Perforce 2007.3
APIs for Scripting

March 2008

This manual copyright 2008 Perforce Software.
All rights reserved.

Perforce software and documentation is available from http: //www.perforce.com You may download and use
Perforce programs, but you may not sell or redistribute them. You may download, print, copy, edit, and redistribute
the documentation, but you may not sell it, or sell any documentation derived from it. You may not modify or
attempt to reverse engineer the programs.

Perforce programs and documents are available from our Web site as is. No warranty or support is provided.
Warranties and support, along with higher capacity servers, are sold by Perforce Software.

Perforce Software assumes no responsibility or liability for any errors or inaccuracies that may appear in this book.
By downloading and using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce Software. Perforce software includes software
developed by the University of California, Berkeley and its contributors.

All other brands or product names are trademarks or registered trademarks of their respective companies or
organizations.

Table of Contents

Preface

Chapter 1

About This Manual..........ccccccciviininininiiie, 13
Please give us feedback ... 13
PARUDYooeeieeooeeoeseeeeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeeeeeseesesenneee 15
INtroduction.......cccciiiiiiiiiii s 15
System Requirements.............cccovuiiiiiiniiiiniiii 15
Installing PARUDYc.ccciuiiiiiiiiiiiiiccececic et 16
Programming with PARUDYc.ccccccoiiiiiiiiicccc e 16
PARUDY Classesccccviiiiiiiiiiiiiiiiiiiiici e 17
PA oo 17
PAEXCEPHION...ccviiitctiiiiceiccet s 19
P4::DEPOLFILE ... 20
P4:REVISION ..ottt 20
P4:Integration.. ... 20
Pd:MergeData........oooeiieiiiiiiiii 21
PAiSPOC ot 21
CLASS P4 ..o 22
DeSCIIPtION ...ovevieiiieiiee s 22
Class Methods..........ccoiiiiniiiiiiiiiic e 22
P4.identify -> @String.........cccovvverernrrinirrrrr s 22
PANeW -> aP4 ... 22
Instance Methods ..o 23
p4.api_level= anlnteger -> anInteger ..o, 23
p4.api_level -> anInteger ... 23
p4.at_exception_level(lev) { ...} ->self.....cccoioiiiiiiiicn 23
p4.charset= aString -> aString.........ccccoeevviiiiiniini, 24
pé.charset -> aString ... 24
pé.client= aString -> aString.........cccccooriiiiiiii e, 24
pa.client -> aStrINGc.ooouiviiiie 24
pA.connect -> aBoOL........ccccciiiiiiiiii 25
p4.connected? -> aBoOl.........ccoooiuiiiiiii e 25
p4.cwd= aString -> aString ... 25
PA.cWd => ASHIING ..ovii 25
p4.delete_<spectype>([options], name) -> anArray...........cccocueuene. 25

Perforce 2007.3 APIs for Scripting

Table of Contents

PA.dISCONNECE > LIUE ..o 26
PA.EITOTS -> ANATTAY «.oovreiieieieiiiiiieeee s 26
p4.exception_level= anlnteger -> anInteger.............c.cccooeeieienne. 27
p4.exception_level -> aNumberccoooriiiiiiii 27
p4.fetch_<spectype>([name]) -> aP4:Spec......cccceucveeucvvvevnicenennnes 27
p4.format_spec(<spectype>, aHash)-> aString..........ccccccceveennnee. 27
p4.format_<spectype> aHash -> aHash ... 28
p4.host= aString -> aString ..o 28
P4.host -> aStIING ...c.cvviiii 28
p4.input= (aString | aHash | anArray) -> aString | aHash | anArray 28
p4.maxlocktime= anInteger -> anIntegerccccccoeeuececrccenenne. 29
p4.maxlocktime -> anInteger..........ccviiriiniininicccceee 29
p4.maxresults= anlnteger -> anInteger...........c.coccoereiiiiiinnnnn, 29
p4.maxresults -> anInteger ..o 30
p4.maxscanrows= anlnteger -> anlntegercccccoooviniiiiiinnnnn, 30
p4-maxscanrows -> anInteger ... 30
p4.péconfig_file -> aString........ccccoiciiiiiiiiciceceeeecceeceeees 31
p4.parse_<spectype> (aString) -> aP4:Spec ..o, 31
p4.parse_spec(<spectype>, aString) -> aP4:Spec.......ccccoorrennnnne. 31
p4.password= aString -> aString ..o 31
P4.password -> aString..........coeeiiiiiiiii 31
p4.port= aString -> aStringcccvviiniiii 32
PAPOrt -> aSHING ..o 32
p4.prog= aString -> aStringcccocevvvivnniiinii 32
PA.PTOZ > ASHIING ..o 32
p4.run_cmd(arguments) -> aNAITAYc.ccoeveveererieieieecceece 32
p4.run(aCommand, arguments...) > anArray........cccocoeveeeceerenenee 32
p4.run_filelog(fileSpec) -> anATTay.....cccccoeececuecrecicccccrccee 34
p4.run_login(arg...) -> aNAITAYoccovimiiiiiiiiccceeeeeceeeeceneaes 34
p4.run_password(oldpass, newpass) -> anArrayc.cccceeeerenee. 34
p4.run_resolve(args) [block | -> anArrayccccooriiiiiciiinne 35
p4.run_submit([aHash], [arg...]) -> anArray ..o 36
p4.save_<spectype>([options], hashOrString) -> anArray 36
p4.server_level -> anIntegercccccocciiciiiccccnccecceeceees 37
p4.tagged=aBool -> aBool........cccccceeuiiiiiiiiiiccc e 37
pA.tagged? -> aBOOL......ccooiiiiiiii e 37
p4.ticketfile= aString -> aStringccccoooeieiiiiei 37
pé.ticketfile > aStriNg..........ooooriiiiiiii 38
pd.user= aString -> aString ..o 38

4 Perforce 2007.3 APIs for Scripting

Table of Contents

PA-USET -> aStIING ..o 38
p4.version= aString -> aStringccccooveviiiiiiiii 38
PA.version -> aString ... 38
PA.Warnings > aNATTAYoooeiiiiiiiiii s 38
Class PAEXCEPHION.....c.ccciuiimiiiiiiicicicicieiceicctee ettt 39
Class Methods..........ccoiiiiiiiiiiiii e 39
Instance Methods ..o 39
Class P4::DepotFile.........cccoiiiiiiiiiiiiiiicis 40
DeSCIIPHON ..ttt 40
Class Methods..........ccoviiiiiiiiiiiiii 40
Instance Methods ... 40
df.depot_file -> aStringccccccecieeviiiincccrrrc 40
df.each_revision { |rev| block } -> reVArray........ccooevvnicerninnnen 40
df.revisions -> @ATITAY ...ccc.oooreieiiiieiee s 40
Class P4:REVISIONcciiiiiiiiiiciciiceccccc e 41
DeSCIIPtION ...cvivieiiieiieec s 41
Class Methods.........ccoiiiiiiiiiiiiiiiiic e 41
Instance Methods ... 41
rev.action -> aString ... 41
rev.change -> aNumber ... 41
rev.client -> aStringcoooeoiiiii 41
rev.depot_file -> aString ... 41
rev.desc -> aStIINgG ..o 41
rev.digest -> aString ... 41
rev.each_integration { |integ| block } -> integArrayccccccoeuevunnes 41
rev.filesize -> aNUMDeTcccccovvviiiiiiiiiiii 41
rev.integrations -> iNtegAITaYccceveieiiriiiiiic 41
1ev.revno -> aANUMDETocovviiiiiiii e 42
rev.time -> aTime........oooiiiiii 42
reV.EYPe -> aStIING ...voviviiiiiiiic 42
TeV.USET -> ASHIING ..vviviiiii 42
Class P4::Integration. ..ot 43
DeSCIIPHON c.eeiittttt 43
Class Methods.........ccoiiiiiiiiiic e 43
Instance Methods ..o 43
integ.how -> aStIINGcoooviiiiiicre s 43
integ.file -> aPath ..., 43
integ.srev -> aNUMDETcccoovoiriiiicc 43
integ.erev -> aNUMDbeTccooooiiiii 43

Perforce 2007.3 APIs for Scripting 5

Table of Contents

Class P4:MergeData........cccooeueuiuiiceririeiicicreecceeeeeeee e 44
DeSCIIPHON «..oeeiie 44
Class Methods.........cciiiiiiiiiiiic e 44
Instance Methods..........ccooiiiiiiiiiiiias 44

md.your_name() -> aStrNgccoveeeiriinniiiniicciceecceeeeeenes 44
md.their_name() -> aStringc.cocoeeeeriinniininiiiccccececeeeeeenes 44
md.base_name() -> aString........cccoeeeeeriirineiiniiiecieeeeeeeeeeeaes 44
md.your_path() > aString ..o 45
md.their_path() -> aString ... 45
md.base_path() -> aString........cccoeevvrrrnnrrrrcr e 45
md.result_path() -> aStringcoceevrnnnnnininccceicceeeeeenes 45
md.merge_hint() -> aStriNgccccoeeiiiinciiiiicccccccceeeeenes 46
md.run_merge() -> aBool.........cccoiiiiii 46

Class PA:SPECviiei 47
DeSCIIPHON «..eeii e 47
Class MethOdscciiuiiiiiiciiccicceeccee e 47

new P4::Spec.new(anArray) -> aP4:Spec.......ocivviiciininiciicnnee 47

Instance Methods. ... 47
spec._<fieldname> -> aValueccccoovvninniniiiices 47

spec._<fieldname>= aValue -> aValue..........cccccoevvivnnnnnnnnnnnn 47
spec.permitted_fields -> anArray ..o 48

Chapter 2 PAPET] ..o 49

INErOAUCHON ..o 49

System Requirements...........ccoeeveveieiiioiiiiiiiiic 49

Installing PAPer]........c.oouiiiiice e 50

Programming with PAPerl..........ccoooiiii 50

PAPEr] CLaSSES......ovuiiiiciciiciciicicee et 51
P 51
P4:DePOtFileovviviiiiiiii 53
P4:REVISION ... 54
P4 INtegration. ..o 54

CLass P4 ... s 55
DeSCIIPION ..ot 55
Base MethOdsS ..o 55

PAineW () > Pttt e 55
P4::Identify() -> Stringcooueioioiiiciicc e 55
P4:Connect() => DOOL ..ottt 55

6 Perforce 2007.3 APIs for Scripting

Table of Contents

P4::Disconnect() -> Undef.........ccovvveriieierierieieieieeeieese e seseenens 56
P4::ErrorCount() > integer.........cccocouvvvvivininiininiinininccccs 56
PA4:Errors() = LSt .eeveirieiieiiciccetrctre et 56
P4::Fetch<spectype>([name]) -> hashref ..., 56
P4::Format<spectype>(hash) -> string........cccccocevvvvvrnnnnnnnnenes 56
P4::FormatSpec($spectype, $string) -> stringcccccevvevevvverererencnee 56
P4::GetCharset() -> STrNGccovveeeveriirriieeccceeeeeceee e 56
P4:GetClient() -> Stringcccovvviviiiiiiiices 56
P4:GetCwd() -> StIING ..oeceeiic 57
P4::GetHost() -> StrNE......covoviviiiiiiiiiicc 57
P4::GetMaxLockTime($value) -> integer.........cccccoevceiicccciccnne 57
P4::GetMaxResults($value) -> integercccocovevvvvrnnnnincrncncnnes 57
P4::GetMaxScanRows($value) -> integercccocevvvvvnnnninnnes 57
P4::GetPassword() > String......cccccocvvvvviviinininiiiniiccc 57
P4:GetPort() -> String.......ccccovveviiiiiiiiiiiic 57
P4::GetProg() -> String......cccoevviviiiiiiiiiiicc 57
P4::GetUser() -> Stringccocoeiiviiiiiiiiiicicccccne 57
P4::GetVersion ($string) -> Stringccccceeveeeervcvncrcceecreenes 57
P4::IsConnected() -> DOOL........coveirieineinieineircerenceecseee e 57
P4:IsTagged() > bOOL.......ccccoiiiiiiiiiiiciiiciicc 57
P4::P4ConfigFile() -> String ... 57
P4::Parse<Spectype>($string) -> hashref...........cccccoeeiiiinnnnnnne. 58
P4::ParseSpec($spectype, $string) -> hashref..........cccccovvvvnnnnne. 58
P4:Run<cmd>([$arg...]) -> list | arrayrefccccvveerenrccreneenee 58
P4:Run(cmd, [$arg...]) ->list | arrayref.......ccocovvviiiiiniiiniinne, 58
P4::RunFileLog ([$args ...], $fileSpec ...) -> list | arrayref................ 59
P4:RunLogin (...) -> list | arrayref.........cccoooveinicnicniic 59
P4:RunPassword ($oldpass, $newpass) -> list | arrayref............... 59
P4:RunSubmit ($arg | $hashref, ...) -> list | arrayrefcccceeuneeee. 59
P4::Save<Spectype>() -> list | arrayref........cccooveeerncerenircereneenn. 60
P4::ServerLevel() -> integerccccovvvvininiiiiiiiiiniic 60
P4::SetApiLevel($integer) -> undefccccovviiiiinnii 60
P4::SetCharset($charset) -> undef..........cccoevevenecnennernernccncenn 60
P4::SetClient($client) -> undefccooveveevevninininieeeieeeeeeeeens 61
P4::SetCwd($path) -> undefccoviviiinecee 61
P4::SetHost($hostname) -> undefcccovveviiverieneieieieieeeeeens 61
P4::SetInput($string | $hashref | $arrayref) -> undef...................... 61
P4::SetMaxLockTime($integer) -> undefccccccvvvvvnninnnnnn 61
P4::SetMaxResults($integer) -> undef..........ccccoevvvvnininiinnn 61

