
Perforce 2009.2
System Administrator’s Guide

December 2009

This manual copyright 1997-2009 Perforce Software.

All rights reserved.

Perforce software and documentation is available from http://www.perforce.com. You may download and
use Perforce programs, but you may not sell or redistribute them. You may download, print, copy, edit, and
redistribute the documentation, but you may not sell it, or sell any documentation derived from it. You may not
modify or attempt to reverse engineer the programs.

Perforce programs and documents are available from our Web site as is. No warranty or support is provided.
Warranties and support, along with higher capacity servers, are sold by Perforce Software.

Perforce Software assumes no responsibility or liability for any errors or inaccuracies that may appear in this book.

By downloading and using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce Software. Perforce software includes software
developed by the University of California, Berkeley and its contributors.

All other brands or product names are trademarks or registered trademarks of their respective companies or
organizations.

http://www.perforce.com

Table of Contents
Preface About This Manual ... 11
Using Perforce? ...11
Please give us feedback ...11

Chapter 1 Welcome to Perforce: Installing and Upgrading 13
Getting Perforce ..13
UNIX installation..13

Downloading the files and making them executable14
Creating a Perforce server root directory..14
Telling Perforce servers which port to listen on15
Telling Perforce client programs which port to connect to15
Starting the Perforce server...16
Stopping the Perforce server...16

Windows installation ...16
Windows services and servers ...17
Starting and stopping Perforce...17

Upgrading a Perforce server ...18
Using old client programs with a new server ..18
Licensing and upgrades ..18
Upgrading the server...18

Installation and administration tips...19
Release and license information...19
Observe proper backup procedures ..19
Use separate physical drives for server root and journal.......................19
Use protections and passwords..20
Allocate sufficient disk space for anticipated growth.............................20
Managing disk space after installation ...20
Large filesystem support...21
UNIX and NFS support...22
Windows: Username and password required for network drives........22
UNIX: Run p4d as a nonprivileged user...23
Logging errors ..23
Logging file access..23
Case sensitivity issues..24
Perforce 2009.2 System Administrator’s Guide 3

Table of Contents
Enable server process monitoring... 24
Tune for performance.. 24

Chapter 2 Supporting Perforce: Backup and Recovery 25
Backup and recovery concepts .. 25

Checkpoint files ... 26
Journal files... 28
Versioned files .. 30

Backup procedures .. 31
Recovery procedures ... 33

Database corruption, versioned files unaffected 33
Both database and versioned files lost or damaged............................... 35
Ensuring system integrity after any restoration 37

Chapter 3 Administering Perforce: Superuser Tasks 39
Basic Perforce Administration ... 39

Authentication methods: passwords and tickets.................................... 39
Server security levels .. 41
Password strength ... 43
Resetting user passwords... 43
Creating users .. 43
Preventing automatic creation of users .. 43
Deleting obsolete users ... 45
Adding new licensed users .. 45
Reverting files left open by obsolete users .. 45
Reclaiming disk space by obliterating files ... 46
Deleting changelists and editing changelist descriptions 47
Verifying files by signature .. 47
Defining filetypes with p4 typemap... 48
Implementing sitewide pessimistic locking with p4 typemap............. 51
Forcing operations with the -f flag.. 51

Advanced Perforce administration ... 53
Running Perforce through a firewall .. 53
Specifying IP addresses in P4PORT.. 55
Running from inetd on UNIX.. 56
Case sensitivity and multiplatform development 57
Monitoring server activity.. 58
4 Perforce 2009.2 System Administrator’s Guide

Table of Contents
Perforce server trace and tracking flags..60
Auditing user file access..62

Moving a Perforce server to a new machine ..62
Moving between machines of the same architecture63
Moving between different architectures that use the same text format63
Moving between Windows and UNIX..64
Changing the IP address of your server ...65
Changing the hostname of your server...65

Using multiple depots..65
Naming depots ...66
Defining new local depots ..66
Enabling versioned specifications with the spec depot..........................67
Listing depots ...68
Deleting depots...68

Remote depots and distributed development..68
When to use remote depots ..69
How remote depots work ...69
Using remote depots for code drops ...70

Managing Unicode Installations ..74
Overview ...74
Configuring the Perforce Server ..75
Configuring Client Machines ...76

Chapter 4 Administering Perforce: Protections 81
When should protections be set?..81
Setting protections with p4 protect ..81

The permission lines’ five fields...82
Access levels..83
Which users should receive which permissions?84
Default protections...85
Interpreting multiple permission lines ...85
Exclusionary protections ...86
Which lines apply to which users or files? ...87

Granting access to groups of users...87
Creating and editing groups...87
Groups and protections ...87
Deleting groups ..88

How protections are implemented ..88
Perforce 2009.2 System Administrator’s Guide 5

Table of Contents
Access Levels Required by Perforce Commands .. 89

Chapter 5 Customizing Perforce: Job Specifications 95
The default Perforce job template.. 95
The job template’s fields ... 96

The Fields: field.. 97
The Values: fields... 99
The Presets: field.. 99
The Comments: field... 100

Caveats, warnings, and recommendations .. 101
Example: a custom template .. 102
Working with third-party defect tracking systems................................... 103

P4DTG, The Perforce Defect Tracking Gateway 103
P4DTI, Perforce Defect Tracking Integration... 104
Building your own integration.. 104

Chapter 6 Scripting Perforce: Triggers and Daemons 105
Triggers.. 105

The trigger table... 107
Triggering on changelists ..113
Triggering on fixes..116
Triggering on forms..117
Using triggers for external authentication... 121
Archive triggers for external data sources... 124
Using multiple triggers... 125
Writing triggers to support multiple Perforce servers 126
Triggers and security... 126
Triggers and Windows.. 127

Daemons.. 128
Perforce’s change review daemon .. 128
Creating other daemons ... 129
Commands used by daemons ... 130
Daemons and counters ... 131
6 Perforce 2009.2 System Administrator’s Guide

Table of Contents
Chapter 7 Tuning Perforce for Performance............................ 133
Tuning for performance...133

Memory..133
Filesystem performance ..133
Disk space allocation..134
Monitoring disk space usage..135
Network...135
CPU ..135

Diagnosing slow response times ..136
Hostname vs. IP address ...136
Windows wildcards ...136
DNS lookups and the hosts file..137
Location of the p4 executable ...137

Preventing server swamp..137
Using tight views..138
Assigning protections ..139
Limiting database queries ...139
Scripting efficiently ..141
Using compression efficiently ..144

Checkpoints for database tree rebalancing ...144

Chapter 8 Perforce and Windows ... 145
Using the Perforce installer ...145

Upgrade notes...145
Scripted deployment and unattended installation................................145

Windows services vs. Windows servers..146
Starting and stopping the Perforce service...146
Starting and stopping the Perforce server ..146
Installing the Perforce service on a network drive................................147

Multiple Perforce services under Windows..147
Windows configuration parameter precedence ...149
Resolving Windows-related instabilities...149
Users having trouble with P4EDITOR or P4DIFF150

Chapter 9 Perforce Proxy ... 151
System requirements..152
Perforce 2009.2 System Administrator’s Guide 7

Table of Contents
Installing P4P.. 152
UNIX.. 152
Windows ... 152

Running P4P ... 152
Running P4P as a Windows service.. 153

P4P flags .. 153
Administering P4P .. 154

No backups required... 154
Stopping P4P .. 154
Managing disk space consumption .. 154
Determining if your Perforce client is using the proxy........................ 154
P4P and protections... 155
Determining if specific files are being delivered from the proxy....... 156

Maximizing performance improvement .. 156
Reducing server CPU usage by disabling file compression................ 156
Network topologies versus P4P .. 156
Preloading the cache directory for optimal initial performance 158
Distributing disk space consumption... 158

Chapter 10 Perforce Replication.. 159
What is Replication? .. 159
Why Replicate?... 159
How does replication work? .. 160

System requirements... 160
Warnings ... 160
Limits and restrictions .. 160

Replication commands.. 161
p4 replicate flags .. 162
p4 replicate commands... 163

Replication Examples .. 163
Offloading Reporting and Checkpointing Tasks 163
Using replica servers... 164
Configuring for Continuous Builds .. 165
Providing a Warm Standby Server.. 165

Next Steps ... 165
8 Perforce 2009.2 System Administrator’s Guide

Table of Contents
Appendix A Perforce Server (p4d) Reference.............................. 167
Synopsis ...167
Syntax...167
Description ..167
Exit Status ..167
Options...168
Usage Notes ..169
Related Commands..170

Index ... 171
Perforce 2009.2 System Administrator’s Guide 9

Table of Contents
10 Perforce 2009.2 System Administrator’s Guide

Preface About This Manual
This is the Perforce 2009.2 System Administrator’s Guide.

This guide is intended for people responsible for installing, configuring, and maintaining
Perforce servers. This guide covers tasks typically performed by a “system administrator”
(for instance, installing and configuring the software and ensuring uptime and data
integrity), as well as tasks performed by a “Perforce administrator”, such as setting up
Perforce users, configuring Perforce depot access controls, resetting Perforce user
passwords, and so on.

Because Perforce requires no special system permissions, a Perforce administrator does
not typically require root-level access. Depending on your site’s needs, your Perforce
administrator need not be your system administrator.

Both the UNIX and Windows versions of the Perforce server are administered from the
command line. To familiarize yourself with the Perforce Command-Line Client, see the
Perforce Command Reference.

Using Perforce?

If you plan to use Perforce as well as administer a Perforce server, see the P4 User’s Guide
for information on Perforce from a user’s perspective.

All of our documentation is available from our web site at http://www.perforce.com.

Please give us feedback

We are interested in receiving opinions on this manual from our users. In particular, we’d
like to hear from users who have never used Perforce before. Does this guide teach the
topic well? Please let us know what you think; we can be reached at
manual@perforce.com.
Perforce 2009.2 System Administrator’s Guide 11

http://www.perforce.com

Preface: About This Manual
12 Perforce 2009.2 System Administrator’s Guide

Chapter 1 Welcome to Perforce:
Installing and Upgrading
This chapter describes how to install a Perforce server or upgrade an existing installation.

This chapter includes a brief overview of things to consider at installation time, along with
some basic security and administration tips. More detailed information on administrative
tasks is found in later chapters.

Getting Perforce

Perforce requires at least two executables: the server (p4d), and at least one Perforce client
program (such as p4 on UNIX, or p4.exe on Windows).

The server and client executables are available from the Downloads page on the Perforce
web site:

http://www.perforce.com/perforce/downloads/index.html

Go to the web page, select the files for your platform, and save the files to disk.

UNIX installation

Although you can install p4 and p4d in any directory, on UNIX, the Perforce client
programs typically reside in /usr/local/bin, and the Perforce server is usually located
either in /usr/local/bin or in its own server root directory. You can install Perforce
client programs on any machine that has TCP/IP access to the p4d host.

To limit access to the Perforce server files, ensure that the p4d executable is owned and
run by a Perforce user account that has been created for the purpose of running the
Perforce server.

Warning! If you are upgrading an existing installation to Release 2005.1 or later, see
the notes in “Upgrading a Perforce server” on page 18 before proceeding.

Windows Where the UNIX and Windows versions of Perforce differ, this manual
notes the difference. For Windows-specific information, see “Perforce and
Windows” on page 145.

Many of the examples in this book are based on the UNIX version of the
Perforce server. In most cases, the examples apply equally to both Windows
and UNIX installations.

OS X The material for UNIX also applies to Mac OS X.
Perforce 2009.2 System Administrator’s Guide 13

http://www.perforce.com/perforce/downloads/index.html

Chapter 1: Welcome to Perforce: Installing and Upgrading
To start using Perforce:

1. Download the p4 and p4d files for your platform from the Perforce web site.

2. Make the downloaded p4 and p4d files executable.

3. Create a server root directory to hold the Perforce database and versioned files.

4. Tell the Perforce server what port to listen to by specifying a TCP/IP port to p4d.

5. Start the Perforce server (p4d).

6. Specify the name or TCP/IP address of the Perforce server machine and the p4d port
number to the Perforce client programs by setting the P4PORT environment variable.

Downloading the files and making them executable

On UNIX (or Mac OS X), you must make the Perforce executables (p4 and p4d) executable.
After you download the programs, use the chmod command to make them executable, as
follows:

Creating a Perforce server root directory

The Perforce server stores all user-submitted files and system-generated metadata in files
and subdirectories beneath its own root directory. This directory is called the server root.

To specify a server root, either set the environment variable P4ROOT to point to the server
root, or use the -r root_dir flag when invoking p4d. Perforce client programs never use
the P4ROOT directory or environment variable; the p4d server is the only process that uses
the P4ROOT variable.

Because all Perforce files are stored beneath the server root, the contents of the server root
grow over time. See “Installation and administration tips” on page 19 for a brief overview
of diskspace requirements, and “Disk space allocation” on page 134 for more detail.

A Perforce server requires no privileged access; there is no need to run p4d as root or any
other privileged user. For more information, see “UNIX: Run p4d as a nonprivileged
user” on page 23.

The server root can be located anywhere, but the account that runs p4d must have read,
write, and execute permissions on the server root and all directories beneath it. For
security purposes, set the umask(1) file-creation-mode mask of the account that runs p4d
to a value that denies other users access to the server root directory.

chmod +x p4
chmod +x p4d
14 Perforce 2009.2 System Administrator’s Guide

Chapter 1: Welcome to Perforce: Installing and Upgrading
Telling Perforce servers which port to listen on

The p4d server and Perforce client programs communicate with each other using TCP/IP.
When p4d starts, it listens (by default) on port 1666. The Perforce client assumes (also by
default) that its p4d server is located on a host named perforce, listening on port 1666.

If p4d is to listen on a different port, either specify that port with the -p port_num flag
you start p4d (as in, p4d -p 1818), or set the port with the P4PORT environment or registry
variable.

Unlike P4ROOT, the environment variable P4PORT is used by both the Perforce server and
the Perforce client programs, so it must be set on both Perforce server machines and
Perforce client workstations.

Telling Perforce client programs which port to connect to

Perforce client programs need to know on what machine the p4d server resides and on
which TCP/IP port the p4d server program is listening. Set each Perforce user’s P4PORT
environment variable to host:port, where host is the name of the machine on which p4d
is running, and port is the number of the port on which p4d is listening.

Examples:

If the Perforce client program is running on the same host as p4d, only the p4d port
number need be provided in P4PORT. If p4d is running on a host named or aliased
perforce, and is listening on port 1666, leave P4PORT unset. For example:

If your p4d host is not named perforce, you can simplify life somewhat for your Perforce
users by setting perforce as an alias to the true host name in your users’ workstations’
/etc/hosts files, or by using Sun’s NIS or Internet DNS.

If your network environment and Perforce Server have been configured to support
Zeroconf services, users can set P4PORT to the value of the service name.

P4PORT Client program behavior

dogs:3435 Perforce client programs connect to the p4d server on host dogs
listening on port 3435.

x.com:1818 Perforce client programs connect to the p4d server on host x.com
listening on port 1818.

P4PORT Client program behavior

3435 Perforce client programs connect to the p4d server on the same machine
as the client program, listening on port 3435.

<not set> Perforce client programs connect to the p4d server on a host named or
aliased perforce listening on port 1666.
Perforce 2009.2 System Administrator’s Guide 15

Chapter 1: Welcome to Perforce: Installing and Upgrading
Starting the Perforce server

After you set p4d’s P4PORT and P4ROOT environment variables, start the server by running
p4d in the background with the command:

p4d &

Although the example shown is sufficient to run p4d, you can specify other flags that
control such things as error logging, checkpointing, and journaling.

Example: Starting a Perforce server

You can override P4PORT by starting p4d with the -p flag, and P4ROOT by starting p4d with
the -r flag. Similarly, you can specify a journal file with the -J flag, and an error log file with
the -L flag. A startup command that overrides the environment variables might look like this:

The -r, -J, and -L flags (and others) are discussed in “Supporting Perforce:
Backup and Recovery” on page 25. A complete list of server flags is provided in the “Perforce
Server (p4d) Reference” on page 167.

Stopping the Perforce server

To shut down a Perforce server, use the command:
p4 admin stop

Only a Perforce superuser can use p4 admin stop.

If you are running a release of Perforce from earlier than 99.2, you must find the process
ID of the p4d server and kill the process manually from the UNIX shell. Use kill -15
(SIGTERM) instead of kill -9 (SIGKILL), because p4d might leave the database in an
inconsistent state if it is in the middle of updating a file when a SIGKILL signal is received.

Windows installation

To install Perforce on Windows, use the Perforce installer (perforce.exe) from the
Downloads page of the Perforce web site:

http://www.perforce.com/perforce/downloads/index.html

Use the Perforce installer program to install or upgrade the Perforce Server, Perforce
Proxy, or the Perforce Command-Line Client.

Other Perforce clients on Windows, such as the Perforce Visual Client (P4V), as well as
third-party plug-ins, may be downloaded and installed separately.

For more about installing on Windows, see “Using the Perforce installer” on page 145.

p4d -r /usr/local/p4root -J /var/log/journal -L /var/log/p4err -p
1818 &
16 Perforce 2009.2 System Administrator’s Guide

http://www.perforce.com/perforce/downloads/index.html

Chapter 1: Welcome to Perforce: Installing and Upgrading
Windows services and servers

In this manual, the terms Perforce server and p4d are used interchangeably to refer to “the
process which handles requests from Perforce client programs” unless the distinction
between a Windows server process a Windows service process is relevant.

On UNIX systems, there is only one Perforce “server” program (p4d) responsible for this
back-end task. On Windows, however, this back-end program can be configured to run as
a Windows service (p4s.exe) process that starts at boot time, or as a server (p4d.exe)
process that you invoke manually from a command prompt.

The Perforce service (p4s.exe) and the Perforce server (p4d.exe) executables are copies
of each other; they are identical apart from their filenames. When run, the executables use
the first three characters of the name with which they were invoked (either p4s or p4d) to
determine their behavior. (For example, invoking copies of p4d.exe named
p4smyservice.exe or p4dmyserver.exe invoke a service and a server, respectively.)

In most cases, it is preferable to install Perforce as a service, not a server. For a more
detailed discussion of the distinction between services and servers, see “Windows
services vs. Windows servers” on page 146.

Starting and stopping Perforce

If you install Perforce as a service under Windows, the service starts whenever the
machine boots. Use the Services applet in the Control Panel to control the Perforce
service’s behavior.

If you install Perforce as a server under Windows, invoke p4d.exe from a command
prompt. The flags for p4d under Windows are the same as those used under UNIX.

To stop a Perforce service (or server), use the command:
p4 admin stop

Only a Perforce superuser can use p4 admin stop.

For older revisions of Perforce, shut down services manually by using the Services applet
in the Control Panel. Shut down servers running in command prompt windows by
pressing CTRL-C in the window or by clicking the icon to close the command prompt
window. Although manually shutting down in this way works with Release 99.2 and
earlier versions of Perforce, it is not necessarily “clean”, in the sense that the server or
service is shut down abruptly. With the availability of the p4 admin stop command in
99.2, this manual shutdown method is obsolete.
Perforce 2009.2 System Administrator’s Guide 17

Chapter 1: Welcome to Perforce: Installing and Upgrading
Upgrading a Perforce server

You must back up your server (see “Backup procedures” on page 31) as part of any
upgrade process.

Using old client programs with a new server

Although older Perforce client programs generally work with newer server versions,
some features in new server releases require upgrades to Perforce client programs. In
general, users with older client programs are able to use features available from the
Perforce server at the client program’s release level, but are not able to use the new server
features offered by subsequent server upgrades.

Licensing and upgrades

To upgrade your current Perforce server to a newer version, your Perforce license file
must be current. Expired licenses do not work with upgraded servers.

Upgrading the server

Read the Release Notes for complete information on server upgrade procedures. In general,
Perforce server upgrades require that you:

1. Stop the Perforce Server (p4d).

2. Make a checkpoint and back up your old installation.

3. Replace the Perforce Server executable with the upgraded version of the server.

On UNIX, replace the old version of p4d with the new version downloaded from the
Perforce website. On Windows, use the Perforce installer (perforce.exe); the
installer automatically replaces the server executable.

4. Some upgrades (installations with more than 1000 changelists, or upgrades with
significant database changes) may require that you manually upgrade the database
by running:

p4d -r server_root -J journal_file -xu

This command may take considerable time to complete. You must have sufficient
disk space to complete the upgrade.

5. Restart the Perforce Server with your site’s usual parameters.

If you have any questions or difficulties during an upgrade, contact Perforce technical
support.

Warning! Before you upgrade a Perforce server, always read the release notes
associated with your upgraded server.
18 Perforce 2009.2 System Administrator’s Guide

Chapter 1: Welcome to Perforce: Installing and Upgrading
Installation and administration tips

Release and license information

Perforce servers are licensed according to how many users they support.

Licensing information is contained in a file called license in the server root directory.
The license file is a plain text file supplied by Perforce Software. Without the license
file, the Perforce server limits itself to two users and five client workspaces.

You can update an existing file without stopping the Perforce Server by using the p4
license command. See “Adding new licensed users” on page 45 for details.

To view current licensing information, invoke p4d -V from the server root directory
where the license file resides, or by specifying the server root directory either on the
command line (p4d -V -r server_root) or in the P4ROOT environment variable.

If the server is running, you can also use p4 info to view your licensing information.

The server version is also displayed when you invoke p4d -V or p4 -V.

Observe proper backup procedures

Regular backups of your Perforce data are vital. The key concepts are:

• Make sure journaling is active.

• Create checkpoints regularly.

• Use p4 verify regularly.

See “Supporting Perforce: Backup and Recovery” on page 25 for a full discussion of
backup and restoration procedures.

Use separate physical drives for server root and journal

Whether installing on UNIX or Windows, it is advisable to have your P4ROOT directory
(that is, the directory containing your database and versioned files) on a different physical
drive than your journal file.

By storing the journal on a separate drive, you can be reasonably certain that, if a disk
failure corrupts the drive containing P4ROOT, such a failure will not affect your journal file.
You can then use the journal file to restore any lost or damaged metadata.

Further details are available in “Supporting Perforce: Backup and Recovery” on page 25.
Perforce 2009.2 System Administrator’s Guide 19

Chapter 1: Welcome to Perforce: Installing and Upgrading
Use protections and passwords

Until you define a Perforce superuser, every Perforce user is a Perforce superuser and can
run any Perforce command on any file. After you start a new Perforce server, use:

p4 protect

as soon as possible to define a Perforce superuser. To learn more about how p4 protect
works, see “Administering Perforce: Protections” on page 81.

Without passwords, any user is able to impersonate any other Perforce user, either with
the -u flag or by setting P4USER to an existing Perforce user name. Use of Perforce
passwords prevents such impersonation. See the P4 User’s Guide for details.

To set (or reset) a user’s password, either use p4 passwd username (as a Perforce
superuser), and enter the new password for the user, or invoke p4 user -f username
(also while as a Perforce superuser) and enter the new password into the user
specification form. The former command is supported in release 99.1 or later; the latter
command is supported under all releases from 97.3 onwards.

The security-conscious Perforce superuser also uses p4 protect to ensure that no access
higher than list is granted to nonprivileged users, and to ensure that each user has a
Perforce password.

Allocate sufficient disk space for anticipated growth

Because the collection of versioned files grows over time, a good guideline is to allocate
sufficient space in your P4ROOT directory to hold three times the size of your users’
present collection of versioned files, plus an additional 0.5KB per user per file to hold the
database files that store the list of depot files, file status, and file revision histories.

For a more detailed example of a disk sizing estimate, see “Disk space allocation” on
page 134.

Managing disk space after installation

All of Perforce’s versioned files reside in subdirectories beneath the server root, as do the
database files, and (by default) the checkpoints and journals. If you are running low on
disk space, consider the following approaches to limit disk space usage:

• Configure Perforce to store the journal file on a separate physical disk. Use the
P4JOURNAL environment variable or p4d -J to specify the location of the journal file.

• Keep the journal file short by taking checkpoints on a daily basis.

• Compress checkpoints, or use the -z option to tell p4d to compress checkpoints on the
fly.
20 Perforce 2009.2 System Administrator’s Guide

Chapter 1: Welcome to Perforce: Installing and Upgrading
• Use the -jc prefix option with the p4d command to write the checkpoint to a different
disk. Alternately, use the default checkpoint files, but back up your checkpoints to a
different drive and then delete the copied checkpoints from the root directory. Moving
checkpoints to separate drives is good practice not only in terms of diskspace, but also
because old checkpoints are needed when recovering from a hardware failure, and if
your checkpoint and journal files reside on the same disk as your depot, a hardware
failure could leave you without the ability to restore your database.

• On UNIX systems, you can relocate some or all of the depot directories to other disks by
using symbolic links. If you use symbolic links to shift depot files to other volumes,
create the links only after you stop the Perforce server.

• If your installation’s database files have grown to more than 10 times the size of a
checkpoint, you might be able to reduce the size of the files by re-creating them from a
checkpoint. See “Checkpoints for database tree rebalancing” on page 144.

• Use the p4 sizes command to monitor the amount of disk space currently consumed
by your entire installation, or by selected portions of your installation. See “Monitoring
disk space usage” on page 135.

Large filesystem support

Early versions of the Perforce server, as well as some operating systems, limit Perforce
database files (the db.* files in the P4ROOT directory that hold your site’s metadata) to 2
GB in size. The db.have file holds the list of files currently synced to client workspaces,
and tends to grow the most quickly.

If you anticipate any of your Perforce database files growing beyond the 2 GB level, install
the Perforce server on a platform with support for large files. The following combinations
of operating system and Perforce server revision support database files larger than 2 GB:

Operating system OS version Perforce server revision

Windows NT, 2000, XP,
Vista, 7

All versions,
SP6 recommended for NT

98.2/8127 or higher

FreeBSD All versions 98.2/5713 or higher

Linux x86 Kernels 2.4.0 and higher 2002.2/21749 or higher

HP-UX HP-UX 11.11 and higher 2001.1/26433 or higher

Solaris 2.6 and higher 98.2/7488 compiled for 2.6 or
higher

Tru64 UNIX
(a.k.a. Digital UNIX, OSF/1)

All versions 98.2/5713 or higher
Perforce 2009.2 System Administrator’s Guide 21

Chapter 1: Welcome to Perforce: Installing and Upgrading
UNIX and NFS support

To maximize performance, configure the server root (P4ROOT) to reside on a local disk and
not an NFS-mounted volume. The Perforce Server's file-locking semantics work with NFS
mounts on Solaris 2.5.1 and later; some issues still remain regarding file locking on
noncommercial implementations of NFS (for instance, Linux and FreeBSD).

These issues affect only the Perforce Server process (p4d). Perforce client programs (such
as p4, the Perforce Command-Line Client) have always been able to work with client
workspaces on NFS-mounted drives, such as client workspaces located in users’ home
directories.

Windows: Username and password required for network drives

By default, the Perforce service runs under the Windows local System account. Because
Windows requires a real account name and password to access files on a network drive, if
Perforce is installed as a service under Windows with P4ROOT pointing to a network drive,
the installer requires an account name and a password. The Perforce service is then
configured with the supplied data and run as the specified user instead of System. (The
account running the service must have Administrator privileges on the machine.)

Although Perforce operates reliably with its root directory on a network drive, it does so
only at a substantial performance penalty, because all writes to the database are
performed over the network. For optimal performance, install the Windows service to use
local drives rather than networked drives.

For more information, see “Installing the Perforce service on a network drive” on
page 147.

SGI IRIX 6.2 All versions 98.2/5713 or higher

SGI IRIX 5.3 Only with the SGI-
supplied xfs upgrade

98.2/5713 or higher

xfs OS upgrade required

Operating system OS version Perforce server revision
22 Perforce 2009.2 System Administrator’s Guide

Chapter 1: Welcome to Perforce: Installing and Upgrading
UNIX: Run p4d as a nonprivileged user

The Perforce server process does not require privileged access. For security reasons, do
not run p4d as root or otherwise grant the owner of the p4d process root-level privileges.

Create a nonprivileged UNIX user (for example, perforce) to manage p4d and
(optionally) a UNIX group for it (for example, p4admin). Use the umask(1) command to
ensure that the server root (P4ROOT) and all files and directories created beneath it are
writable only by the UNIX user perforce, and (optionally) readable by members of the
UNIX group p4admin.

