter 5 Resolving Conflicts
	How conflicts occur
	How to resolve conflicts
	Your, theirs, base and merge files
	Options for resolving conflicts
	Accepting yours, theirs, or merge
	Editing the merge file
	Merging to resolve conflicts
	Full list of resolve options
	Resolve command-line flags
	Resolve reporting commands

	Locking files
	Preventing multiple resolves by locking files
	Preventing multiple checkouts

	Chapter 6 Codelines and Branching
	Basic terminology
	Organizing the depot
	Branching
	When to branch
	Creating branches

	Integrating changes
	Integrating using branch specifications
	Integrating between unrelated files
	Integrating specific file revisions
	Reintegrating and reresolving files
	Integration reporting

	Using labels
	Tagging files with a label
	Untagging files
	Previewing tagging results
	Listing files tagged by a label
	Listing labels that have been applied to files
	Using a label to specify file revisions
	Deleting labels
	Creating a label for future use
	Restricting files that can be tagged
	Using labels to archive workspace configurations
	Preventing inadvertent tagging and untagging of files

	Chapter 7 Defect Tracking
	Managing jobs
	Searching jobs
	Searching job text
	Searching specific fields
	Using comparison operators
	Searching date fields

	Fixing jobs
	Linking automatically
	Linking manually
	Linking jobs to changelists

	Chapter 8 Scripting and Reporting
	Common flags used in scripting and reporting
	Scripting with Perforce forms
	File reporting
	Displaying file status
	Displaying file revision history
	Listing open files
	Displaying file locations
	Displaying file contents
	Displaying annotations (details about changes to file contents)
	Monitoring changes to files

	Changelist reporting
	Listing changelists
	Listing files and jobs affected by changelists

	Label reporting
	Branch and integration reporting
	Job reporting
	Listing jobs
	Listing jobs fixed by changelists

	System configuration reporting
	Displaying users
	Displaying workspaces
	Listing depots

	Sample script

	Appendix A Glossary
	Appendix B Perforce File Types
	Perforce file types
	File type modifiers
	Specifying how files are stored in the server
	Overriding file types
	Preserving timestamps
	Expanding RCS keywords

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