Perforce 2007.3 APIs for Scripting 7

Table of Contents

P4::SetMaxScanRows($integer) -> undef...........ccooceiiiiioiinnccnaes 61
P4::SetPassword($password) -> undefccoviiiiiiiiinnns 62
P4::SetPort($port) -> undef ... 62
P4::SetProg($program_name) -> undef...........ccoooiiin 62
P4::SetUser($username) -> undefccovvvvevienerienieieneecreeeeeeenenns 62
P4::SetVersion ($version) -> undef........cccccoovveerrivererierieviereeeieeennn 62
P4:Tagged(0 | 1) -> undef ..o 62
P4::TicketFile([$string]) -> Stringccccceovvvvvvviiiiiiiiiii 62
P4::WarningCount() -> INtegerccoceveiiueieieiiicieieecccee e 63
P4::Warnings() > List......covuvvrinireecccccccecee e 63
Class P4::DePOtFilec.ccoiiiiiiiiiiicc e 64
DeSCIIPHION ...voviviiiiiiiiiee s 64
Class Methodscccouevieriieiriiicciectece ettt 64
Instance Methods..........covvevieirieinieiiciicere e e 64
$df->DepotFile() -> String ..., 64
BAL->ReVISIONS() => AITAY ..evuveeimiereiieceiieeeeeeceeceeeeee e 64
Class PA:REVISIONvvueiriereieiiiriereiccenteieteetsneieietresse et eeeseseeneseseseenes 65
DeSCIIPION ..ot 65
Class MethOdScouiiiiiieieeeee e 65
$rev->Integrations() > arrayccceceeeeeeueieieeicieisiceeee 65
Instance Methods..........coverieirieinieiiciic e e 65
$rev->Change() -> INteZer.....c.ccceuimiririciiiircccc s 65
$rev->Client() -> SrNG.....cocovvvrrrrrcr s 65
$rev->DepotFile() -> STrNG ..o 65
$rev->Desc() -> StING ... 65
$rev->Digest() -> StrNgccooovreieiic 65
$rev->FileSize() -> StrING......cccovviviiniiiiiiica 65
$rev->Rev() -> INtEZET ...c.ceuiiiiciiiiciccccee e 65
$rev->Time() -> SLANG ... 65
Brev->Type() -> SEINEG ...covrveeiii e 66
BIEV-SUSEI() ..verveverrenerieiiriirteiertet ettt 66
Class P4:Integration........cccoueuiiriiciccccc e 67
DeSCIIPHON et 67
Class MethOds ..ottt seaeeenes 67
INnstance Methods.......cccoveueirniereiieininieeeiinreeetreneeteeeere e reeeaeneenen 67
$integ->HOowW () -> SIANG .ooveeiii e 67
$integ->File() > SNccccevvviiiiiiiiiiiic 67
$integ->SRev () -> INteGerocorviieiiriciiceec 67
$integ->ERev() -> iNteger......ccooeueiiriiiiiiieieec 67

8 Perforce 2007.3 APIs for Scripting

Table of Contents

Chapter 3 PAPYthONcooviiiiiiiiiic 69
INErOAUCHON ..o s 69
System Requirements.............cccovuviiiiiiiiininniiie 69
Installing PAPYthONc.oimiiiii e 69
Programming with PAPythonc.ccoooi 70

Submitting a Changelist..........ccoooeiiiici 71
Logging into Perforce using ticket-based authentication....................... 71
Changing your password ... 72
Timestamp CONVEISION........ciuiiiiiiiiitiieicicieietc e 72
PAPYthon Classes........cc.oviueieiiiiieieicccie e 73
PA oo 73
P4.PAEXCEPHION ..ot 75
P4.DePOtFIleoviiiiiiiciic 75
P4 REVISION ...vtiiitteeeet s 76
PA.INtegration.......coovoiiiiiiiiiiicctt e 76
PA.SPOC ..t 76
CLass P4 ..o 77
DeSCIIPtiON ...ccvevieiiieiic s 77
Instance AHIIDULEScooveviiiiiiiiiiic 77
pAapi_level -> It o 77
pé.charset => STHNG ..o 78
pa.client -> StrINGooviiiiieiee 78
PA.CWd => SEIING .o 78
p4.errors -> list (read-0nly)......ccccooeiiiiiiiniiicccecccceeeeenens 79
pa.exception_level -> INt ..o 79
PADOSE -> STHANG ..o 79
p4.input -> string | dict | List ..o 80
p4.maxlocktime -> iNt.......cooooiiiiiii 80
p4.maxresults -> iNt ... 80
P4.Maxscanrows > INt ..o 80
p4.p4config_file -> string (read-only) ..o 81
PAPasSWOId -> SEING....cciiiiiiicc e 81
PA.POIt => SING oot 81
PA.PTOZ > STING..oiiiiii 81
p4.server_level -> int (read-only)cccoooeriiiiiiii 82
pAtagged ->int ... 82
pA.-ticket_file > StrING.....covviviririr e 82
PA-USEr > SEIINE oo 82
PA.Version > StIINGccccoviiiiiiiiiiiiec 82

Perforce 2007.3 APIs for Scripting 9

Table of Contents

p4.warnings -> list (read-0nly)........ccccccoeeieiiiiiciniccciecee 83
Class Methods.........ccciiiiiiiiiiiicas 83
PAPA() o 83
PAAdentify() ..o 83
Instance Methods..........ccccviiiiiiii 83
PA.CONNECE() oo 83
p4.connected() -> boolean. ... 84
p4.delete_<spectype>([options], name) -> list........ccccoovvrrnnnnc. 84
PA.dISCONNECH()...cvviiiiiiiiii e 84
p4.fetch_<spectype>() -> P4.SPec......ccceiiiiiceccieccccceecnennees 85
p4.format_spec(<spectype>, dict) -> String........cccocoeeuecrccrccnnenne. 85
p4.format_<spectype>(dict) -> Stringcccoeevvveeencinniccciicene 85
p4.parse_spec(<spectype>, string) -> P4.Spec........ccccceovvvivrrirerennne. 85
p4.parse_<spectype>(string) -> P4.Spec.........ccccoeeiniiiiiiiccicene 86
pa.run(cmd, [arg, ...]) v 86
PATUN_KCINA> () e 87
p4.run_filelog(<fileSpec >) -> list ..o 88
pa.run_login(arg...) -> LSt .ccooiiiiciiiiiccccccceeeeee 88
p4.run_password(oldpass, newpass) > list......c.cccoeerniiiriinnne. 88
p4.run_submit([hash], [arg...]) ->list cccccovniii 89
P4.save_<SPectyPe>()> ... 89
Class PA.PAEXCEPHONc.cueuueiiiiiiciriciciicicerieicee e 90
DeSCIIPtIONooviviiiiiiiiic s 90
Class AHTIDULES.........ciieriiicic 90
Class Methods.......cc.ciiiiiiiiiciicccc e 90
Class P4.DepotHile.........cccooviiiiiiiiiiiiiiiiiiiiiccc e 91
DeSCIIPHON «.cueii 91
Instance AtIIDULEScoueviviiiiiiic 91
df.depotFile -> STrNGcooceuieiiiiiicccceccce e 91
df.revisions -> List ..o 91
Class Methods.......cc.ceiiiiiiiiiiciiccc e 91
Instance Methods..........ccooiiiiiiiiiiiias 91
Class P4.INtegration..........coooeueiirieieiiicceeccic 92
DeSCIIPHIONvoviiiiiiiiiie s 92
Instance AtIIDULESccovveviiiiiiic 92
INteg.hOW -> SIIANG ..o 92
integ.file -> StrNGccccoviiiiiiii 92
INteg.erev —> INt....ocoiiiiii e 92
INteg.STeV > INtu.ciii 92

10 Perforce 2007.3 APIs for Scripting

Table of Contents

Class MethOds. ..o 92
Instance Methods ..o 92
Class PA.REVISION.......ccccvuiiiiiiiiiiiiniiic s 93
DeSCIIPHON 1.ttt 93
Instance AHIIDULESooviiiiiiccccccccee e 93
1eV.action => StIINEcooviviiiiiiiiiii s 93
reV.ChaNGe -> INt ..o s 93
rev.client => StriNgcoooviiiii e, 93
rev.depotFile -> String ..., 93
1eV.desc -> SINE ..o 93
rev.digest -> StrNG ..o 93
rev.fileSize -> STANG .c.c.ovveiiiirccec s 93
rev.integrations > list........ccooooiiiii 93
TOV.ICV => INE ..ot 93
rev.time -> datetime...........cccoevviiiiii 94
1eV.EYPE => SIHING .oovoviviiiiii s 94
TEV.USET > SN .ooviiiiiieiiiii s 94
Class MethOds.ccviiiiiiiiiiciccce e 94
Instance Methods ... 94
Class PA.SPEC ... 95
DeSCIIPHON c.eeieetttt 95
Instance AHTIDULESooviiiiicccccccce e 95
spec._<fieldname> -> String........cccccccoeeeeiiineicceccccreceeees 95
spec.permitted_fields -> dict.......ccccoeeviinninic e 95
Class Methods.......c.cooiiiiiiiciccc s 95
P4.Spec.new(dict) ->P4.Spec.......cccvvvivinininiinininiiiiii 95
Instance Methods ..o 95

Perforce 2007.3 APIs for Scripting 11

Table of Contents

12 Perforce 2007.3 APIs for Scripting

Preface AbOUt ThiS Manual

This guide contains details about using the derived APIs for Ruby, Perl, and Python to
create scripts that interact correctly with the Perforce server.

These derived APIs depend on the C/C++ API. See the Perforce C/C++ API User’s Guide for
details.

Please give us feedback

If you have any feedback for us, or detect any errors in this guide, please email details to
manual@perforce.com.

Perforce 2007.3 APIs for Scripting 13

Preface: About This Manual

14 Perforce 2007.3 APIs for Scripting

Chapter 1 P4 R u by

Introduction

P4Ruby is an extension to the Ruby programming language that allows you to run
Perforce commands from within Ruby scripts, and get the results in a Ruby-friendly
format.

The main features are:

* Get Perforce data and forms in hashes and arrays

Edit Perforce forms by modifying hashes

* Exception based error handling

¢ Controllable handling of warnings such as "File(s) up-to-date." on a sync
¢ Run as many commands on a connection as required

* The output of a command is returned as a Ruby array. For non-tagged output, the
elements of the array are strings. For tagged output, the elements of the array are Ruby
hashes. For forms, the output is an array of p4 : : Spec objects.

* Thread-safe and thread-friendly; you can have multiple instances of the p4 class
running in different threads.

¢ Exception-based error handling. Trap P4Exceptions for complete, high-level error
handling.

System Requirements

P4Ruby is supported on Windows, Linux, Solaris, and FreeBSD.

To build P4Ruby, your development machine must also have:

* Ruby 1.8 development files

® make (or nmake on Windows)

® The 2007.3 Perforce C/C++ API for your target platform

® The same C++ compiler used to build the Perforce C++ API on your target platform.

(If you get “unresolved symbol” errors when building or running P4Ruby, you
probably used the wrong compiler or the wrong Perforce API build.)

Perforce 2007.3 APIs for Scripting 15

Chapter 1: P4Ruby

Installing P4Ruby

Download P4Ruby from the Perforce web site downloads page. After downloading, you
can either run the installer or build the interface from source, as described in the release
notes.

Programming with P4Ruby

The following example shows how to create a new client workspace based on an existing
template:

require "P4"
template = "my-client-template"
client root = ‘c:\p4-work’

p4 = P4.new
p4.connect

begin
Run a "p4 client -t template -o" and convert it into a Ruby hash
spec = p4.fetch client("-t", template)
Now edit the fields in the form
spec["Root"] = client root
spec["Options"] = spec["Options"].sub("normdir", "rmdir")

Now save the updated spec
p4.save_client (spec)

And sync it.
p4.run_sync

rescue P4Exception
If any errors occur, we'll jump in here. Just log them
and raise the exception up to the higher level

p4.errors.each { |e| $stderr.puts(e) }
raise

end

16

Perforce 2007.3 APIs for Scripting

Chapter 1: P4Ruby

P4Ruby classes

The P4 module consists of several public classes:

* P4

¢ P4Exception

e P4::DepotFile
¢ P4::Revision

¢ P4:Integration
¢ P4:MergeData
* P4:Spec

The following tables provide brief details about each public class.

P4

The main class used for executing Perforce commands. Almost everything you do with
P4Ruby will involve this class.

Method
identify
new
api_levels=
api level

at_exception level

charset=
charset
clients=
client

connect

connected?

cwd=

cwd

Description

Return the version of P4 in use (class method)
Construct a new P4 object (class method)

Set desired API compatibility level

Return current API compatibility level

Execute the associated block under a specific exception
level, returning to previous exception level when block
returns

Set character set when connecting to Unicode servers
Get character set when connecting to Unicode servers
Set client workspace (P4CLIENT)

Get current client workspace (P4CLIENT)

Connect to the Perforce Server, raise P4Exception on
failure

Test whether or not session has been connected and/or has
been dropped

Set current working directory

Get current working directory

Perforce 2007.3 APIs for Scripting

17

Chapter 1: P4Ruby

Method
delete spectype
disconnect

errors

exception level=

exception level

fetch spectype

format_spec

format spectype

host=

host

input=
maxlocktime=
maxlocktime
maxresults=
maxresults
maxscanrows=
maxscanrows
p4config file

parse_spectype

parse_spec

password=
password
port=
port

prog=

Description
Shortcut methods for deleting clients, labels, etc.
Disconnect from the Perforce Server

Return the array of errors that occurred during execution of
previous command

Control which types of events give rise to exceptions
(P4: :RAISE_NONE, RAISE_ERRORS, Or RAISE_ALL)

Return the current exception level

Shortcut methods for retrieving the definitions of clients,
labels, etc.

Convert fields in a hash containing the elements of a
Perforce form (spec) into the string representation familiar
to users

Shortcut methods; equivalent to:
p4.format spec(spectype, aHash)

Set the name of the current host (P4HOST)

Get the current hostname

Store input for next command

Set MaxLockTime used for all following commands

Get MaxLockTime used for all following commands

Set MaxResults used for all following commands

Get MaxResults used for all following commands

Set MaxScanRows used for all following commands

Get MaxScanRows used for all following commands

Get the location of the configuration file used (P4CONFIG).

Shortcut method; equivalent to:
p4 .parse_spec (spectype, aString)

Parses a Perforce form (spec) in text form into a Ruby hash
using the spec definition obtained from the server.

Set Perforce password (P4PASSWD)

Get the current password or ticket.

Set host and port (P4PORT)

Get host and port (P4PORT) of the current Perforce server

Set the program name as shown by p4 monitor show -e

18

Perforce 2007.3 APIs for Scripting

Chapter 1: P4Ruby

Method
prog

run_cmd

run

run filelog

run login

run_password
run_resolve
run_submit

save_spectype

server level

tagged=

tagged?
ticketfile=
ticketfile
user=

user

version=

version

warnings

P4Exception

Description
Get the program name as shown by p4 monitor show -e

Shortcut method; equivalent to:
p4.run (cmd, arguments...)

Runs the specified Perforce command with the arguments
supplied.

Runs ap4 filelog on the fileSpec provided, returns an
array of P4 : :DepotFile objects

Runs p4 login using a password (or other arguments) set
by the user

A thin wrapper to make it easy to change your password.
Interface to p4 resolve.
Submit a changelist to the server.

Shortcut methods; equivalent to:
p4.input = hashOrString
p4.run(spectype, "-i")

Returns the current Perforce server level.

Toggles tagged output (true or false). By default, tagged
output is on.

Detects whether or not tagged output is enabled.
Set the location of the PATICKETS file

Get the location of the P4TICKETS file

Set the Perforce username (P4USER)

Get the Perforce username (P4USER)

Set the version of your script, as reported to the Perforce
Server.

Get the version of your script, as reported to the Perforce
Server.

Returns the array of warnings which arose during
execution of the last command

Used as part of error reporting and is derived from the Ruby RuntimeError class.

Perforce 2007.3 APIs for Scripting

19

Chapter 1: P4Ruby

P4::DepotFile

Utility class allowing access to the attributes of a file in the depot. Returned by
P4#firun_filelog.