Under this configuration, the Perforce server (p4d), running as UNIX user perforce, can
write to files in the server root, but no users are able to read or overwrite its files. To grant
access to the files created by p4d (that is, the depot files, checkpoints, journals, and so on)
to trusted users, you can add the trusted users to the UNIX group p4admin.

Logging errors

Use the -L flag to p4d or the environment variable P4LOG to specify the Perforce server’s
error output file. If no error output file is defined, errors are dumped to the p4d process’
standard error. Although p4d tries to ensure that all error messages reach the user, if an
error occurs and the client program disconnects before the error is received, p4d also logs
these errors to its error output.

The Perforce server also supports trace flags used for debugging. See “Perforce server
trace and tracking flags” on page 60 for details.

Logging file access

If your site requires that user access to files be tracked, use the -A flag to p4d or the
environment variable P4AUDIT to activate auditing and specify the Perforce server’s audit
log file. When auditing is active, every time a user accesses a file, a record is stored in the
audit log file. This option can consume considerable disk space on an active server.

See “Auditing user file access” on page 62 for details.

Windows On Windows, directory permissions are set securely by default; when
Perforce runs as a server, the server root is accessible only to the user who
invoked the server from the command prompt. When Perforce is installed
as a service, the files are owned by the LocalSystem account, and are
accessible only to those with Administrator access.
Perforce 2009.2 System Administrator’s Guide 23

Chapter 1: Welcome to Perforce: Installing and Upgrading
Case sensitivity issues

Whether your Perforce Server is running on Windows or UNIX, if your site is involved in
cross-platform development (that is, if you are using Perforce client programs on both
Windows and UNIX workstations), your users must be aware of certain details regarding
case sensitivity issues.

See “Case sensitivity and multiplatform development” on page 57 for details.

Enable server process monitoring

The Perforce Server tracks information about Perforce-related processes running on your
Perforce server machine. Server process monitoring requires minimal system resources,
but you must enable process monitoring for p4 monitor to work. To enable process
monitoring, set the monitor counter as follows:

p4 counter -f monitor 1

After you set or change the monitor counter, you must stop and restart the Perforce
server for your change to take effect.

See “Monitoring server activity” on page 58 for details.

Tune for performance

Perforce is an efficient consumer of network bandwidth and CPU power. The most
important variables that determine server performance are the efficiency of your server’s
disk I/O subsystem and the number of files referenced in any given user-originated
Perforce operation.

For more detailed performance tuning information, see “Tuning Perforce for
Performance” on page 133.
24 Perforce 2009.2 System Administrator’s Guide

Chapter 2 Supporting Perforce:
Backup and Recovery
The Perforce server stores two kinds of data: versioned files and metadata.

• Versioned files are files submitted by Perforce users. Versioned files are stored in
directory trees called depots.

There is one subdirectory under the server’s root directory for each depot in your
Perforce installation. The versioned files for a given depot are stored in a tree of
directories beneath this subdirectory.

• Database files store metadata, including changelists, opened files, client workspace
specifications, branch mappings, and other data concerning the history and present
state of the versioned files.

Database files appear as db.* files in the top level of the server root directory. Each
db.* file contains a single, binary-encoded database table.

Backup and recovery concepts

Disk space shortages, hardware failures, and system crashes can corrupt any of the
Perforce server’s files. That’s why the entire Perforce root directory structure (your
versioned files and your database) should be backed up regularly.

The versioned files are stored in subdirectories beneath your Perforce server root, and can
be restored directly from backups without any loss of integrity.

The files that constitute the Perforce database, on the other hand, are not guaranteed to be
in a state of transactional integrity if archived by a conventional backup program.
Restoring the db.* files from regular system backups can result in an inconsistent
database. The only way to guarantee the integrity of the database after it’s been damaged
is to reconstruct the db.* files from Perforce checkpoint and journal files:

• A checkpoint is a snapshot or copy of the database at a particular moment in time.

• A journal is a log of updates to the database since the last snapshot was taken.

The checkpoint file is often much smaller than the original database, and it can be made
smaller still by compressing it. The journal file, on the other hand, can grow quite large; it
is truncated whenever a checkpoint is made, and the older journal is renamed. The older
journal files can then be backed up offline, freeing up more space locally.
Perforce 2009.2 System Administrator’s Guide 25

Chapter 2: Supporting Perforce: Backup and Recovery
Both the checkpoint and journal are text files, and have the same format. A checkpoint
and (if available) its subsequent journal can restore the Perforce database.

Because the information stored in the Perforce database is as irreplaceable as your
versioned files, checkpointing and journaling are an integral part of administering a
Perforce server, and should be part of your regular backup cycle.

Checkpoint files

A checkpoint is a file that contains all information necessary to re-create the metadata in the
Perforce database. When you create a checkpoint, the Perforce database is locked,
enabling you to take an internally consistent snapshot of that database.

Versioned files are backed up separately from checkpoints. This means that a checkpoint
does not contain the contents of versioned files, and as such, you cannot restore any
versioned files from a checkpoint. You can, however, restore all changelists, labels, jobs,
and so on, from a checkpoint.

To guarantee database integrity upon restoration, the checkpoint must be as old as, or
older than, the versioned files in the depot. This means that the database should be
checkpointed, and the checkpoint generation must be complete, before the backup of the
versioned files starts.

Regular checkpointing is important to keep the journal from getting too long. Making a
checkpoint immediately before backing up your system is good practice.

Creating a checkpoint

Checkpoints are not created automatically; someone or something must run the
checkpoint command on the Perforce server machine. To create a checkpoint, invoke the
p4d program with the -jc (journal-create) flag:

p4d -r root -jc

You can create a checkpoint while the Perforce server (p4d) is running. The checkpoint is
created in your server root directory (P4ROOT).

To make the checkpoint, p4d locks the database and then dumps its contents to a file
named checkpoint.n in the P4ROOT directory, where n is a sequence number. Before
unlocking the database, p4d also copies (on UNIX where the journal is uncompressed,
renames) the journal file to a file named journal.n-1 in the P4ROOT directory (regardless
of the directory in which the current journal is stored), and then truncates the current

Warning! Checkpoints and journals archive only the Perforce database files, not the
versioned files stored in the depot directories!

You must always back up the depot files (your versioned file tree) with the
standard OS backup commands after checkpointing.
26 Perforce 2009.2 System Administrator’s Guide

Chapter 2: Supporting Perforce: Backup and Recovery
journal. This guarantees that the last checkpoint (checkpoint.n) combined with the
current journal (journal) always reflects the full contents of the database at the time the
checkpoint was created.

The sequence numbers reflect the roll-forward nature of the journal; to restore databases
to older checkpoints, match the sequence numbers. That is, you can restore the database
reflected by checkpoint.6 by restoring the database stored in checkpoint.5 and rolling
forward the changes recorded in journal.5. In most cases, you’re only interested in
restoring the current database, which is reflected by the highest-numbered checkpoint.n
rolled forward with the changes in the current journal.

To specify a prefix or directory location for the checkpoint and journal, use the -jc option.
For example, you might create a checkpoint with:

p4d -jc prefix

In this case, your checkpoint and journal files are named prefix.ckp.n and
prefix.jnl.n respectively, where prefix is as specified on the command line and n is a
sequence number. If no prefix is specified, the default filenames checkpoint.n and
journal.n are used. You can store checkpoints and journals in the directory of your
choice by specifying the directory as part of the prefix. (Rotated journals are stored in the
P4ROOT directory, regardless of the directory in which the current journal is stored.)

To create a checkpoint without being logged in to the machine running the Perforce
server, use the command:

p4 admin checkpoint [-z] [prefix]

Running p4 admin checkpoint is equivalent to p4d -jc. You must be a Perforce
superuser to use p4 admin.

You can set up an automated program to create your checkpoints on a regular schedule.
Be sure to always check the program’s output to ensure that checkpoint creation was
started. After successful creation, a checkpoint file can be compressed, archived, or moved
onto another disk. At that time or shortly thereafter, back up the versioned files stored in
the depot subdirectories.

To restore from a backup, the checkpoint must be at least as old as the files in the depots, that is,
the versioned files can be newer than the checkpoint, but not the other way around. As
you might expect, the shorter this time gap, the better.

If the checkpoint command itself fails, contact Perforce technical support immediately.
Checkpoint failure is usually a symptom of a resource problem (disk space, permissions,
and so on) that can put your database at risk if not handled correctly.
Perforce 2009.2 System Administrator’s Guide 27

Chapter 2: Supporting Perforce: Backup and Recovery
Journal files

The journal is the running transaction log that keeps track of all database modifications
since the last checkpoint. It’s the bridge between two checkpoints.

If you have Monday’s checkpoint and the journal that was collected from then until
Wednesday, those two files (Monday’s checkpoint plus the accumulated journal) contain
the same information as a checkpoint made Wednesday. If a disk crash were to cause
corruption in your Perforce database on Wednesday at noon, for instance, you could still
restore the database even though Wednesday’s checkpoint hadn’t yet been made.

To restore your database, you only need to keep the most recent journal file accessible, but
it doesn’t hurt to archive old journals with old checkpoints, should you ever need to
restore to an older checkpoint.

Enabling journaling on Windows

For Windows installations, if you used the installer (perforce.exe) to install a Perforce
server or service, journaling is turned on for you.

If you installed Perforce without the installer (for an example of when you might do this,
see “Multiple Perforce services under Windows” on page 147), you do not have to create
an empty file named journal in order to enable journaling under a manual installation on
Windows.

Enabling journaling on UNIX

For UNIX installations, journaling is also automatically enabled.

If P4JOURNAL is left unset (and no location is specified on the command line), the default
location for the journal is $P4ROOT/journal.

After enabling journaling

Be sure to create a new checkpoint with p4d -jc (and -J journalfile if required)
immediately after enabling journaling. Once journaling is enabled, you’ll need make
regular checkpoints to control the size of the journal file. An extremely large current
journal is a sign that a checkpoint is needed.

Warning! By default, the current journal filename is journal, and the file resides in
the P4ROOT directory. However, if a disk failure corrupts that root directory,
your journal file will be inaccessible too.

We strongly recommend that you set up your system so that the journal is
written to a filesystem other than the P4ROOT filesystem. To do this, specify
the name of the journal file in the environment variable P4JOURNAL or use
the -J filename flag when starting p4d.
28 Perforce 2009.2 System Administrator’s Guide

Chapter 2: Supporting Perforce: Backup and Recovery
Every checkpoint after your first checkpoint starts a new journal file and renames the old
one. The old journal is renamed to journal.n, where n is a sequence number, and a new
journal file is created.

By default, the journal is written to the file journal in the server root directory (P4ROOT).
Because there is no sure protection against disk crashes, the journal file and the Perforce
server root should be located on different filesystems, ideally on different physical drives.
The name and location of the journal can be changed by specifying the name of the journal
file in the environment variable P4JOURNAL or by providing the -J filename flag to p4d.

Whether you use P4JOURNAL or the -J journalfile option to p4d, the journal filename
can be provided either as an absolute path, or as a path relative to the server root.

Example: Specifying journal files

Starting the server with:

requires that you either checkpoint with:

or set P4JOURNAL to /usr/local/perforce/journalfile and use

If your P4JOURNAL environment variable (or command-line specification) doesn’t match the
setting used when you started the Perforce server, the checkpoint is still created, but the
journal is neither saved nor truncated. This is highly undesirable!

Warning! If you create a journal file with the -J filename flag, make sure that
subsequent checkpoints use the same file, or the journal will not be
properly renamed.

$ p4d -r $P4ROOT -p 1666 -J /usr/local/perforce/journalfile

Perforce Server starting...

$ p4d -r $P4ROOT -J /usr/local/perforce/journalfile -jc

Checkpointing to checkpoint.19...
Saving journal to journal.18...
Truncating /usr/local/perforce/journalfile...

$ p4d -r $P4ROOT -jc

Checkpointing to checkpoint.19...
Saving journal to journal.18...
Truncating /usr/local/perforce/journalfile...
Perforce 2009.2 System Administrator’s Guide 29

Chapter 2: Supporting Perforce: Backup and Recovery
Disabling journaling

To disable journaling, stop the server, remove the existing journal file (if it exists), set the
environment variable P4JOURNAL to off, and restart p4d without the -J flag.

Versioned files

Your checkpoint and journal files are used to reconstruct the Perforce database files only.
Your versioned files are stored in directories under the Perforce server root, and must be
backed up separately.

Versioned file formats

Versioned files are stored in subdirectories beneath your server root. Text files are stored
in RCS format, with filenames of the form filename,v. There is generally one RCS-format
(,v) file per text file. Binary files are stored in full in their own directories named
filename,d. Depending on the Perforce file type selected by the user storing the file,
there can be one or more archived binary files in each filename,d directory. If more than
one file resides in a filename,d directory, each file in the directory refers to a different
revision of the binary file, and is named 1.n, where n is the revision number.

Perforce also supports the AppleSingle file format for Macintosh. These files are stored on
the server in full and compressed, just like other binary files. They are stored in the Mac’s
AppleSingle file format; if need be, the files can be copied directly from the server root,
uncompressed, and used as-is on a Macintosh.

Because Perforce uses compression in the depot file tree, do not assume compressibility of
the data when sizing backup media. Both text and binary files are either compressed by
the Perforce server (denoted by the .gz suffix) before storage, or they are stored
uncompressed. At most installations, if any binary files in the depot subdirectories are
being stored uncompressed, they were probably incompressible to begin with. (For
example, many image, music, and video file formats are incompressible.)

Backing up after checkpointing

In order to ensure that the versioned files reflect all the information in the database after a
post-crash restoration, the db.* files must be restored from a checkpoint that is at least as
old as (or older than) your versioned files. For this reason, create the checkpoint before
backing up the versioned files in the depot directory or directories.

Although your versioned files can be newer than the data stored in your checkpoint, it is
in your best interest to keep this difference to a minimum; in general, you’ll want your
backup script to back up your versioned files immediately after successfully completing a
checkpoint.
30 Perforce 2009.2 System Administrator’s Guide

Chapter 2: Supporting Perforce: Backup and Recovery
Backup procedures

To back up your Perforce server, perform the following steps as part of your nightly
backup procedure.

1. Verify the integrity of your server and add MD5 digests and file length metadata to
any new files:

p4 verify //...

You might want to use the -q (quiet) option with p4 verify. If called with the -q
option, p4 verify produces output only when errors are detected.

The p4 verify command recomputes the MD5 signatures of all of your archived
files and compares them with those stored when the files were first stored, and that
all files known to Perforce exist in the depot subdirectories.

By running p4 verify before the backup, you ensure that you create and store
checksums and file length metadata for any files new to the depot since your last
backup, and that this information is stored as part of the backup you’re about to
make.

Regular use of p4 verify is good practice not only because it enables you to spot any
server corruption before a backup, but also because it gives you the ability, following
a crash, to determine whether or not the files restored from your backups are in good
condition.

2. Make a checkpoint by invoking p4d with the -jc (journal-create) flag, or by using the
p4 admin command. Use one of:

p4d -jc

or:
p4 admin checkpoint

Note For large installations, p4 verify might take some time to run.
Furthermore, the database is locked when p4 verify is running, which
prevents most other Perforce commands from being used. Administrators
of large sites might choose to perform p4 verify on a weekly basis, rather
than a nightly basis.

For more about the p4 verify command, see “Verifying files by signature”
on page 47.
Perforce 2009.2 System Administrator’s Guide 31

Chapter 2: Supporting Perforce: Backup and Recovery
Because p4d locks the entire database when making the checkpoint, you do not
generally have to stop your Perforce server during any part of the backup procedure.

3. Ensure that the checkpoint has been created successfully before backing up any files.
(After a disk crash, the last thing you want to discover is that the checkpoints you’ve
been backing up for the past three weeks were incomplete!)

You can tell that the checkpoint command has completed successfully by examining
the error code returned from p4d -jc or by observing the truncation of the current
journal file.

4. Once the checkpoint has been created successfully, back up the checkpoint file, the
old journal file, and your versioned files. (In most cases, you don’t actually need to
back up the journal, but it is usually good practice to do so.)

You never need to back up the db.* files. Your latest checkpoint and journal contain
all the information necessary to re-create them. More significantly, a database

Note If your site is very large (say, several gigabytes of db.* files), creating a
checkpoint might take a considerable length of time.

Under such circumstances, you might want to defer checkpoint creation
and journal truncation until times of low system activity. You might, for
instance, archive only the journal file in your nightly backup and only
create checkpoints and roll the journal file on a weekly basis.

Note There are rare instances (for instance, users obliterating files during
backup, or submitting files on Windows servers during the file backup
portion of the process) in which your versioned file tree can change during
the interval between the time the checkpoint was taken and the time at
which the versioned files are backed up by the backup utility.

Most sites are unaffected by these issues. Having the Perforce server
available on a 24/7 basis is generally a benefit worth this minor risk,
especially if backups are being performed at times of low system activity.

If, however, the reliability of every backup is of paramount importance,
consider stopping the Perforce server before checkpointing, and restart the
server only after the backup process has completed. Doing so will eliminate
any risk of the system state changing during the backup process.
32 Perforce 2009.2 System Administrator’s Guide

Chapter 2: Supporting Perforce: Backup and Recovery
restored from db.* files is not guaranteed to be in a state of transactional integrity. A
database restored from a checkpoint is.

Recovery procedures

If the database files become corrupted or lost either because of disk errors or because of a
hardware failure such as a disk crash, the database can be re-created with your stored
checkpoint and journal.

There are many ways in which systems can fail. Although this guide cannot address all
failure scenarios, it can at least provide a general guideline for recovery from the two most
common situations, specifically:

• corruption of your Perforce database only, without damage to your versioned files

• corruption to both your database and versioned files.

The recovery procedures for each failure are slightly different and are discussed
separately in the following two sections.

If you suspect corruption in either your database or versioned files, contact Perforce
technical support.

Database corruption, versioned files unaffected

If only your database has been corrupted, (that is, your db.* files were on a drive that
crashed, but you were using symbolic links to store your versioned files on a separate
physical drive), you need only re-create your database.

You will need:

• The last checkpoint file, which should be available from the latest P4ROOT directory
backup

Windows On Windows, if you make your system backup while the Perforce server is
running, you must ensure that your backup program doesn’t attempt to
back up the db.* files.

If you try to back up the db.* files with a running server, Windows locks
them while the backup program backs them up. During this brief period,
the Perforce server is unable to access the files; if a user attempts to perform
an operation that would update the file, the server can fail.

If your backup software doesn’t allow you to exclude the db.* files from
the backup process, stop the server with p4 admin stop before backing up,
and restart the server after the backup process is complete.
Perforce 2009.2 System Administrator’s Guide 33

Chapter 2: Supporting Perforce: Backup and Recovery
• The current journal file, which should be on a separate filesystem from your P4ROOT
directory, and which should therefore have been unaffected by any damage to the
filesystem where your P4ROOT directory was held

You will not need:

• Your backup of your versioned files; if they weren’t affected by the crash, they’re
already up to date

To recover the database

1. Stop the current instance of p4d:
p4 admin stop

(You must be a Perforce superuser to use p4 admin.)

2. Rename (or move) the database (db.*) files:
mv your_root_dir/db.* /tmp

There can be no db.* files in the $P4ROOT directory when you start recovery from a
checkpoint. Although the old db.* files are never used during recovery, it’s good
practice not to delete them until you’re certain your restoration was successful.

3. Invoke p4d with the -jr (journal-restore) flag, specifying your most recent
checkpoint and current journal. If you explicitly specify the server root ($P4ROOT), the
-r $P4ROOT argument must precede the -jr flag:

p4d -r $P4ROOT -jr checkpoint_file journal_file

This recovers the database as it existed when the last checkpoint was taken, and then
applies the changes recorded in the journal file since the checkpoint was taken.

Check your system

Your restoration is complete. See “Ensuring system integrity after any restoration” on
page 37 to make sure your restoration was successful.

Note If you’re using the -z (compress) option to compress your checkpoints
upon creation, you’ll have to restore the uncompressed journal file
separately from the compressed checkpoint.

That is, instead of using:

p4d -r $P4ROOT -jr checkpoint_file journal_file

you’ll use two commands:

p4d -r $P4ROOT -z -jr checkpoint_file.gz
p4d -r $P4ROOT -jr journal_file

You must explicitly specify the .gz extension yourself when using the -z
flag, and ensure that the -r $P4ROOT argument precedes the -jr flag.
34 Perforce 2009.2 System Administrator’s Guide

Chapter 2: Supporting Perforce: Backup and Recovery
Your system state

The database recovered from your most recent checkpoint, after you’ve applied the
accumulated changes stored in the current journal file, is up to date as of the time of
failure.

After recovery, both your database and your versioned files should reflect all changes
made up to the time of the crash, and no data should have been lost.

Both database and versioned files lost or damaged

If both your database and your versioned files were corrupted, you need to restore both
the database and your versioned files, and you’ll need to ensure that the versioned files
are no older than the restored database.

You will need:

• The last checkpoint file, which should be available from the latest P4ROOT directory
backup

• Your versioned files, which should be available from the latest P4ROOT directory backup

You will not need:

• Your current journal file.

The journal contains a record of changes to the metadata and versioned files that occurred
between the last backup and the crash. Because you’ll be restoring a set of versioned files
from a backup taken before that crash, the checkpoint alone contains the metadata useful
for the recovery, and the information in the journal is of limited or no use.

To recover the database

1. Stop the current instance of p4d:
p4 admin stop

(You must be a Perforce superuser to use p4 admin.)

2. Rename (or move) the corrupt database (db.*) files:
mv your_root_dir/db.* /tmp

The corrupt db.* files aren’t actually used in the restoration process, but it’s safe
practice not to delete them until you’re certain your restoration was successful.

3. Invoke p4d with the -jr (journal-restore) flag, specifying only your most recent
checkpoint:

p4d -r $P4ROOT -jr checkpoint_file

This recovers the database as it existed when the last checkpoint was taken, but does
not apply any of the changes in the journal file. (The -r $P4ROOT argument must
precede the -jr flag.)
Perforce 2009.2 System Administrator’s Guide 35

Chapter 2: Supporting Perforce: Backup and Recovery
The database recovery without the roll-forward of changes in the journal file brings
the database up to date as of the time of your last backup. In this scenario, you do not
want to apply the changes in the journal file, because the versioned files you restored
reflect only the depot as it existed as of the last checkpoint.

To recover your versioned files

4. After you recover the database, you then need to restore the versioned files according
to your system’s restoration procedures (for instance, the UNIX restore(1)
command) to ensure that they are as new as the database.

Check your system

Your restoration is complete. See “Ensuring system integrity after any restoration” on
page 37 to make sure your restoration was successful.

Files submitted to the depot between the time of the last system backup and the disk crash
will not be present in the restored depot.

Your system state

After recovery, your depot directories might not contain the newest versioned files. That
is, files submitted after the last system backup but before the disk crash might have been
lost on the server.

• In most cases, the latest revisions of such files can be restored from the copies still
residing in your users’ client workspaces.

Note Although “new” files (submitted to the depot but not yet backed up) do not
appear in the depot after restoration, it’s possible (indeed, highly probable!)
that one or more of your users will have up-to-date copies of such files
present in their client workspaces.

Your users can find such files by using the following Perforce command to
examine how files in their client workspaces differ from those in the depot.
If they run...

p4 diff -se

...they’ll be provided with a list of files in their workspace that differ from
the files Perforce believes them to have. After verifying that these files are
indeed the files you want to restore, you may want to have one of your
users open these files for edit and submit the files to the depot in a
changelist.
36 Perforce 2009.2 System Administrator’s Guide

Chapter 2: Supporting Perforce: Backup and Recovery
• In a case where only your versioned files (but not the database, which might have
resided on a separate disk and been unaffected by the crash) were lost, you might also
be able to make a separate copy of your database and apply your journal to it in order
to examine recent changelists to track down which files were submitted between the
last backup and the disk crash.

In either case, contact Perforce Technical Support for further assistance.

Ensuring system integrity after any restoration

After any restoration, it’s wise to run p4 verify to ensure that the versioned files are at
least as new as the database:

p4 verify -q //...

This command verifies the integrity of the versioned files. The -q (quiet) option tells the
command to produce output only on error conditions. Ideally, this command should
produce no output.

If any versioned files are reported as MISSING by the p4 verify command, you’ll know
that there is information in the database concerning files that didn’t get restored. The
usual cause is that you restored from a checkpoint and journal made after the backup of
your versioned files (that is, that your backup of the versioned files was older than the
database).

If (as recommended) you’ve been using p4 verify as part of your backup routine, you
can run p4 verify on the server after restoration to reassure yourself that your
restoration was successful.

If you have any difficulties restoring your system after a crash, contact Perforce Technical
Support for assistance.
Perforce 2009.2 System Administrator’s Guide 37

Chapter 2: Supporting Perforce: Backup and Recovery
38 Perforce 2009.2 System Administrator’s Guide

Chapter 3 Administering Perforce:
Superuser Tasks
This chapter describes basic tasks associated with day-to-day Perforce administration and
advanced Perforce configuration issues related to cross-platform development issues,
migration of Perforce servers from one machine to another, and working with remote and
local depots.

Most of the tasks described in this chapter requires that you have Perforce superuser
(access level super) or administrator (access level admin) privileges as defined in the
Perforce protections table. For more about controlling Perforce superuser access, and
protections in general, see “Administering Perforce: Protections” on page 81.

Release 2004.2 of Perforce introduced a new authentication mechanism and a server-
configurable security setting to govern password strength requirements and
authentication method policy. For details, see “Authentication methods: passwords and
tickets” on page 39 and “Server security levels” on page 41.

Basic Perforce Administration

Tasks commonly performed by Perforce administrators and superusers include:

• User maintenance tasks, including resetting passwords, creating users, disabling the
automatic creation of users, and cleaning up files left open by former users

• Administrative operations, including setting the server security level, obliterating files
to reclaim disk space, editing submitted changelists, verifying server integrity, defining
file types to control Perforce’s file type detection mechanism, and the use of the -f flag
to force operations

Authentication methods: passwords and tickets

Perforce supports two methods of authentication: password-based and ticket-based.

Warning Although ticket-based authentication provides a more secure
authentication mechanism than password-based authentication, it does
not encrypt network traffic between client workstations and the Perforce
server.

If you are accessing Perforce over an insecure network, use a third-party
tunneling solution (for example, ssh or a VPN) regardless of the
authentication method you choose.
Perforce 2009.2 System Administrator’s Guide 39

Chapter 3: Administering Perforce: Superuser Tasks
How password-based authentication works

Password-based authentication is stateless; once a password is correctly set, access is
granted for indefinite time periods. Prior to Release 2004.2, the password-based
authentication mechanism did not enforce password strength or existence requirements.

The concept of the server security level, introduced in Release 2004.2, enables
administrators to enforce password strength and existence requirements. See “Server
security levels” on page 41 for details.

Password based authentication is supported at security levels 0, 1, and 2.

How ticket-based authentication works

Ticket-based authentication is based on time-limited tickets that enable users to connect to
Perforce servers. Tickets are stored in the file specified by the P4TICKETS environment
variable. If this variable is not set, tickets are stored in %USERPROFILE%\p4tickets.txt on
Windows, and in $HOME/.p4tickets on UNIX and other operating systems. Tickets are
managed automatically by 2004.2 and later Perforce client programs.

Tickets have a finite lifespan, after which they cease to be valid. By default, tickets are
valid for 12 hours (43200 seconds). To set different ticket lifespans for groups of users, edit
the Timeout: field in the p4 group form for each group. The timeout value for a user in
multiple groups is the largest timeout value (including unlimited, but ignoring unset)
for all groups of which a user is a member. To create a ticket that does not expire, set the
Timeout: field to unlimited.

Although tickets are not passwords, Perforce servers accept valid tickets wherever users
can specify Perforce passwords. This behavior provides the security advantages of ticket-
based authentication with the ease of scripting afforded by password authentication.
Ticket-based authentication is supported at all server security levels, and is required at
security level 3.