Method Description

depot_file Name of the depot file to which this object refers

each_revision Iterates over each revision of the depot file

revisions Returns an array of revision objects for the depot file
P4::Revision

Utility class allowing access to the attributes of a revision DepotFile object. Returned by
P4#frun_filelog.

Method Description

action Action that created the revision

change Changelist number

client Client workspace used to create this revision

depot_file Name of the file in the depot

desc Short changelist description

digest MD?5 digest of this revision

filesize Returns the size of this revision.

integrations Array of P4 . Integration objects

revno Revision number

time Timestamp

type Perforce file type

user User that created this revision
P4::Integration

Utility class allowing access to the attributes of an integration record for a Revision
object. Returned by p4#run_filelog.

Method Description
how Integration method (merge/branch/copy/ignored)
file Integrated file

20 Perforce 2007.3 APIs for Scripting

Chapter 1: P4Ruby

Method
srev

erev

P4::MergeData

Description
End revision

Start revision

Class encapsulating the context of an individual merge during execution of a p4 resolve
command. Passed as a parameter to the block passed to Pa#run_resolve.

Method
your_ name
their name
base name
your path
their path

base path

result path

merge hint

run merge

P4::Spec

Description

Returns the name of “your” file in the merge. (file in workspace)
Returns the name of “their” file in the merge. (file in the depot)
Returns the name of “base” file in the merge. (file in the depot)
Returns the path of “your” file in the merge. (file in workspace)

Returns the path of “their” file in the merge. (temporary file on
workstation into which their name has been loaded)

Returns the path of the base file in the merge. (temporary file on
workstation into which base name has been loaded)

Returns the path to the merge result. (temporary file on
workstation into which the automatic merge performed by the
server has been loaded)

Returns hint from server as to how user might best resolve
merge

If the environment variable P4MERGE is defined, run it and return
a boolean based on the return value of that program

Subclass of hash allowing access to the fields in a Perforce specification form. Also checks
that the fields that are set are valid fields for the given type of spec. Returned by

P4#ifetch spectype.
Method

spec. fieldname

spec. fieldname=

Description

Return the value associated with the field named
fieldname

Set the value associated with the field named fieldname.

spec.permitted fields Returns an array containing the names of fields that are

valid in this spec object.

Perforce 2007.3 APIs for Scripting 21

Chapter 1: P4Ruby

Class P4

Description

Main interface to the Perforce client API. Each P4 object provides you with a thread-safe
API level interface to Perforce. The basic model is to:

1. Instantiate your P4 object

2. Specify your Perforce client environment
e client
® host
e password
e port
® user
3. Setany options to control output or error handling:
e exception_ level
4. Connect to the Perforce Server
5. Run your Perforce commands

6. Disconnect from the Perforce Server

Class Methods
P4.identify -> aString

Return the version of P4 that you are using.

‘ruby -rP4 -e 'puts(P4.identify)

P4.new -> aP4

Constructs a new P4 object.

p4 = P4.new()

22 Perforce 2007.3 APIs for Scripting

Chapter 1: P4Ruby

Instance Methods
p4.api_level= aninteger -> aninteger

Sets the API compatibility level desired. This is useful when writing scripts using Perforce
commands that do not yet support tagged output. In these cases, upgrading to a later
server that supports tagged output for the commands in question can break your script.
Using this method allows you to lock your script to the output format of an older Perforce
release and facilitate seamless upgrades. This method must be called prior to calling

P4#connect.

p4 = P4.new
p4.api_level = 57 # Lock to 2005.1 format
p4.connect

For the API integer levels that correspond to each Perforce release, see:
http://kb.perforce.com/?article=512

p4.api_level -> aninteger

Returns the current Perforce API compatibility level. Each iteration of the Perforce Server
is given a level number. As part of the initial communication, the client protocol level is
passed between client application and the Perforce Server. This value, defined in the
Perforce API, determines the communication protocol level that the Perforce client will
understand. All subsequent responses from the Perforce Server can be tailored to meet the
requirements of that client protocol level.

For more information, see:
http://kb.perforce.com/?article=512

p4.at_exception_level(lev){... } -> self

Executes the associated block under a specific exception level. Returns to the previous
exception level when the block returns.

p4 = P4.new
p4.client = "www"
p4.connect

p4.at_exception level(P4::RAISE ERRORS) do
p4.run_sync
end

p4.disconnect

Perforce 2007.3 APIs for Scripting 23

Chapter 1: P4Ruby

p4.charset= aString -> aString

Sets the character set to use when connect to a Unicode enabled server. Do not use when
working with non-Unicode-enabled servers. By default, the character set is the value of
the P4CHARSET environment variable. If the character set is invalid, this method raises a
P4Exception.

p4 = P4.new

p4.client = "www"
p4.charset = "iso8859-1"
p4.connect

p4.run_sync
p4.disconnect

p4.charset -> aString

Get the name of the character set in use when working with Unicode-enabled servers.

p4 = P4.new
p4.charset = "utf8"
puts (p4.charset)

p4.client= aString -> aString

Set the name of the client workspace you wish to use. If not called, defaults to the value of
P4CLIENT taken from any P4CONFIG file present, or from the environment as per the usual
Perforce convention. Must be called before connecting to the Perforce server.

p4 = P4.new
p4.client = "www"
p4.connect
p4.run_sync
p4.disconnect

p4.client -> aString

Get the name of the Perforce client currently in use

p4 = P4.new
puts(p4.client)

24

Perforce 2007.3 APIs for Scripting

Chapter 1: P4Ruby

p4.connect -> aBool

Connect to the Perforce Server. You must connect before you can execute commands.
Raises a PaException if the connection attempt fails.

p4 = P4.new
p4.connect

p4.connected? -> aBool

Test whether or not the session has been connected, and if the connection has not been
dropped.

p4 = P4.new
p4.connected?

p4.cwd= aString -> aString

Sets the current working directly. Can be called prior to executing any Perforce command.
Sometimes necessary if your script executes a chdir () as part of its processing.

p4 = P4.new
p4.cwd = "/home/tony"

p4.cwd -> aString

Get the current working directory

p4 = P4.new
puts(p4.cwd)

p4.delete_<spectype>([options], name) -> anArray

The delete methods are simply shortcut methods that allow you to quickly delete the
definitions of clients, labels, branches, etc. These methods are equivalent to

p4.run(<spectype>, '-d', [options], <spec name>)

Perforce 2007.3 APIs for Scripting 25

Chapter 1: P4Ruby

For example:

require "PpP4"
require "parsedate"
include ParseDate

now = Time.now
p4 = P4.new
begin

p4.connect
p4.run clients.each do

rescue P4Exception
p4.errors.each {
ensure
p4.disconnect
end

|e| puts(e) }

|client|
atime = parsedate(client["Access"])
if((atime + 24 * 3600 * 365) < now)
p4.delete client('-f', client["client"])
end
end

p4.disconnect -> true

Disconnect from the Perforce Server.

p4 = P4.new
p4.connect
p4 .disconnect

p4.errors -> anArray

Returns the array of errors which occurred during execution of the previous command.

p4 = P4.new
begin
p4 .connect
p4.exception level(P4::RAISE ERRORS)
files = p4.run_ sync
rescue P4Exception
p4.errors.each {
ensure
p4.disconnect
end

|e| puts(e) }

ignore "File(s) up-to-date"

26

Perforce 2007.3 APIs for Scripting

Chapter 1: P4Ruby

p4.exception_level= aninteger -> aninteger

Configures the events which give rise to exceptions. The following three levels are
supported:

* p4::RAISE_NONE disables all exception raising and makes the interface completely
procedural.

* p4::RAISE_ERRORS causes exceptions to be raised only when errors are encountered.

* P4::RAISE ALL causes exceptions to be raised for both errors and warnings. This is the
default.

p4 = P4.new

p4.exception level = P4::RAISE ERRORS

p4.connect # P4Exception on failure

p4.run_sync # File(s) up-to-date is a warning so no exception is raised
p4 .disconnect

p4.exception_level -> aNumber
Returns the current exception level.
p4.fetch_<spectype>([name]) -> aP4::Spec

The fetch_spectype methods are shortcut methods that allow you to quickly fetch the
definitions of clients, labels, branches, etc. They're equivalent to:

p4.run(spectype, '-o', ...).shift

For example:

p4 = P4.new

begin
p4.connect
client = p4.fetch client ()
other client = p4.fetch client("other")
label = p4.fetch label("somelabel")
rescue P4Exception
p4.errors.each { |e| puts(e) }
ensure
p4 .disconnect
end

p4.format_spec(<spectype>, aHash)-> aString

Converts the fields in a hash containing the elements of a Perforce form (spec) into the
string representation familiar to users.

The first argument is the type of spec to format: for example, client, branch, label, and
so on. The second argument is the hash to parse.

Perforce 2007.3 APIs for Scripting 27

Chapter 1: P4Ruby

There are shortcuts available for this method. You can use

‘p4.format_spectype(hash) ‘

instead of

‘p4.format_spec(spectype, hash) ‘

where spectype is the name of a Perforce spec, such as client, label, etc.
p4.format_<spectype> aHash -> aHash

The format_spectype methods are shortcut methods that allow you to quickly fetch the
definitions of clients, labels, branches, etc. They're equivalent to:
p4.format spec(spectype, aHash)

p4.host= aString -> aString

Set the name of the current host. If not called, defaults to the value of P4HOST taken from
any P4CONFIG file present, or from the environment as per the usual Perforce convention.
Must be called before connecting to the Perforce server.

p4 = P4.new
p4.host = "workstationl23.perforce.com"
p4.connect

p4.disconnect

p4.host -> aString

Get the current hostname

p4 = P4.new
puts(p4.host)

p4.input= (aString|aHash|anArray) -> aString|laHash|anArray
Store input for the next command.

Call this method prior to running a command requiring input from the user. When the
command requests input, the specified data will be supplied to the command. Typically,
commands of the form p4 cmd -1i are invoked using the Pa#save_spectype methods,
which call Pa#input () internally; there is no need to call P4#input when using the
P4#tsave spectype shortcuts

28

Perforce 2007.3 APIs for Scripting

Chapter 1: P4Ruby

You may pass a string, a hash, or (for commands that take multiple inputs from the user)
an array of strings or hashes. If you pass an array, note that the array will be shifted each
time Perforce asks the user for input.

p4 = P4.new
p4.connect

change = p4.run change("-o").shift
change["Description"] = "Autosubmitted changelist"

p4.input = change
p4.run_submit ("-i")

p4.disconnect

p4.maxlocktime= aninteger -> aninteger

Limit the amount of time (in milliseconds) spent during data scans to prevent the server
from locking tables for too long. Commands that take longer than the limit will be
aborted. The limit remains in force until you disable it by setting it to zero. See p4 help
maxlocktime for information on the commands that support this limit.

p4 = P4.new
begin
p4.connect
p4.maxlocktime = 10000 # 10 seconds
files = p4.run_sync
rescue P4Exception => ex
p4.errors.each { |e| $stderr.puts(e) }
ensure
p4 .disconnect
end

p4.maxlocktime -> aninteger

Get the current maxlocktime setting

p4 = P4.new
puts (p4.maxlocktime)

p4.maxresults= aninteger -> aninteger

Limit the number of results Perforce permits for subsequent commands. Commands that
produce more than this number of results will be aborted. The limit remains in force until

Perforce 2007.3 APIs for Scripting 29

Chapter 1: P4Ruby

you disable it by setting it to zero. See p4 help maxresults for information on the
commands that support this limit.

p4 = P4.new
begin
p4.connect
p4 .maxresults = 100
files = p4.run_sync
rescue P4Exception => ex
p4.errors.each { |e| $stderr.puts(e) }
ensure
p4.disconnect
end

p4.maxresults -> aninteger

Get the current maxresults setting

p4 = P4.new
puts (p4.maxresults)

p4.maxscanrows= aninteger -> aninteger

Limit the number of database records Perforce will scan for subsequent commands.
Commands that attempt to scan more than this number of records will be aborted. The
limit remains in force until you disable it by setting it to zero. See p4 help maxscanrows
for information on the commands that support this limit.

p4 = P4.new
begin
p4.connect
p4 .maxscanrows = 100
files = p4.run_ sync
rescue P4Exception => ex
p4.errors.each { |e| $stderr.puts(e) }
ensure
p4.disconnect
end

p4.maxscanrows -> aninteger

Get the current maxscanrows setting

p4 = P4.new
puts (p4.maxscanrows)

30

Perforce 2007.3 APIs for Scripting

Chapter 1: P4Ruby

p4.p4config_file -> aString

Get the path to the current P4CONFIG file

p4 = P4.new
puts(p4.p4config file)

p4.parse_<spectype> (aString) -> aP4::Spec
This is equivalent to parse_spec (spectype, aString).
p4.parse_spec(<spectype>, aString) -> aP4::Spec

Parses a Perforce form (spec) in text form into a Ruby hash using the spec definition
obtained from the server.

The first argument is the type of spec to parse: “client”, “branch”, “label”, and so on. The
second argument is the string buffer to parse.

Note that there are shortcuts available for this method. You can use:
p4.parse_ spectype(buf)

instead of
p4.parse_spec(spectype, buf)

Where spectype is one of client, branch, label, and so on.

p4.password= aString -> aString

Set your Perforce password, in plain text. If not used, takes the value of P4PASSWD from
any P4CONFIG file in effect, or from the environment according to the normal Perforce
conventions. This password will also be used if you later call p4 . run_login to login using
the 2003.2 and later ticket system.

p4 = P4.new
p4.password = "mypass"
p4.connect
p4.run_login

p4.password -> aString

Get the current password or ticket. This may be the password in plain text, or if you've
used p4.run_login, it'll be the value of the ticket you've been allocated by the server.

p4 = P4.new
puts (p4.password)

Perforce 2007.3 APIs for Scripting 31

Chapter 1: P4Ruby

p4.port= aString -> aString

Set the host and port of the Perforce server you want to connect to. If not called, defaults
to the value of P4PORT in any P4CONFIG file in effect, and then to the value of P4PORT taken
from the environment.

p4 = P4.new
p4.port = "localhost:1666"
p4.connect

p4.disconnect

p4.port -> aString

Get the host and port of the current Perforce server.

p4 = P4.new
puts (p4.port)

p4.prog= aString -> aString

Set the name of the program, as reported to Perforce system administrators running p4
monitor show -e in Perforce 2004.2 or later releases.

p4 = P4.new
p4.prog = "sync-script"
p4.connect

p4.disconnect

p4.prog -> aString

Get the name of the program as reported to the Perforce Server.

p4 = P4.new
p4.prog = "sync-script"
puts(p4.prog)

p4.run_cmd(arguments) -> anArray
This is equivalent to p4.run (cmd, arguments...).
p4.run(aCommand, arguments...) -> anArray

Base interface to all the run methods in this API. Runs the specified Perforce command
with the arguments supplied. Arguments may be in any form as long as they can be
converted to strings by to_s.

The p4 . run method returns an array of results whether the command succeeds or fails;
the array may, however, be empty. Whether the elements of the array are strings or

32

Perforce 2007.3 APIs for Scripting

Chapter 1: P4Ruby

hashes depends on (a) server support for tagged output for the command, and (b)
whether tagged output was disabled by calling p4.tagged = false.

In the event of errors or warnings, and depending on the exception level in force at the
time, run will raise a P4Exception. If the current exception level is below the threshold
for the error/warning, run returns the output as normal and the caller must explicitly
review p4.errors and p4 .warnings to check for errors or warnings.

p4 = P4.new

p4.connect

spec = p4.run("client", "-o").shift
p4.disconnect

Shortcuts are available for p4 . run. For example,

p4.run_command(args)

is equivalent to:

p4.run("command", args)

There are also some shortcuts for common commands such as editing Perforce forms and
submitting. Consequently, this:

p4 = P4.new
p4.connect

clientspec = p4.run client("-o").shift
clientspec["Description"] = "Build client"
p4.input (clientspec)

p4.run _client("-i")

p4.disconnect

..may be shortened to

p4 = P4.new

p4.connect

clientspec = p4.fetch client

clientspec["Description"] = "Build client"
p4.save_client (clientspec)

p4.disconnect

The following are equivalent:

p4.delete spectype p4.run("spectype", "-d ")
p4.fetch spectype p4.run("spectype", "-o ").shift
p4.save spectype(spec) p4.input = spec

p4.run("spectype", "-i")

As the commands associated with fetch_spectype typically return only one item, these
methods do not return an array, but instead return the first result element.

Perforce 2007.3 APIs for Scripting 33

Chapter 1: P4Ruby

For convenience in submitting changelists, changes returned by fetch_change () can be
passed to run_submit. For example:

p4 = P4.new

p4.connect

spec = p4.fetch change

spec["Description"] = "Automated change"
p4.run_submit (spec)

p4.disconnect

p4.run_filelog(fileSpec) -> anArray

Runs ap4 filelog on the fileSpec provided and returns an array of P4 : :DepotFile
results when executed in tagged mode, and an array of strings when executed in non-
tagged mode. By default, the raw output of p4 filelog is tagged; this method
restructures the output into a more user-friendly (and object-oriented) form.

p4 = P4.new
begin
p4.connect
p4.run_filelog("index.html").shift.each revision do
B
r.each integration do
1]
Do something
end
end
rescue P4Exception
p4.errors.each { |e| puts(e) }
ensure
p4.disconnect
end

p4.run_login(arg...) -> anArray
Runs p4 login using a password (or other arguments) set by the user.
p4.run_password(oldpass, newpass) -> anArray

A thin wrapper to make it easy to change your password. This method is (literally)
equivalent to the following code:

p4.input ([oldpass, newpass, newpass])
p4.run("password")

34

Perforce 2007.3 APIs for Scripting

Chapter 1: P4Ruby

For example:

p4 = P4.new
p4 .password = "myoldpass"
begin
p4.connect
p4.run password("myoldpass", "mynewpass")
rescue P4Exception
p4.errors.each { |e| puts(e) }
ensure
p4.disconnect
end

p4.run_resolve(args) [block] -> anArray

Interface to p4 resolve. Without a block, simply runs a non-interactive resolve (typically
an automatic resolve).

p4.run_resolve("-at")

When a block is supplied, the block is invoked once for each merge scheduled by Perforce.
For each merge, a P4 : :MergeData object is passed to the block. This object contains the
context of the merge.

The block determines the outcome of the merge by evaluating to one of the following
strings:

Block string Meaning

ay Accept Yours

at Accept Theirs

am Accept Merge result
ae Accept Edited result
s Skip this merge

q Abort the merge

Perforce 2007.3 APIs for Scripting 35

Chapter 1: P4Ruby

For example:

p4.run resolve() do
|md |
puts("Merging...")
puts("Yours: #{md.your name}")
puts("Theirs: #{md.their name}")
puts("Base: #{md.base name}")
puts("Yours file: #{md.your path}")
puts("Theirs file: #{md.their path}")
puts("Base file: #{md.base path}")
puts("Result file: #{md.result path}")
puts("Merge Hint: #{md.merge hint}")

result = md.merge hint

if (result == "e")
puts("Invoking external merge application")
result = "s" # If the merge doesn't work, we'll skip
result = "am" if md.run merge ()
end
result
end

p4.run_submit([aHash], [arg...]) -> anArray

Submit a changelist to the server. To submit a changelist, set the fields of the changelist as
required and supply any flags:.

change = p4.fetch change
change. description = "Some description"
p4.run _submit("-r", change)

You can also submit a changelist by supplying the arguments as you would on the
command line:

p4.run_submit ("-d", "Some description", "somedir/...")

p4.save_<spectype>([options], hashOrString) -> anArray

The save_spectype methods are shortcut methods that allow you to quickly update the
definitions of clients, labels, branches, etc. They are equivalent to:

p4.input = hashOrString
p4.run(spectype, "-i")

36 Perforce 2007.3 APIs for Scripting

Chapter 1: P4Ruby

For example:

p4 = P4.new

begin
p4.connect
client = p4.fetch client()
client["Owner"] = p4.user

p4.save _client(client)
rescue P4Exception

p4.errors.each { |e| puts(e) }
ensure

p4.disconnect
end

p4.server_level -> aninteger

Returns the current Perforce server level. Each iteration of the Perforce Server is given a
level number. As part of the initial communication this value is passed between the client
application and the Perforce Server. This value is used to determine the communication
that the Perforce Server will understand. All subsequent requests can therefore be tailored
to meet the requirements of this Server level.

For more information, see:
http://kb.perforce.com/?article=571

p4.tagged= aBool -> aBool
Toggles tagged output. By default, tagged output is on.

p4 = P4.new
p4.tagged = false

p4.tagged? -> aBool

Detects whether or not you are in tagged mode.

p4 = P4.new

puts (p4.tagged?)
p4.tagged = false
puts (p4.tagged?)

p4.ticketfile= aString -> aString

Sets the location of the P4TICKETS file

p4 = P4.new
p4.ticketfile = "/home/tony/tickets"

Perforce 2007.3 APIs for Scripting 37

Chapter 1: P4Ruby

p4.ticketfile -> aString

Get the path to the current PATICKETS file.

p4 = P4.new
puts(p4.ticketfile)
p4.ticketfile = "/home/tony/tickets"

p4.user= aString -> aString

Set the Perforce username. If not called, defaults to the value of P4USER taken from any
P4CONFIG file present, or from the environment as per the usual Perforce convention.
Must be called before connecting to the Perforce server.

p4 = P4.new
p4.user = "tony"
p4.connect

p4.disconnect

p4.user -> aString

Returns the current Perforce username

p4 = P4.new
puts(p4.user)

p4.version= aString -> aString

Set the version of your script, as reported to the Perforce Server.
p4.version -> aString

Get the version of your script, as reported to the Perforce Server.
p4.warnings -> anArray

Returns the array of warnings which arose during execution of the last command.

p4 = P4.new
begin
p4.connect
p4.exception level(P4::RAISE ALL) # File(s) up-to-date is a warning
files = p4.run_sync
rescue P4Exception => ex
p4.warnings.each { |w| puts(w) }
ensure
p4.disconnect
end

38

Perforce 2007.3 APIs for Scripting

Chapter 1: P4Ruby

Class P4Exception

Shallow subclass of RuntimeError to be used for catching Perforce specific errors. Doesn't
contain any extra information. See p4#errors and P4#warnings for details of the errors
giving rise to the exception.

Class Methods

None.

Instance Methods

None.

Perforce 2007.3 APIs for Scripting 39

Chapter 1: P4Ruby

Class P4::DepotFile

Description

Utility class providing easy access to the attributes of a file in a Perforce depot. Each

P4: :DepotFile object contains summary information about the file, and a list of revisions
(P4: :Revision objects) of that file. Currently, only the P4#run_filelog method returns
an array of p4: : DepotFile objects.

Class Methods

None

Instance Methods
df.depot._file -> aString
Returns the name of the depot file to which this object refers.
df.each_revision { |[rev| block } -> revArray
Iterates over each revision of the depot file
df.revisions -> aArray

Returns an array of revisions of the depot file

40 Perforce 2007.3 APIs for Scripting

Chapter 1: P4Ruby

Class P4::Revision

Description

Utility class providing easy access to the revisions of a file in a Perforce depot.
P4: :Revision objects can store basic information about revisions and a list of the
integrations for that revision. Created by run_filelog.

Class Methods

None

Instance Methods
rev.action -> aString
Returns the name of the action which gave rise to this revision of the file.
rev.change -> aNumber
Returns the change number that gave rise to this revision of the file.
rev.client -> aString
Returns the name of the client from which this revision was submitted.
rev.depot_file -> aString
Returns the name of the depot file to which this object refers.
rev.desc -> aString

Returns the description of the change which created this revision. Note that only the first
31 characters are returned unless you use p4 filelog -L for the first 250 characters, or p4
filelog -1 for the full text.

rev.digest -> aString

Returns the MD5 digest for this revision of the file.

rev.each_integration { |integ| block } -> integArray

Iterates over each the integration records for this revision of the depot file.
rev.filesize -> aNumber

Returns size of this revision.

rev.integrations -> integArray

Returns the list of integrations for this revision.

Perforce 2007.3 APIs for Scripting 41

Chapter 1: P4Ruby

rev.revno -> aNumber

Returns the number of this revision of the file.
rev.time -> aTime

Returns the date/time that this revision was created.
rev.type -> aString

Returns this revision’s Perforce filetype.

rev.user -> aString

Returns the name of the user who created this revision.

42

Perforce 2007.3 APIs for Scripting

Chapter 1: P4Ruby

Class P4::Integration

Description

Utility class providing easy access to the details of an integration record. Created by
run_ filelog.

Class Methods

None.

Instance Methods
integ.how -> aString
Returns the type of the integration record - how that record was created.
integ.file -> aPath
Returns the path to the file being integrated to/from.
integ.srev -> aNumber
Returns the start revision number used for this integration.
integ.erev -> aNumber

Returns the end revision number used for this integration.

Perforce 2007.3 APIs for Scripting

43

Chapter 1: P4Ruby

Class P4::MergeData

Description

Class containing the context for an individual merge during execution of a p4 resolve.

Class Methods

None

Instance Methods
md.your_name() -> aString

Returns the name of “your” file in the merge. This is typically a path to a file in the
workspace.

p4.run_resolve() do
|md |
yours = md.your name
md.merge hint # merge result
end

md.their_name() -> aString

Returns the name of “their” file in the merge. This is typically a path to a file in the depot.

p4.run_resolve() do
|ma|
theirs = md.their name
md.merge hint # merge result
end

md.base_name() -> aString

Returns the name of the “base” file in the merge. This is typically a path to a file in the
depot.

p4.run_resolve() do
|md |
base = md.base name
md.merge hint # merge result
end

44 Perforce 2007.3 APIs for Scripting

Chapter 1: P4Ruby

md.your_path() -> aString

Returns the path of “your” file in the merge. This is typically a path to a file in the
workspace.

p4.run_resolve() do
|md |
your path = md.your path
md.merge hint # merge result
end

md.their_path() -> aString

Returns the path of “their” file in the merge. This is typically a path to a temporary file on
your local machine in which the contents of their name () have been loaded.

p4.run_resolve() do
|md |
their name md.their name
their file = File.open(md.their path)
md.merge hint # merge result
end

md.base_path() -> aString

Returns the path of the base file in the merge. This is typically a path to a temporary file
on your local machine in which the contents of base_name () have been loaded.

p4.run_resolve() do
|md |
base name = md.base name
base_file = File.open(md.base_path)
md.merge_hint # merge result
end

md.result_path() -> aString

Returns the path to the merge result. This is typically a path to a temporary file on your
local machine in which the contents of the automatic merge performed by the server have
been loaded.

p4.run resolve() do
|md |
result file = File.open(md.result path)
md.merge hint # merge result

end

Perforce 2007.3 APIs for Scripting 45

Chapter 1: P4Ruby

md.merge_hint() -> aString

Returns the hint from the server as to how it thinks you might best resolve this merge.

p4.run resolve() do

|md |

puts (md.merge hint) # merge result
end

md.run_merge() -> aBool

If the environment variable P4MERGE is defined, run_merge () invokes the specified
program and returns a boolean based on the return value of that program.

p4.run_resolve() do
|md|
if (md.run merge())
n amll
else
n IS] n
end
end

46

Perforce 2007.3 APIs for Scripting

Chapter 1: P4Ruby

Class P4::Spec

Description

The P4 : : spec class is a hash containing key/value pairs for all the fields in a Perforce
form. It provides two things over and above its parent class (Hash):

* Fieldname validation. Only valid field names may be set in a P4 : : Spec object. Note
that only the field name is validated, not the content.

* Accessor methods for easy access to the fields

Class Methods
new P4::Spec.new(anArray) -> aP4::Spec

Constructs a new P4 : : Spec object given an array of valid fieldnames.

Instance Methods
spec._<fieldname> -> aValue

Returns the value associated with the field named <fieldname>. This is equivalent to
spec["<fieldname>"] with the exception that when used as a method, the fieldnames
may be in lowercase regardless of the actual case of the fieldname.

client = p4.fetch client()
root = client. root
desc = client._ description

spec._<fieldname>= aValue -> aValue

Updates the value of the named field in the spec. Raises a P4Exception if the fieldname is
not valid for specs of this type.

client = p4.fetch client()

client. root = "/home/tony/new-client"
client. description = "My new client spec"
p4.save_client(client)

Perforce 2007.3 APIs for Scripting 47

Chapter 1: P4Ruby

spec.permitted_fields -> anArray

Returns an array containing the names of fields that are valid in this spec object. This does
not imply that values for all of these fields are actually set in this object, merely that you

may choose to set values for any of these fields if you want to.

client = p4.fetch client()
spec.permitted fields.each do

| field |

printf ("%14s = %s\n", field, cilent[field 1))
end

48 Perforce 2007.3 APIs for Scripting

Chapter 2 P4 Pe r I

Introduction

P4Perl is a Perl module that provides an object-oriented API to the Perforce SCM system.
Using P4Perl is faster than using the command-line interface in scripts, because multiple
command can be executed on a single connection, and because it returns the Perforce
Server’s responses as Perl hashes and arrays.

The main features are:

* Get Perforce data and forms in hashes and arrays

Edit Perforce forms by modifying hashes

¢ Run as many commands on a connection as required

The output of commands is returned as a Perl array

The elements of the array returned are strings or, where appropriate, hash references

System Requirements

P4Perl is supported on Windows, Linux, Solaris, and FreeBSD. To build P4Perl, your
development machine must also have:

* Perl 5.8.8 (ActivePerl on Windows) development files

® make (or nmake on Windows)

® The 2007.3 Perforce C/C++ API for your target platform

® The same C++ compiler used to build the Perforce C++ API on your target platform.

(If you get “unresolved symbol” errors when building or running P4Perl, you probably
used the wrong compiler or the wrong Perforce API build.)