Logging in to Perforce

To use ticket-based authentication, get a ticket by logging in with the p4 login command:
p4 login

You are prompted for your password, and a ticket is created for you in your ticket file.
You can extend your ticket’s lifespan by calling p4 login while already logged in. If you
run p4 login while logged in, your ticket’s lifespan is extended by 1/3 of its initial
timeout setting, subject to a maximum of your initial timeout setting.

By default, Perforce tickets are valid for your IP address only. If you have a shared home
directory that is used on more than one machine, you can log in to Perforce from both
machines by using the command:

p4 login -a

to create a ticket in your home directory that is valid from all IP addresses.
40 Perforce 2009.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
Logging out of Perforce

To log out of Perforce from one machine by removing your ticket, use the command:
p4 logout

The entry in your ticket file is removed. If you have valid tickets for the same Perforce
server, but those tickets exist on other machines, those tickets remain present (and you
remain logged in) on those other machines.

If you are logged in to Perforce from more than one machine, you can log out of Perforce
from all machines from which you were logged in by using the command:

p4 logout -a

All of your Perforce tickets are invalidated and you are logged out.

Determining ticket status

To see if your current ticket (that is, for your IP address, user name, and P4PORT setting) is
still valid, use the command:

p4 login -s

If your ticket is valid, the length of time for which it will remain valid is displayed.

To display all tickets you currently have, use the command:
p4 tickets

The contents of your ticket file are displayed.

Server security levels

Perforce superusers can configure server-wide password usage requirements, password
strength enforcement, and supported methods of user/server authentication by setting
the security counter. To change the security counter, issue the command:

p4 counter -f security seclevel

where seclevel is 0, 1, 2, or 3. After setting the counter, stop and restart the server.

Choosing a server security level

The default security level is 0: passwords are not required, and password strength is not
enforced.

To ensure that all users have passwords, use security level 1. Users of old client programs
can still enter weak passwords.

To ensure that all users have strong passwords, use security level 2. Old Perforce software
continues to work, but users of old Perforce client software must change their password to
a strong password by using a Perforce client program at Release 2003.2 or above.

To require that all users have strong passwords, and to require the use of session-based
authentication, use security level 3 and current Perforce client software.
Perforce 2009.2 System Administrator’s Guide 41

Chapter 3: Administering Perforce: Superuser Tasks
Level 0 corresponds to pre-2003.2 server operation. Levels 1 and 2 were designed for
support of legacy client software. Level 3 affords the highest degree of security.

The Perforce server security levels and their effects on the behavior of Perforce client
programs are defined below.

Security
level

Server behavior

0
(or unset)

Legacy support: passwords are not required. If passwords are used,
password strength is not enforced.

Users with passwords can use either their P4PASSWD setting or the p4 login
command for ticket-based authentication.

Users of old Perforce client programs are unaffected.

1 Strong passwords are required for users of post-2003.2 Perforce client
programs, but existing passwords are not reset.

Pre-2003.2 Perforce client programs can set passwords with p4 passwd or in
the p4 user form, but password strength is not enforced.

Users with passwords can use either their P4PASSWD setting or the p4 login
command for ticket-based authentication.

2 All unverified strength passwords must be changed.

Users of pre-2003.2 client programs cannot set passwords.

Users of client programs at release 2003.2 or higher must use p4 passwd
and enter their passwords at the prompt. Setting passwords with the p4
user form or the p4 passwd -O oldpass -P newpass command is
prohibited.

On Windows, passwords are no longer stored in (or read from) the registry.
(Storing P4PASSWD as an environment variable is supported, but passwords
set with p4 set P4PASSWD are ignored.)

Users who have set strong passwords with a 2003.2 or higher Perforce client
program can use either their P4PASSWD setting for password-based
authentication, or the p4 login command for ticket-based authentication.

3 All password-based authentication is rejected.

Users must use ticket-based authentication (p4 login).

If you have scripts that rely on passwords, use p4 login to create a ticket
valid for the user running the script, or use p4 login -p to display the
value of a ticket that can be passed to Perforce commands as though it were
a password (that is, either from the command line, or by setting P4PASSWD to
the value of the valid ticket).
42 Perforce 2009.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
Password strength

Certain combinations of server security level and Perforce client software releases require
users to set “strong” passwords. A password is considered strong if it is at least eight
characters long, and at least two of the following are true:

• The password contains uppercase letters.

• The password contains lowercase letters.

• The password contains nonalphabetic characters.

For example, the passwords a1b2c3d4, A1B2C3D4, aBcDeFgH are considered strong.

Resetting user passwords

If you are a Perforce superuser, you can reset a Perforce user’s password with:

• Release 99.1 and later:
p4 passwd username

When prompted, enter a new password for user username.

• Pre-99.1 releases:
p4 user -f username

Enter the password in the Password: field of the user specification form.

Creating users

By default, Perforce creates a new user record in its database whenever a command is
issued by a user that does not exist. Perforce superusers can also use the -f (force) flag to
create a new user as follows:

p4 user -f username

Fill in the form fields with the information for the user you want to create.

The p4 user command also has an option (-i) to take its input from the standard input
instead of the forms editor. To quickly create a large number of users, write a script that
reads user data, generates output in the format used by the p4 user form, and then pipes
each generated form to p4 user -i -f.

Preventing automatic creation of users

By default, Perforce creates a new user record in its database whenever a user invokes any
client command that can update the depot or its metadata.

To prevent Perforce from automatically creating users, all users must be defined in the
protections table. The easiest way to do this is to include all users in a Perforce group, and
to configure Perforce to grant access only to members of that group.
Perforce 2009.2 System Administrator’s Guide 43

Chapter 3: Administering Perforce: Superuser Tasks
Example: Setting up users in a group

A Perforce superuser wants to prevent the server from creating new users. He starts by
setting up a group called p4users for the three users currently at his site. He types:

p4 group p4users

and fills in the form as follows:

He then uses p4 protect to edit the protections table. The relevant line of the default
protections table looks like this:

This grants write permission to any user matching * (that is, to all users) from any host
(the second *) in all areas of the depot (that is, to files in //...).

Finally, the superuser uses p4 protect to change this line in the protections table to read:

The replacement protection grants only write access to users whose group matches
p4users. Members of p4users can use Perforce from any host (*) and have write access to
all areas of the depot (//...).

A Perforce Group Specification.
Group: The name of the group.
MaxResults: Limits the rows (unless 'unlimited' or 'unset') any
one operation can return to the client.
MaxScanRows:Limits the rows (unless 'unlimited' or 'unset') any
one operation can scan from any one database table.
MaxLockTime:Limits the time (in milliseconds, unless 'unlimited'
or 'unset') any one operation can lock any database
table when scanning data...
Timeout: Time (in seconds, unless 'unlimited' or 'unset') which
determines how long a ’p4 login’ session ticket
remains valid (default is 12 hours).
Subgroups: Other groups automatically included in this group.
Owners: Users allowed to change this group without requiring
super access permission.
Users: The users in the group. One per line.
Group: p4users
MaxResults: unset
MaxScanRows: unset
MaxLockTime: unset
Timeout: 43200
Subgroups:
Owners:
Users:

edk
lisag

write user * * //...

write group p4users * //...
44 Perforce 2009.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
As long as no other lines in the protections table grant (or deny!) permission to “all users”, all
users are now defined within p4 protect, and the server no longer automatically creates
new user entries when new users attempt to access Perforce.

For a more in-depth description of Perforce protections, see “Administering Perforce:
Protections” on page 81.

Deleting obsolete users

Each user on the system consumes one Perforce license. A Perforce administrator can free
up licenses by deleting users with the following command:

p4 user -d -f username

Before you delete a user, you must first revert (or submit) any files a user has open in a
changelist. If you attempt to delete a user with open files, Perforce displays an error
message to that effect.

Deleting a user frees a Perforce license but does not automatically update the group and
protections tables. Use p4 group and p4 protect to delete the user from these tables.

Adding new licensed users

Perforce licenses are controlled by a text file called license. This file resides in the server
root directory.

To add or update a license file, stop the Perforce Server, copy the license file into the
server root directory, and restart the Perforce Server.

As of Release 2006.2, you can update an existing license without shutting down the
Perforce Server, use p4 license -i to read the new license file from the standard input.

Most new license files obtained from Perforce can be installed with p4 license, except
for when the server IP address has changed. If the server IP address has changed, or if no
license file currently exists, you must still stop the Perforce Server, manually copy the
license file into place, and restart the Server.

Reverting files left open by obsolete users

If files have been left open by a nonexistent or obsolete user (for instance, a departing
employee), a Perforce administrator can revert the files by deleting the client workspace
specification in which the files were opened.

As an example, if the output of p4 opened includes:
//depot/main/code/file.c#8 - edit default change (txt) by jim@stlouis

you can delete the stlouis client workspace specification with:
p4 client -d -f stlouis
Perforce 2009.2 System Administrator’s Guide 45

Chapter 3: Administering Perforce: Superuser Tasks
Deleting a client workspace specification automatically reverts all files opened in that
workspace, deletes pending changelists associated with the workspace, and any pending
fix records associated with the workspace. Deleting a client workspace specification does
not affect any files in the workspace actually used by the workspace’s owner; the files can
still be accessed by other employees.

Reclaiming disk space by obliterating files

The depot is always growing, which is not always desirable: a user might have created
hundreds of unneeded files by means of an inadvertent branch or submit, or perhaps
there are directories of old files that are no longer in use. Because p4 delete merely
marks files as deleted in their head revisions, it cannot be used to free up disk space on the
server. This is where p4 obliterate can be useful.

Perforce administrators can use p4 obliterate filename to remove all traces of a file
from a depot, making the file indistinguishable from one that never existed in the first
place.

By default, p4 obliterate filename does nothing; it merely reports on what it would
do. To actually destroy the files, use p4 obliterate -y filename.

To destroy only one revision of a file, specify only the desired revision number on the
command line. For instance, to destroy revision 5 of a file, use:

p4 obliterate -y file#5

Warning! Use p4 obliterate with caution. This is the only command in Perforce
that actually removes file data.

Note The purpose of a software configuration management system is to enable
your site to maintain a history of what operations were performed on
which files. The p4 obliterate command defeats this purpose; as such, it
is intended only to be used to remove files that never belonged in the depot
in the first place, and not as part of a normal software development process.

Note also that p4 obliterate is computationally expensive; obliterating
files requires that the entire body of metadata be scanned per file argument.
Avoid using p4 obliterate during peak usage periods.

Warning! Do not use operating system commands (erase, rm, and their
equivalents) to remove files from the Perforce server root by hand.
46 Perforce 2009.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
Revision ranges are also acceptable. To destroy revisions 5 through 7 of a file, use:
p4 obliterate -y file#5,7

Deleting changelists and editing changelist descriptions

Perforce administrators can use the -f (force) flag with p4 change to change the
description, date, or user name of a submitted changelist. The syntax is p4 change -f
changenumber. This command presents the standard changelist form, but also enables
superusers to edit the changelist’s time, description, date, and associated user name.

You can also use the -f flag to delete any submitted changelists that have been emptied of
files with p4 obliterate. The full syntax is p4 change -d -f changenumber.

Example: Updating changelist 123 and deleting changelist 124

Use p4 change with the -f (force) flag:
p4 change -f 123
p4 change -d -f 124

The User: and Description: fields for change 123 are edited, and change 124 is deleted.

Verifying files by signature

Perforce administrators can use the p4 verify filenames command to validate stored
MD5 digests of each revision of the named files. The signatures created when users store
files in the depot can later be used to confirm proper recovery in case of a crash: if the
signatures of the recovered files match the previously saved signatures, the files were
recovered accurately. If a new signature does not match the signature in the Perforce
database for that file revision, Perforce displays the characters BAD! after the signature.

It is good practice to run p4 verify before performing your nightly system backups, and
to proceed with the backup only if p4 verify reports no corruption.

For large installations, p4 verify can take some time to run. Furthermore, the database is
locked when p4 verify is running, which prevents most other Perforce commands from
being used. Administrators of large sites might want to perform p4 verify on a weekly
basis, rather than a nightly basis.

If you ever see a BAD! signature during a p4 verify command, your database or
versioned files might be corrupt, and you should contact Perforce Technical Support.

Warning! If you intend to obliterate a revision range, be certain you’ve specified it
properly. If you fail to specify a revision range, all revisions of the file are
obliterated.

The safest way to use p4 obliterate is to use it without the -y flag until
you are certain the files and revisions are correctly specified.
Perforce 2009.2 System Administrator’s Guide 47

Chapter 3: Administering Perforce: Superuser Tasks
Verifying files during server upgrades

It is good practice to use p4 verify as follows before and after server upgrades:

1. Before the upgrade, run:
p4 verify -q //...

to verify the integrity of your server before the upgrade.

2. Take a checkpoint and copy the checkpoint and your versioned files to a safe place.

3. Perform the server upgrade.

4. After the upgrade, run:
p4 verify -q //...

to verify the integrity of your new system.

Defining filetypes with p4 typemap

By default, Perforce automatically determines if a file is of type text or binary based on
an analysis of the first 8192 bytes of a file. If the high bit is clear in each of the first 8192
bytes, Perforce assumes it to be text; otherwise, it is assumed to be binary.

Although this default behavior can be overridden by the use of the -t filetype flag, it’s
easy for users to overlook this consideration, particularly in cases where files’ types are
usually (but not always) detected correctly. Certain file formats, such as RTF (Rich Text
Format) and Adobe PDF (Portable Document Format), can start with a series of comment
fields or other textual data. If these comments are sufficiently long, such files can be
erroneously detected by Perforce as being of type text.

The p4 typemap command solves this problem by enabling system administrators to set
up a table that links Perforce file types with filename specifications. If an entry in the
typemap table matches a file being added, it overrides the file type that would otherwise
be assigned by the Perforce client program. For example, to treat all PDF and RTF files as
binary, use p4 typemap to modify the typemap table as follows:

The first three periods (“...”) in the specification are a Perforce wildcard specifying that
all files beneath the root directory are to be included in the mapping. The fourth period
and the file extension specify that the specification applies to files ending in .pdf (or
.rtf).

Typemap:
binary //....pdf
binary //....rtf
48 Perforce 2009.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
The following table lists recommended Perforce file types and modifiers for common file
extensions.

File type Perforce file type Description

.asp text Active server page file

.avi binary+F Video for Windows file

.bmp binary Windows bitmap file

.btr binary Btrieve database file

.cnf text Conference link file

.css text Cascading style sheet file

.doc binary Microsoft Word document

.dot binary Microsoft Word template

.exp binary+w Export file (Microsoft Visual C++)

.gif binary+F GIF graphic file

.htm text HTML file

.html text HTML file

.ico binary Icon file

.inc text Active Server include file

.ini text+w Initial application settings file

.jpg binary JPEG graphic file

.js text JavaScript language source code file

.lib binary+w Library file (several programming languages)

.log text+w Log file

.mpg binary+F MPEG video file

.pdf binary Adobe PDF file

.pdm text+w Sybase Power Designer file

.ppt binary Microsoft PowerPoint file

.xls binary Microsoft Excel file

.zip binary+F ZIP archive file
Perforce 2009.2 System Administrator’s Guide 49

Chapter 3: Administering Perforce: Superuser Tasks
Use the following p4 typemap table to map all of the file extensions to the Perforce file
types recommended in the preceding table.

If a file type requires the use of more than one file type modifier, specify the modifiers
consecutively. For example, binary+lFS10 refers to a binary file with exclusive-open (l),
stored in full (F) rather than compressed, and for which only the most recent ten revisions
are stored (S10).

For more information, see the p4 typemap page in the Perforce Command Reference.

Perforce File Type Mapping Specifications.
#
TypeMap: a list of filetype mappings; one per line.
Each line has two elements:
Filetype: The filetype to use on ’p4 add’.
Path: File pattern which will use this filetype.
See ’p4 help typemap’ for more information.

TypeMap:

text //....asp
binary+F //....avi
binary //....bmp
binary //....btr
text //....cnf
text //....css
binary //....doc
binary //....dot
binary+w //....exp
binary+F //....gif
text //....htm
text //....html
binary //....ico
text //....inc
text+w //....ini
binary //....jpg
text //....js
binary+w //....lib
text+w //....log
binary+F //....mpg
binary //....pdf
text+w //....pdm
binary //....ppt
binary //....xls
binary+F //....zip
50 Perforce 2009.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
Implementing sitewide pessimistic locking with p4 typemap

By default, Perforce supports concurrent development, but environments in which only
one person is expected to have a file open for edit at a time can implement pessimistic
locking by using the +l (exclusive open) modifier as a partial filetype. If you use the
following typemap, the +l modifier is automatically applied to all newly added files in
the depot:

If you use this typemap, any files your users add to the depot after you update your
typemap automatically have the +l modifier applied, and may only be opened for edit by
one user at a time. The typemap table applies only to new additions to the depot; after you
update the typemap table for sitewide exclusive open, files previously submitted without
+l must be opened for edit with p4 edit -t+l filename and resubmitted. Similarly,
users with files already open for edit must update their filetypes with p4 reopen -t+l
filename.

Forcing operations with the -f flag

Certain commands support the -f flag, which enables Perforce administrators and
superusers to force certain operations unavailable to ordinary users. Perforce
administrators can use this flag with p4 branch, p4 change, p4 client, p4 job, p4
label, and p4 unlock. Perforce superusers can also use it to override the p4 user
command. The usages and meanings of this flag are as follows.

Typemap:
+l //depot/...

Command Syntax Function

p4 branch p4 branch -f branchname Allows the modification
date to be changed while
editing the branch mapping

p4 branch -f -d branchname Deletes the branch, ignoring
ownership

p4 change p4 change -f [changelist#] Allows the modification
date to be changed while
editing the changelist
specification

p4 change -f changelist# Allows the description field
and username in a
committed changelist to be
edited

p4 change -f -d changelist# Deletes empty, committed
changelists
Perforce 2009.2 System Administrator’s Guide 51

Chapter 3: Administering Perforce: Superuser Tasks
p4 client p4 client -f clientname Allows the modification
date to be changed while
editing the client
specification

p4 client -f -d clientname Deletes the client, ignoring
ownership, even if the client
has opened files

p4 job p4 job -f [jobname] Allows the manual update
of read-only fields

p4 label p4 label -f labelname Allows the modification
date to be changed while
editing the label
specification

p4 label -f -d labelname Deletes the label, ignoring
ownership

p4 unlock p4 unlock -c changelist -f file Releases a lock (set with p4
lock) on an open file in a
pending numbered
changelist, ignoring
ownership

p4 user p4 user -f username Allows the update of all
fields, ignoring ownership

This command requires
super access.

p4 user -f -d username Deletes the user, ignoring
ownership

This command requires
super access.

Command Syntax Function
52 Perforce 2009.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
Advanced Perforce administration

Running Perforce through a firewall

Perforce clients communicate with a Perforce server using TCP/IP. The server listens for
connections at a specified port on the machine on which it’s running, and clients make
connections to that port.

The port on which the server listens is specified when the server is started. The number is
arbitrary, so long as it does not conflict with any other networking services and is greater
than 1024. The port number on the client machine is dynamically allocated.

A firewall is a network element that prevents any packets from outside a local (trusted)
network from reaching that local network. This is done at a low level in the network
protocol; any packets not coming from a trusted IP address are simply ignored.

In the following diagram, the Perforce client is on an untrusted part of the network. None
of its connection requests reach the machine with the Perforce server. Consequently, the
user running the client through the firewall is unable to use Perforce.

Secure shell

To solve this problem, you have to make the connection to the Perforce server from within
the trusted network. This can be done securely using a package called secure shell (ssh).

Secure shell (ssh) is meant to be a replacement for the UNIX rsh (remote shell) command,
which allows you to log into a remote system and execute commands on it. The “secure”
part of “secure shell” comes from the fact that the connection is encrypted, so none of the
data is visible while it passes through the untrusted network. With simple utilities like

the network
3710

(arbitrary port)

p4dboxuserbox

P4PORT=p4dbox:3710

3710

p4dboxfirewall

local, trusted
network

big, bad,
untrusted
network

“I’m listening, but nobody’s talking”

userbox

“Hey, where’d p4dbox go?”
Perforce 2009.2 System Administrator’s Guide 53

Chapter 3: Administering Perforce: Superuser Tasks
rsh, all traffic, even passwords, is unencrypted and visible to all intermediate hosts,
creating an unacceptable security hazard.

Secure shell is available for free in source form for a multitude of UNIX platforms from
http://www.openssh.com. This page also links to ports of ssh for OS/2 and Amiga, as
well as commercial implementations for Windows and Macintosh from Data Fellows
(http://www.datafellows.com) and SSH (http://www.ssh.com).

The OpenSSH FAQ can also be found online at the main site
(http://www.openssh.com/faq.html).

Solving the problem

Once you have ssh up and running, the simplest thing to do is to use it to log into the
firewall machine and run the Perforce client from the firewall. While it has the advantage
of simplicity, it’s a poor solution: you typically want your client files accessible on your
local machine, and of course, there’s no guarantee that your firewall machine will match
your development platform.

A good solution takes advantage of ssh’s ability to forward arbitrary TCP/IP connections.
By using ssh, you can make your Perforce client appear as though it’s connecting from the
firewall machine over the local (trusted) network. In reality, your client remains on your
local machine, but all packets from your local machine are first sent to the firewall
through the secure channel set up by ssh.

Suppose the Perforce server is on p4dbox.bigcorp.com, and the firewall machine is
called firewall.bigcorp.com. In our example, we’ll arbitrarily choose local port 4242,
and assume that the Perforce server is listening on port 3710.

Packets ultimately destined for your client’s port 4242 are first sent to the firewall, and
ssh forwards them securely to your client. Likewise, connections made to port 4242 of the
firewall machine will end up being routed to port 3710 of the Perforce server.

On UNIX, the ssh command on your own machine to set up and forward the TCP/IP
connection would be:

ssh -L 4242:p4dbox.bigcorp.com:3710 firewall.bigcorp.com

At this point, it might be necessary to provide a password to log into
firewall.bigcorp.com. Once the connection is established, ssh listens at port 4242 on

3710

p4dboxfirewall

local, trusted
network

ssh-based
encrypted
connection

userbox

4242

“Something at 4242 looks
“userbox:4242 <-> p4dbox:3710” “There’s a client at 3710!”like a Perforce server to me”
54 Perforce 2009.2 System Administrator’s Guide

http://www.ssh.com
http://www.datafellows.com
http://www.openssh.com
http://www.openssh.com/faq.html

Chapter 3: Administering Perforce: Superuser Tasks
the local machine, and forwards packets over its encrypted connection to
firewall.bigcorp.com; the firewall then forwards them by normal channels to port
3710 on p4dbox.bigcorp.com.

All that remains is to tell the Perforce client to use port 4242 by setting the environment
variable P4PORT to 4242.

Normally, setting P4PORT=4242 would normally indicate that we are trying to connect to a
Perforce server on the local machine listening at port 4242. In this case, ssh takes the role
of the Perforce server. Anything a client sends to port 4242 of the local machine is
forwarded by ssh to the firewall, which passes it to the real Perforce server at
p4dbox.bigcorp.com. Since all of this is transparent to the Perforce client, it doesn’t
matter whether the client is talking to an instance of ssh that’s forwarding traffic from
port 4242 of the local machine, or if it’s talking to a real Perforce server residing on the
local machine.

The only glitch is that there’s a login session you don’t normally want on the firewall
machine.

This can be solved by running the following command:
ssh -L 4242:p4dbox.bigcorp.com:3710 firewall.bigcorp.com -f sleep 9999999 -f

on the remote system.

This tells ssh on firewall.bigcorp.com to fork a long-running sleep command in the
background after the password prompt. Effectively, this sets up the ssh link and keeps it
up; there is no login session to terminate.

Finally, ssh can be configured to “do the right thing” so that it is unnecessary to type such
a long command with each session. The Windows version of ssh, for instance, has a GUI
to configure this.

One final concern: with port 4242 on the local machine now forwarded to a supposedly
secure server, your local machine is part of the trusted network; it is prudent to make sure
the local machine really is secure. The Windows version of ssh has an option to only
permit local connections to the forwarded port, which is a wise precaution; your machine
will be able to use port 4242, but a third party’s machine will be ignored.

Specifying IP addresses in P4PORT

Under most circumstances, your Perforce server’s P4PORT setting consists solely of a port
number. If you specify both an IP address and a port number in P4PORT when starting p4d,
the Perforce server ignores requests from any IP addresses other than the one specified in
P4PORT.
Perforce 2009.2 System Administrator’s Guide 55

Chapter 3: Administering Perforce: Superuser Tasks
Although this isn’t the default behavior, it can be useful. For instance, if you want to
configure p4d to listen only to a specific network interface or IP address, you can force
your Perforce server to ignore all nonlocal connection requests by setting
P4PORT=localhost:port.

Running from inetd on UNIX

Under a normal installation, the Perforce server is run on UNIX as a background process
that waits for connections from clients. To have p4d start up only when connections are
made to it, using inetd and p4d -i, add the following line to /etc/inetd.conf:

p4dservice stream tcp nowait username /usr/local/bin/p4d p4d -i -rp4droot

and then add the following line to /etc/services:
p4dservice nnnn/tcp

where:

• p4dservice is the service name you choose for this Perforce server

• /usr/local/bin is the directory holding your p4d binary

• p4droot is the root directory (P4DROOT) to use for this Perforce server (for example,
/usr/local/p4d)

• username is the UNIX user name to use for running this Perforce server

• nnnn is the port number for this Perforce server to use

The “extra” p4d on the /etc/inetd.conf line must be present; inetd passes this to the
OS as argv[0]. The first argument, then, is the -i flag, which causes p4d not to run in the
background as a daemon, but rather to serve the single client connected to it on
stdin/stdout. (This is the convention used for services started by inetd.)

This method is an alternative to running p4d from a startup script. It can also be useful for
providing special services; for example, at Perforce, we have a number of test servers
running on UNIX, each defined as an inetd service with its own port number.

There are caveats with this method:

• inetd may disallow excessive connections, so a script that invokes several thousand p4
commands, each of which spawns an instance of p4d via inetd can cause inetd to
temporarily disable the service. Depending on your system, you might need to
configure inetd to ignore or raise this limit.

• There is no easy way to disable the server, since the p4d executable is run each time;
disabling the server requires modifying /etc/inetd.conf and restarting inetd.
56 Perforce 2009.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
Case sensitivity and multiplatform development

Early (pre-97.2) releases of the Perforce server treated all filenames, pathnames, and
database entity names with case significance, whether the server was running on UNIX or
Windows.

For example, //depot/main/file.c and //depot/MAIN/FILE.C were treated as two
completely different files. This caused problems where users on UNIX were connecting to
a Perforce server running on Windows because the filesystem underlying the server could
not store files with the case-variant names submitted by UNIX users.

In release 97.3, the behavior was changed, and only the UNIX server supports case-
sensitive names. However, there are still some case-sensitivity problems that users can
encounter when sharing development projects across UNIX and Windows.

If you are running a pre-97.2 server on Windows, please contact support@perforce.com
to discuss upgrading your server and database.

For current releases of the server:

• The Perforce server on UNIX supports case-sensitive names.

• The Perforce server on Windows ignores case differences.

• Case is always ignored in keyword-based job searches, regardless of platform.

The following table summarizes these rules.

To find out what platform your Perforce server runs on, use p4 info.

Perforce server on UNIX

If your Perforce server is on UNIX, and you have users on both UNIX and Windows, your
UNIX users must be very careful not to submit files whose names differ only by case.
Although the UNIX server can support these files, when Windows users sync their
workspaces, they’ll find files overwriting each other.

Conversely, Windows users will have to be careful to use case consistently in filenames
and pathnames when adding new files. They might not realize that files added as
//depot/main/one.c and //depot/MAIN/two.c will appear in two different directories
when synced to a UNIX user’s workspace.

Case-sensitive UNIX server Windows server

Pathnames and filenames Yes No

Database entities (workspaces, labels, and so on.) Yes No

Job search keywords No No
Perforce 2009.2 System Administrator’s Guide 57

Chapter 3: Administering Perforce: Superuser Tasks
The UNIX Perforce server always respects case in client names, label names, branch view
names, and so on. Windows users connecting to a UNIX server should be aware that the
lowercased workstation names are used as the default names for new client workspaces.
For example, if a new user creates a client spec on a Windows machine named ROCKET, his
client workspace is named rocket by default. If he later sets P4CLIENT to ROCKET (or
Rocket), Perforce will tell him his client is undefined. He must set P4CLIENT to rocket (or
unset it) to use the client workspace he defined.

Perforce server on Windows

If your Perforce server is running on Windows, your UNIX users must be aware that their
Perforce server will store case-variant files in the same namespace.

For example, users who try something like this:
p4 add dir/file1
p4 add dir/file2
p4 add DIR/file3

should be aware that all three files will be stored in the same depot directory. The depot
pathnames and filenames assigned to the Windows server will be those first referenced.
(In this case, the depot pathname would be dir, and not DIR.)

Monitoring server activity

Use the p4 monitor command to obtain information about Perforce-related processes
running on your Perforce server machine.

Enabling process monitoring

Server process monitoring requires minimal system resources, but you must enable
process monitoring for p4 monitor to work. To enable process monitoring, set the
monitor counter as follows:

p4 counter -f monitor 1

After you set or change the monitor counter, you must stop and restart the Perforce
server for your change to take effect.

Enabling idle processes monitoring

By default, IDLE processes (often associated with custom applications based on the
Perforce API) are not included in the output of p4 monitor. To include idle processes in
the output of p4 monitor, use monitoring level 2.

p4 counter -f monitor 2

You must stop and restart the Perforce server for your change to take effect.

Listing running processes

To list the processes running on the Perforce server, use the command:
p4 monitor show
58 Perforce 2009.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
By default, each line of p4 monitor output looks like this:
pid status owner hh:mm:ss command [args]

where pid is the UNIX process ID (or Windows thread ID), status is R or T depending on
whether the process is running or marked for termination, owner is the Perforce user
name of the user who invoked the command, hh:mm:ss is the time elapsed since the
command was called, and command and args are the command and arguments as
received by the Perforce server. For example:

To show the arguments with which the command was called, use the -a (arguments) flag:

To obtain more information about user environment, use the -e flag. The -e flag produces
output of the form:

pid client IP-address status owner workspace hh:mm:ss command [args]

where client is the Perforce client program (and version string or API protocol level),
IP-address is the IP address of the user’s Perforce client program, and workspace is the
name of the calling user’s current client workspace setting. For example:

By default, all user names and (if applicable) client workspace names are truncated at 10
characters, and lines are truncated at 80 characters. To disable truncation, use the -l (long-
form) option:

Only Perforce administrators and superusers can use the -a, -l, and -e options.

$ p4 monitor show
74612 R qatool 00:00:47 job
78143 R edk 00:00:01 filelog
78207 R p4admin 00:00:00 monitor

$ p4 monitor show -a
74612 R qatool 00:00:48 job job004836
78143 R edk 00:00:02 filelog //depot/main/src/proj/file1.c //dep
78208 R p4admin 00:00:00 monitor show -a

$ p4 monitor show -e
74612 p4/2005.2 192.168.10.2 R qatool buildenvir 00:00:47 job
78143 192.168.10.4 R edk eds_elm 00:00:01 filelog
78207 p4/2005.2 192.168.10.10 R p4admin p4server 00:00:00 monitor

$ p4 monitor show -a -l
74612 R qatool 00:00:50 job job004836
78143 R edk 00:00:04 filelog //depot/main/src/proj/file1.c //dep
ot/main/src/proj/file1.mpg
78209 R p4admin 00:00:00 monitor show -a -l
Perforce 2009.2 System Administrator’s Guide 59

Chapter 3: Administering Perforce: Superuser Tasks
Marking processes for termination

If a process on a Perforce Server is consuming excessive resources, administrators and
superusers can mark it for termination with p4 monitor terminate.

Once marked for termination, the process is terminated by the Perforce server within
50000 scan rows or lines of output. Only processes that have been running for at least ten
seconds can be marked for termination.

Users of terminated processes are notified with the following message:
Command has been canceled, terminating request

Processes that involve the use of interactive forms (such as p4 job or p4 user) can also be
marked for termination, but data entered by the user into the form is preserved. Some
commands, such as p4 obliterate, cannot be terminated.

Clearing entries in the process table

Under some circumstances (for example, a Windows machine is rebooted while certain
Perforce commands are running), entries may remain in the process table even after the
process has terminated.

Perforce administrators and superusers can remove these erroneous entries from the
process table altogether with p4 monitor clear pid, where pid is the erroneous process
ID. To clear all processes from the table (running or not), use p4 monitor clear all.

Running processes removed from the process table with p4 monitor clear continue to
run to completion.

Perforce server trace and tracking flags

To turn on command tracing or performance tracking, specify the appropriate -v
subsystem=value flag to the p4d startup command. Use P4LOG or the -L logfile flag to
specify the log file. For instance:

p4d -r /usr/perforce -v server=1 -p 1666 -L /usr/perforce/logfile

Before you activate logging, make sure that you have adequate disk space.

Setting server debug levels on a Perforce server (p4d) has no effect on the debug level of a
Perforce Proxy (p4p) process, and vice versa.

In most cases, the Perforce server command tracing and tracking flags are useful only to
system administrators working with Perforce Technical Support to diagnose or
investigate a problem.

Windows When running Perforce as a Windows service, use the p4 set command to
set P4DEBUG as a registry variable. You can also set these trace flags when
running p4d.exe as a server process from the command line.
60 Perforce 2009.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
Command tracing

The server command trace flags and their meanings are as follows.

For command tracing, output appears in the specified log file, showing the date, time,
username, IP address, and command for each request processed by the server.

Performance tracking

The Perforce Server produces diagnostic output in the server log whenever user
commands exceed certain predetermined thresholds of resource usage. Performance
tracking is enabled by default, and if P4DEBUG is unset (or the tracking flag is not specified
on the command line), the tracking level is computed based on the number of users in the
license file.

The precise format of the tracking output is undocumented and subject to change.

Trace flag Meaning

server=1 Logs server commands to the server log file.

(Requires server at release 98.1 or higher)

server=2 In addition to data logged at level 1, logs server command completion
and basic information on CPU time used. Time elapsed is reported in
seconds. On UNIX, CPU usage (system and user time) is reported in
milliseconds, as per getrusage().

(Requires server at release 2001.1 or higher)

server=3 In addition to data logged at level 2, adds usage information for
compute phases of p4 sync and p4 flush (p4 sync -k) commands.

(Requires server at release 2001.2 or higher)

Tracking flag Meaning

track=0 Turn off tracking.

track=1 Track all commands.

track=2 Track excess usage for a server with less than 10 users.

track=3 Track excess usage for a server with less than 100 users.

track=4 Track excess usage for a server with less than 1000 users.

track=5 Track excess usage for a server with more than 1000 users.
Perforce 2009.2 System Administrator’s Guide 61

Chapter 3: Administering Perforce: Superuser Tasks
Auditing user file access

As of Release 2006.1, the Perforce Server can log individual file accesses to an audit logfile.

Auditing is disabled by default, and is only enabled if P4AUDIT is set to point to the
location of the audit log file, or if the server is started with the -A auditlog flag.

When auditing is enabled, the server adds a line to the audit log file every time file content
is transferred from the server to the client. On an active server, the audit log file will grow
very quickly.

Lines in the audit log appear in the form:
date time user@client clientIP command file#rev

For example:

If a command is run on the machine that runs the Perforce Server, the clientIP is shown
as 127.0.0.1.

Moving a Perforce server to a new machine

The procedure for moving an existing Perforce server from one machine to another
depends on whether or not you’re moving between machines

• of identical architectures,

• of different architectures using the same text file (CR/LF) format, or

• of different architecture and different text file format.

Additional considerations apply if the new machine has a different IP address/hostname.

The Perforce server stores two types of data under the Perforce root directory: versioned
files and a database containing metadata describing those files. Your versioned files are the
ones created and maintained by your users, and your database is a set of Perforce-
maintained binary files holding the history and present state of the versioned files. In
order to move a Perforce server to a new machine, both the versioned files and the
database must be successfully migrated from the old machine to the new machine.

For more about the distinction between versioned files and database, as well as for an
overview of backup and restore procedures in general, see “Backup and recovery
concepts” on page 25.

$ tail -2 auditlog

2006/05/09 09:52:45 karl@nail 192.168.0.12 diff //depot/src/x.c#1
2006/05/09 09:54:13 jim@stone 127.0.0.1 sync //depot/inc/file.h#1
62 Perforce 2009.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
For more about moving a Perforce server from one machine to another, see also the
Perforce Tech Note at:

http://www.perforce.com/perforce/technotes/note010.html

Moving between machines of the same architecture

If the architecture of the two machines is the same (for example, SPARC/SPARC, or
x86/x86), the versioned files and database can be copied directly between the machines,
and you only need to move the server root directory tree to the new machine. You can use
tar, cp, xcopy.exe, or any other method. Copy everything in and under the P4ROOT
directory - the db.* files (your database) as well as the depot subdirectories (your
versioned files).

1. Back up your server (including a p4 verify before the backup) and take a
checkpoint.

2. On the old machine, stop p4d.

3. Copy the contents of your old server root (P4ROOT) and all its subdirectories on the
old machine into the new server root directory on the new machine.

4. Start p4d on the new machine with the desired flags.

5. Run p4 verify on the new machine to ensure that the database and your versioned
files were transferred correctly to the new machine.

(Although the backup, checkpoint, and subsequent p4 verify are not strictly necessary,
it’s always good practice to verify, checkpoint, and back up your system before any
migration and to perform a subsequent verification after the migration.)

Moving between different architectures that use the same text format

If the internal data representation (big-endian vs. little-endian) convention differs
between the two machines (for example, Linux-on-x86/SPARC, NT-on-Alpha/NT-on-
x86), but their operating systems use the same CR/LF text file conventions, you can still
simply move the server root directory tree to the new machine.

Although the versioned files are portable across architectures, the database, as stored in
the db.* files, is not. To transfer the database, you will need to create a checkpoint of your
Perforce server on the old machine and use that checkpoint to re-create the database on
the new machine. The checkpoint is a text file that can be read by a Perforce server on any
architecture. For more details, see “Creating a checkpoint” on page 26.

After you create the checkpoint, you can use tar, cp, xcopy.exe, or any other method to
copy the checkpoint file and the depot directories to the new machine. (You don’t need to
copy the db.* files, because they will be re-created from the checkpoint you took.)
Perforce 2009.2 System Administrator’s Guide 63

http://www.perforce.com/perforce/technotes/note010.html

Chapter 3: Administering Perforce: Superuser Tasks
1. On the old machine, use p4 verify to ensure that the database is in a consistent
state.

2. On the old machine, stop p4d.

3. On the old machine, create a checkpoint:
p4d -jc checkpointfile

4. Copy the contents of your old server root (P4ROOT) and all its subdirectories on the
old machine into the new server root directory on the new machine.

(To be precise, you don’t need to copy the db.* files, just the checkpoint and the
depot subdirectories. The db.* files will be re-created from the checkpoint. If it’s
more convenient to copy everything, then copy everything.)

5. On the new machine, if you copied the db.* files, be sure to remove them from the
new P4ROOT before continuing.

6. Re-create a new set of db.* files suitable for your new machine’s architecture from
the checkpoint you created:

p4d -jr checkpointfile

7. Start p4d on the new machine with the desired flags.

8. Run p4 verify on the new machine to ensure that the database and your versioned
files were transferred correctly to the new machine.

Moving between Windows and UNIX

In this case, both the architecture of the system and the CR/LF text file convention are
different. You still have to create a checkpoint, copy it, and re-create the database on the
new platform, but when you move the depot subdirectories containing your versioned
files, you also have to address the issue of the differing linefeed convention between the
two platforms.

Depot subdirectories can contain both text and binary files. The text files (in RCS format,
ending with “,v”) and binary files (directories of individual binary files, each directory
ending with “,d”) need to be transferred in different ways in order to translate the line
endings on the text files while leaving the binary files unchanged.
64 Perforce 2009.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
As with all other migrations, be sure to run p4 verify after your migration.

Contact Perforce Technical Support for assistance when migrating a Perforce server from
Windows to UNIX.

Changing the IP address of your server

If the IP address of the new machine is not the same as that of the old machine, you will
need to update any IP-address-based protections in your protections table. See
“Administering Perforce: Protections” on page 81 for information on setting protections
for your Perforce server.

If you are a licensed Perforce customer, you will also need a new license file to reflect the
server’s new IP address. Contact Perforce Technical Support to obtain an updated license.

Changing the hostname of your server

If the hostname of the new machine serving Perforce is different from that of its
predecessor, your users must change their P4PORT settings. If the old machine is being
retired or renamed, consider setting an alias for the new machine to match that of the old
machine, so that your users won’t have to change their P4PORT settings.

Using multiple depots

New depots are defined with the command p4 depot depotname. Depots can be defined
as local, remote, or spec depots.

Just as Perforce servers can host multiple depots, Perforce client programs can access files
from multiple depots. These other depots can exist on the Perforce server normally
accessed by the Perforce client, or they can reside within other, remote, Perforce servers.

Local depots reside on the Perforce server normally accessed by the user’s Perforce client
program. When using local depots, a Perforce client program communicates with the
Perforce server specified by the user’s P4PORT environment variable or equivalent setting.

When using remote depots, the user’s Perforce client program uses the Perforce server
specified by the user’s P4PORT environment variable or equivalent setting as a means to
access a second, remote, Perforce server. The local Perforce server communicates with the

Warning Windows is a case-insensitive operating system. Files that differ by case
only on a UNIX server will occupy the same namespace when transferred
to a Windows machine. For instance, files Makefile and file makefile on
a UNIX server will appear to be the same file on a Windows machine.

Due to the risk of data loss due to case collision, migrations from UNIX
servers to Windows are not supported.
Perforce 2009.2 System Administrator’s Guide 65

Chapter 3: Administering Perforce: Superuser Tasks
remote Perforce server in order to access a subset of its files. Remote depots are primarily
used to facilitate the sharing of code (that is, “code drops”) between separate
organizations, and are discussed in “Remote depots and distributed development” on
page 68.

Remote depots are not a generalized solution for load-balancing or network access
problems. To support shared development or to deal with load-balancing or network
access problems, see “Perforce Proxy” on page 151.

The spec depot is a special case. If present, the spec depot tracks changes to user-edited
forms such as client workspace specifications, jobs, branch mappings, and so on. There
can be only one spec depot per server.

Naming depots

Depot names share the same namespace as branches, client workspaces, and labels. For
example, //rel2 refers uniquely to one of the depot rel2, the workspace rel2, the branch
rel2, or the label rel2; you can’t simultaneously have both a depot and a label named
rel2.

Defining new local depots

To define a new local depot (that is, to create a new depot in the current Perforce server
namespace), call p4 depot with the new depot name, and edit only the Map: field in the
resulting form.

For example, to create a new depot called book with the files stored in the local Perforce
server namespace in a root subdirectory called book (that is, $P4ROOT/book), enter the
command p4 depot book, and fill in the resulting form as follows:

The Address: and Suffix: fields do not apply to local depots and are ignored.

By default, the Map: field on a local depot points to a depot directory matching the depot
name, relative to the server root (P4ROOT) setting for your server. To store a depot’s
versioned files on another volume or drive, specify an absolute path in the Map: field. This
path need not be under P4ROOT. Absolute paths in the Map: field on Windows must be
specified with forward slashes (for instance, d:/newdepot/) in the p4 depot form.

Depot: book
Type: local
Address: local
Suffix: .p4s
Map: book/...
66 Perforce 2009.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
Enabling versioned specifications with the spec depot

In order for your users to retrieve change histories of user-edited forms, you must enable
versioned specifications. The spec depot can have any name, but it must be of type spec,
and there can only be one spec depot per server. (If you already have a spec depot,
attempting to create another one results in an error message.)

After you have enabled versioned specs by creating the spec depot, all user-generated
forms (such as client workspace specifications, jobs, branch mappings, and so on) are
automatically archived as text files in the spec depot. Filenames within the spec depot are
automatically generated by the server, and are represented in Perforce syntax as follows:

//specdepotname/formtype/objectname[suffix]

Creating the spec depot

To create a spec depot named //spec, enter p4 depot spec, and fill in the resulting form
as follows:

The Address: field does not apply to spec depots and is ignored.

Using a Suffix: is optional, but specifying a file extension for objects in the spec depot
simplifies usability for users of graphical client programs such as P4V, because users can
associate the suffix used for Perforce specifications with their preferred text editor. The
default suffix for these files is .p4s.

For example, if you create a spec depot named spec, and use the default suffix of .p4s,
your users can see the history of changes to job000123 by using the command

p4 filelog //spec/job/job000123.p4s

or by using P4V to review changes to job000123.p4s in whatever editor is associated
with the .p4s file extension on their workstation.

Populating the spec depot with current forms

After you create a spec depot, you can populate it with the p4 admin updatespecdepot
command. This command causes the Perforce Server to archive stored forms (specifically,
client, depot, branch, label, typemap, group, user, and job forms) into the spec depot.

To archive all current forms, use the -a flag:
p4 admin updatespecdepot -a

Depot: spec
Type: spec
Address: local
Map: spec/...
Suffix: .p4s
Perforce 2009.2 System Administrator’s Guide 67

Chapter 3: Administering Perforce: Superuser Tasks
To populate the spec depot with only one type of form (for instance, extremely large sites
might elect to update only one table at a time), use the -s flag and specify the form type
on the command line. For example:

p4 admin updatespecdepot -s job

In either case, only those forms that have not yet been archived are added to the spec
depot; after the spec depot is created, you only need to use p4 admin updatespecdepot
once.

Listing depots

To list all depots known to the current Perforce server, use the p4 depots command.

Deleting depots

To delete a depot, use p4 depot -d depotname.

To delete a depot, it must be empty; you must first obliterate all files in the depot with p4
obliterate.

For local and spec depots, p4 obliterate deletes the versioned files as well as all their
associated metadata. For remote depots, p4 obliterate erases only the locally held client
and label records; the files and metadata still residing on the remote server remain intact.

Before you use p4 obliterate, and especially if you’re about to use it to obliterate all files
in a depot, read and understand the warnings in “Reclaiming disk space by obliterating
files” on page 46.

Remote depots and distributed development

Remote depots are designed to support shared code, not shared development. They enable
independent organizations with separate Perforce installations to integrate changes
between Perforce installations. Briefly:

• A “remote depot” is a depot on your Perforce server of type remote. It acts as a pointer
to a depot of type “local” that resides on a second Perforce server.

• A user of a remote depot is typically a build engineer or handoff administrator
responsible for integrating software between separate organizations.

• Control over what files are available to a user of a remote depot resides with the
administrator of the remote server, not the users of the local server.

• See “Restricting access to remote depots” on page 72 for security requirements.
68 Perforce 2009.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
When to use remote depots

Perforce is designed to cope with the latencies of large networks and inherently supports
users with client workspaces at remote sites. A single Perforce installation is ready, out of
the box, to support a shared development project, regardless of the geographic
distribution of its contributors.

Partitioning joint development projects into separate Perforce installations does not
improve throughput, and usually only complicates administration. If your site is engaged
in distributed development (that is, developers in multiple sites working on the same
body of code), it is usually preferable to set up a Perforce installation with all code in
depots resident on one Perforce server, and to cache frequently accessed files at each
development site with Perforce Proxy.

If, however, your organization regularly imports or exports material from other
organizations, you might want to consider using Perforce’s remote depot functionality to
streamline your code drop procedures.

How remote depots work

The following diagram illustrates how Perforce client programs use a user’s default
Perforce server to access files in a depot hosted on another Perforce server.

In this example, an administrator of a Perforce server at oak:1234 is retrieving a file from
a remote server at pine:1818.

P4PORT=oak:1234

1234

1818
oak

pine

Depot name: depot
Type: local
Address: subdir
Map: depot/...

Depot name: from-pine
Type: remote
Address: pine:1818
Map: //depot/outbound/...

Depot name: depot
Type: local
Address: subdir
Map: depot/...

//depot/outbound/file.c

...ask pine:1818 for it...//from-pine isn’t local...

p4 integ //from-pine/file.c //depot/codedrops/file.c

user
Perforce 2009.2 System Administrator’s Guide 69

Chapter 3: Administering Perforce: Superuser Tasks
Although it is possible to permit individual developers to sync files from remote depots
into their client workspaces, this is generally an inefficient use of resources.

The preferred technique for using remote depots is for your organization’s build or
handoff administrator to integrate files from a remote depot into an area of your local
depot. After the integration, your developers can access copies of the files from the local
depot into which the files were integrated.

To accept a code drop from a remote depot, create a branch in a local depot from files in a
remote depot, and then integrate changes from the remote depot into the local branch.
This integration is a one-way operation; you cannot make changes in the local branch and
integrate them back into the remote depot. The copies of the files integrated into your
Perforce installation become the responsibility of your site’s development team; the files
on the depot remain under the control of the development team at the other Perforce
installation.

Restrictions on remote depots

Prior to Release 99.2, remote depots were accessible only by Perforce servers running at
the same release levels. At Release 99.2 and higher, remote depots are interoperable
between release levels.

Remote depots facilitate the sharing of code between organizations (as opposed to the
sharing of development within a single organization). Consequently, access to remote
depots is restricted to read-only operations, and server metadata (information about client
workspaces, changelists, labels, and so on) cannot be accessed using remote depots.

Using remote depots for code drops

Performing a code drop requires coordination between two organizations, namely the site
receiving the code drop and the site providing the code drop. In most cases, the following
three things must be configured:

• The Perforce administrator at the site receiving the code drop must create a remote
depot on his or her Perforce server that points to the site providing the code drop.

This is described in “Defining remote depots” on page 71.

• The Perforce administrator at the site providing the code drop should configure his or
her Perforce server to allow the recipient site’s remote depot to access the providing
site’s Perforce server.

This is described in “Restricting access to remote depots” on page 72.

• The configuration manager or integration manager at the receiving site must integrate
the desired files from the remote depot into a local depot under his or her control.

This is described in “Receiving a code drop” on page 73.
70 Perforce 2009.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
Defining remote depots

To define a new remote depot:

1. Create the depot with p4 depot depotname.

2. Set the Type: to remote.

3. Direct your Perforce server to contact the remote Perforce server by providing the
remote server’s name and listening port in the Address: field.

A remote server’s host and port are specified in the Address: field just as though it
were a P4PORT setting.

4. Set the Map: field to map into the desired portion of the remote server’s namespace.

For remote depots, the mapping contains a subdirectory relative to the remote depot
namespace. For example, //depot/outbound/... maps to the outbound
subdirectory of the depot named depot hosted on the remote server.

The Map: field must contain a single line pointing to this subdirectory, specified in
depot syntax, and containing the “...” wildcard on its right side.

If you are unfamiliar with client views and mappings, see the P4 User’s Guide for
general information about how Perforce mappings work.

5. The Suffix: field does not apply to remote depots; ignore this field.

In order for anyone on your site to access files in the remote depot, the administrator of
the remote server must grant read access to user remote to the depots and subdirectories
within the depots specified in the Map: field.

Example: Defining a remote depot

Lisa is coordinating a project and wants to provide a set of libraries to her developers from a
third-party development shop. The third-party development shop uses a Perforce server on
host pine that listens on port 1818. Their policy is to place releases of their libraries on their
server’s single depot depot under the subdirectory outbound.

Lisa creates a new depot from which she can access the code drop; she’ll call this depot from-
pine; she’d type p4 depot from-pine and fill in the form as follows:

This creates a remote depot called from-pine on Lisa’s Perforce server; this depot (//from-
pine) maps to the third party’s depot’s namespace under its outbound subdirectory.

Depot: from-pine
Type: remote
Address: pine:1818
Map: //depot/outbound/...
Perforce 2009.2 System Administrator’s Guide 71

Chapter 3: Administering Perforce: Superuser Tasks
Restricting access to remote depots

Remote depots are always accessed by a virtual user named remote. This virtual user
does not consume a Perforce license.

By default, all the files on any Perforce server can be accessed remotely. To limit or
eliminate remote access to a particular server, use p4 protect to set permissions for user
remote on that server. Perforce recommends that administrators deny access to user
remote across all files and all depots by adding the following permission line in the p4
protect table:

list user remote * -//...

Since remote depots can only be used for read access, it is not necessary to remove write
or super access to user remote.

Example security configuration

Using the two organizations described in “Receiving a code drop” on page 73, a basic set
of security considerations for each site would include:

On the local (oak) site:

• Deny access to //from-pine to all users. Developers at the oak site have no need to
access files on the pine server by means of the remote depot mechanism.

• Grant read access to //from-pine to your integration or build managers. The only user
at the oak site who requires access the //from-pine remote depot is the user (in this
example, adm) who performs the integration from the remote depot to the local depot.

To accomplish this, the oak Perforce administrator should include the following lines to
the p4 protect table:

On the remote (pine) site, access to code residing on pine is entirely the responsibility of
the pine server’s administrator. At a minimum, this administrator should:

• Preemptively deny access to user remote across all depots from all IP addresses:

Adding these lines to the p4 protect table is sound practice for any Perforce
installation whether its administrator intends to use remote depots or not.

• Grant read access to user remote to only those areas of the pine server into which code
drops are to be placed. In this example, outgoing code drops are published in the
//depot/outbound/... subdirectory on the pine server.

list user * * -//from-pine/...
read user adm * //from-pine/...

list user remote * -//...
72 Perforce 2009.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
• Grant read access for user remote only to the IP address of the Perforce servers
authorized to receive code drops. If oak’s IP address is 192.168.41.2, the pine
Perforce administrator should add the following to the p4 protect table:

Receiving a code drop

To perform a handoff or code drop between two Perforce installations:

1. Developers on pine:1818 complete work on a body of code for delivery.

2. The build or release manager on pine:1818 branches the deliverable code into an
area of pine:1818 intended for outbound code drops. In this example, the released
code is branched to //depot/outbound/...

3. A Perforce administrator at oak:1234 configures a remote depot called //from-pine
on the oak server. This remote depot contains a Map: field that directs the oak server
to the //depot/outbound area of pine:1818.

4. Upon notification of the release’s availability, a build or release manager at oak:1234
performs the code drop by integrating files in the //from-pine/... remote depot
into a suitable area of the local depot, such as //depot/codedrops/pine.

5. Developers at oak:1234 can now use the pine organization’s code, now hosted
locally under //depot/codedrops/pine. Should patches be required to pine’s code,
oak developers can make such patches under //depot/codedrops/pine. The pine
group retains control over its code.

read user remote 192.168.41.2 //depot/outbound/...

P4PORT=oak:1234

oak:1234 pine:1818

p4 integrate //from-pine/... //depot/codedrops/pine/...

adm

//from-pine/...

//depot/codedrops/...

remote depot on oak

local depot on oak

//depot/outbound/...

local depot on pine

P4PORT=oak:1234
p4 sync //depot/codedrops/...

dev
Perforce 2009.2 System Administrator’s Guide 73

Chapter 3: Administering Perforce: Superuser Tasks
Managing Unicode Installations

Overview

The Perforce server can be run in Unicode mode to activate support for:

• File names or directory names that contain Unicode characters, and

• Perforce identifiers (for example, user names) and specifications (for example,
changelist descriptions or jobs) that contain Unicode characters

In Unicode mode, the Perforce server also translates unicode files and metadata to the
character set configured for the client machine, and verifies that the unicode files and
metadata contain valid UTF-8 characters.

To configure a Unicode-mode server and the client machines that access it, you must:

• Put the server into Unicode mode, and

• Configure client machines to receive files and metadata correctly

The following sections tell you how to configure your Perforce installation to manage
such files.

Note If you need to manage textual files that contain Unicode characters, but
do not need the features listed above, you do not need to run your server
in Unicode mode. For such installations, assign the Perforce utf16 file
type to textual files that contain Unicode characters.