Perforce 2007.3 APIs for Scripting 49

Chapter 2: P4Perl

Installing P4Perl

Download P4Perl from the Perforce web site downloads page. After downloading, you
can either run the installer or build the interface from source, as described in the release
notes.

Programming with P4Perl

The following example shows how to connect to a Perforce server, runap4 info
command, and open a file for edit.

use P4;

my Sp4 = new P4;

Sp4->SetClient ($clientname) ;

Sp4->SetPort (Spéport);

Sp4->SetPassword($Sp4password) ;

Sp4->Connect () or die("Failed to connect to Perforce Server");

my S$info = Sp4->Run("info");
Sp4->Edit ("file.txt") or die("Failed to edit file.txt");

Sp4->Disconnect () ;

50

Perforce 2007.3 APIs for Scripting

Chapter 2: P4Perl

P4Perl Classes

The P4 module consists of several public classes:

* P4

e P4::DepotFile

¢ P4::Revision

¢ P4:Integration

The following tables provide brief details about each public class.

P4

The main class used for executing Perforce commands. Almost everything you do with
P4Per] will involve this class.

Method Description

new () Construct a new P4 object.

Identify () Print build information including P4Perl version and Perforce
API version.

Connect () Initialize the Perforce client and connect to the Server.

Method Description

new () Construct a new P4 object.

Identify () Print build information including P4Perl version and Perforce
API version.

Connect () Initialize the Perforce client and connect to the Server.

Disconnect () Disconnect from the Perforce Server

ErrorCount () Returns the number of errors encountered during execution of
the last command

Errors () Returns a list of the error messages received during execution
of the last command.

Fetch<spectype> () Shorthand for running
Sp4->Run("spectype", "-o")

Format<spectype>() Shorthand for running
Sp4->FormatSpec (<spectype>, hash)

FormatSpec () Converts a Perforce form of the specified type (client/label etc.)

held in the supplied hash into its string representation.

Perforce 2007.3 APIs for Scripting 51

Chapter 2: P4Perl

Method
GetCharset ()
GetClient ()
GetCwd ()
GetHost ()
GetMaxLockTime ()
GetMaxResults ()
GetMaxScanRows ()
GetPassword ()
GetPort ()
GetProg ()
GetUser ()

GetVersion ()

IsConnected ()

IsTagged ()
P4ConfigFile ()

Parse<Spectype> ()

ParseSpec ()

Run<cmds> ()

Run ()

RunFileLog ()

RunLogin ()

RunPassword ()

RunSubmit ()

Description

Get character set when connecting to Unicode servers
Get current client workspace (P4CLIENT)

Get current working directory

Get the current hostname

Get MaxLockTime used for all following commands
Get MaxResults used for all following commands
Get MaxScanRows used for all following commands
Get the current password or ticket.

Set host and port (P4PORT)

Get the program name as shown by p4 monitor show -e
Get the current username (P4PORT)

Get the version of your script, as reported to the Perforce
Server.

Test whether or not session has been connected and/or has
been dropped

Detects whether or not tagged output is enabled.
Get the location of the configuration file used (P4CONFIG).

Shorthand for running

Sp4-ParseSpec (<spectype>, buffer)

Converts a Perforce form of the specified type (client/label etc.)
held in the supplied string into a hash and returns a reference
to that hash.

Shorthand for running
Sp4-Run (cmd, arg, ...)

Run a Perforce command and return its results. Check for
errors with P4 : : ErrorCount ()

Runs ap4 filelog on the £ilespec provided and returns an
array of P4 : :DepotFile objects

Runs p4 login using a password (or other arguments) set by
the user.

A thin wrapper for changing your password.

Submit a changelist to the server.

52

Perforce 2007.3 APIs for Scripting

Chapter 2: P4Perl

Method
Save<Spectype> ()

ServerLevel ()
SetApilLevel ()
SetCharset ()
SetClient ()
SetCwd ()
SetHost ()

SetInput ()

SetMaxLockTime ()
SetMaxResults ()
SetMaxScanRows ()
SetPassword ()
SetPort ()
SetProg ()
SetUser ()
SetVersion ()

Tagged ()

TicketFile ()
WarningCount ()

Warnings ()

P4::DepotFile

Description

Shorthand for
Sp4->SetInput (Sspectype) ;
Sp4->Run("spectype", "-i");

Returns an integer specifying the server protocol level.
Specify the API compatibility level to use for this script.
Set character set when connecting to Unicode servers
Set current client workspace (P4CLIENT)

Set current working directory

Set the name of the current host (P4HOST)

Save the supplied argument as input to be supplied to a
subsequent command.

Set MaxLockTime used for all following commands

Set MaxResults used for all following commands

Set MaxScanRows used for all following commands

Set Perforce password (P4PASSWD)

Set host and port (P4PORT)

Set the program name as shown by p4 monitor show -e

Set the Perforce username (P4USER)

Set the version of your script, as reported to the Perforce Server.

Toggles tagged output (1 or 0). By default, tagged output is on

D).
Get or set the location of the P4TICKETS file

Returns the number of warnings issued by the last command

Returns a list of warnings from the last command.

Utility class allowing access to the attributes of a file in the depot. Returned by

P4::RunFileLog.
Method
DepotFile ()

Revisions ()

Description
Name of the depot file to which this object refers

Returns an array of revision objects for the depot file

Perforce 2007.3 APIs for Scripting

53

Chapter 2: P4Perl

P4::Revision

Utility class allowing access to the attributes of a revision of a file in the depot. Returned
by’P4::RunFi1eLog.

Method
Change ()
Client ()
Desc ()
DepotFile ()
Digest ()
FileSize ()
Rev ()
Time ()
Type ()

User ()

P4::Integration

Description

Returns the changelist number that gave rise to this revision of the file.
Returns the name of the client from which this revision was submitted.
Returns the description of the change which created this revision.
Returns the name of the depot file to which this object refers.

Returns the MD5 digest for this revision.

Returns the size of this revision.

Returns the number of this revision.

Returns date/time this revision was created.

Returns the Perforce filetype of this revision.

Returns the name of the user who created this revision.

Utility class allowing access to the attributes of an integration record for a revision of a file
in the depot. Returned by P4 : : RunFileLog.

Method
How ()

File()
SRev ()

ERev ()

Description

Integration method (merge/branch/copy/ignored)
Integrated file

End revision

Start revision

54

Perforce 2007.3 APIs for Scripting

Chapter 2: P4Perl

Class P4

Description

Main interface to the Perforce client APIL.

This module provides an object-oriented interface to the Perforce SCM system. Data is
returned in Perl arrays and hashes and input can also be supplied in these formats.

Each p4 object represents a connection to the Perforce Server, and multiple commands
may be executed (serially) over a single connection.

The basic model is to:

1.
2.

3.
4.
5.

Instantiate your P4 object

Specify your Perforce client environment
e SetClient

e SetHost

® SetPassword

e SetPort

e SetUser

Connect to the Perforce Server

Run your Perforce commands

Disconnect from the Perforce Server

Base methods
P4::new() -> P4

Construct a new p4 object. For example:

‘my Sp4 = new P4;

P4::1dentify() -> string

Print build information including P4Perl version and Perforce API version.

print P4::Identify () ;

P4::Connect() -> bool

Initializes the Perforce client and connects to the server. Returns false on failure and true
on success.

Perforce 2007.3 APIs for Scripting

55

Chapter 2: P4Perl

P4::Disconnect() -> undef

Terminate the connection and clean up. Should be called before exiting.
P4::ErrorCount() -> integer

Returns the number of errors encountered during execution of the last command
P4::Errors() -> list

Returns a list of the error messages received during execution of the last command.
P4::Fetch<spectype>([name]) -> hashref

Shorthand for running $p4->Run("spectype", "-o") and returning the first element
of the result array. For example:

Slabel
Schange
Sclientspec

Sp4->FetchLabel ($labelname) ;
Sp4->FetchChange ($changeno) ;
Sp4->FetchClient (Sclientname) ;

P4::Format<spectype>(hash) -> string

Shorthand for running $p4->FormatSpec (<spectype>, hash) and returning the
results. For example:

Schange = $p4->FetchChange () ;
$change->{ 'Description' } = 'Some description';
Sform = $p4->FormatChange ($change) ;

printf ("Submitting this change:\n\n%s\n", $form);
Sp4->SubmitSpec($Schange);

P4::FormatSpec($spectype, $string) -> string

Converts a Perforce form of the specified type (client/label etc.) held in the supplied hash
into its string representation. Shortcut methods are available that obviate the need to
supply the type argument. The following two examples are equivalent:

my Sclient = $p4->FormatSpec("client", S$hash);

my Sclient = Sp4->FormatClient(Shash);

P4::GetCharset() -> string

Return the name of the current charset in use. Applicable only when used with Perforce
servers running in unicode mode.

P4::GetClient() -> string

Returns the current Perforce client name. This may have previously been set by
SetClient (), or may be taken from the environment or p4CONFIG file if any. If all that
fails, it will be your hostname.

56

Perforce 2007.3 APIs for Scripting

Chapter 2: P4Perl

P4::GetCwd() -> string
Returns the current working directory as your Perforce client sees it.
P4::GetHost() -> string

Returns the client hostname. Defaults to your hostname, but can be overridden with
SetHost ()

P4::GetMaxLockTime($value) -> integer
Get the current maxlocktime setting.
P4::GetMaxResults($value) -> integer
Get the current maxresults setting.
P4::GetMaxScanRows($value) -> integer
Get the current maxscanrows setting.
P4::GetPassword() -> string

Returns your Perforce password. Taken from a previous call to setpPassword () or
extracted from the environment ($ENV{P4PASSWD}), or a P4CONFIG file.

P4::GetPort() -> string

Returns the current address for your Perforce server. Taken from a previous call to
SetPort (), or from $ENV{P4PORT} or a P4CONFIG file.

P4::GetProg() -> string
Get the name of the program as reported to the Perforce Server.
P4::GetUser() -> String

Get the current user name. Taken from a previous call to setUser (), or from
$ENV{P4USER} Or a P4CONFIG file.

P4::GetVersion ($string) -> string

Get the version of your script, as reported to the Perforce Server.
P4::1IsConnected() -> bool

Returns true if the session has been connected, and has not been dropped.
P4::IsTagged() -> bool

Returns true if Tagged mode is enabled on this client.

P4::P4ConfigFile() -> string

Get the path to the current P4CONFIG file.

Perforce 2007.3 APIs for Scripting 57

Chapter 2: P4Perl

P4::Parse<Spectype>($string) -> hashref

Shorthand for running $p4-ParseSpec (<spectype>, buffer) and returning the
results. For example:

Sp4 = new P4;

Sp4->Connect () or die("Failed to connect to server");

Sclient = S$Sp4->FetchClient () ; # Returns a hashref
Sclient = Sp4->FormatClient(Sclient); # Convert to string
Sclient = S$p4->ParseClient($client); # Convert back to hashref

P4::ParseSpec($spectype, $string) -> hashref

Converts a Perforce form of the specified type (client/label etc.) held in the supplied
string into a hash and returns a reference to that hash. Shortcut methods are available to
avoid the need to supply the type argument. The following two examples are equivalent:

my Shash = $p4->ParseSpec("client", Sclientspec);
my Shash = $p4->ParseClient($clientspec) ;

P4::Run<cmd>([$arg...]) -> list | arrayref
Shorthand for running $p4-Run (cmd, arg, ...) and returning the results.
P4::Run(cmd, [$arg...]) -> list | arrayref

Run a Perforce command and return its results. Because Perforce commands can partially
succeed and partially fail, it is good practice to check for errors using p4 : : ErrorCount ().

Results are returned as follows:
* A list of results in array context
* An array reference in scalar context

The AutoLoader enables you to treat Perforce commands as methods:
p4->Edit ("filename.txt);

is equivalent to
Sp4->Run("edit", "filename.txt");

Note that the content of the array of results you get depends on (a) whether you're using
tagged mode, (b) the command you've executed, (c) the arguments you supplied, and (d)
your Perforce server version.

Tagged mode and form parsing mode are turned on by default; each result element is a
hashref, but this is dependent on the command you ran and your server version.

In non-tagged mode, each result element is a string. In this case, because the Perforce
server sometimes asks the client to write a blank line between result elements, some of
these result elements can be empty.

58

Perforce 2007.3 APIs for Scripting

Chapter 2: P4Perl

Note that the return values of individual Perforce commands are not documented because
they may vary between server releases.

To correlate the results returned by the P4 interface with those sent to the command line
client, try running your command with RPC tracing enabled. For example:

Tagged mode
p4 -Ztag -vrpc=1l describe -s 4321

Non-Tagged mode
p4 -vrpc=1l describe -s 4321

Pay attention to the calls to client-FstatInfo(), client-OutputText (), client-
OutputData () and client-HandleError (). Each call to one of these functions results in
either a result element, or an error element.

P4::RunFileLog ([$args ...], $fileSpec ...) -> list | arrayref

Runs a p4 filelog on the fileSpec provided and returns an array of P4: :DepotFile
objects when executed in tagged mode.

P4::RunLogin (...) -> list | arrayref
Runs p4 login using a password (or other arguments) set by the user.
P4::RunPassword ($oldpass, $newpass) -> list | arrayref

A thin wrapper for changing your password from $oldpass to $newpass. Not to be
confused with P4: : setPassword.

P4::RunSubmit ($arg | $hashref, ...) -> list | arrayref

Submit a changelist to the server. To submit a changelist, set the fields of the changelist as
required and supply any flags:

Schange = $p4->FetchChange() ;
$change->{ 'Description' } = "Some description";
$p4->RunSubmit ("-r", Schange);

You can also submit a changelist by supplying the arguments as you would on the
command line:

$p4->RunSubmit ("-d", "Some description", "somedir/...");

Perforce 2007.3 APIs for Scripting 59

Chapter 2: P4Perl

P4::Save<Spectype>() -> list | arrayref

Shorthand for:

Sp4->SetInput (Sspectype);
Sp4->Run("spectype", "-i");

For example:

Sp4->Savelabel ($label);
$p4->SaveChange ($changeno) ;
Sp4->SaveClient (Sclientspec) ;

P4::ServerLevel() -> integer

Returns an integer specifying the server protocol level. This is not the same as, but is
closely aligned to, the server version. To find out your server's protocol level, run p4 -
vrpe=5 info and look for the server2 protocol variable in the output.

For more information, see:
http://kb.perforce.com/?article=571

Must be called after running a command.
P4::SetApiLevel($integer) -> undef

Specify the API compatibility level to use for this script. This is useful when you want
your script to continue to work on newer server versions, even if the new server adds
tagged output to previously unsupported commands.

The additional tagged output support can change the server's output, and confound your
scripts. Setting the API level to a specific value allows you to lock the output to an older
format, thus increasing the compatibility of your script.

Must be called before calling P4 : : Connect () . For example:

Sp4->SetApilLevel(57); # Lock to 2005.1 format
Sp4->Connect () or die("Failed to connect to Perforce");
etc.