Note The Perforce server limits the lengths of strings used to index job
descriptions, specify filenames and view mappings, and identify client
workspaces, labels, and other objects. The most common limit is 2048
bytes. Because no basic Unicode character expands to more than three
bytes, you can ensure that no name exceeds the Perforce limit by limiting
the length of object names and view specifications to 682 characters for
Unicode-mode servers.
74 Perforce 2009.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
Configuring the Perforce Server

To enable the Perforce server to manage files and directories with names that include
Unicode characters, you must configure your server to run in Unicode mode. In Unicode
mode, the server:

• Supports Unicode in file and path names and Perforce metadata

• Translates metadata and unicode files according to the client machine’s P4CHARSET
environment variable, and

• Validates unicode files and metadata to ensure they are valid UTF-8

Enabling Unicode mode

To convert a server to Unicode mode, perform the following steps:

1. Stop the server by issuing the p4 admin stop command.

2. Create a server checkpoint, as described in the Perforce System Administrator’s Guide.

3. Convert the server to Unicode mode by invoking the server (p4d) and specifying the
-xi flag, for example:
p4d -xi -r <p4root>

The server verifies that its existing metadata contains only valid UTF-8 characters,
then creates and sets a protected counter called “unicode,” which is used as a flag to
ensure that the next time you start the server, it runs in Unicode mode. After
validating metadata and setting the counter, p4d exits and displays the following
message:
Server switched to Unicode mode.

4. Restart p4d, specifying server root and port as you normally do. The server now runs
in Unicode mode.

Note Converting a server to Unicode mode is a one-way operation! You cannot
restore a Unicode server to its previous state.

Note If the server detects invalid characters in its metadata, it displays error
messages such as the following:

Table db.job has 7 rows with invalid UTF8.

In case of such errors, contact Perforce Technical Support for instructions
on locating and correcting the invalid characters.
Perforce 2009.2 System Administrator’s Guide 75

Chapter 3: Administering Perforce: Superuser Tasks
Localizing server error messages

By default, the Perforce server informational and error messages are in English. You can
localize server messages. To ensure best results, contact Perforce Technical Support. The
following overview explains the localization process.

To localize the Perforce server messages:

1. Obtain the message file from Perforce Technical Support.

2. Edit the message file, translating messages to the target language. Each message
includes a two-character language code. Change the language code from en to your
own code for the target language. Do not change any of the key parameters or named
parameters (which are specified between percent signs, for example, %depot%). You
can change the order in which the parameters appear in the message.

Example of correct translation:

Original English
@pv@ 0 @db.message@ @en@ 822220833 @Depot '%depot%' unknown - use
'depot' to create it.@

Correct translation to Portuguese (note reordered parameters)
@pv@ 0 @db.message@ @pt@ 822220833 @Depot '%depot' inexistente -
use o comando 'depot' para criar-lo.@

3. Load the translated messages into the server by issuing the following command:
p4d -jr /fullpath/message.txt

To view localized messages, set the P4LANGUAGE environment variable on client machines
to the language code you assigned to the messages in the translated message file. For
example, to have your messages returned in Portuguese, set P4LANGUAGE to pt.

Configuring Client Machines

To correctly interoperate with Unicode-mode servers, you must configure client machines
by setting the P4CHARSET environment variable. Recommendation: use separate
workspaces for connections that require different character sets.

Note To view localized messages using P4V, you must set the LANG
environment variable to the language code that you use in the messages
file.

Warning! If you access your server from an incorrectly configured client machine,
you risk data corruption! For example, if you submit a file using a
P4CHARSET that is different than the one you used to sync it, the file is
translated in a way that is likely to be incorrect.
76 Perforce 2009.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
Setting P4CHARSET on Windows

To set P4CHARSET for all users on a workstation, you need Perforce administrator
privileges. Issue the following command:

p4 set -s P4CHARSET=character_set

To set P4CHARSET for the user currently logged in:
p4 set P4CHARSET=character_set

Your client machine must have a compatible True Type or Open Type font installed.

Setting P4CHARSET on Unix

You can set P4CHARSET from a command shell or in a startup script such as .kshrc,
.cshrc, or .profile. To determine the proper value for P4CHARSET, examine the setting
of the LANG or LOCALE environment variable. Common settings are as follows:

In general, for a Japanese installation, set P4CHARSET to eucjp, and for a European
installation, set P4CHARSET to iso8859-1.

The following table lists common settings for P4CHARSET.

For details about the UTF-8 and UTF-16 variants, see “UTF character sets and Byte Order
Markers (BOMs)” on page 78.

If $LANG is... Set P4CHARSET to

en_US.ISO_8859-1 iso8859-1

ja_JP.EUC eucjp

ja_JP.PCK shiftjis

Client language Client platform P4CHARSET

Japanese Windows (code page 932) shiftjis

UNIX (LOCALE setting varies) shiftjis or eucjp

High-ASCII

(recommended by ISO for use in
modern European languages)

Windows (code page 1252) winansi

UNIX (LOCALE setting varies) iso8859-1 or
iso8859-15

Classic MacOS (LOCALE setting
varies)

macosroman

Macintosh OS X utf8
Perforce 2009.2 System Administrator’s Guide 77

Chapter 3: Administering Perforce: Superuser Tasks
Windows: Determining your Code Page

A code page maps characters to values. On Windows machines, the value that you assign to
P4CHARSET depends on the code page that your client machine uses.

To determine the code page in use on a Windows machine, either:

• From the control panel, launch the Regional and Language Options control panel. On
the Languages tab, click the Details... button.

• From the command prompt, issue the chcp.exe command Your current code page is
displayed; for example:

Active code page: 1252

Note that the DOS environment can be assigned a code page that is different from the one
that is inherited by programs that are launched from the Start menu.

UTF character sets and Byte Order Markers (BOMs)

Byte order markers (BOMs) are used in UTF files to specify the order in which multibyte
characters are stored and to identify the file content as Unicode. Not all extended-
character file formats use BOMs.

To ensure that such files are translated correctly by the Perforce server when the files are
synced or submitted, you must set P4CHARSET to the character set that corresponds to the
format used on your client machine by the applications that access them, such as text
editors or IDEs. Typically the formats are listed when you save the file using the Save
As... menu option.

The following table lists valid settings for P4CHARSET for specifying byte order properties
of UTF files.

Client
Unicode
format

BOM? Big or
Little-
Endian

Set P4CHARSET to Remarks

UTF-8 No (N/A) utf8 Suppresses Perforce server
UTF-8 validation

Yes utf8-bom

No utf8unchecked

Yes utf8unchecked-bom

UTF-16 Yes Per client utf16 Synced with a BOM
according to the client
platform byte order

Yes Little utf16le Best choice for Windows
Unicode files
78 Perforce 2009.2 System Administrator’s Guide

Chapter 3: Administering Perforce: Superuser Tasks
If you set P4CHARSET to a UTF-8 setting, the Perforce server does not translate text files
when you sync or submit them. Starting with release 2006.1, Perforce verifies that such
files contain valid UTF-8 data.

Controlling translation of server output

If you set P4CHARSET to any utf16 or utf32 setting, you must set the P4COMMANDCHARSET
to a non utf16 or utf32 character set in which you want server output displayed. “Server
output” includes informational and error messages, diff output, and information returned
by reporting commands.

To specify P4COMMANDCHARSET on a per-command basis, use the -Q flag. For example, to
display all filenames in the depot, as translated using the winansi code page, issue the
following command:

p4 -Q winansi files //...

Diffing files

The p4 diff2 command, which compares two depot file revisions, can only compare files
that have the same Perforce file type.

Using other Perforce client applications

If you are using other Perforce client applications, note how they handle Unicode
environments:

Yes Big utf16be

No Per client utf16-nobom

No Little utf16le-nobom

No Big utf16be-nobom

UTF-32 Yes Per client utf32 Synced with a BOM
according to the client
platform byte order

Yes Little utf32le

Yes Big utf32be

No Per client utf32-nobom

No Little utf32le-nobom

No Big utf32be-nobom

Client
Unicode
format

BOM? Big or
Little-
Endian

Set P4CHARSET to Remarks
Perforce 2009.2 System Administrator’s Guide 79

Chapter 3: Administering Perforce: Superuser Tasks
• P4V (Perforce Visual Client): the first time you connect to a Unicode-mode server, you
are prompted to choose the character encoding. Thereafter, P4V retains your selection
in association with the connection.

• P4Web: when you invoke P4Web, you can specify the character encoding on the
command line using the -C flag. P4Web uses this flag when it sends commands to a
Unicode-mode server. This approach means that each instance of P4Web can handle a
single character encoding and that browser machines must have compatible fonts
installed.

• P4Merge: To configure the character encoding used by P4Merge, choose P4Merge’s
File>Character Encoding... menu option.

• IDE plug-ins (SCC-based): the first time you connect to a Unicode-mode server, you
are prompted to choose the character encoding. Thereafter, the plug-in retains your
selection in association with the connection.

Troubleshooting Client Machines in Unicode installations

To prevent file corruption, it is essential that you configure your client machine correctly.
The following section describes common problems and provides solutions.

• “Cannot Translate” error message

This message is displayed if your client machine is configured with a character set that
does not include characters that are being sent to it by the Perforce server. Your client
machine cannot display unmapped characters. For example, if P4CHARSET is set to
shiftjis and your depot contains files named using characters from the Japanese EUC
character set that do not have mappings in shift-JIS, you see the “Cannot translate”
error message when you list the files by issuing the p4 files command.

To ensure correct translation, do not use unmappable characters in Perforce user
specifications, client specifications, jobs, or file names.

• Strange display of file content

If you attempt to display an extended-character text file and see odd-looking text, your
client machine might lack the font required to display the characters in the file. Typical
symptoms of this problem include the display of question marks or boxes in place of
characters. To solve this problem, install the required font.
80 Perforce 2009.2 System Administrator’s Guide

Chapter 4 Administering Perforce:
Protections
Perforce provides a protection scheme to prevent unauthorized or inadvertent access to
files in the depot. The protections determine which Perforce commands can be run, on
which files, by whom, and from which host. You configure protections with the p4
protect command.

When should protections be set?

Run p4 protect immediately after installing Perforce for the first time. Before the first
call to p4 protect, every Perforce user is a superuser and thus can access and change
anything in the depot. The first time a user runs p4 protect, a protections table is created
that gives superuser access to the user from all IP addresses, and lowers all other users’
access level to write permission on all files from all IP addresses.

The Perforce protections table is stored in the db.protect file in the server root directory;
if p4 protect is first run by an unauthorized user, the depot can be brought back to its
unprotected state by removing this file.

Setting protections with p4 protect

The p4 protect form contains a single form field called Protections: that consists of
multiple lines. Each line in Protections: contains subfields, and the table looks like this:

Example: A sample protections table

(The five fields might not line up vertically on your screen; they are aligned here for
readability.)

Protections:
read user emily * //depot/elm_proj/...
write group devgrp * //...
write user * 195.3.24.0/24 -//...
write user joe * -//...
write user lisag * -//depot/...
write user lisag * //depot/doc/...
super user edk * //...

Note If your site is also using the Perforce Proxy, see “P4P and protections” on
page 155 to learn how to configure the protections table to require users at
remote sites to use the proxy.
Perforce 2009.2 System Administrator’s Guide 81

Chapter 4: Administering Perforce: Protections
The permission lines’ five fields

Each line specifies a particular permission; each permission is defined by five fields.

The meanings of these fields are shown in the following table.

Field Meaning

Access
Level

Which access level (list, read, open, write, review, admin, or super) or
specific right (=read, =open, =write, or =branch) is being granted or
denied.

Each permission level includes all the permissions above it (except for
review). Each permission right (denoted by an =) only includes the
specific right and not all of the lesser rights.

In general, one typically grants an access level to a user or group, after
which, if finer-grained control is required, one or more specific rights may
then be denied.

User/Group Does this protection apply to a user or a group? The value must be user
or group.

Name The user or group whose protection level is being defined. This field can
contain the * wildcard. A * by itself grants this protection to everyone, *e
grants this protection to every user (or group) whose username ends with
an e.

Host The TCP/IP address of the host being granted access. This must be
provided as the numeric address of the host in dotted quad notation (for
instance, 192.168.41.2).

CIDR notation is supported.

The host field can also contain the * wildcard. A * by itself means that this
protection is being granted for all hosts. The wildcard can be used as in
any string, so 192.168.41.* would be equivalent to 192.168.41.0/24,
and *3* would refer to any IP address with a 3 in it.

Because the client’s IP address is provided by the Internet Protocol itself,
the host field provides as much security as is provided by the network.

You cannot combine the * wildcard with CIDR notation, except at the
start of a line when controlling proxy matching. For more about
controlling access to a Perforce server via the Perforce Proxy, see “P4P and
protections” on page 155.

Files A file specification representing the files in the depot on which
permissions are being granted. Perforce wildcards can be used in the
specification.

“//...” means all files in all depots.
82 Perforce 2009.2 System Administrator’s Guide

Chapter 4: Administering Perforce: Protections
Access levels

The access level is described by the first value on each line. The permission levels and
access rights are:

Level Meaning

list Permission is granted to run Perforce commands that display file
metadata, such as p4 filelog. No permission is granted to view or
change the contents of the files.

read The user can run those Perforce commands that are needed to read files,
such as p4 client and p4 sync. The read permission includes list
access.

=read If this right is denied, users cannot use p4 print, p4 diff, or p4 sync on
files.

open Grants permission to read files from the depot into the client workspace,
and gives permission to open and edit those files. This permission does
not permit the user to write the files back to the depot. The open level is
similar to write, except that with open permission, users are not
permitted to run p4 submit or p4 lock.

The open permission includes read and list access.

=open If this right is denied, users cannot open files with p4 add, p4 edit, p4
delete, or p4 integrate.

write Permission is granted to run those commands that edit, delete, or add
files. The write permission includes read, list, and open access.

This permission allows use of all Perforce commands except protect,
depot, obliterate, and verify.

=write If this right is denied, users cannot submit open files.

=branch If this right is denied, users may not use files as a source for p4
integrate.

review A special permission granted to review daemons. It includes list and read
access, plus use of the p4 review command. Only review daemons
require this permission.
Perforce 2009.2 System Administrator’s Guide 83

Chapter 4: Administering Perforce: Protections
Each Perforce command is associated with a particular minimum access level. For
example, to run p4 sync or p4 print on a particular file, the user must have been granted
at least read access on that file. For a full list of the minimum access levels required to run
each Perforce command, see “How protections are implemented” on page 88.

The specific rights of =read, =open, =write, and =branch can be used to override the
automatic inclusion of lower access levels. This makes it possible to deny individual rights
without having to then re-grant lesser rights.

For example, if you want administrators to have the ability to run administrative
commands, but to deny them the ability to make changes in certain parts of the depot, you
could set up a permissions table as follows:

In this example, user joe can perform administrative functions, which may include
reading or listing files in //depot/build/..., but he is prohibited from opening files for
edit (or submitting any changes he may have open.) He can, however, continue to create
and modify files outside of the protected //depot/build/... area.

Which users should receive which permissions?

The simplest method of granting permissions is to give write permission to all users who
don’t need to manage the Perforce system and super access to those who do, but there are
times when this simple solution isn’t sufficient.

Read access to particular files should be granted to users who never need to edit those
files. For example, an engineer might have write permission for source files, but have
only read access to the documentation, and managers not working with code might be
granted read access to all files.

admin For Perforce administrators; grants permission to run Perforce commands
that affect metadata, but not server operation. Provides write and review
access plus the added ability to override other users’ branch mappings,
client specifications, jobs, labels, and change descriptions, as well as to
update the typemap table, verify and obliterate files, and customize job
specifications.

super For Perforce superusers; grants permission to run all Perforce commands.
Provides write, review, and admin access plus the added ability to create
depots and triggers, edit protections and user groups, delete users, reset
passwords, and shut down the server.

admin user joe * //...
=write user joe * -//depot/build/...
=open user joe * -//depot/build/...

Level Meaning
84 Perforce 2009.2 System Administrator’s Guide

Chapter 4: Administering Perforce: Protections
Because open access enables local editing of files, but does not permit these files to be
written to the depot, open access is granted only in unusual circumstances. You might
choose open access over write access when users are testing their changes locally but
when these changes should not be seen by other users. For instance, bug testers might
need to change code in order to test theories as to why particular bugs occur, but these
changes are not to be written to the depot. Perhaps a codeline has been frozen, and local
changes are to be submitted to the depot only after careful review by the development
team. In these cases, open access is granted until the code changes have been approved,
after which time the protection level is upgraded to write and the changes submitted.

Default protections

Before p4 protect is invoked, every user has superuser privileges. When p4 protect is
first run, two permissions are set by default. The default protections table looks like this:

This indicates that write access is granted to all users, on all hosts, to all files.
Additionally, the user who first invoked p4 protect (in this case, edk) is granted
superuser privileges.

Interpreting multiple permission lines

The access rights granted to any user are defined by the union of mappings in the
protection lines that match her user name and client IP address. (This behavior is slightly
different when exclusionary protections are provided and is described in the next section.)

Example: Multiple permission lines

Lisa, whose Perforce username is lisag, is using a workstation with the IP address
195.42.39.17. The protections file reads as follows:

The union of the first three permissions applies to Lisa. Her username is lisag, and she’s
currently using a client workspace on the host specified in lines 1 and 2. Thus, she can write
files located in the depot’s elm_proj/doc subdirectory but can only read other files. Lisa
tries the following:

She types p4 edit //depot/elm_proj/doc/elm-help.1, and is successful.

She types p4 edit //depot/elm_proj/READ.ME, and is told that she doesn’t have the
proper permission. She is trying to write to a file to which has only read access. She types p4

write user * * //...
super user edk * //...

read user * 195.42.39.17 //...
write user lisag 195.42.39.17 //depot/elm_proj/doc/...
read user lisag * //...
super user edk * //...
Perforce 2009.2 System Administrator’s Guide 85

Chapter 4: Administering Perforce: Protections
sync //depot/elm_proj/READ.ME, and this command succeeds, because only read
access is needed, and this is granted to her on line 1.

Lisa later switches to another machine with IP address 195.42.39.13. She types p4 edit
//depot/elm_proj/doc/elm-help.1, and the command fails; when she’s using this host,
only the third permission applies to her, and she only has read privileges.

Exclusionary protections

A user can be denied access to particular files by prefacing the fifth field in a permission
line with a minus sign (-). This is useful for giving most users access to a particular set of
files, while denying access to the same files to only a few users.

To use exclusionary mappings properly, it is necessary to understand some of their
peculiarities:

• When an exclusionary protection is included in the protections table, the order of the
protections is relevant: the exclusionary protection is used to remove any matching
protections above it in the table.

• No matter what access level is provided in an exclusionary protection, all access levels
for the matching files and IP addresses are denied. The access levels provided in
exclusionary protections are irrelevant. See “How protections are implemented” on
page 88 for a more detailed explanation.

Example: Exclusionary protections

An administrator has used p4 protect to set up protections as follows:

The first permission looks like it grants write access to all users to all files in all depots, but
this is overruled by later exclusionary protections for certain users.

The third permission denies Joe permission to access any file from any host. No subsequent
lines grant Joe any further permissions; thus, Joe has been effectively locked out of Perforce.

The fourth permission denies Lisa all access to all files on all hosts, but the fifth permission
gives her back write access on all files within a specific directory. If the fourth and fifth lines
were switched, Lisa would be unable to run any Perforce command.

write user * * //...
read user emily * //depot/elm_proj/...
super user joe * -//...
list user lisag * -//...
write user lisag * //depot/elm_proj/doc/...
86 Perforce 2009.2 System Administrator’s Guide

Chapter 4: Administering Perforce: Protections
Which lines apply to which users or files?

Use the p4 protects command to display the lines from the protections table that apply
to a user, group, or set of files.

With no options, p4 protects displays the lines in the protections table that apply to the
current user. If a file argument is provided, only those lines in the protection table that
apply to the named files are displayed. Using the -m flag displays a one-word summary of
the maximum applicable access level, ignoring exclusionary mappings.

Perforce superusers can use p4 protects -a to see all lines for all users, or p4 protects
-u user, -g group, or -h host flags to see lines for a specific user, group, or host IP
address.

Granting access to groups of users

Perforce groups simplify maintenance of the protections table. The names of users with
identical access requirements can be stored in a single group; the group name can then be
entered in the table, and all the users in that group receive the specified permissions.

Groups are maintained with p4 group, and their protections are assigned with p4
protect. Only Perforce superusers can use these commands.

Creating and editing groups

If p4 group groupname is called with a nonexistent groupname, a new group named
groupname is created. Calling p4 group with an existing groupname allows editing of the
user list for this group.

To add users to a group, add user names in the Users: field of the form generated by the
p4 group groupname command. User names are entered under the Users: field header;
each user name must be typed on its own line, indented. A single user can be listed in any
number of groups. Group owners are not necessarily members of a group; if a group
owner is to be a member of the group, the userid must also be added to the Users: field.

Groups can contain other groups as well as individual users. To add all users in a
previously defined group to the group you’re working with, include the group name in
the Subgroups: field of the p4 group form. User and group names occupy separate
namespaces, so groups and users can have the same names.

Groups and protections

To use a group with the p4 protect form, specify a group name instead of a user name in
any line in the protections table and set the value of the second field on the line to group
instead of user. All the users in that group are granted the specified access.
Perforce 2009.2 System Administrator’s Guide 87

Chapter 4: Administering Perforce: Protections
Example: Granting access to Perforce groups

This protections table grants list access to all members of the group devgrp, and super
access to user edk:

If a user belongs to multiple groups, one permission can override another. For instance, if
you use exclusionary mappings to deny access to an area of the depot to members of
group1, but grant access to the same area of the depot to members of group2, a user who
is a member of both group1 and group2 is either granted or denied access based on
whichever line appears last in the protections table. The actual permissions granted to a
specific user can be determined by replacing the names of all groups to which a particular
user belongs with the user’s name within the protections table and applying the rules
described earlier in this chapter.

Deleting groups

To delete a group, invoke
p4 group -d groupname

Alternately, invoke p4 group groupname and delete all the users from the group in the
resulting editor form. The group will be deleted when the form is closed.

How protections are implemented

This section describes the algorithm that Perforce follows to implement its protection
scheme. Protections can be used properly without reading this section; the material here is
provided to explain the logic behind the behavior described above.

Users’ access to files is determined by the following steps:

1. The command is looked up in the command access level table shown in “Access
Levels Required by Perforce Commands” on page 89 to determine the minimum
access level needed to run that command. In our example, p4 print is the command,
and the minimum access level required to run that command is read.

2. Perforce makes the first of two passes through the protections table. Both passes
move up the protections table, bottom to top, looking for the first relevant line.

The first pass determines whether the user is permitted to know if the file exists. This
search simply looks for the first line encountered that matches the user name, host IP
address, and file argument. If the first matching line found is an inclusionary
protection, the user has permission to at least list the file, and Perforce proceeds to
the second pass. Otherwise, if the first matching protection found is an exclusionary
mapping, or if the top of the protections table is reached without a matching

list group devgrp * //...
super user edk * //...
88 Perforce 2009.2 System Administrator’s Guide

Chapter 4: Administering Perforce: Protections
protection being found, the user has no permission to even list the file, and will
receive a message such as File not on client.

Example: Interpreting the order of mappings in the protections table

Suppose the protections table is as follows:

If Ed runs p4 print //depot/file.c, Perforce examines the protections table bottom to
top, and first encounters the last line. The files specified there don’t match the file that Ed
wants to print, so this line is irrelevant. The second-to-last line is examined next; this line
matches Ed’s user name, his IP address, and the file he wants to print; since this line is an
exclusionary mapping, Ed isn’t allowed to list the file.

3. If the first pass is successful, Perforce makes a second pass at the protections table;
this pass is the same as the first, except that access level is now taken into account.

If an inclusionary protection line is the first line encountered that matches the user
name, IP address, and file argument, and has an access level greater than or equal to
the access level required by the given command, the user is given permission to run
the command.

If an exclusionary mapping is the first line encountered that matches according to the
above criteria, or if the top of the protections table is reached without finding a
matching protection, the user has no permission to run the command, and receives a
message such as You don’t have permission for this operation.

Access Levels Required by Perforce Commands

• The following table lists the minimum access level required to run each command. For
example, because p4 add requires at least open access, you can run p4 add if you have
open, write, admin, or super access

write user * * //...
read user edk * -//...
read user edk * //depot/elm_proj/...

Command Access Level Notes

add open

admin super

annotate read

branch open The -f flag to override existing metadata or other
users’ data requires admin access.

branches list

browse none
Perforce 2009.2 System Administrator’s Guide 89

Chapter 4: Administering Perforce: Protections
change open The -f flag to override existing metadata or other
users’ data requires admin access.

changes list This command doesn’t operate on specific files.
Permission is granted to run the command if the user
has the specified access to at least one file in any depot.

client list The -f flag to override existing metadata or other
users’ data requires admin access.

clients list

counter review list access to at least one file in any depot is required
to view an existing counter’s value; review access is
required to change a counter’s value or create a new
counter.

counters list

dbschema super

delete open

depot super The -o flag to this command, which allows the form to
be read but not edited, requires only list access.

depots list This command doesn’t operate on specific files.
Permission is granted to run the command if the user
has the specified access to at least one file in any depot.

describe read The -s flag to this command, which does not display
file content, requires only list access.

diff read

diff2 read

dirs list

edit open

export super

filelog list

files list

fix open

fixes list This command doesn’t operate on specific files.
Permission is granted to run the command if the user
has the specified access to at least one file in any depot.

fstat list

Command Access Level Notes
90 Perforce 2009.2 System Administrator’s Guide

Chapter 4: Administering Perforce: Protections
group super The -o flag to this command, which allows the form to
be read but not edited, requires only list access.

The -a flag to this command requires only list access,
provided that the user is also listed as a group owner.

groups list This command doesn’t operate on specific files.
Permission is granted to run the command if the user
has the specified access to at least one file in any depot.

have list

help none

info none

integrate open The user must have open access on the target files and
read access on the source files.

integrated list

job open The -o flag to this command, which allows the form to
be read but not edited, requires only list access.

The -f flag to override existing metadata or other
users’ data requires admin access.

jobs list This command doesn’t operate on specific files.
Permission is granted to run the command if the user
has the specified access to at least one file in any depot.

jobspec admin The -o flag to this command, which allows the form to
be read but not edited, requires only list access.

label open This command doesn’t operate on specific files.
Permission is granted to run the command if the user
has the specified access to at least one file in any depot.

The -f flag to override existing metadata or other
users’ data requires admin access.

labels list This command doesn’t operate on specific files.
Permission is granted to run the command if the user
has the specified access to at least one file in any depot.

labelsync list

license super

lock write

login list

Command Access Level Notes
Perforce 2009.2 System Administrator’s Guide 91

Chapter 4: Administering Perforce: Protections
logout list

logtail super

monitor list super access is required to terminate or clear processes,
or to view arguments.

move open

obliterate admin

opened list

passwd list

print read

protect super

protects list super access is required to use the -a, -g, and -u flags.

reopen open

replicate super

resolve open

resolved open

revert list

review review This command doesn’t operate on specific files.
Permission is granted to run the command if the user
has the specified access to at least one file in any depot.

reviews list This command doesn’t operate on specific files.
Permission is granted to run the command if the user
has the specified access to at least one file in any depot.

set none

shelve write

sizes list

submit write

sync read

tag list

tickets none

triggers super

typemap admin The -o flag to this command, which allows the form to
be read but not edited, requires only list access.

Command Access Level Notes
92 Perforce 2009.2 System Administrator’s Guide

Chapter 4: Administering Perforce: Protections
Commands that list files, such as p4 describe, list only those files to which the user has
at least list access.

Some commands (for example, p4 change, when you edit a previously submitted
changelist) take a -f flag that can only be used by Perforce superusers. See “Forcing
operations with the -f flag” on page 51 for details.

unlock open The -f flag to override existing metadata or other
users’ data requires admin access.

unshelve write

user list This command doesn’t operate on specific files.
Permission is granted to run the command if the user
has the specified access to at least one file in any depot.

users list This command doesn’t operate on specific files.
Permission is granted to run the command if the user
has the specified access to at least one file in any depot.

verify admin

where list This command doesn’t operate on specific files.
Permission is granted to run the command if the user
has the specified access to at least one file in any depot.

Command Access Level Notes
Perforce 2009.2 System Administrator’s Guide 93

Chapter 4: Administering Perforce: Protections
94 Perforce 2009.2 System Administrator’s Guide

Chapter 5 Customizing Perforce:
Job Specifications
Perforce’s jobs feature enables users to link changelists to enhancement requests, problem
reports, and other user-defined tasks. Perforce also offers P4DTG (Perforce Defect
Tracking Gateway) and P4DTI (Perforce Defect Tracking Integration) as tools for
integrating third-party defect tracking tools with Perforce. See “Working with third-party
defect tracking systems” on page 103 for details.

The Perforce user’s use of p4 job is discussed in the P4 User’s Guide. This chapter covers
administrator modification of the jobs system.

Perforce’s default jobs template has five fields for tracking jobs. These fields are sufficient
for small-scale operations, but as projects managed by Perforce grow, the information
stored in these fields might be insufficient. To modify the job template, use the p4
jobspec command. You must be a Perforce administrator to use p4 jobspec.

This chapter discusses the mechanics of altering the Perforce job template.

The default Perforce job template

To understand how Perforce jobs are specified, consider the default Perforce job template.
The examples that follow in this chapter are based on modifications to the this template.

A job created with the default Perforce job template has this format:

Warning! Improper modifications to the Perforce job template can lead to corruption
of your server’s database. Recommendations, caveats, and warnings about
changes to job templates are summarized at the end of this chapter.

A Perforce Job Specification.
#
Job: The job name. ’new’ generates a sequenced job number.
Status: Either ’open’, ’closed’, or ’suspended’. Can be changed.
User: The user who created the job. Can be changed.
Date: The date this specification was last modified.
Description: Comments about the job. Required.
Job: new
Status: open
User: edk
Date: 2008/06/03 23:16:43
Description:

<enter description here>
Perforce 2009.2 System Administrator’s Guide 95

Chapter 5: Customizing Perforce: Job Specifications
The template from which this job was created can be viewed and edited with p4 jobspec.
The default job specification template looks like this:

The job template’s fields

There are four fields in the p4 jobspec form. These fields define the template for all
Perforce jobs stored on your server. The following table shows the fields and field types.

A Perforce Job Specification.
#
Updating this form can be dangerous!
See ’p4 help jobspec’ for proper directions.
Fields:

101 Job word 32 required
102 Status select 10 required
103 User word 32 required
104 Date date 20 always
105 Description text 0 required

Values:
Status open/suspended/closed

Presets:
Status open
User $user
Date $now
Description $blank

Comments:
A Perforce Job Specification.
#
Job: The job name. ’new’ generates a sequenced job number.
Status: Either ’open’, ’closed’, or ’suspended’. Can be changed.
User: The user who created the job. Can be changed.
Date: The date this specification was last modified.
Description: Comments about the job. Required.

Field / Field Type Meaning

Fields: A list of fields to be included in each job.

Each field consists of an ID#, a name, a datatype, a length, and a
setting.

Field names must not contain spaces.

Values: A list of fields whose datatype is select.

For each select field, you must add a line containing the
field’s name, a space, and its list of acceptable values, separated
by slashes.
96 Perforce 2009.2 System Administrator’s Guide

Chapter 5: Customizing Perforce: Job Specifications
The Fields: field

The p4 jobspec field Fields: lists the fields to be tracked by your jobs and specifies the
order in which they appear on the p4 job form.

The default Fields: field includes these fields:

Presets: A list of fields and their default values.

Values can be either literal strings or variables supported by
Perforce.

Comments: The comments that appear at the top of the p4 job form. They
are also used by P4V, the Perforce Visual Client, to display
tooltips.

Fields:
101 Job word 32 required
102 Status select 10 required
103 User word 32 required
104 Date date 20 always
105 Description text 0 required

Warning Do not attempt to change, rename, or redefine fields 101 through 105.
Fields 101 through 105 are used by Perforce and should not be deleted or
changed. Use p4 jobspec only to add new fields (106 and above) to your
jobs.

• Field 101 is required by Perforce and cannot be renamed nor deleted.
• Fields 102 through 105 are reserved for use by Perforce client programs.

Although it is possible to rename or delete these fields, it is highly
undesirable to do so. Perforce client programs might continue to set the
value of field 102 (the Status: field) to closed (or some other value
defined in the Presets: for field 102) upon changelist submission,
even if the administrator has redefined field 102 for use as a field that
does not contain closed as a permissible value, leading to unpredict-
able and confusing results.

Field / Field Type Meaning
Perforce 2009.2 System Administrator’s Guide 97

Chapter 5: Customizing Perforce: Job Specifications
Each field must be listed on a separate line. A field comprises the following five separate
descriptors.

Field
descriptor

Meaning

ID# A unique integer identifier by which this field is indexed. After a field
has been created and jobs entered into the system, the name of this field
can change, but the data becomes inaccessible if the ID number
changes.

ID numbers must be between 106 and 199.

Name The name of the field as it should appear on the p4 job form. No spaces
are permitted.

Datatype One of five datatypes (word, text, line, select, or date), as described
in the next table.

Length The recommended size of the field’s text box as displayed in P4V, the
Perforce Visual Client. To display a text box with room for multiple
lines of input, use a length of 0; to display a single line, enter the Length
as the maximum number of characters in the line.

The value of this field has no effect on jobs edited from the Perforce
command line, and it is not related to the actual length of the values
stored by the server.

Persistence Determines whether a field is read-only, contains default values, is
required, and so on. The valid values for this field are:

• optional: the field can take any value or can be deleted.
• default: a default value is provided, but it can be changed or

erased.
• required: a default is given; it can be changed but the field can’t be

left empty.
• once: read-only; the field is set once to a default value and is never

changed.
• always: read-only; the field value is reset to the default value when

the job is saved. Useful only with the $now variable to change job
modification dates, and with the $user variable to change the name
of the user who last modified the job.
98 Perforce 2009.2 System Administrator’s Guide

Chapter 5: Customizing Perforce: Job Specifications
Fields have the following five datatypes.

The Values: fields

You specify the set of possible values for any field of datatype select by entering lines in
the Values: field. Each line should contain the name of the field, a space, and the list of
possible values, separated by slashes.

In the default Perforce job specification, the Status: field is the only select field, and its
possible values are defined as follows:

The Presets: field

All fields with a persistence of anything other than optional require default values. To
assign a default value to a field, create a line in the jobspec form under Presets,
consisting of the field name to which you’re assigning the default value. Any single-line
string can be used as a default value.

The following variables are available for use as default values.

Field Type Explanation Example

word A single word (a string without spaces). A userid: edk

text A block of text that can span multiple lines A job’s description

line One line of text A user’s real name: Ed K.

select One of a set of values

Each field with datatype select must
have a corresponding line in the Values:
field entered into the job specification.

A job’s status. One of:
open/suspended/closed

date A date value The date and time of job
creation:
1998/07/15:13:21:46

bulk A block of text that can span multiple lines,
but which is not indexed for searching
with p4 jobs -e.

Alphanumeric data for
which text searches are not
expected.

Values:
Status open/suspended/closed

Variable Value

$user The Perforce user creating the job, as specified by the P4USER
environment or registry variable, or as overridden with p4 -u username
job
Perforce 2009.2 System Administrator’s Guide 99

Chapter 5: Customizing Perforce: Job Specifications
The lines in the Presets: field for the standard jobs template are:

Using Presets: to change default fix status

The Presets: entry for the job status field (field 102) has a special syntax for providing a
default fix status for p4 fix, p4 change -s, and p4 submit -s.

To change the default fix status from closed to some other fixStatus (assuming that
your preferred fixStatus is already defined as a valid select setting in the Values:
field), use the following syntax:

In order to change the default behavior of p4 fix, p4 change, and p4 submit to leave job
status unchanged after fixing a job or submitting a changelist, use the special fixStatus
of same. For example:

The Comments: field

The Comments: field supplies the comments that appear at the top of the p4 job form.
Because p4 job does not automatically tell your users the valid values of select fields,
which fields are required, and so on, your comments must tell your users everything they
need to know about each field.

Each line of the Comments: field must be indented by at least one tab stop from the left
margin, and must begin with the comment character #.

$now The date and time at the moment the job is saved

$blank The text <enter description here>

When users enter jobs, any fields in your jobspec with a preset of $blank
must be filled in by the user before the job is added to the system.

Presets:
Status open
User $user
Date $now
Description $blank

Presets:
Status openStatus,fix/fixStatus

Presets:
Status open,fix/same

Variable Value
100 Perforce 2009.2 System Administrator’s Guide

Chapter 5: Customizing Perforce: Job Specifications
The comments for the default p4 job template appear as:

These fields are also used by P4V, the Perforce Visual Client, to display tooltips.

Caveats, warnings, and recommendations

Although the material in this section has already been presented elsewhere in this
chapter, it is important enough to bear repeating. Please follow the guidelines presented
here when editing job specifications with p4 jobspec.

• Do not attempt to change, rename, or redefine fields 101 through 105. These fields are
used by Perforce and should not be deleted or changed. Use p4 jobspec only to add
new fields (106 and above) to your jobs.

Field 101 is required by Perforce and cannot be renamed nor deleted.

Fields 102 through 105 are reserved for use by Perforce client programs. Although it is
possible to rename or delete these fields, it is highly undesirable to do so. Perforce client
programs may continue to set the value of field 102 (the Status: field) to closed (or
some other value defined in the Presets: for field 102) upon changelist submission,
even if the administrator has redefined field 102 for use as a field that does not contain
closed as a permissible value, leading to unpredictable and confusing results.

• After a field has been created and jobs have been entered, do not change the field’s ID
number. Any data entered in that field through p4 job will be inaccessible.

• Field names can be changed at any time. When changing a field’s name, be sure to also
change the field name in other p4 jobspec fields that reference this field name. For
example, if you create a new field 106 named severity and subsequently rename it to
bug-severity, then the corresponding line in the jobspec’s Presets: field must be
changed to bug-severity to reflect the change.

• The comments that you write in the Comments: field are the only way to let your users
know the requirements for each field. Make these comments understandable and

Comments:
A Perforce Job Specification.
Job: The job name. ’new’ generates a sequenced job number.
Status: Either ’open’, ’closed’, or ’suspended’. Can be changed
User: The user who created the job. Can be changed.
Date: The date this specification was last modified.
Description: Comments about the job. Required.

Warning! Please read and understand the material in this section before you attempt
to edit a job specification.
Perforce 2009.2 System Administrator’s Guide 101

Chapter 5: Customizing Perforce: Job Specifications
complete. These comments are also used to display tooltips in P4V, the Perforce Visual
Client.

Example: a custom template

The following example shows a more complicated jobspec and the resulting job form:

A Custom Job Specification.
#
Updating this form can be dangerous!
See ’p4 help jobspec’ for proper directions.
Fields:

101 Job word 32 required
102 Status select 10 required
103 User word 32 required
104 Date date 20 always
111 Type select 10 required
112 Priority select 10 required
113 Subsystem select 10 required
114 Owned_by word 32 required
105 Description text 0 required

Values:
Status open/closed/suspended
Type bug/sir/problem/unknown
Priority A/B/C/unknown
Subsystem server/gui/doc/mac/misc/unknown

Presets:
Status open
User setme
Date $now
Type setme
Priority unknown
Subsystem setme
Owned_by $user
Description $blank

Comments:
Custom Job fields:
Job: The job name. ’new’ generates a sequenced job number.
Status: Either ’open’, ’closed’, or ’suspended’. Can be changed
User: The user who created the job. Can be changed.
Date: The date this specification was last modified.
Type: The type of the job. Acceptable values are
’bug’, ’sir’, ’problem’ or ’unknown’
Priority: How soon should this job be fixed?
Values are ’a’, ’b’, ’c’, or ’unknown’
Subsystem: One of server/gui/doc/mac/misc/unknown
Owned_by: Who’s fixing the bug
Description: Comments about the job. Required.
102 Perforce 2009.2 System Administrator’s Guide

Chapter 5: Customizing Perforce: Job Specifications
The order of the listing under Fields: in the p4 jobspec form determines the order in
which the fields appear to users in job forms; fields need not be ordered by numeric
identifier.

Running p4 job against the example custom jobspec displays the following job form:

Working with third-party defect tracking systems

Perforce currently offers two independent platforms to integrate Perforce with third-party
defect tracking systems. Both platforms allow information to be shared between
Perforce’s job system and external defect tracking systems.

P4DTG, the Perforce Defect Tracking Gateway, is a closed-source integrated platform that
includes both a graphical configuration editor and a replication engine.

P4DTI, Perforce Defect Tracking and Integration, is an open-source product available
under a FreeBSD-like license.

P4DTG, The Perforce Defect Tracking Gateway

The Perforce Defect Tracking Gateway (P4DTG) includes a graphical configuration editor
that you can use to control the relationship between Perforce jobs and the external system.
Propagation of the data between the two systems is coordinated by a replication engine.
P4DTG comes with a plug-in for HP Quality Center 9.0; the plug-in supports HP Quality
Center 9.0, 9.2, and 10.0.

Custom Job fields:
Job: The job name. ’new’ generates a sequenced job number.
Status: Either ’open’, ’closed’, or ’suspended’. Can be changed
User: The user who created the job. Can be changed.
Date: The date this specification was last modified.
Type: The type of the job. Acceptable values are
’bug’, ’sir’, ’problem’ or ’unknown’
Priority: How soon should this job be fixed?
Values are ’a’, ’b’, ’c’, or ’unknown’
Subsystem: One of server/gui/doc/mac/misc/unknown
Owned_by: Who’s fixing the bug
Description: Comments about the job. Required.

Job: new
Status: open
User: setme
Type: setme
Priority: unknown
Subsystem: setme
Owned_by: edk
Description:

<enter description here>
Perforce 2009.2 System Administrator’s Guide 103

Chapter 5: Customizing Perforce: Job Specifications
For more information, see the product page at:
http://www.perforce.com/perforce/products/p4dtg.html

Available from this page are an overview of P4DTG’s capabilities, the download for
P4DTG itself, and a link to the Perforce Defect Tracking Gateway Guide, which describes how
to install and configure the gateway to replicate data between a Perforce server and a
defect tracker.

P4DTI, Perforce Defect Tracking Integration

P4DTI is open source and available under a FreeBSD-like license, and can be extended to
other products; TeamTrack and Bugzilla are the first two integrations published. To get
started with P4DTI, see the P4DTI product information page at:

http://www.perforce.com/perforce/products/p4dti.html

Available from this page are the TeamTrack and Bugzilla implementations, an overview
of P4DTI’s capabilities, and a kit (including source code and developer documentation)
for building integrations with other products or in-house systems.

Building your own integration

Even if you don’t use Perforce’s integrations as your starting point, you can still use
Perforce’s job system as the interface between Perforce and your defect tracker.
Depending on the application, the interface you set up will consist of one or more of the
following:

• A trigger or script on the defect tracking system side that adds, updates, or deletes a job
in Perforce every time a bug is added, updated, or deleted in the defect tracking system.

The third-party system should generate the data and pass it to a script that reformats
the data to resemble the form used by a manual (interactive) invocation of p4 job. The
script can then pipe the generated form to the standard input of a p4 job -i command.

(The -i flag to p4 job is used when you want p4 job to read a job form directly from
the standard input, rather than using the interactive “form-and-editor” approach
typical of user operations. Further information on automating Perforce with the -i
option is available in the Perforce Command Reference.)

• A trigger on the Perforce side that checks changelists being submitted for any necessary
bug fix information.

• A Perforce review daemon that checks successfully submitted changelists for job fixes
and issues the appropriate commands to update the corresponding data in your defect
tracking system.

For more about triggers and review daemons, including examples, see
“Scripting Perforce: Triggers and Daemons” on page 105.
104 Perforce 2009.2 System Administrator’s Guide

http://www.perforce.com/perforce/products/p4dtg.html
http://www.perforce.com/perforce/products/p4dti.html

Chapter 6 Scripting Perforce:
Triggers and Daemons
There are two primary methods of scripting Perforce:

• Perforce triggers are user-written scripts that are called by a Perforce server whenever
certain operations (such as changelist submissions, changes to forms, attempts by users
to log in or change passwords) are performed. If the script returns a value of 0, the
operation continues; if the script returns any other value, the operation fails. Upon
failure, the script’s standard output (not error output) is sent to the Perforce client
program as an error message.

• Daemons run at predetermined times, looking for changes to the Perforce metadata.
When a daemon determines that the state of the depot has changed in some specified
way, it runs other commands. For example, a daemon might look for newly submitted
changelists and send email to users interested in tracking changes to those files.
Perforce provides a number of tools that make writing daemons easier.

To make use of this chapter, you must know how to write scripts.

Triggers

Triggers are useful in many situations. Consider the following common uses:

• To validate changelist contents beyond the mechanisms afforded by the Perforce
protections table. For example, you can use a pre-submit trigger to ensure that
whenever file1 is submitted in a changelist, file2 is also submitted.

• To validate file contents as part of changelist submission. For example, you can use a
mid-submit trigger to ensure that, when file1 and file2 are submitted, both files refer
to the same set of header files.

• To start build processes after successful changelist submission.

• To validate forms, or to provide customized versions of Perforce forms. For example,
you can use form triggers to generate a customized default workspace view when users
run the p4 client command, or to ensure that users always enter a meaningful
workspace description.

• To configure Perforce to work with external authentication mechanisms such as LDAP
or Active Directory.

• To retrieve (or generate) content from data sources archived outside of the Perforce
repository.
Perforce 2009.2 System Administrator’s Guide 105

Chapter 6: Scripting Perforce: Triggers and Daemons
• To notify other users of attempts to change or delete data with commands such as p4
user and p4 job, or to trigger process control tools following updates to Perforce
metadata.

Example: A basic trigger

The development group wants to ensure that whenever a changelist containing an .exe file is
submitted to the depot, the release notes for the program are submitted at the same time.

You write a trigger script that takes a changelist number as its only argument, performs a p4
opened on the changelist, parses the results to find the files included in the changelist, and
ensures that for every executable file that’s been submitted, a RELNOTES file in the same
directory has also been submitted. If the changelist includes a RELNOTES file, the script
terminates with an exit status of 0; otherwise the exit status is set to 1.

After you write the script, add it to the trigger table by editing the p4 triggers form as
follows:

(Like other Perforce forms, indent each line under the Triggers: field with tabs.)

Whenever a changelist containing an .exe file is submitted, this trigger fires. If the trigger
script fails, it returns a nonzero exit status, and the user’s submit fails.

Note As of Release 2007.3, trigger standard output is passed to the client
program on both success and failure of the trigger script. Prior to this,
standard output was only passed to the client program on failure of a
trigger.

Warning! When you use trigger scripts, remember that Perforce commands that
write data to the depot are dangerous and should be avoided. In
particular, do not run the p4 submit command from within a trigger
script.

Warning! If you write a trigger that fires on trigger forms, and the trigger fails in
such a way that the p4 triggers command no longer works, the only
recourse is to remove the db.triggers file in the server root directory.

Triggers:
rnotes change-submit //depot/....exe "/usr/bin/test.pl %change%"
106 Perforce 2009.2 System Administrator’s Guide

Chapter 6: Scripting Perforce: Triggers and Daemons
The trigger table

After you have written a trigger script, create the trigger by issuing the p4 triggers
command. The p4 triggers form looks like this:

As with all Perforce commands that use forms, field names (such as Triggers:) must be
flush left (not indented) and must end with a colon, and field values (that is, the set of
lines you add, one for each trigger) must be indented with spaces or tabs on the lines
beneath the field name.

When testing and debugging triggers, remember that any p4 commands invoked from
within the script will run within a different environment (P4USER, P4CLIENT, and so on)
than that of the calling user.

You must specify the name of the trigger script or executable in ASCII, even when the
server is running in Unicode mode and passes arguments to the trigger script in UTF8.

You must be a Perforce superuser to run p4 triggers.

Trigger table fields

Each line in the trigger table has four fields.

Triggers:
relnotecheck change-submit //depot/bld/... "/usr/bin/rcheck.pl %user%"
verify_jobs change-submit //depot/... "/usr/bin/job.py %change%"

Field Meaning

name The user-defined name of the trigger.

A run of the same trigger name on contiguous lines is treated as a single
trigger, so that multiple paths may be specified. In this case, only the
command of the first such trigger line is used.
Perforce 2009.2 System Administrator’s Guide 107

Chapter 6: Scripting Perforce: Triggers and Daemons
type There are thirteen trigger types, divided into four subtypes: changelist
submission triggers, fix triggers, form triggers, and authentication triggers.

Changelist submission triggers:

• change-submit: Execute a changelist trigger after changelist creation, but
before file transfer. Trigger may not access file contents.

• change-content: Execute a changelist trigger after changelist creation
and file transfer, but before file commit.
To obtain file contents, use commands such as p4 diff2, p4 files, p4
fstat, and p4 print with the revision specifier @=change, where change
is the changelist number of the pending changelist as passed to the script
in the %changelist% variable.

• change-commit: Execute a changelist trigger after changelist creation, file
transfer, and changelist commit.

Fix triggers:

The special variable %jobs% is available for expansion; it expands to one
argument for every job listed on the p4 fix command line (or in the Jobs:
field of a p4 change or p4 submit form), and must therefore be the last
argument supplied to the trigger script.

• fix-add: Execute fix trigger prior to adding a fix.
• fix-delete: Execute fix trigger prior to deleting a fix.

Field Meaning
108 Perforce 2009.2 System Administrator’s Guide

Chapter 6: Scripting Perforce: Triggers and Daemons
Form triggers:

• form-save: Execute a form trigger after the form contents are parsed, but
before the contents are stored in the Perforce database. The trigger cannot
modify the form specified in %formfile% variable.

• form-out: Execute form trigger upon generation of form to end user. The
trigger can modify the form.

• form-in: Execute form trigger on edited form before contents are parsed
and validated by the Perforce server. The trigger can modify the form.

• form-delete: Execute form trigger after the form contents are parsed,
but before the form is deleted from the Perforce database. The trigger
cannot modify the form.

• form-commit: Execute form trigger after the form has been committed for
access to automatically-generated fields such as jobname, dates, etc.
For job forms, this trigger is run by p4 job as well as p4 fix (after the
status is updated). The form-commit trigger has access to the new job
name created by p4 job; any form-in and form-save triggers are run
before the job name is created.
For job forms, this trigger is also run by p4 change (if a job is added or
deleted by editing the Jobs: field of the changelist), and p4 submit (for
any jobs present in the Jobs: field of the changelist). In these cases, the
special variable %action% is available for expansion on the job form-
commit trigger command line. The trigger cannot modify the form.

Authentication triggers:

• auth-check: Execute an authentication check trigger to verify a user’s
password against an external password manager during login, or when
setting a new password If an auth-check trigger is present, the Perforce
security counter (and any associated password strength requirement) is
ignored, as authentication is now controlled by the trigger script.

• auth-set: Execute an authentication set trigger to send a new password
to an external password manager.

You must restart the Perforce server after adding an auth-check trigger.

Archive triggers:

• archive: Execute the script when a user accesses any file with a filetype
containing the +X filetype modifier.

The script is run once per file requested.

For read operations, scripts should deliver the file to the user on standard
output. For write operations, scripts receive the file on standard input.

Field Meaning
Perforce 2009.2 System Administrator’s Guide 109

Chapter 6: Scripting Perforce: Triggers and Daemons
path For changelist submission triggers (change-submit, change-content, or
change-commit), a file pattern in depot syntax. When a user submits a
changelist that contains any files that match this file pattern, the script
linked to this trigger is run. Use exclusionary mappings to prevent triggers
from running on specified files.

For fix triggers (fix-add or fix-delete), use fix as the path value.

For form triggers (form-save, form-out, form-in, form-commit, or form-
delete), the name of the type of form, (one of branch, change, client,
depot, group, job, label, protect, spec, triggers, typemap, or user).

For authentication triggers (auth-check or auth-set), use auth as the path
value.

command The command for the Perforce server to run when a matching path applies
for the trigger type. Specify the command in a way that allows the Perforce
server account to locate and run the command. The command must be
quoted, and can take the variables specified below as arguments.

For change-submit and change-content triggers, changelist submission
continues if the trigger script exits with 0, or fails if the script exits with a
nonzero value. For change-commit triggers, changelist submission
succeeds regardless of the trigger script’s exit code, but subsequent change-
commit triggers do not fire if the script exits with a nonzero value.

For form-in, form-out, form-save, and form-delete triggers, the data in
the specification becomes part of the Perforce database if the script exits
with 0. Otherwise, the database is not updated.

The form-commit trigger type never rejects a change; it exists primarily so
that scripts can access a job number (from the %formname% variable) during
the process of job creation.

For fix-add and fix-delete triggers, fix addition or deletion continues if
the trigger script exits with 0, or fails if the script exits with a nonzero value.

For auth-check triggers (fired by p4 login), the user’s typed password is
supplied to the trigger command as standard input. If the trigger executes
successfully, the Perforce ticket is issued. The user name is available as
%user% to be passed on the command line.

For auth-set triggers, (fired by p4 passwd, but only after also passing an
auth-check trigger check) the user’s old password and new password are
passed to the trigger as standard input. The user name is available as
%user% to be passed on the command line.

Field Meaning
110 Perforce 2009.2 System Administrator’s Guide

Chapter 6: Scripting Perforce: Triggers and Daemons
Trigger script variables

Use the following variables in the command field to pass data to a trigger script:

Argument Description Available for type

%action% Either null or a string reflecting an action taken
to a changelist or job.

For example, “pending change 123 added”
or “submitted change 124 deleted” are
possible %action% values on change forms,
and “job000123 created” or “job000123
edited” are possible %action% values for job
forms.

form-commit

%changelist%
%change%

The number of the changelist being submitted.
The abbreviated form %change% is equivalent
to %changelist%.

A change-submit trigger is passed the
pending changelist number; a change-commit
trigger receives the committed changelist
number.

change-submit,
change-content,
change-commit,
fix-add,
fix-delete,
form-commit

%changeroot% The root path of files submitted change-commit

%client% Triggering user’s client workspace name. all but archive

%clienthost% Hostname of the client. all but archive

%clientip% The IP address of the client. all but archive

%jobs% A string of job numbers, expanded to one
argument for each job number specified on a
p4 fix command or for each job number
added to (or removed from) the Jobs: field in
a p4 submit, or p4 change form.

fix-add
fix-delete

%oldchangelist% If a changelist is renumbered on submit, this
variable contains the old changelist number.

change-commit

%serverhost% Hostname of the Perforce server. all but archive

%serverip% The IP address of the server. all but archive

%serverport% The IP address and port of the Perforce server,
in the format ip_address:port.

all but archive

%serverroot% The P4ROOT directory of the Perforce server. all but archive

%user% Perforce username of the triggering user. all but archive
Perforce 2009.2 System Administrator’s Guide 111

Chapter 6: Scripting Perforce: Triggers and Daemons
%formfile% Path to temporary form specification file. To
modify the form from an in or out trigger,
overwrite this file. The file is read-only for
triggers of type save and delete.

form-commit,
form-save,
form-out,
form-in,
form-delete

%formname% Name of form (for instance, a branch name or a
changelist number).

form-commit,
form-save,
form-out,
form-delete

%formtype% Type of form (for instance, branch, change,
and so on).

form-commit,
form-save,
form-out,
form-in,
form-delete

%op% Operation: read, write, or delete archive

%file% Path of archive file based on depot’s Map: field.

If the Map: field is relative to P4ROOT, the
%file% is a server-side path relative to P4ROOT.

If the Map: field is an absolute path, the %file%
is an absolute server-side path.

archive

%rev% Revision of archive file archive

Argument Description Available for type
112 Perforce 2009.2 System Administrator’s Guide

Chapter 6: Scripting Perforce: Triggers and Daemons
Triggering on changelists

To configure Perforce to run trigger scripts when users submit changelists, use changelist
submission triggers: these are triggers of type change-submit, change-content, and
change-commit.

For changelist submission triggers, the path column of each trigger line is a file pattern in
depot syntax. If a changelist being submitted contains any files in this path, the trigger
fires. To prevent changes to a file from firing a trigger, use an exclusionary mapping in the
path.