P4::SetCharset($charset) -> undef

Specify the character set to use for local files when used with a Perforce server running in
unicode mode. Do not use unless your Perforce server is in unicode mode. Must be called
before calling P4 : : Connect (). For example:

Sp4->SetCharset ("winansi");
Sp4->SetCharset ("iso8859-1");
Sp4->SetCharset ("utfs8");

etc.

60

Perforce 2007.3 APIs for Scripting

Chapter 2: P4Perl

P4::SetClient($client) -> undef

Sets the name of your Perforce client workspace. If you don't call this method, then the
client workspace name will default according to the normal Perforce conventions:

1. Value from file specified by p4coNFIG

2. Value from $ENV{P4CLIENT}

3. Hostname

P4::SetCwd($path) -> undef

Sets the current working directory for the client.
P4::SetHost($hostname) -> undef

Sets the name of the client host, overriding the actual hostname. This is equivalent to p4 -
H hostname, and only useful when you want to run commands as if you were on another
machine.

P4::Setlnput($string | $hashref | $arrayref) -> undef

Save the supplied argument as input to be supplied to a subsequent command. The input
may be a hashref, a scalar string, or an array of hashrefs or scalar strings. If you pass an
array, the array will be shifted once each time the Perforce command being executed asks
for user input.

P4::SetMaxLockTime($integer) -> undef

Limit the amount of time (in milliseconds) spent during data scans to prevent the server
from locking tables for too long. Commands that take longer than the limit will be
aborted. The limit remains in force until you disable it by setting it to zero. See p4 help
maxresults for information on the commands that support this limit.

P4::SetMaxResults($integer) -> undef

Limit the number of results for subsequent commands to the value specified. Perforce will
abort the command if continuing would produce more than this number of results. Once
set, this limit remains in force unless you remove the restriction by setting it to a value of
0.

P4::SetMaxScanRows($integer) -> undef

Limit the number of records Perforce will scan when processing subsequent commands to
the value specified. Perforce will abort the command once this number of records has
been scanned. Once set, this limit remains in force unless you remove the restriction by
setting it to a value of 0.

Perforce 2007.3 APIs for Scripting 61

Chapter 2: P4Perl

P4::SetPassword($password) -> undef

Specify the password to use when authenticating this user against the Perforce Server -
overrides all defaults. Not to be confused with P4 : : Password ().

P4::SetPort($port) -> undef

Set the port on which your Perforce server is listening. Defaults to:
1. Value from file specified by p4coNFIG

2. Value from $ENV{P4PORT}

3. perforce:1666

P4::SetProg($program_name) -> undef

Set the name of your script. This value is displayed in the server log on 2004.2 or later
servers.

P4::SetUser($username) -> undef

Set your Perforce username. Defaults to:

1. Value from file specified by p4CONFIG

2. Value from C<$ENV{P4AUSER}>

3. OSusername

P4::SetVersion ($version) -> undef

Specify the version of your script, as recorded in the Perforce server log file.
P4::Tagged(0| 1) -> undef

Enable (1) or disable (0) tagged output from the server. By default, tagged output is
enabled, but can be disabled (or re-enabled) by calling this method.

When running in tagged mode, responses from commands that support tagged output
will be returned in the form of a hashref.

When running in non-tagged mode, responses from commands are returned in the form
of strings (that is, in plain text).

P4::TicketFile([$string]) -> string

If called with an argument, set the path to the current P4TICKETS file (and return it). If
called without arguments, return the path of the current P4TICKETS file.

62 Perforce 2007.3 APIs for Scripting

Chapter 2: P4Perl

P4::WarningCount() -> integer

Returns the number of warnings issued by the last command.

$p4->WarningCount () ;

P4::Warnings() -> list

Returns a list of warnings from the last command

Sp4->Warnings () ;

Perforce 2007.3 APIs for Scripting 63

Chapter 2: P4Perl

Class P4::DepotFile

Description

P4: :DepotFile objects are used to present information about files in the Perforce
repository. They are returned by P4 : :RunFileLog.

Class Methods

None

Instance Methods
$df->DepotFile() -> string
Returns the name of the depot file to which this object refers.
$df->Revisions() -> array

Returns an array of P4 : :Revision objects, one for each revision of the depot file

64 Perforce 2007.3 APIs for Scripting

Chapter 2: P4Perl

Class P4::Revision

Description

P4: :Revision objects are represent individual revisions of files in the Perforce repository.
They are returned as part of the output of P4 : :RunFileLog.

Class Methods
$rev->Integrations() -> array

Returns an array of P4: : Integration objects representing all integration records for this
revision.

Instance Methods
$rev->Change() -> integer
Returns the changelist number that gave rise to this revision of the file.
$rev->Client() -> string
Returns the name of the client from which this revision was submitted.
$rev->DepotFile() -> string
Returns the name of the depot file to which this object refers.
$rev->Desc() -> string

Returns the description of the change which created this revision. Note that only the first
31 characters are returned unless you use p4 filelog -L for the first 250 characters, or p4
filelog -1 for the full text.

$rev->Digest() -> string

Returns the MD5 digest for this revision.
$rev->FileSize() -> string

Returns the size of this revision.

$rev->Rev() -> integer

Returns the number of this revision of the file.
$rev->Time() -> string

Returns the date/time that this revision was created.

Perforce 2007.3 APIs for Scripting 65

Chapter 2: P4Perl

$rev->Type() -> string
Returns this revision’s Perforce filetype.
$rev->User()

Returns the name of the user who created this revision.

66 Perforce 2007.3 APIs for Scripting

Chapter 2: P4Perl

Class P4::Integration

Description

P4::Integration objects represent Perforce integration records. They are returned as
part of the output of P4 : :RunFileLog.

Class Methods

None

Instance Methods
$integ->How() -> string
Returns the type of the integration record - how that record was created.
$integ->File() -> string
Returns the path to the file being integrated to/from.
$integ->SRev() -> integer
Returns the start revision number used for this integration.
$integ->ERev() -> integer

Returns the end revision number used for this integration.

Perforce 2007.3 APIs for Scripting 67

Chapter 2: P4Perl

68 Perforce 2007.3 APIs for Scripting

capers P4PYthon

Introduction

P4Python, the Python interface to the Perforce API, enables you to write Python code that
interacts with a Perforce server. P4Python enables your Python scripts to:

* Get Perforce data and forms in dictionaries and lists

e Edit Perforce forms by modifying dictionaries

¢ Provide exception-based error handling and optionally ignore warnings

* Issue multiple commands on a single connection (performs better than spawning single

commands and parsing the results)

System Requirements

P4Python is supported on Windows, Linux, Solaris, and FreeBSD.

To build P4Python from source, your development machine must also have:

e Python 2.5.1 development files

® The 2007.3 Perforce C/C++ API for your target platform

® The same C++ compiler used to build the Perforce C++ API on your target platform.
(If you get “unresolved symbol” errors when building or running P4Python, you

probably used the wrong compiler or the wrong Perforce API build.)

Installing P4Python

Download P4Python from the Perforce web site downloads page. After downloading, you
can either run the installer or build the interface from source, as described in the release
notes packaged with P4Python.

Perforce 2007.3 APIs for Scripting 69

Chapter 3: P4Python

Programming with P4Python

P4Python provides an object-oriented interface to Perforce that is intended to be intuitive
for Python programmers. Data is loaded and returned in Python arrays and dictionaries.
Each P4 object represents a connection to the Perforce Server.

When instantiated, the P4 instance is set up with the default environment settings just as
the command line client p4, that is, using environment variables, the registry on Windows
and, if defined, the P4CONF1IG file. The settings can be checked and changed before the
connection to the server is established with the connect () method. After your script
connects, it can send multiple commands to the Perforce Server with the same P4 instance.
After the script is finished, it should disconnect from the Server by calling the
disconnect () method.

The following example illustrates the basic structure of a P4Python script. The example
establishes a connection, issues a command, and tests for errors resulting from the

command.

from P4 import P4 # Import the module

p4 = P4 () # Create the P4 instance

p4.port = "1l666"

p4.user = "fred"

p4.client = "fred-ws" # Set some environment variables

try: # Catch exceptions with try/except
p4.connect () # Connect to the Perforce Server
info = p4.run("info") # Run "p4 info" (returns a dict)
s = info[’serverVersion’] # Get server version
p4.run("edit", "file.txt") # Run "p4 edit file.txt"
#

p4 .disconnect () Disconnect from the Server
except p4.P4Exception:
for e in p4.errors:

print e

+H+

Display errors

70

Perforce 2007.3 APIs for Scripting

Chapter 3: P4Python

This example creates a client workspace from a template and syncs it:.

from P4 import P4, P4Exception

template = "my-client-template"
client root = "C:\work\my-root"
p4 = P4()

try:

p4 .connect ()

Convert client spec into a Python dictionary
client = p4.fetch client("-t", template)
client. root = client_ root

p4.save_client (client)

p4.run_sync ()

except P4Exception:
If any errors occur, we'll jump in here. Just log them
and raise the exception up to the higher level

Submitting a Changelist

This example creates a changelist, modifies it and then submits it:.

from P4 import P4

p4 = P4()

p4 .connect ()

change = p4.fetch change()

Files were opened elsewhere and we want to

submit a subset that we already know about.

myfiles = ['//depot/some/path/filel.c', '//depot/some/path/filel.h']
change. description = "My changelist\nSubmitted from P4Python\n"
change. files = myfiles # This attribute takes a Python list

Logging into Perforce using ticket-based authentication

On some servers, users might need to log in to Perforce before issuing commands. The

following example illustrates login using Perforce tickets.

from P4 import P4

p4 = P4 ()

p4.user = "Sven"

p4 .connect ()

p4.run_login ("MyPassword")
opened = p4.run_opened()

[...]

Perforce 2007.3 APIs for Scripting

71

Chapter 3: P4Python

Changing your password

You can use P4Python to change your password, as shown in the following example:

from P4 import P4

= P4 ()

.user = "Sven"

.password = "MyOldPassword"

.connect ()

run_password ("MyOldPassword", MyNewPassword")

p4.
p4.password is automatically updated with the encoded password

Timestamp conversion

Timestamp information in P4Python is normally represented as seconds since Epoch
(with the exception of P4 .Revision). To convert this data to a more useful format, use the
following procedure:

import datetime

myDate = datetime.datetime.utcfromtimestamp(int (timestampValue))

72

Perforce 2007.3 APIs for Scripting

Chapter 3: P4Python

P4Python Classes

The P4 module consists of several public classes:

* P4

¢ P4Exception
* DepotFile

¢ Revision

¢ Integration

* Spec

The following tables provide more details about each public class.

P4

Perforce client class. Handles connection and interaction with the Perforce server. There is
one instance of each connection.

The following table lists attributes of the class P4 in P4Python. The attributes are read- and
writable unless indicated otherwise. The attributes can be strings, objects, or integers.

Attribute

api level

charset
client
cwd

errors

exception level

host

input

maxlocktime

Description

API compatibility level. (Lock server output to a specified
server level.)

Charset for Unicode servers.
P4CLIENT, the name of the client workspace to use.
Current working directory

An array containing the error messages received during
execution of the last command

The exception level of the P4 instance. Values can be

* 0:no exceptions are raised
e 1:only errors are raised as exceptions
* 2: warnings are also raised as exceptions

The default value is 2
P4HOST, the name of the host used

Input for the next command. Can be a string, a list or a
dictionary.

MaxLockTime used for all following commands

Perforce 2007.3 APIs for Scripting 73

Chapter 3: P4Python

Attribute
maxresults
maxscanrows

p4config file

password
port

prog

server level

tagged

ticket file
user
version

warnings

Description
MaxResults used for all following commands
MaxScanRows used for all following commands

The location of the configuration file used (p4conr1G). This
attribute is read-only.

P4PASSWD, the password used.

P4PORT, the port used for the connection
The name of the script

Returns the current Perforce server level

To disable tagged output for the following commands, set the
value to 0 or False. By default, tagged output is enabled.

P4TICKETS, the ticket file location used
P4USER, the user under which the connection is run
The version of the script

An array containing the warning messages received during
execution of the last command

The following table lists all public methods of the class P4. Many methods are wrappers
around P4 .run (), which sends a command to the Perforce Server. Such methods are

provided for your convenience.

Method
connect ()

connected ()

delete spectype ()

disconnect ()

identify ()

fetch spectype()

format spectype()

parse_ spectype ()

run ()

Description
Connects to the Perforce Server.

Returns True if connected and the connection is alive, otherwise
False.

Deletes the spec spectype. Equivalent to the command
P4 .run ("spectype", "-d").

Disconnects from the Perforce Server.
Returns a string identifying the P4Python module.

Fetches the spec spectype. Equivalent to the command
P4 .run ("spectype", "-o").

Converts the spec spectype into a string.

Parses a string representation of the spec spectype and returns
a dictionary.

Runs a command on the server. Needs to be connected, or an
exception is raised.

74

Perforce 2007.3 APIs for Scripting

Chapter 3: P4Python

Method

run_command ()
run filelog()

run_ login ()

run_password ()

run_submit ()

save spectype ()

P4.P4Exception

Description

Runs the command command. Equivalent to
P4.run ("command").

This command returns a list of DepotFile objects.
Specialization for the run () command.

Logs in using the specified password.

Convenience method: updates the password. Takes two
arguments: oldpassword, newpassword

Convenience method for submitting changelists. When

invoked with a change spec, it submits the spec. Equivalent to :

p4.input = myspec
p4.run("submit", "-1i")

Saves the spec spectype. Equivalent to the command
P4 .run ("spectype", "-i").

Exception class. Instances of this class are raised when errors and/or (depending on the
exception_level setting) warnings are returned by the server. The exception contains
the errors in the form of a string. P4Exception is a subclass of the standard Python

Exception class.

P4.DepotFile

Container class returned by P4.run_filelog().Contains the name of the depot file and a
list of P4 .Revision objects.

Attribute
depotFile

revisions

Description
Name of the depot file

List of Revision objects

Perforce 2007.3 APIs for Scripting

75

Chapter 3: P4Python

P4.Revision
Container class containing one revision of a DepotFile object.
Attribute Description
action Action that created the revision
change Changelist number
client Client workspace used to create this revision
desc Short change list description
depotFile The name of the file in the depot
digest MD5 checksum of the revision
fileSize File size of this revision
integrations List of P4 . Integration objects
rev Revision
time Timestamp (as datetime.datetime object)
type File type
user User that created this revision
P4.Integration
Container class containing one integration for a Revision object
Attribute Description
how Integration method (merge/branch/copy/ignored)
file Integrated file
srev End revision
erev Start revision
P4.Spec

Class allowing access to the fields in a Perforce specification form.

Attribute

Description

spec. fieldname Value associated with the field named fieldname.

spec.permitted fields Array containing the names of the fields that are valid for

this spec object

76 Perforce 2007.3 APIs for Scripting

Chapter 3: P4Python

Class P4

Description
Main interface to the Python client API.

This module provides an object-oriented interface to the Perforce SCM system. Data is
returned in Python arrays and dictionaries (hashes) and input can also be supplied in
these formats.

Each p4 object represents a connection to the Perforce Server, and multiple commands
may be executed (serially) over a single connection (which of itself can result in
substantially improved performance if executing lots of perforce commands).