Change-submit triggers

Use the change-submit trigger type to create triggers that fire after changelist creation,
but before files are transferred to the server. Because change-submit triggers fire before
files are transferred to the server, these triggers cannot access file contents. Change-
submit triggers are useful for integration with reporting tools or systems that do not
require access to file contents.

Example: The following change-submit trigger is an MS-DOS batch file that rejects a
changelist if the submitter has not assigned a job to the changelist. This trigger fires only on
changelist submission attempts that affect at least one file in the //depot/qa branch.

To use the trigger, add the following line to your triggers table:

Every time a changelist is submitted that affects any files under //depot/qa, the
jobcheck.bat file is called. If the string “Jobs fixed...” (followed by two newlines and
a tab character) is detected, the script assumes that a job has been attached to the changelist
and permits changelist submission to continue. Otherwise, the submit is rejected.

The second findstr command ensures that the final error level of the trigger script is the
same as the error level that determines whether to output the error message.

@echo off

rem REMINDERS
rem - If necessary, set Perforce environment vars or use config file
rem - Set PATH or use full paths (C:\PROGRA~1\Perforce\p4.exe)
rem - Use short pathnames for paths with spaces, or quotes
rem - For troubleshooting, log output to file, for instance:
rem - C:\PROGRA~1\Perforce\p4 info >> trigger.log

if not x%1==x goto doit
echo Usage is %0[change#]

:doit
p4 describe -s %1|findstr "Jobs fixed...\n\n\t" > nul
if errorlevel 1 echo No jobs found for changelist %1
p4 describe -s %1|findstr "Jobs fixed...\n\n\t" > nul

sample1 change-submit //depot/qa/... "jobcheck.bat %changelist%"
Perforce 2009.2 System Administrator’s Guide 113

Chapter 6: Scripting Perforce: Triggers and Daemons
Change-content triggers

Use the change-content trigger type to create triggers that fire after changelist creation
and file transfer, but prior to committing the submit to the database. Change-content
triggers can access file contents by using the p4 diff2, p4 files, p4 fstat, and p4
print commands with the @=change revision specifier, where change is the number of
the pending changelist as passed to the trigger script in the %changelist% variable.

Use change-content triggers to validate file contents as part of changelist submission and
to abort changelist submission if the validation fails.

Example: The following change-content trigger is a Bourne shell script that ensures that every
file in every changelist contains a copyright notice for the current year.

The script assumes the existence of a client workspace called copychecker that includes all
of //depot/src. This workspace does not have to be synced.

To use the trigger, add the following line to your triggers table:

The trigger fires when any changelist with at least one file in //depot/src is submitted. The
corresponding DEPOT_PATH defined in the script ensures that of all the files in the triggering
changelist, only those files actually under //depot/src are checked.

#!/bin/sh
Set target string, files to search, location of p4 executable...
TARGET="Copyright ‘date +%Y‘ Example Company"
DEPOT_PATH="//depot/src/..."
CHANGE=$1
P4CMD="/usr/local/bin/p4 -p 1666 -c copychecker"
XIT=0
echo ""
For each file, strip off #version and other non-filename info
Use sed to swap spaces w/"%" to obtain single arguments for "for"
for FILE in ‘$P4CMD files $DEPOT_PATH@=$CHANGE | \
sed -e ’s/\(.*\)\#[0-9]* - .*$/\1/’ -e ’s/ /%/g’‘

do
Undo the replacement to obtain filename...
FILE="‘echo $FILE | sed -e ’s/%/ /g’‘"

...and use @= specifier to access file contents:
p4 print -q //depot/src/file.c@=12345
if $P4CMD print -q "$FILE@=$CHANGE" | grep "$TARGET" > /dev/null
then echo ""
else

echo "Submit fails: '$TARGET' not found in $FILE"
XIT=1

fi
done
exit $XIT

sample2 change-content //depot/src/... "copydate.sh %change%"
114 Perforce 2009.2 System Administrator’s Guide

Chapter 6: Scripting Perforce: Triggers and Daemons
Change-commit triggers

Use the change-commit trigger type to create triggers that fire after changelist creation,
file transfer, and changelist commission to the database. Use change-commit triggers for
processes that assume (or require) the successful submission of a changelist.

Example: A change-commit trigger that sends emails to other users who have files open in the
submitted changelist.

To use the trigger, add the following line to your triggers table:

Whenever a user submits a changelist, any users with open files affected by that changelist
receive an email notification.

#!/bin/sh
mailopens.sh - Notify users when open files are updated
changelist=$1
workspace=$2
user=$3
p4 fstat @$changelist,@$changelist | while read line
do
Parse out the name/value pair.
name=‘echo $line | sed ’s/[\.]\+\([^]\+\) .\+/\1/’‘
value=‘echo $line | sed ’s/[\.]\+[^]\+ \(.\+\)/\1/’‘
if ["$name" = "depotFile"]
then
Line is "... depotFile <depotFile>". Parse to get depotFile.
depotfile=$value

elif ["‘echo $name | cut -b-9‘" = "otherOpen" -a \
"$name" != "otherOpen"]

then
Line is "... ... otherOpen[0-9]+ <otherUser@otherWorkspace>".
Parse to get otherUser and otherWorkspace.
otheruser=‘echo $value | sed ’s/\(.\+\)@.\+/\1/’‘
otherworkspace=‘echo $value | sed ’s/.\+@\(.\+\)/\1/’‘
Get email address of the other user from p4 user -o.
othermail=‘p4 user -o $otheruser | grep Email: \
| grep -v \# | cut -b8-‘

Mail other user that a file they have open has been updated
mail -s "$depotfile was just submitted" $othermail <<EOM

The Perforce file: $depotfile
was just submitted in changelist $changelist by Perforce user $user
from the $workspace workspace. You have been sent this message
because you have this file open in the $otherworkspace workspace.
EOM
fi

done
exit 0

sample3 change-commit //... "mailopens.sh %change% %client% %user%"
Perforce 2009.2 System Administrator’s Guide 115

Chapter 6: Scripting Perforce: Triggers and Daemons
Triggering on fixes

To configure Perforce to run trigger scripts when users add or delete fixes from
changelists, use fix triggers: these are triggers of type fix-add and fix-delete.

Fix-add and fix-delete triggers

Example: The following script, when copied to fixadd.sh and fixdel.sh, fires when users
attempt to add or remove fix records, whether by using the p4 fix command, or by
modifying the Jobs: field of the forms presented by the p4 change and p4 submit
commands.

These fix-add and fix-delete triggers fire whenever users attempt to add (or delete) fix
records from changelists. To use the trigger, add the following lines to the trigger table:

Using both copies of the script, observe that fixadd.sh is triggered by p4 fix, the
fixdel.sh script is triggered by p4 fix -d, and either script may be triggered by manually
adding (or deleting) job numbers from within the Jobs: field in a changelist form - either by
means of p4 change or as part of the p4 submit process.

Because the %jobs% variable is expanded to one argument for every job listed on the p4 fix
command line (or in the Jobs: field of a p4 change or p4 submit form), it must be the last
argument supplied to any fix-add or fix-delete trigger script.

#!/bin/bash
fixadd.sh, fixdel.sh - illustrate fix-add and fix-delete triggers

COMMAND=$0
CHANGE=$1
NUMJOBS=$(($# - 1))

echo $COMMAND: fired against $CHANGE with $NUMJOBS job arguments.
echo $COMMAND: Arguments were: $*

sample4 fix-add fix "fixadd.sh %change% %jobs%"
sample5 fix-delete fix "fixdel.sh %change% %jobs%"
116 Perforce 2009.2 System Administrator’s Guide

Chapter 6: Scripting Perforce: Triggers and Daemons
Triggering on forms

To configure Perforce to run trigger scripts when users edit forms, use form triggers: these
are triggers of type form-save, form-in, form-out, form-delete, and form-commit.

Use form triggers to generate customized field values for users, to validate forms, to
notify other users of attempted changes to form data, and to otherwise interact with
process control and management tools.

Form-save triggers

Use the form-save trigger type to create triggers that fire when users send changed forms
to the server. Form-save triggers are called after the form has been parsed by the server
but before the changed form is stored in the Perforce metadata.

Example: To prohibit certain users from modifying their client workspaces, add the users to a
group called lockedws and use the following form-save trigger.

This trigger denies attempts to change client workspace specifications for users in the
lockedws group, outputs an error message containing the user name, IP address of the user’s
workstation, and the name of the workspace on which a modification was attempted, and
notifies an administrator.

This form-save trigger fires on client forms only. To use the trigger, add the following line
to the trigger table:

Users whose names appear in the output of p4 groups lockedws have changes to their
client workspaces parsed by the server, and even if those changes are syntactically correct, the
attempted change to the workspace is denied, and an administrator is notified of the attempt.

#!/bin/bash
NOAUTH=lockedws
USERNAME=$1
WSNAME=$2
IPADDR=$3

GROUPS=‘p4 groups "$1"‘

if echo "$GROUPS" | grep -qs $NOAUTH
then

echo "$USERNAME ($IPADDR) in $NOAUTH may not change $WSNAME"
mail -s "User $1 workspace mod denial" admin@127.0.0.1
exit 1

else
exit 0

fi

sample6 form-save client "ws_lock.sh %user% %client% %clientip%"
Perforce 2009.2 System Administrator’s Guide 117

Chapter 6: Scripting Perforce: Triggers and Daemons
Form-out triggers

Use the form-out trigger type to create triggers that fire whenever the Perforce server
generates a form for display to the user.

Example: The default Perforce client workspace view maps the entire depot //depot/... to the
user’s client workspace. To prevent novice users from attempting to sync the entire depot, this
Perl script changes a default workspace view of //depot/... in the p4 client form to map
only the current release codeline of //depot/releases/main/...

This form-out trigger fires on client workspace forms only. To use the trigger, add the
following line to the trigger table:

New users creating client workspaces are presented with your customized default view.

Warning! Never use a Perforce command in a form-out trigger that fires the same
form-out trigger, or infinite recursion will result. For example, never run
p4 job -o from within a form-out trigger script that fires on job forms.

#!/usr/bin/perl
default_ws.pl - Customize the default client workspace view.
$p4 = "p4 -p localhost:1666";
$formname = $ARGV[0]; # from %formname% in trigger table
$formfile = $ARGV[1]; # from %formfile% in trigger table

Default server-generated workspace view and modified view
(Note: this script assumes that //depot is the only depot defined)
$defaultin = "\t//depot/... //$formname/...\n";
$defaultout = "\t//depot/releases/main/... //$formname/...\n";

Check "p4 clients": if workspace exists, exit w/o changing view.
open CLIENTS, "$p4 clients |" or die "Couldn’t get workspace list";
while (<CLIENTS>)
{

if (/^Client $formname .*/) { exit 0; }
}

Build a modified workspace spec based on contents of %formfile%
$modifiedform = "";
open FORM, $formfile or die "Trigger couldn’t read form tempfile";
while (<FORM>)
{ ## Do the substitution as appropriate.

if (m:$defaultin:) { $_ = "$defaultout"; }
$modifiedform .= $_;

}

Write the modified spec back to the %formfile%,
open MODFORM, ">$formfile" or die "Couldn’t write form tempfile";
print MODFORM $modifiedform;
exit 0;

sample7 form-out client "default_ws.pl %formname% %formfile%"
118 Perforce 2009.2 System Administrator’s Guide

Chapter 6: Scripting Perforce: Triggers and Daemons
Form-in triggers

Use the form-in trigger type to create triggers that fire when a user attempts to send a
form to the server, but before the form is parsed by the Perforce server.

Example: All users permitted to edit jobs have been placed in a designated group called jobbers.
The following Python script runs p4 group -o jobbers with the -G (Python marshaled
objects) flag to determine if the user who triggered the script is in the jobbers group.

This form-in trigger fires on job forms only. To use the trigger, add the following line to the
trigger table:

If the user is in the jobbers group, the form-in trigger succeeds, and the changed job is
passed to the Perforce server for parsing. Otherwise, an error message is displayed, and
changes to the job are rejected.

import sys, os, marshal

Configure for your environment
tuser = "triggerman" # trigger username
job_group = "jobbers" # Perforce group of users who may edit jobs

Get trigger input args
user = sys.argv[1]

Get user list
Use global -G flag to get output as marshaled Python dictionary
CMD = "p4 -G -u %s -p 1666 group -o %s" % \

(tuser, job_group)
result = {}
result = marshal.load(os.popen(CMD, ’r’))

job_users = []
for k in result.keys():

if k[:4] == ’User’: # user key format: User0, User1, ...
u = result[k]
job_users.append(u)

Compare current user to job-editing users.
if not user in job_users:

print "\n\t>>> You don’t have permission to edit jobs."
print "\n\t>>> You must be a member of ’%s’.\n" % job_group
sys.exit(1)

else: # user is in job_group -- OK to create/edit jobs
sys.exit(0)

sample8 form-in job "python jobgroup.py %user%"
Perforce 2009.2 System Administrator’s Guide 119

Chapter 6: Scripting Perforce: Triggers and Daemons
Form-delete triggers

Use the form-delete trigger type to create triggers that fire when users attempt to delete
a form, after the form is parsed by the Perforce server, but before the form is deleted from
the Perforce database.

Example: An administrator wants to enforce a policy that users are not to delete jobs from the
system, but must instead mark such jobs as closed.

This form-delete trigger fires on job forms only. To use the trigger, add the following line
to the trigger table:

Whenever a user attempts to delete a job, the request to delete the job is rejected, and the user
is shown an error message.

Form-commit triggers

Unlike the other form triggers, the form-commit trigger fires after a form is committed to
the database. Use these triggers for processes that assume (or require) the successful
submission of a form. In the case of job forms, the job’s name is not set until after the job
has been committed to the database; the form-commit trigger is the only way to obtain the
name of a new job as part of the process of job creation.

Example: The following script, when copied to newjob.sh, shows how to get a job name during
the process of job creation, and also reports the status of changelists associated with job fixes.

To use the trigger, add the following line to the trigger table:

Use the %action% variable to distinguish whether or not a change to a job was prompted by a
user directly working with a job by means of p4 job, or indirectly by means of fixing the job
within the context of p4 fix or the Jobs: field of a changelist.

#!/bin/sh

echo "Jobs may not be deleted. Please mark jobs as closed instead."
exit 1

sample9 form-delete job "nodeljob.sh"

#!/bin/sh
newjob.sh - illustrate form-commit trigger

COMMAND=$0
USER=$1
FORM=$2
ACTION=$3

echo $COMMAND: User $USER, formname $FORM, action $ACTION >> log.txt

sample10 form-commit job "newjob.sh %user% %formname% %action%"
120 Perforce 2009.2 System Administrator’s Guide

Chapter 6: Scripting Perforce: Triggers and Daemons
The simplest case is the creation of a new job (or a change to an existing job) with the p4 job
command; the trigger fires, and the script reports the user, the name of the newly-created (or
edited) job. In these cases, the %action% variable is null.

The trigger also fires when users add or delete jobs to changelists, and it does so regardless of
whether the changed jobs are being manipulated by means of p4 fix, p4 fix -d, or by
editing the Jobs: field of the changelist form provided by p4 change or p4 submit form).
In these cases, the %action% variable holds the status of the changelist (pending or
submitted) to which the jobs are being added or deleted.

Because the %action% variable is not always set, it must be the last argument supplied to any
form-commit trigger script.

Using triggers for external authentication

To configure Perforce to work with an external authentication manager (such as LDAP or
Active Directory), use authentication triggers (auth-check and auth-set). These triggers
fire on the p4 login and p4 passwd commands, respectively.

Authentication triggers differ from changelist and form triggers in that passwords typed
by the user as part of the authentication process are supplied to authentication scripts as
standard input; never on the command line. (The only arguments passed on the command
line are those common to all trigger types, such as %user%, %clientip%, and so on.)

The examples in this book are for illustrative purposes only. For a more detailed
discussion, including links to sample code for an LDAP environment, see the following
Tech Note:

http://www.perforce.com/perforce/technotes/note074.html

You must restart the Perforce server after adding an auth-check trigger in order for it to
take effect. You can, however, change an existing auth-check trigger table entry (or
trigger script) without restarting the server.

Warning! Be sure to spell the trigger name correctly when you add the trigger to the
trigger table because a misspelling can result in all users being locked out
of Perforce.

Be sure to fully test your trigger and trigger table invocation prior to
deployment in a production environment.

Contact Perforce Technical Support if you need assistance with restoring
access to your server.
Perforce 2009.2 System Administrator’s Guide 121

http://www.perforce.com/perforce/technotes/note074.html

Chapter 6: Scripting Perforce: Triggers and Daemons
After an auth-check trigger is in place and the server restarted, the Perforce security
counter is ignored; because authentication is now under the control of the trigger script,
the server’s default mechanism for password strength requirements is redundant.

Auth-check triggers

Triggers of type auth-check fire when users run the p4 login command. If the script
returns 0, login is successful, and a ticket file is created for the user.

Example: A trivial authentication-checking script.

All users must enter the password “secret” before being granted login tickets. Passwords
supplied by the user are sent to the script on stdin.

This auth-check trigger fires whenever users run p4 login. To use the trigger, add the
following line to the trigger table:

Users who enter the “secret” password are granted login tickets.

#!/bin/bash
checkpass.sh - a trivial authentication-checking script

in this trivial example, all users have the same "secret" password
USERNAME=$1
PASSWORD=secret

read user-supplied password from stdin
read USERPASS

compare user-supplied password with correct password
if ["$USERPASS" = $PASSWORD]
then

Success
exit 0

fi

Failure
echo checkpass.sh: password $USERPASS for $USERNAME is incorrect
exit 1

sample11 auth-check auth "checkpass.sh %user%"
122 Perforce 2009.2 System Administrator’s Guide

Chapter 6: Scripting Perforce: Triggers and Daemons
Auth-set triggers

Triggers of type auth-set fire when users run the p4 passwd command and successfully
validate their old password with an auth-check trigger. The process is as follows:

1. A user invokes p4 passwd.

2. The Perforce server prompts the user to enter his or her old password.

3. The Perforce server fires an auth-check trigger to validate the old password against
the external authentication service.

4. The script associated with the auth-check trigger runs. If the auth-check trigger
fails, the process ends immediately: the user is not prompted for a new password,
and the auth-set trigger never fires.

5. If the auth-check trigger succeeds, the Perforce server prompts the user for a new
password.

6. The Perforce server fires an auth-set trigger and supplies the trigger script with
both the old password and the new password on the standard input, separated by a
newline.

Because the Perforce server must validate the user’s current password, you must have a
properly functioning auth-check trigger before attempting to write an auth-set trigger.

Example: A trivial authentication-setting script

This auth-set trigger fires after users run p4 passwd and successfully pass the external
authentication required by the auth-check trigger. To use the trigger, add the following two
lines to the trigger table:

This trivial example doesn’t actually change any passwords; it merely reports back what the
user attempted to do.

Note In most cases, users in an external authentication environment will
continue to set their passwords without use of Perforce. The auth-set
trigger type is included mainly for completeness.

#!/bin/bash
setpass.sh - a trivial authentication-setting script

USERNAME=$1

read OLDPASS
read NEWPASS

echo setpass.sh: $USERNAME attempted to change $OLDPASS to $NEWPASS

sample11 auth-check auth "checkpass.sh %user%"
sample12 auth-set auth "setpass.sh %user%"
Perforce 2009.2 System Administrator’s Guide 123

Chapter 6: Scripting Perforce: Triggers and Daemons
Archive triggers for external data sources

The archive trigger type is used in conjunction with the +X filetype modifier in order to
replace the mechanism by which the Perforce Server archives files within the repository.
See “Triggers and Windows” on page 127 for platform-specific considerations.

Example: An archive trigger

This archive trigger fires when users access files that have the +X (archive) modifier set.

To use the trigger, add the following two lines to the trigger table:

When the user attempts to submit (write) a file of type +X, if there are no changes between the
current revision and the previous revision, the current revision is replaced with a symlink
pointing to the previous revision.

#!/bin/sh
archive.sh - illustrate archive trigger

OP=$1
FILE=$2
REV=$3

if ["$OP" = read]
then

cat ${FILE}${REV}
fi

if ["$OP" = delete]
then

rm ${FILE}${REV}
fi

if ["$OP" = write]
then

Create new file from user’s submission via stdin
while read LINE; do

echo ${LINE} >> ${FILE}${REV}
done
ls -t ${FILE}* |
{

read first; read second;
cmp -s $first $second
if [$? -eq 0]
then

Files identical, remove file, replace with symlink.
rm ${FILE}${REV}
ln -s $second $first

fi
}

fi

arch archive arch "archive.sh %op% %file% %rev%"
124 Perforce 2009.2 System Administrator’s Guide

Chapter 6: Scripting Perforce: Triggers and Daemons
Using multiple triggers

Changelist and form triggers are run in the order in which they appear in the triggers
table. If you have multiple triggers of the same type that fire on the same path, each is run
in the order in which it appears in the triggers table. If one of these triggers fails, no
further triggers are executed.

Example: Multiple triggers on the same file

All *.c files must pass through the scripts check1.sh, check2.sh, and check3.sh:

If any trigger fails (for instance, check1.sh), the submit fails immediately, and none of the
subsequent triggers (that is, check2.sh and check3.sh) are called. Each time a trigger
succeeds, the next matching trigger is run.

To link multiple file specifications to the same trigger (and trigger type), list the trigger
multiple times in the trigger table.

Example: Activating the same trigger for multiple filespecs

In this case, the bugcheck trigger runs on the *.c files, the *.h files, and the *.cpp files.

Multiple changelist submission triggers of different types that fire on the same path fire in
the following order:

1. change-submit (fired on changelist submission, before file transmission)

2. change-content triggers (after changelist submission and file transmission)

3. change-commit triggers (on any automatic changelist renumbering by the server)

Similarly, form triggers of different types are fired in the following order:

1. form-out (form generation)

2. form-in (changed form is transmitted to the server)

3. form-save (validated form is ready for storage in the Perforce database)

4. form-delete (validated form is already stored in the Perforce database)

Triggers:
check1 change-submit //depot/src/*.c "/usr/bin/check1.sh %change%"
check2 change-submit //depot/src/*.c "/usr/bin/check2.sh %change%"
check3 change-submit //depot/src/*.c "/usr/bin/check3.sh %change%"

Triggers:
bugcheck change-submit //depot/*.c "/usr/bin/check4.sh %change%"
bugcheck change-submit //depot/*.h "/usr/bin/check4.sh %change%"
bugcheck change-submit //depot/*.cpp "/usr/bin/check4.sh %change%"
Perforce 2009.2 System Administrator’s Guide 125

Chapter 6: Scripting Perforce: Triggers and Daemons
Writing triggers to support multiple Perforce servers

To call the same trigger script from more than one Perforce server, use the %serverhost%,
%serverip%, and %serverport% variables to make your trigger script more portable.

For instance, if you have a script that uses hardcoded port numbers and addresses...

...and you call it with the following line in the trigger table...

...you can improve portability by changing the script as follows...

...and passing the server-specific data as an argument to the trigger script:

For a complete list of variables that apply for each trigger type, see “Trigger script
variables” on page 111.

Triggers and security

#!/bin/sh
Usage: jobcheck.sh changelist
CHANGE=$1
P4CMD="/usr/local/bin/p4 -p 192.168.0.12:1666"
$P4CMD describe -s $1 | grep "Jobs fixed...\n\n\t" > /dev/null

jc1 change-submit //depot/qa/... "jobcheck.sh %change%"

#!/bin/sh
Usage: jobcheck.sh changelist server:port
CHANGE=$1
P4PORT=$2
P4CMD="/usr/local/bin/p4 -p $P4PORT"
$P4CMD describe -s $1 | grep "Jobs fixed...\n\n\t" > /dev/null

jc2 change-submit //depot/qa/... "jobcheck.sh %change% %serverport%"

Warning! Because triggers are spawned by the p4d process, never run p4d as root on
UNIX systems.
126 Perforce 2009.2 System Administrator’s Guide

Chapter 6: Scripting Perforce: Triggers and Daemons
Triggers and Windows

By default, the Perforce service runs under the Windows local System account. The
System account may have different environmental configurations (including not just
Perforce-related variables, but PATH settings and file permissions) than the one in which
you are using to test or write your trigger.

In general, it is good practice to:

• Wherever possible, use the full path to executables.

• For path names that contain spaces, use the short path name.

For example, C:\Program Files\Perforce\p4.exe is most likely located in
C:\PROGRA~1\Perforce\p4.exe.

• Login tickets may not be located in the same place as they were during testing; for
testing, you can pass in data with p4 login < input.txt.

• For troubleshooting, log output to a file. For example:
date /t >> trigger.log
p4 info >> trigger.log
C:\PROGRA~1\Perforce\p4.exe -p myserver:myport info

If the trigger.log isn’t updated at all, the trigger was not fired. If the first p4 info
fails, and the second p4 info runs, you’ll know whether there were differences in
environmental settings.

• Because Windows requires a real account name and password to access files on a
network drive, if the trigger script resides on a network drive, you must configure the
service to use a real userid and password to access the script.

For details, see “Installing the Perforce service on a network drive” on page 147.

• On Windows, standard input does not default to binary mode. In text mode, line
ending translations are performed on standard input, which is inappropriate for binary
files.

If you are using archive triggers against binary files on a Windows machine, you must
prevent unwanted line-ending translations by ensuring that standard input is changed
to binary mode (O_BINARY).
Perforce 2009.2 System Administrator’s Guide 127

Chapter 6: Scripting Perforce: Triggers and Daemons
Daemons

Daemons are processes that are called periodically or run continuously in the background.
Daemons that use Perforce usually work by examining the server metadata as often as
needed and taking action as often as necessary.

Typical daemon applications include:

• A change review daemon that wakes up every ten minutes to see if any changelists
have been submitted to the production depot. If any changelists have been submitted,
the daemon sends email to those users who have “subscribed” to any of the files
included in those changelists. The message informs them that the files they’re interested
in have changed.

• A jobs daemon that generates a report at the end of each day to create a report on open
jobs. It shows the number of jobs in each category, the severity each job, and more. The
report is mailed to all interested users.

• A Web daemon that looks for changes to files in a particular depot subdirectory. If new
file revisions are found there, they are synced to a client workspace that contains the
live web pages.

Daemons can be used for almost any task that needs to occur when Perforce metadata has
changed. Unlike triggers, which are used primarily for submission validation, daemons
can also be used to write information (that is, submit files) to a depot.

Perforce’s change review daemon

The Perforce change review daemon (p4review.py) is available from the Perforce
Supporting Programs page:

http://www.perforce.com/perforce/loadsupp.html#daemon

The review daemon runs under Python, available at http://www.python.org/. Before
you run the review daemon, be sure to read and follow the configuration instructions
included in the daemon itself.

Users subscribe to files by calling p4 user, entering their email addresses in the Email:
field, and entering any number of file patterns corresponding to files in which they’re
interested in to the Reviews: field.

User: sarahm
Email: sarahm@elmco.com
Update: 1997/04/29 11:52:08
Access: 1997/04/29 11:52:08
FullName: Sarah MacLonnogan
Reviews:

//depot/doc/...
//depot.../README
128 Perforce 2009.2 System Administrator’s Guide

http://www.perforce.com/perforce/loadsupp.html#daemon
http://www.python.org/

Chapter 6: Scripting Perforce: Triggers and Daemons
The change review daemon monitors the files that were included in each newly submitted
changelist and emails all users who have subscribed to any files included in a changelist,
letting those users know that the files in question have changed.

By including the special path //depot/jobs in the Reviews: field, users can also receive
mail from the Perforce change review daemon whenever job data is updated.

The change review daemon implements the following scheme:

1. p4 counter is used to read and change a variable, called a counter, in the Perforce
metadata. The counter used by this daemon, review, stores the number of the latest
changelist that’s been reviewed.

2. The Perforce depot is polled for submitted, unreviewed changelists with the p4
review -t review command.

3. p4 reviews generates a list of reviewers for each of these changelists.

4. The Python mail module mails the p4 describe changelist description to each
reviewer.

5. The first three steps are repeated every three minutes, or at some other interval
configured at the time of installation.

The command used in the fourth step (p4 describe) is a straightforward reporting
command. The other commands (p4 review, p4 reviews, and p4 counter) are used
almost exclusively by review daemons.