1. Instantiate your P4 object

2. Specify your Perforce client environment
e client
® host
e password
e port
® user

3. Setany options to control output or error handling:
e exception level

4. Connect to the Perforce Server

5. Run your Perforce commands

6. Disconnect from the Perforce Server

Instance Attributes
p4.api_level -> int

Contains the API compatibility level desired. This is useful when writing scripts using
Perforce commands that do not yet support tagged output. In these cases, upgrading to a
later server that supports tagged output for the commands in question can break your
script. Using this method allows you to lock your script to the output format of an older

Perforce 2007.3 APIs for Scripting 77

Chapter 3: P4Python

Perforce release and facilitate seamless upgrades. Must be called before calling

P4 .connect ().

from P4 import P4

p4 = P4()

p4.api_level = 57 # Lock to 2005.1 format
p4 .connect ()

p4.disconnect

For the API integer levels that correspond to each Perforce release, see:
http://kb.perforce.com/?article=512

p4.charset -> string

Contains the character set to use when connect to a Unicode enabled server. Do not use
when working with non-Unicode-enabled servers. By default, the character set is the
value of the P4CHARSET environment variable. If the character set is invalid, this method

raises a P4Exception

from P4 import P4

p4 = P4 ()
p4d.client = "www"
p4.charset = "iso8859-1"

p4.connect ()
p4.run_sync ()
p4 .disconnect ()

p4.client -> string

Contains the name of your client workspace. By default, this is the value of the P4CLIENT
taken from any P4CONFIG file present, or from the environment according to the normal
Perforce conventions.

p4.cwd -> string

Contains the current working directly. Can be called prior to executing any Perforce
command. Sometimes necessary if your script executes a chdir () as part of its
processing.

from P4 import P4
p4 = P4()
p4.cwd = "/home/sven"

78 Perforce 2007.3 APIs for Scripting

Chapter 3: P4Python

p4.errors -> list (read-only)

Returns an array containing the error messages received during execution of the last
command.

from P4 import P4, P4Exception
p4 = P4()
try:
p4 .connect ()
p4.exception level = 1 # ignore "File(s) up-to-date"
files = p4.run_sync()
except P4Exception:
for e in p4.errors
print e
finally:
p4 .disconnect ()

p4.exception_level -> int

Configures the events which give rise to exceptions. The following three levels are
supported:

e (0 disables all exception handling and makes the interface completely procedural; you
are responsible for checking the p4.errors and p4 .warnings arrays.

* 1 causes exceptions to be raised only when errors are encountered.

* 2 causes exceptions to be raised for both errors and warnings. This is the default.

For example

from P4 import P4

p4 = P4()

p4.exception level =1

p4.connect () # P4Exception on failure

p4.run _sync() # File(s) up-to-date is a warning - no exception raised

p4.disconnect ()

p4.host -> string

Contains the name of the current host. It defaults to the value of P4HOST taken from any
P4CONF1IG file present, or from the environment as per the usual Perforce convention.
Must be called before connecting to the Perforce server.

from P4 import P4

p4 = P4()

p4.host = "workstationl23.perforce.com"
p4.connect ()

p4 .disconnect ()

Perforce 2007.3 APIs for Scripting 79

Chapter 3: P4Python

p4.input -> string | dict | list
Contains input for the next command.

Set this attribute prior to running a command that requires input from the user. When the
command requests input, the specified data is supplied to the command. Typically,
commands of the form p4 cmd -1i are invoked using the P4 .save_spectype methods,
which retrieve the value from p4 . input internally; there is no need to set p4 . input when
using the p4.save_spectype shortcuts.

You may pass a string, a hash, or (for commands that take multiple inputs from the user)
an array of strings or hashes. If you pass an array, note that the first element of the array
will be popped each time Perforce asks the user for input.

For example, the following code supplies a description for the default changelist and then
submits it to the depot:

from P4 import P4

p4 = P4()

p4.connect ()

change = p4.run change("-o") [0]

change["Description"] = "Autosubmitted changelist"
p4.input = change

p4.run_submit("-i")

p4 .disconnect ()

p4.maxlocktime -> int

Limit the amount of time (in milliseconds) spent during data scans to prevent the server
from locking tables for too long. Commands that take longer than the limit will be
aborted. The limit remains in force until you disable it by setting it to zero. See p4 help
maxlocktime for information on the commands that support this limit.

p4.maxresults -> int

Limit the number of results Perforce permits for subsequent commands. Commands that
produce more than this number of results will be aborted. The limit remains in force until
you disable it by setting it to zero. See p4 help maxresults for information on the
commands that support this limit.

p4.maxscanrows -> int

Limit the number of database records Perforce scans for subsequent commands.
Commands that attempt to scan more than this number of records will be aborted. The
limit remains in force until you disable it by setting it to zero. See p4 help maxscanrows
for information on the commands that support this limit.

80

Perforce 2007.3 APIs for Scripting

Chapter 3: P4Python

p4.p4config_file -> string (read-only)
Contains the name of the current P4CONFIG file, if any. This attribute cannot be set.
p4.password -> string

Contains your Perforce password or login ticket. If not used, takes the value of P4PASSWD
from any P4CONF1IG file in effect, or from the environment according to the normal
Perforce conventions.

This password is also used if you later call p4.run_login() to log in using the 2003.2 and
later ticket system. After running p4.run_login (), the attribute contains the ticket the
allocated by the server.

from P4 import P4

p4 = P4()

p4 .password = "mypass"
p4.connect ()
p4.run_login()

p4.port -> string

Contains the host and port of the Perforce server to which you want to connect. It defaults
to the value of P4PORT in any P4CONFIG file in effect, and then to the value of P4PORT taken

from the environment.

from P4 import P4

p4 = P4()

p4.port = "localhost:1666"
p4.connect ()

p4.prog -> string

Contains the name of the program, as reported to Perforce system administrators running
p4 monitor show -e.The defaultis unnamed p4-python script

from P4 import P4

p4 = P4()

p4.prog = "sync-script"
puts(p4.prog)
p4.connect

Perforce 2007.3 APIs for Scripting 81

Chapter 3: P4Python

p4.server_level -> int (read-only)

Returns the current Perforce server level. Each iteration of the Perforce Server is given a
level number. As part of the initial communication this value is passed between the client
application and the Perforce Server. This value is used to determine the communication
that the Perforce Server will understand. All subsequent requests can therefore be tailored
to meet the requirements of this Server level.

This attribute is 0 before the first command is run, and is set automatically after the first
communication with the server.

For the APl integer levels that correspond to each Perforce release, see:
http://kb.perforce.com/?article=571

p4.tagged -> int
If 1 or True, p4 . tagged enables tagged output. By default, tagged output is on.

from P4 import P4
p4 = P4()
p4.tagged = False
print p4.tagged

p4.ticket_file -> string
Contains the location of the P4TICKETS file
p4.user -> string

Contains the Perforce username. It defaults to the value of P4USER taken from any
P4CONF1IG file present, or from the environment as per the usual Perforce convention.

from P4 import P4
p4 = P4()
p4.user = "sven"
p4.connect ()

p4 .disconnect ()

p4.version -> string

Contains the version of the program, as reported to Perforce system administrators in the
server log.

from P4 import P4
p4 = P4()
p4.version = "123"
puts(p4.version)
p4.connect

82

Perforce 2007.3 APIs for Scripting

Chapter 3: P4Python

p4.warnings -> list (read-only)

Contains the array of warnings that arose during execution of the last command

from P4 import P4, P4Exception
p4 = P4()
try:

p4 .connect ()
p4.exception level = 2 # File(s) up-to-date is a warning

files = p4.run_sync()
except P4Exception, ex:
for w in p4.warnings:
print w
finally:
p4 .disconnect ()

Class Methods
P4.P4()

Construct a new p4 object. For example:

from P4 import P4
P4.P4 ()

P4.identify()

Return the version of P4 that you are using.

‘python -¢ "from P4 import P4; print P4.identify ()"

Instance Methods

p4.connect()
Initializes the Perforce client and connects to the server.

If the connection is successfully established, returns None. If the connection fails and
exception_level is 0, returns False, otherwise raises a P4Exception. If already

connected, prints a message.

from P4 import P4
p4 = P4()
p4 .connect ()

Perforce 2007.3 APIs for Scripting 83

Chapter 3: P4Python

p4.connected() -> boolean

Returns true if connected to the Perforce Server and the connection is alive, otherwise
false.

from P4 import P4
p4 = P4()

print p4.connected()
p4 .connect ()
print p4.connected()

p4.delete_<spectype>([options], name) -> list

The delete_spectype methods are shortcut methods that allow you to delete the
definitions of clients, labels, branches, etc. These methods are equivalent to:

p4.run(<spectype>, '-d', [options], <spec name>)
The following code uses delete_client to delete client workspaces that have not been
accessed in more than 365 days:

from P4 import P4, P4Exception
from datetime import datetime, timedelta

now = datetime.now/()
p4 = P4()

try:
p4.connect ()
for client in p4.run clients():
atime = datetime.utcfromtimestamp(int(client["Access"]))
If the client has not been accessed for a year, delete it
if (atime + timedelta(365)) < now
p4.delete client('-f', client["client"])

except P4Exception:
for e in p4.errors:
print e

finally:
p4 .disconnect ()

p4.disconnect()

Disconnect from the Perforce Server. Call this method before exiting your script.

from P4 import P4
p4 = P4()

p4 .connect ()

p4 .disconnect ()

84 Perforce 2007.3 APIs for Scripting

Chapter 3: P4Python

p4.fetch_<spectype>() -> P4.Spec

The fetch_spectype methods are shortcuts for running p4.run("spectype", "-
o") .pop (0). For example:

label = p4.fetch label (labelname)
change = p4.fetch change (changeno)
clientspec = p4.fetch client (clientname)

are equivalent to

label = p4.run("label", "-o", labelname) [0]
change = p4.run("change", "-o", changeno) [0]
clientspec = p4.run("client", "-o", clientname) [0]

p4.format_spec(<spectype>, dict) -> string

Converts the fields in the dict containing the elements of a Perforce form (spec) into the
string representation familiar to users. The first argument is the type of spec to format: for
example, client, branch, label, and so on. The second argument is the hash to parse.

There are shortcuts available for this method. You can use p4 . format _spectype(dict)
instead of p4 . format_spec(spectype, dict), where spectype is the name of a
Perforce spec, such as client, label, etc.

p4.format_<spectype>(dict) -> string

The format_spectype methods are shortcut methods that allow you to quickly fetch the
definitions of clients, labels, branches, etc. They're equivalent to:
p4.format spec(spectype, dict)

p4.parse_spec(<spectype>, string) -> P4.Spec

Parses a Perforce form (spec) in text form into a Python dict using the spec definition
obtained from the server. The first argument is the type of spec to parse: client, branch,
label, and so on. The second argument is the string buffer to parse.

There are shortcuts available for this method. You can use:
p4 .parse_spectype(buf)

instead of
p4 .parse_spec(spectype, buf)

where spectype is one of client, branch, label, and so on.

Perforce 2007.3 APIs for Scripting 85

Chapter 3: P4Python

p4.parse_<spectype>(string) -> P4.Spec
This is equivalent to parse_spec (spectype, string).

For example, parse_job (myJob) converts the String representation of a job spec into a
Spec object.

To parse a spec, P4 needs to have the spec available. When not connected to the Perforce

Server, P4 assumes the default format for the spec, which is hardcoded. This assumption

can fail for jobs if the Server’s jobspec has been modified. In this case, your script can load
a job from the Server first with the command fetch_job (' somename’), andP4 will cache
and use the spec format in subsequent parse_job () calls.

p4.run(cmd, [arg, ...])

Base interface to all the run methods in this API. Runs the specified Perforce command
with the arguments supplied. Arguments may be in any form as long as they can be
converted to strings by str ().

The p4 . run () method returns a list of results whether the command succeeds or fails; the
list may, however, be empty. Whether the elements of the array are strings or dictionaries
depends on

(a) server support for tagged output for the command, and
(b) whether tagged output was disabled by calling p4.tagged = False.

In the event of errors or warnings, and depending on the exception level in force at the
time, run () raises a P4Exception. If the current exception level is below the threshold for
the error/warning, run () returns the output as normal and the caller must explicitly
review p4.errors and p4.warnings to check for errors or warnings.

from P4 import P4

p4 = P4()

p4.connect ()

spec = p4.run("client", "-o") [0]
p4 .disconnect ()

Shortcuts are available for p4 . run. For example, p4 . run_command(args) is equivalent
top4.run("command", args)

86

Perforce 2007.3 APIs for Scripting

Chapter 3: P4Python

There are also some shortcuts for common commands such as editing Perforce forms and
submitting. For example, this:

from P4 import P4

p4 = P4()

p4.connect ()

clientspec = p4.run client("-o") .pop(0)
clientspec["Description"] = "Build client"
p4.input (clientspec)

p4.run _client("-i")

p4 .disconnect ()

...may be shortened to

from P4 import P4

p4 = P4()

p4.connect ()

clientspec = p4.fetch client ()

clientspec["Description"] = "Build client"
p4.save_client (clientspec)

p4 .disconnect ()

The following are equivalent:

Shortcut Equivalent to

p4.delete spectype p4.run("spectype", "-d ")

p4.fetch spectype p4.run("spectype", "-o ").shift

p4.save spectype(spec) p4.input = spec; p4.run("spectype", "-i")

As the commands associated with fetch_spectype typically return only one item, these
methods do not return an array, but instead return the first result element.

For convenience in submitting changelists, changes returned by fetch_change () can be
passed to run_submit (). For example:

from P4 import P4
p4 = P4()
p4.connect ()

spec = p4.fetch change()

spec["Description"] = "Automated change"
p4.run_submit (spec)

p4.disconnect

p4.run_<cmd>()

Shorthand for p4.run ("cmd", arguments...)

Perforce 2007.3 APIs for Scripting 87

Chapter 3: P4Python

p4.run_filelog(<fileSpec >) -> list

Runs ap4 filelog on the fileSpec provided and returns an array of P4 .DepotFile
results (when executed in tagged mode), or an array of strings when executed in
nontagged mode. By default, the raw output of p4 filelog is tagged; this method
restructures the output into a more user-friendly (and object-oriented) form.

For example:

from P4 import P4, P4Exception
p4 = P4()
try:
p4 .connect ()
for r in p4.run filelog("index.html") [0] .revisions:
for i in r.integrations:
Do something

except P4Exception:
for e in p4.errors:
print e

finally:
p4.disconnect ()

p4.run_login(arg...) -> list
Runs p4_login using a password (or other arguments) set by the user.
p4.run_password(oldpass, newpass) -> list

A thin wrapper to make it easy to change your password. This method is (literally)
equivalent to the following:

p4.input ([oldpass, newpass, newpass])
p4.run("password")

For example

from P4 import P4, P4Exception

p4 = P4()
p4 .password = "myoldpass"
try:
p4 .connect ()
p4.run password("myoldpass", "mynewpass")

except P4Exception:
for e in p4.errors:
print e
finally:
p4.disconnect ()

88

Perforce 2007.3 APIs for Scripting

Chapter 3: P4Python

p4.run_submit([hash], [arg...]) -> list

Submit a changelist to the server. To submit a changelist, set the fields of the changelist as
required and supply any flags:

change = p4.fetch change ()
change. description = "Some description”
p4.run_submit("-r", change)

You can also submit a changelist by supplying the arguments as you would on the
command line:

p4.run_submit ("-d", "Some description", "somedir/...")

p4.save_<spectype>()>

The save_spectype methods are shortcut methods that allow you to quickly update the
definitions of clients, labels, branches, etc. They are equivalent to:

p4.input = dictOrString
p4.run(spectype, "-i")

For example:

from P4 import P4, P4Exception
p4 = P4()

try:
p4.connect ()
client = p4.fetch client()
client["Owner"] = p4.user
p4.save_client (client)

except P4Exception:
for e in p4.errors:
print e

finally:
p4 .disconnect ()

Perforce 2007.3 APIs for Scripting 89

Chapter 3: P4Python

Class P4.P4Exception

Description

Instances of this class are raised when P4 encounters an error or a warning from the
server. The exception contains the errors in the form of a string. P4Exception is a shallow
subclass of the standard Python Exception class.

Class Attributes

None.

Class Methods

None.

90 Perforce 2007.3 APIs for Scripting

Chapter 3: P4Python

Class P4.DepotFile

Description

Utility class providing easy access to the attributes of a file in a Perforce depot. Each

P4 .DepotFile object contains summary information about the file and a list of revisions
(P4 .Revision objects) of that file. Currently, only the P4.run_filelog method returns a
list of P4 . DepotFile objects.

Instance Attributes
df.depotFile -> string
Returns the name of the depot file to which this object refers.
df.revisions -> list

Returns a list of P4 .Revision objects, one for each revision of the depot file.

Class Methods

None.

Instance Methods

None.

Perforce 2007.3 APIs for Scripting 91

Chapter 3: P4Python

Class P4.Integration

Description

Utility class providing easy access to the details of an integration record. Created by
P4.run filelog().

Instance Attributes
integ.how -> string
Returns the type of the integration record - how that record was created.
integ.file -> string
Returns the path to the file being integrated to/from.
integ.erev -> int
Returns the end revision number used for this integration.
integ.srev -> int

Returns the start revision number used for this integration.

Class Methods

None.

Instance Methods

None.

92 Perforce 2007.3 APIs for Scripting

Chapter 3: P4Python

Class P4.Revision

Description
Utility class providing easy access to the revisions of P4 . DepotFile objects. Created by
P4.run filelog().

Instance Attributes
rev.action -> string
Returns the name of the action which gave rise to this revision of the file.
rev.change -> int
Returns the change number that gave rise to this revision of the file.
rev.client -> string
Returns the name of the client from which this revision was submitted.
rev.depotFile -> string
Returns the name of the depot file to which this object refers.
rev.desc -> string

Returns the description of the change which created this revision. Note that only the first
31 characters are returned unless you use p4 filelog -L for the first 250 characters, or p4
filelog -1 for the full text.

rev.digest -> string

Returns the MD5 checksum of this revision.

rev.fileSize -> string

Returns this revision’s size in bytes.

rev.integrations -> list

Returns the list of P4 . Integration objects for this revision.
rev.rev -> int

Returns the number of this revision of the file.

Perforce 2007.3 APIs for Scripting 93

Chapter 3: P4Python

rev.time -> datetime

Returns the date/time that this revision was created.
rev.type -> string

Returns this revision’s Perforce filetype.

rev.user -> string

Returns the name of the user who created this revision.

Class Methods

None.

Instance Methods

None.

94

Perforce 2007.3 APIs for Scripting

Chapter 3: P4Python

Class P4.Spec

Description
Utility class providing easy access to the attributes of the fields in a Perforce form.

Only valid field names may be set in a P4. Spec object. Only the field name is validated,
not the content. Attributes provide easy access to the fields.

Instance Attributes
spec._<fieldname> -> string
Contains the value associated with the field named <fieldname>.
spec.permitted_fields -> dict

Contains an array containing the names of fields that are valid in this spec object. This
does not imply that values for all of these fields are actually set in this object, merely that
you may choose to set values for any of these fields if you want to.

Class Methods
P4.Spec.new(dict) ->P4.Spec

Constructs a new P4 . Spec object given an array of valid fieldnames.

Instance Methods

None.

Perforce 2007.3 APIs for Scripting 95

Chapter 3: P4Python

96 Perforce 2007.3 APIs for Scripting

	Preface About This Manual
	Please give us feedback

	Chapter 1 P4Ruby
	Introduction
	System Requirements
	Installing P4Ruby
	Programming with P4Ruby
	P4Ruby classes
	P4
	P4Exception
	P4::DepotFile
	P4::Revision
	P4::Integration
	P4::MergeData
	P4::Spec

	Class P4
	Description
	Class Methods
	P4.identify -> aString
	P4.new -> aP4

	Instance Methods
	p4.api_level= anInteger -> anInteger
	p4.api_level -> anInteger
	p4.at_exception_level(lev) { ... } -> self
	p4.charset= aString -> aString
	p4.charset -> aString
	p4.client= aString -> aString
	p4.client -> aString
	p4.connect -> aBool
	p4.connected? -> aBool
	p4.cwd= aString -> aString
	p4.cwd -> aString
	p4.delete_<spectype>([options], name) -> anArray
	p4.disconnect -> true
	p4.errors -> anArray
	p4.exception_level= anInteger -> anInteger
	p4.exception_level -> aNumber
	p4.fetch_<spectype>([name]) -> aP4::Spec
	p4.format_spec(<spectype>, aHash)-> aString
	p4.format_<spectype> aHash -> aHash
	p4.host= aString -> aString
	p4.host -> aString
	p4.input= (aString|aHash|anArray) -> aString|aHash|anArray
	p4.maxlocktime= anInteger -> anInteger
	p4.maxlocktime -> anInteger
	p4.maxresults= anInteger -> anInteger
	p4.maxresults -> anInteger
	p4.maxscanrows= anInteger -> anInteger
	p4.maxscanrows -> anInteger
	p4.p4config_file -> aString
	p4.parse_<spectype> (aString) -> aP4::Spec
	p4.parse_spec(<spectype>, aString) -> aP4::Spec
	p4.password= aString -> aString
	p4.password -> aString
	p4.port= aString -> aString
	p4.port -> aString
	p4.prog= aString -> aString
	p4.prog -> aString
	p4.run_cmd(arguments) -> anArray
	p4.run(aCommand, arguments...) -> anArray
	p4.run_filelog(fileSpec) -> anArray
	p4.run_login(arg...) -> anArray
	p4.run_password(oldpass, newpass) -> anArray
	p4.run_resolve(args) [block] -> anArray
	p4.run_submit([aHash], [arg...]) -> anArray
	p4.save_<spectype>([options], hashOrString) -> anArray
	p4.server_level -> anInteger
	p4.tagged= aBool -> aBool
	p4.tagged? -> aBool
	p4.ticketfile= aString -> aString
	p4.ticketfile -> aString
	p4.user= aString -> aString
	p4.user -> aString
	p4.version= aString -> aString
	p4.version -> aString
	p4.warnings -> anArray

	Class P4Exception
	Class Methods
	Instance Methods

	Class P4::DepotFile
	Description
	Class Methods
	Instance Methods
	df.depot_file -> aString
	df.each_revision { |rev| block } -> revArray
	df.revisions -> aArray

	Class P4::Revision
	Description
	Class Methods
	Instance Methods
	rev.action -> aString
	rev.change -> aNumber
	rev.client -> aString
	rev.depot_file -> aString
	rev.desc -> aString
	rev.digest -> aString
	rev.each_integration { |integ| block } -> integArray
	rev.filesize -> aNumber
	rev.integrations -> integArray
	rev.revno -> aNumber
	rev.time -> aTime
	rev.type -> aString
	rev.user -> aString

	Class P4::Integration
	Description
	Class Methods
	Instance Methods
	integ.how -> aString
	integ.file -> aPath
	integ.srev -> aNumber
	integ.erev -> aNumber

	Class P4::MergeData
	Description
	Class Methods
	Instance Methods
	md.your_name() -> aString
	md.their_name() -> aString
	md.base_name() -> aString
	md.your_path() -> aString
	md.their_path() -> aString
	md.base_path() -> aString
	md.result_path() -> aString
	md.merge_hint() -> aString
	md.run_merge() -> aBool

	Class P4::Spec
	Description
	Class Methods
	new P4::Spec.new(anArray) -> aP4::Spec

	Instance Methods
	spec._<fieldname> -> aValue
	spec._<fieldname>= aValue -> aValue
	spec.permitted_fields -> anArray

	Chapter 2 P4Perl
	Introduction
	System Requirements
	Installing P4Perl
	Programming with P4Perl
	P4Perl Classes
	P4
	P4::DepotFile
	P4::Revision
	P4::Integration

	Class P4
	Description
	Base methods
	P4::new() -> P4
	P4::Identify() -> string
	P4::Connect() -> bool
	P4::Disconnect() -> undef
	P4::ErrorCount() -> integer
	P4::Errors() -> list
	P4::Fetch<spectype>([name]) -> hashref
	P4::Format<spectype>(hash) -> string
	P4::FormatSpec($spectype, $string) -> string
	P4::GetCharset() -> string
	P4::GetClient() -> string
	P4::GetCwd() -> string
	P4::GetHost() -> string
	P4::GetMaxLockTime($value) -> integer
	P4::GetMaxResults($value) -> integer
	P4::GetMaxScanRows($value) -> integer
	P4::GetPassword() -> string
	P4::GetPort() -> string
	P4::GetProg() -> string
	P4::GetUser() -> String
	P4::GetVersion ($string) -> string
	P4::IsConnected() -> bool
	P4::IsTagged() -> bool
	P4::P4ConfigFile() -> string
	P4::Parse<Spectype>($string) -> hashref
	P4::ParseSpec($spectype, $string) -> hashref
	P4::Run<cmd>([$arg...]) -> list | arrayref
	P4::Run(cmd, [$arg...]) -> list | arrayref
	P4::RunFileLog ([$args ...], $fileSpec ...) -> list | arrayref
	P4::RunLogin (...) -> list | arrayref
	P4::RunPassword ($oldpass, $newpass) -> list | arrayref
	P4::RunSubmit ($arg | $hashref, ...) -> list | arrayref
	P4::Save<Spectype>() -> list | arrayref
	P4::ServerLevel() -> integer
	P4::SetApiLevel($integer) -> undef
	P4::SetCharset($charset) -> undef
	P4::SetClient($client) -> undef
	P4::SetCwd($path) -> undef
	P4::SetHost($hostname) -> undef
	P4::SetInput($string | $hashref | $arrayref) -> undef
	P4::SetMaxLockTime($integer) -> undef
	P4::SetMaxResults($integer) -> undef
	P4::SetMaxScanRows($integer) -> undef
	P4::SetPassword($password) -> undef
	P4::SetPort($port) -> undef
	P4::SetProg($program_name) -> undef
	P4::SetUser($username) -> undef
	P4::SetVersion ($version) -> undef
	P4::Tagged(0 | 1) -> undef
	P4::TicketFile([$string]) -> string
	P4::WarningCount() -> integer
	P4::Warnings() -> list

	Class P4::DepotFile
	Description
	Class Methods
	Instance Methods
	$df->DepotFile() -> string
	$df->Revisions() -> array

	Class P4::Revision
	Description
	Class Methods
	$rev->Integrations() -> array

	Instance Methods
	$rev->Change() -> integer
	$rev->Client() -> string
	$rev->DepotFile() -> string
	$rev->Desc() -> string
	$rev->Digest() -> string
	$rev->FileSize() -> string
	$rev->Rev() -> integer
	$rev->Time() -> string
	$rev->Type() -> string
	$rev->User()

	Class P4::Integration
	Description
	Class Methods
	Instance Methods
	$integ->How() -> string
	$integ->File() -> string
	$integ->SRev() -> integer
	$integ->ERev() -> integer

	Chapter 3 P4Python
	Introduction

	System Requirements

	Installing P4Python

	Programming with P4Python

	
Submitting a Changelist

	Logging into Perforce using ticket-based authentication

	
Changing your password

	Timestamp conversion

	P4Python Classes

	

P4

	

P4.P4Exception

	P4.DepotFile

	
P4.Revision

	P4.Integration

	
P4.Spec

	
Class P4
	Description
	Instance Attributes
	p4.api_level -> int
	p4.charset -> string
	p4.client -> string
	p4.cwd -> string
	p4.errors -> list (read-only)
	p4.exception_level -> int
	p4.host -> string
	p4.input -> string | dict | list
	p4.maxlocktime -> int
	p4.maxresults -> int
	p4.maxscanrows -> int
	p4.p4config_file -> string (read-only)
	p4.password -> string
	p4.port -> string
	p4.prog -> string
	p4.server_level -> int (read-only)
	p4.tagged -> int
	p4.ticket_file -> string
	p4.user -> string
	p4.version -> string
	p4.warnings -> list (read-only)

	Class Methods
	P4.P4()
	P4.identify()

	Instance Methods
	p4.connect()
	p4.connected() -> boolean
	p4.delete_<spectype>([options], name) -> list
	p4.disconnect()
	p4.fetch_<spectype>() -> P4.Spec
	p4.format_spec(<spectype>, dict) -> string
	p4.format_<spectype>(dict) -> string
	p4.parse_spec(<spectype>, string) -> P4.Spec
	p4.parse_<spectype>(string) -> P4.Spec
	p4.run(cmd, [arg, ...])
	p4.run_<cmd>()
	p4.run_filelog(<fileSpec >) -> list
	p4.run_login(arg...) -> list
	p4.run_password(oldpass, newpass) -> list
	p4.run_submit([hash], [arg...]) -> list
	p4.save_<spectype>()>

	Class

P4.P4Exception

	Description
	Class Attributes
	Class Methods

	Class

P4.DepotFile

	Description
	Instance Attributes
	df.depotFile -> string
	df.revisions -> list

	Class Methods
	Instance Methods

	Class

P4.Integration

	Description
	Instance Attributes
	integ.how -> string
	integ.file -> string
	integ.erev -> int
	integ.srev -> int

	Class Methods
	Instance Methods

	Class

P4.Revision
	Description
	Instance Attributes
	rev.action -> string
	rev.change -> int
	rev.client -> string
	rev.depotFile -> string
	rev.desc -> string
	rev.digest -> string
	rev.fileSize -> string
	rev.integrations -> list
	rev.rev -> int
	rev.time -> datetime
	rev.type -> string
	rev.user -> string

	Class Methods
	Instance Methods

	Class P4.Spec
	Description
	Instance Attributes
	spec._<fieldname> -> string
	spec.permitted_fields -> dict

	Class Methods
	P4.Spec.new(dict) ->P4.Spec

	Instance Methods