Creating other daemons

You can use p4review.py (see “Perforce’s change review daemon” on page 128) as a
starting point to create your own daemons, changing it as needed. As an example, another
daemon might upload Perforce job information into an external bug tracking system after
changelist submission. It would use the p4 review command with a new review counter
to list new changelists, and use p4 fixes to get the list of jobs fixed by the newly
submitted changelists. This information might then be fed to the external system,
notifying it that certain jobs have been completed.

If you write a daemon of your own and would like to share it with other users, you can
submit it into the Perforce Public Depot. For more information, go to
http://public.perforce.com.
Perforce 2009.2 System Administrator’s Guide 129

http://public.perforce.com

Chapter 6: Scripting Perforce: Triggers and Daemons
Commands used by daemons

Certain Perforce commands are used almost exclusively by review daemons. These
commands are listed in the following table.

Command Usage

p4 review -c change# For all changelists between change# and the
latest submitted changelist, this command lists
the changelists’ numbers, creators, and
creators’ email addresses.

Requires at least review access to run.

p4 reviews -c change# filespec Lists all users who have subscribed to review
the named files or any files in the specified
changelist.

p4 counter name [value] To create a new counter or set the value of an
existing counter, you must have review access
or greater. To display a counter’s value, you
must have list access or greater.

If a value argument is not included, p4
counter returns the value of name, or 0 if the
counter does not exist.

If a value argument is included, p4 counter
sets the value of the name to value. If the
counter name does not exist, it is created.

WARNING: The review counters journal,
job, and change are used internally by
Perforce; use of any of these three names as
review numbers could corrupt the Perforce
database.

Counters are represented internally as strings.
(Prior to release 2008.1, they were stored as
signed ints)

p4 counters List all counters and their values.

p4 changes -m 1 -s submitted Outputs a single line showing the changelist
number of the last submitted changelist, as
opposed to the highest changelist number
known to the Perforce server.
130 Perforce 2009.2 System Administrator’s Guide

Chapter 6: Scripting Perforce: Triggers and Daemons
Daemons and counters

If you’re writing a change review daemon or other daemon that deals with submitted
changelists, you might also want to keep track of the changelist number of the last
submitted changelist, which is the second field in the output of a p4 changes -m 1 -s
submitted command.

This is not the same as the output of p4 counter change. The last changelist number
known to the Perforce server (the output of p4 counter change) includes pending
changelists created by users, but not yet submitted to the depot.

Scripting and buffering

Depending on your platform, the output of individual p4 commands can be fully-buffered
(output flushed only after a given number of bytes generated), line-buffered (as on a tty,
one line sent per linefeed), or unbuffered.

In general, stdout to a file or pipe is fully buffered, and stdout to a tty is line-buffered. If
your trigger or daemon requires line-buffering (or no buffering), you can disable
buffering by supplying the -v0 debug flag to the p4 command in question.

If you’re using pipes to transfer standard output from a Perforce command (with or
without the -v0 flag), you might also experience buffering issues introduced by the
kernel, because the -v0 flag can only unbuffer the output of the command itself.
Perforce 2009.2 System Administrator’s Guide 131

Chapter 6: Scripting Perforce: Triggers and Daemons
132 Perforce 2009.2 System Administrator’s Guide

Chapter 7 Tuning Perforce for
Performance
Your Perforce server should normally be a light consumer of system resources. As your
installation grows, however, you might want to revisit your system configuration to
ensure that it is configured for optimal performance.

This chapter briefly outlines some of the factors that can affect the performance of a
Perforce server, provides a few tips on diagnosing network-related difficulties, and offers
some suggestions on decreasing server load for larger installations.

Tuning for performance

In general, Perforce performs well on any server-class hardware platform. The following
variables can affect the performance of your Perforce server.

Memory

Server performance is highly dependent upon having sufficient memory. Two bottlenecks
are relevant. The first bottleneck can be avoided by ensuring that the server doesn’t page
when it runs large queries, and the second by ensuring that the db.rev table (or at least as
much of it as practical) can be cached in main memory:

• Determining memory requirements for large queries is fairly straightforward: the
server requires about 1 kilobyte of RAM per file to avoid paging; 10,000 files will
require 10 MB of RAM.

• To cache db.rev, the size of the db.rev file in an existing installation can be observed
and used as an estimate. New installations of Perforce can expect db.rev to require
about 150-200 bytes per revision, and roughly three revisions per file, or about 0.5
kilobytes of RAM per file.

Thus, if there is 1.5 kilobytes of RAM available per file, or 150 MB for 100,000 files, the
server does not page, even when performing operations involving all files. It is still
possible that multiple large operations can be performed simultaneously and thus require
more memory to avoid paging. On the other hand, the vast majority of operations involve
only a small subset of files.

For most installations, a system with 1.5 kilobytes of RAM per file in the depot suffices.

Filesystem performance

Perforce is judicious with regards to its use of disk I/O; its metadata is well-keyed, and
accesses are mostly sequential scans of limited subsets of the data. The most disk-
intensive activity is file check-in, where the Perforce server must write and rename files in
Perforce 2009.2 System Administrator’s Guide 133

Chapter 7: Tuning Perforce for Performance
the archive. Server performance depends heavily on the operating system’s filesystem
implementation, and in particular, on whether directory updates are synchronous. Server
performance is also highly dependent upon the capabilities of the underlying hardware’s
I/O subsystem.

Although Perforce does not recommend any specific hardware configuration or
filesystem, Linux servers are generally fastest (owing to Linux’s asynchronous directory
updating), but they may have poor recovery if power is cut at the wrong time. The BSD
filesystem (also used in Solaris) is relatively slow but much more reliable. NTFS
performance falls somewhere in between these two ranges.

Performance in systems where database and versioned files are stored on NFS-mounted
volumes is typically dependent on the implementation of NFS in question or the
underlying storage hardware. Perforce has been tested and is supported under the Solaris
implementation of NFS.

Under Linux and FreeBSD, database updates over NFS can be an issue because file
locking is relatively slow; if the journal is NFS-mounted on these platforms, all operations
will be slower. In general (but in particular on Linux and FreeBSD), we recommend that
the Perforce database, depot, and journal files be stored on disks local to the machine
running the Perforce server process.

These issues affect only the Perforce server process (p4d). Perforce client programs, (such
as p4, the Perforce Command-Line Client) have always been able to work with client
workspaces on NFS-mounted drives (for instance, workspaces in users’ home directories).

Disk space allocation

Perforce disk space usage is a function of three variables:

• Number and size of client workspaces

• Size of server database

• Size of server’s archive of all versioned files

All three variables depend on the nature of your data and how heavily you use Perforce.

The client file space required is the size of the files that your users will need in their client
workspaces at any one time.

The server’s database size can be calculated with a fair level of accuracy; as a rough
estimate, it requires 0.5 kilobytes per user per file. (For instance, a system with 10,000 files
and 50 users requires 250 MB of disk space for the database). The database can be
expected to grow over time as histories of the individual files grow.

The size of the server’s archive of versioned files depends on the sizes of the original files
stored and grows as revisions are added. For most sites, allocate space equivalent to at
least three times the aggregate size of the original files.
134 Perforce 2009.2 System Administrator’s Guide

Chapter 7: Tuning Perforce for Performance
If you anticipate your database growing into the gigabyte range, you should ensure that
your platform has adequate support for large filesystems. See “Allocate sufficient disk
space for anticipated growth” on page 20.

The db.have file holds the list of files opened in client workspaces. This file tends to grow
more rapidly than other files in the database. If you are experiencing issues related to the
size of your db.have file and are unable to quickly switch to a server with adequate
support for large files, deleting unused client workspace specifications and reducing the
scope of client workspace views can help alleviate the problem.

Monitoring disk space usage

To find out how much disk space is currently occupied by files in a depot (or part of a
depot), use the p4 sizes command with a block size corresponding to that used by your
storage solution. For example, the command

p4 sizes -a -s -b 512 //depot/...

shows the sum (-s) of all revisions (-a) in //depot/... with a block size of 512 bytes.

Network

Perforce can run over any TCP/IP network. Although we have not yet seen network
limitations, the more bandwidth the better.

Perforce uses a TCP/IP connection for each client interaction with the server. The server’s
port address is defined by P4PORT, but the TCP/IP implementation picks a client port
number. After the command completes and the connection is closed, the port is left in a
state called TIME_WAIT for two minutes. Although the port number ranges from 1025 to
32767, generally only a few hundred or thousand can be in use simultaneously. It is
therefore possible to occupy all available ports by invoking a Perforce client command
many times in rapid succession, such as with a script.

CPU

Perforce is based on a client/server architecture. Both the client and server are lightweight
in terms of CPU resource consumption; in general, CPU power is not a major
consideration when determining the platform on which to install a Perforce server.

//depot/... 34161 files 277439099 bytes 5429111 blocks
Perforce 2009.2 System Administrator’s Guide 135

Chapter 7: Tuning Perforce for Performance
Diagnosing slow response times

Perforce is normally a light user of network resources. Although it is possible that an
extremely large user operation could cause the Perforce server to respond slowly,
consistently slow responses to p4 commands are usually caused by network problems.
Any of the following can cause slow response times:

1. Misconfigured domain name system (DNS)

2. Misconfigured Windows networking

3. Difficulty accessing the p4 executable on a networked file system

A good initial test is to run p4 info. If this does not respond immediately, then there is a
network problem. Although solving network problems is beyond the scope of this
manual, here are some suggestions for troubleshooting them.

Hostname vs. IP address

On a client machine, try setting P4PORT to the server’s IP address instead of its hostname.
For example, instead of using

P4PORT=host.domain:1666

try using
P4PORT=1.2.3.4:1666

with your site-specific IP address and port number.

On most systems, you can determine the IP address of a host by invoking:
ping hostname

If p4 info responds immediately when you use the IP address, but not when you use the
hostname, the problem is likely related to DNS.

Windows wildcards

In some cases, p4 commands on Windows can result in a delayed response if they use
unquoted filepatterns with a combination of depot syntax and wildcards, such as:

p4 files //depot/*

You can prevent the delay by putting double quotes around the file pattern, like this:
p4 files "//depot/*"

The cause of the problem is the p4 command’s use of a Windows function to expand
wildcards. When quotes are not used, the function interprets //depot as a networked
computer path and spends time in a futile search for a machine named depot.
136 Perforce 2009.2 System Administrator’s Guide

Chapter 7: Tuning Perforce for Performance
DNS lookups and the hosts file

On Windows, the %SystemRoot%\system32\drivers\etc\hosts file can be used to
hardcode IP address-hostname pairs. You might be able to work around DNS problems
by adding entries to this file. The corresponding UNIX file is /etc/hosts.

Location of the p4 executable

If none of the above diagnostic steps explains the sluggish response time, it’s possible that
the p4 executable itself is on a networked file system that is performing very poorly. To
check this, try running:

p4 -V

This merely prints out the version information, without attempting any network access. If
you get a slow response, network access to the p4 executable itself might be the problem.
Copying or downloading a copy of p4 onto a local filesystem should improve response
times.

Preventing server swamp

Generally, Perforce’s performance depends on the number of files a user tries to
manipulate in a single command invocation, not on the size of the depot. That is, syncing
a client view of 30 files from a 3,000,000-file depot should not be much slower than
syncing a client view of 30 files from a 30-file depot.

The number of files affected by a single command is largely determined by:

• p4 command-line arguments (or selected folders in the case of GUI operations)

Without arguments, most commands operate on, or at least refer to, all files in the client
workspace view.

• Client views, branch views, label views, and protections

Because commands without arguments operate on all files in the workspace view, it
follows that the use of unrestricted views and unlimited protections can result in
commands operating on all files in the depot.

When the server answers a request, it locks down the database for the duration of the
computation phase. For normal operations, this is a successful strategy, because the server
can “get in and out” quickly enough to avoid a backlog of requests. Abnormally large
requests, however, can take seconds, sometimes even minutes. If frustrated users press
CTRL-C and retry, the problem gets even worse; the server consumes more memory and
responds even more slowly.
Perforce 2009.2 System Administrator’s Guide 137

Chapter 7: Tuning Perforce for Performance
At sites with very large depots, unrestricted views and unqualified commands make a
Perforce server work much harder than it needs to. Users and administrators can ease
load on their servers by:

• Using “tight” views

• Assigning protections

• Limiting maxresults

• Writing efficient scripts

• Using compression efficiently

Using tight views

The following “loose” view is trivial to set up but could invite trouble on a very large
depot:

In the loose view, the entire depot was mapped into the client workspace; for most users,
this can be “tightened” considerably. The following view, for example, is restricted to
specific areas of the depot:

Client views, in particular, but also branch views and label views, should also be set up to
give users just enough scope to do the work they need to do.

Client, branch, and label views are set by a Perforce administrator or by individual users
with the p4 client, p4 branch, and p4 label commands, respectively.

Two of the techniques for script optimization (described in “Using branch views” on
page 142 and “The temporary client workspace trick” on page 143) rely on similar
techniques. By limiting the size of the view available to a command, fewer commands
need to be run, and when run, the commands require fewer resources.

//depot/... //workspace/...

//depot/main/srv/devA/... //workspace/main/srv/devA/...
//depot/main/drv/lport/... //workspace/main/dvr/lport/...
//depot/rel2.0/srv/devA/bin/... //workspace/rel2.0/srv/devA/bin/...
//depot/qa/s6test/dvr/... //workspace/qa/s6test/dvr/...
138 Perforce 2009.2 System Administrator’s Guide

Chapter 7: Tuning Perforce for Performance
Assigning protections

Protections (see “Administering Perforce: Protections” on page 81) are actually another
type of Perforce view. Protections are set with the p4 protect command and control
which depot files can be affected by commands run by users.

Unlike client, branch, and label views, however, the views used by protections can be set
only by Perforce superusers. (Protections also control read and write permission to depot
files, but the permission levels themselves have no impact on server performance.) By
assigning protections in Perforce, a Perforce superuser can effectively limit the size of a
user’s view, even if the user is using “loose” client specifications.

Protections can be assigned to either users or groups. For example:

Perforce groups are created by superusers with the p4 group command. Not only do they
make it easier to assign protections, they also provide useful fail-safe mechanisms in the
form of maxresults and maxscanrows, described in the next section.

Limiting database queries

Each Perforce group has an associated maxresults, maxscanrows, and maxlocktime value.
The default for each is unset, but a superuser can use p4 group to limit it for any given
group.

MaxResults prevents the server from using excessive memory by limiting the amount of
data buffered during command execution. Users in limited groups are unable to run any
commands that buffer more database rows than the group’s MaxResults limit. (For most
sites, MaxResults should be larger than the largest number of files anticipated in any one
user’s individual client workspace.)

Like MaxResults, MaxScanRows prevents certain user commands from placing excessive
demands on the server. (Typically, the number of rows scanned in a single operation is
roughly equal to MaxResults multiplied by the average number of revisions per file in the
depot.)

Finally, MaxLockTime is used to prevent certain commands from locking the database for
prolonged periods of time. Set MaxLockTime to the number of milliseconds for the longest
permissible database lock.

To set these limits, fill in the appropriate fields in the p4 group form. If a user is listed in
multiple groups, the highest of the MaxResults (or MaxScanRows, or MaxLockTime) limits
(including unlimited, but not including the default unset setting) for those groups is
taken as the user’s MaxResults (or MaxScanRows, or MaxLockTime) value.

write user sam * //depot/admin/...
write group rocketdev * //depot/rocket/main/...
write group rocketrel2 * //depot/rocket/rel2.0/...
Perforce 2009.2 System Administrator’s Guide 139

Chapter 7: Tuning Perforce for Performance
Example: Effect of setting maxresults, maxscanrows, and maxlocktime.

As an administrator, you want members of the group rocketdev to be limited to operations
of 20,000 files or less, that scan no more than 100,000 revisions, and lock database tables for
no more than 30 seconds:

Suppose that Ruth has an unrestricted (“loose”) client view. She types:
p4 sync

Her sync command is rejected if the depot contains more than 20,000 files. She can work
around this limitation either by restricting her client view, or, if she needs all of the files in the
view, by syncing smaller sets of files at a time, as follows:

p4 sync //depot/projA/...
p4 sync //depot/projB/...

Either method enables her to sync her files to her workspace, but without tying up the server
to process a single extremely large command.

Ruth tries a command that scans every revision of every file, such as:
p4 filelog //depot/projA/...

If there are fewer than 20,000 files, but more than 100,000 revisions (perhaps the projA
directory contains 8000 files, each of which has 20 revisions), the MaxResults limit does not
apply, but the MaxScanRows limit does.

Regardless of which limits are in effect, no command she runs will be permitted to lock the
database for more than the MaxLockTime of 30000 milliseconds.

To remove any limits on the number of result lines processed (or database rows scanned,
or milliseconds of database locking time) for a particular group, set the MaxResults or
MaxScanRows, or MaxLockTime value for that group to unlimited.

Because these limitations can make life difficult for your users, do not use them unless
you find that certain operations are slowing down your server. Because some Perforce
client programs can perform large operations, you should typically set MaxResults no
smaller than 10,000, set MaxScanRows no smaller than 50,000, and MaxLockTime to
somewhere within the1000-30000 (1-30 second) range.

Group: rocketdev
MaxResults: 20000
MaxScanRows: 100000
MaxLockTime: 30000
Timeout: 43200
Subgroups:
Owners:
Users:

bill
ruth
sandy
140 Perforce 2009.2 System Administrator’s Guide

Chapter 7: Tuning Perforce for Performance
For more information, including a comparison of Perforce commands and the number of
files they affect, type:

p4 help maxresults
p4 help maxscanrows
p4 help maxlocktime

from the command line.

MaxResults, MaxScanRows and MaxLockTime for users in multiple groups

As mentioned earlier, if a user is listed in multiple groups, the highest numeric
MaxResults limit of all the groups a user belongs to is the limit that affects the user.

The default value of unset is not a numeric limit; if a user is in a group where MaxResults
is set to unset, he or she is still limited by the highest numeric MaxResults (or
MaxScanRows or MaxLockTime) setting of the other groups of which he or she is a member.

A user’s commands are truly unlimited only when the user belongs to no groups, or when
any of the groups of which the user is a member have their MaxResults set to unlimited.

Scripting efficiently

The Perforce Command-Line Client, p4, supports the scripting of any command that can
be run interactively. The Perforce server can process commands far faster than users can
issue them, so in an all-interactive environment, response time is excellent. However, p4
commands issued by scripts - triggers, review daemons, or command wrappers, for
example - can cause performance problems if you haven’t paid attention to their
efficiency. This is not because p4 commands are inherently inefficient, but because the
way one invokes p4 as an interactive user isn’t necessarily suitable for repeated iterations.

This section points out some common efficiency problems and solutions.

Iterating through files

Each Perforce command issued causes a connection thread to be created and a p4d
subprocess to be started. Reducing the number of Perforce commands your script runs is
the first step to making it more efficient.

To this end, scripts should never iterate through files running Perforce commands when
they can accomplish the same thing by running one Perforce command on a list of files
and iterating through the command results.

For example, try a more efficient approach like this:
for i in `p4 diff2 path1/... path2/...`
do

[process diff output]
done
Perforce 2009.2 System Administrator’s Guide 141

Chapter 7: Tuning Perforce for Performance
Instead of an inefficient approach like:
for i in `p4 files path1/...`
do

p4 diff2 path1/$i path2/$i
[process diff output]

done

Using list input files

Any Perforce command that accepts a list of files as a command-line argument can also
read the same argument list from a file. Scripts can make use of the list input file feature
by building up a list of files first, and then passing the list file to p4 -x.

For example, if your script might look something like this:
for components in header1 header2 header3
do

p4 edit ${component}.h
done

A more efficient alternative would be:
for components in header1 header2 header3
do

echo ${component}.h >> LISTFILE
done
p4 -x LISTFILE edit

The -x flag instructs p4 to read arguments, one per line, from the named file. If the file is
specified as - (a dash), the standard input is read.

Using branch views

Branch views can be used with p4 integrate or p4 diff2 to reduce the number of
Perforce command invocations. For example, you might have a script that runs:

p4 diff2 pathA/src/... pathB/src/...
p4 diff2 pathA/tests/... pathB/tests/...
p4 diff2 pathA/doc/... pathB/doc/...

You can make it more efficient by creating a branch view that looks like this:

...and replacing the three commands with one:
p4 diff2 -b pathA-pathB

Branch: pathA-pathB
View:

pathA/src/... pathB/src/...
pathA/tests/... pathB/tests/...
pathA/doc/... pathB/doc/...
142 Perforce 2009.2 System Administrator’s Guide

Chapter 7: Tuning Perforce for Performance
Limiting label references

Repeated references to large labels can be particularly costly. Commands that refer to files
using labels as revisions will scan the whole label once for each file argument. To keep
from hogging the Perforce server, your script should get the labeled files from the server,
and then scan the output for the files it needs.

For example, this:
p4 files path/...@label | egrep “path/f1.h|path/f2.h|path/f3.h”

imposes a lighter load on the Perforce server than either this:
p4 files path/f1.h@label path/f1.h@label path/f3.h@label

or this:
p4 files path/f1.h@label
p4 files path/f2.h@label
p4 files path/f3.h@label

The “temporary client workspace” trick described below can also reduce the number of
times you have to refer to files by label.

The temporary client workspace trick

Most Perforce commands can process all the files in the current workspace view with a
single command-line argument. By making use of a temporary client workspace with a
view that contains only the files on which you want to work, you might be able to reduce
the number of commands you have to run, or to reduce the number of file arguments you
need to give each command.

For instance, suppose your script runs these commands:
p4 sync pathA/src/...@label
p4 sync pathB/tests/...@label
p4 sync pathC/doc/...@label

You can combine the command invocations and reduce the three label scans to one by
using a client workspace specification that looks like this:

Using this workspace specification, you can then run:
p4 -c XY-temp sync @label

Client: XY-temp
View:

pathA/src/... //XY-temp/pathA/src/...
pathB/tests/... //XY-temp/pathB/tests/...
pathC/doc/... //XY-temp/pathC/doc/...
Perforce 2009.2 System Administrator’s Guide 143

Chapter 7: Tuning Perforce for Performance
Using compression efficiently

By default, revisions of files of type binary are compressed when stored on the Perforce
server.

Some file formats (for example, .GIF and .JPG images, .MPG and .AVI media content, files
compressed with .gz and .ZIP compression) include compression as part of the file
format. Attempting to compress such files on the Perforce server results in the
consumption of server CPU resources with little or no savings in disk space.

To disable server storage compression for these file types, specify such files as type
binary+F (binary, stored on the server in full, without compression) either from the
command line or from the p4 typemap table.

For more about p4 typemap, including a sample typemap table, see “Defining filetypes
with p4 typemap” on page 48.

Checkpoints for database tree rebalancing

Perforce’s internal database stores its data in structures called Bayer trees, more
commonly referred to as B-trees. While B-trees are a very common way to structure data
for rapid access, over time, the process of adding and deleting elements to and from the
trees can eventually lead to imbalances in the data structure.

Eventually, the tree can become sufficiently unbalanced that performance is negatively
affected. The Perforce checkpoint and restore processes (see “Backup and recovery
concepts” on page 25) re-create the trees in a balanced manner, and consequently, you
might see some increase in server performance following a backup, a removal of the db.*
files, and the re-creation of the db.* files from a checkpoint.

Rebalancing the trees is normally useful only if the database files have become more than
about 10 times the size of the checkpoint. Given the length of time required for the trees to
become unbalanced during normal Perforce use, we expect that the majority of sites will
never need to restore the database from a checkpoint (that is, rebalance the trees) for
performance reasons.
144 Perforce 2009.2 System Administrator’s Guide

Chapter 8 Perforce and Windows
This chapter describes certain information of specific interest to administrators who set up
and maintain Perforce servers on Windows.

Using the Perforce installer

The Perforce installer program, perforce.exe, gives you the option to install or upgrade
the Perforce Server, Perforce Proxy, or the Perforce Command-Line Client.

Separate installers are provided for other Perforce client programs such as P4V.

If you have Administrator privileges, it is usually best to install Perforce as a service. If
you don’t, install it as a server.

Under Windows 2000 or higher, you must have Administrator privileges to install
Perforce as a service or as a server.

Upgrade notes

The Perforce installer also automatically upgrades all types of Perforce servers (or
services), even versions prior to 97.3. The upgrade process is extremely conservative; if
anything fails at any step in the upgrade process, the installer stops the upgrade, and you
are still able to use your old server (or service).

Scripted deployment and unattended installation

The Perforce installer supports scripted installation, enabling you to accelerate a
deployment of Perforce across a large number of desktops.

Scripted installations are controlled by a configuration file that comes with the scriptable
version of the Perforce installer. You can edit this file to preconfigure Perforce
environment variables (such as P4PORT) for your environment, to automatically select
Perforce client programs in use at your site, and more.

To learn more about how to automate a deployment of Perforce, see Tech Note 68 at:
http://kb.perforce.com/?article=68

Perforce technical support personnel are available to answer any questions or concerns
you have about automating your Perforce deployment.

Note Unless otherwise specified, the material presented here applies equally to
Windows NT, 2000, XP, Vista, and 7.
Perforce 2009.2 System Administrator’s Guide 145

http://kb.perforce.com/?article=68

Chapter 8: Perforce and Windows
Windows services vs. Windows servers

To run any task as a Windows server, a user account must be logged in, because shortcuts
in a user’s Startup folder cannot be run until that user logs in. A Windows service, on the
other hand, is invoked automatically at boot time and runs regardless of whether or not a
user is logged in to the machine.

Throughout most of the documentation set, the terms Perforce server or p4d are used to
refer to “the process at the back end that manages the database and responds to requests
from Perforce clients”. Under Windows, this can lead to ambiguity; the back-end process
can run as either a service (p4s.exe, which runs as a thread) or as a server (p4d.exe,
which runs as a regular process). From a Windows administrator’s point of view, these
are important distinctions. Consequently, the terminology used in this chapter uses the
more precise definitions.

The Perforce service (p4s.exe) and the Perforce server (p4d.exe) executables are copies
of each other; they are identical apart from their filenames. When run, they use the first
three characters of the name with which they were invoked (that is, either p4s or p4d) to
determine their behavior. For example, invoking copies named p4smyserver.exe or
p4dmyservice.exe invokes a service and a server, respectively.

Starting and stopping the Perforce service

If Perforce was installed as a service, a user with Administrator privileges can start and
stop it using the Services applet under the Control Panel. You can also stop the Perforce
service from the command line with the command:

p4 admin stop

Starting and stopping the Perforce server

The server executable, p4d.exe, is normally found in your P4ROOT directory. To start the
server, first make sure your current P4ROOT, P4PORT, P4LOG, and P4JOURNAL settings are
correct; then run: %P4ROOT%\p4d

To start a server with settings different from those set by P4ROOT, P4PORT, P4LOG, or
P4JOURNAL, use p4d command-line flags. For example:

c:\test\p4d -r c:\test -p 1999 -L c:\test\log -J c:\test\journal

starts a Perforce server process with a root directory of c:\test, listening to port 1999,
logging errors to c:\test\log, and with a journal file of c:\test\journal. The p4d
command-line flags are case-sensitive.

To stop the Perforce server, use the command:
p4 admin stop
146 Perforce 2009.2 System Administrator’s Guide

Chapter 8: Perforce and Windows
Installing the Perforce service on a network drive

By default, the Perforce service runs under the local System account. Because the System
account has no network access, a real userid and password are required in order to make
the Perforce service work if the metadata and depot files are stored on a network drive.

If you are installing your server root on a network drive, the Perforce installer
(perforce.exe) requests a valid combination of userid and password at the time of
installation. This user must have administrator privileges. (The service, when running,
runs under this user name, rather than System)

Although the Perforce service runs reliably using a network drive as the server root, there
is still a marked performance penalty due to increased network traffic and slower file
access. Consequently, Perforce recommends that the depot files and Perforce database
reside on a drive local to the machine on which the Perforce service is running.

Multiple Perforce services under Windows

By default, the Perforce installer for Windows installs a single Perforce server as a single
service. If you want to host more than one Perforce installation on the same machine (for
instance, one for production and one for testing), you can either manually start Perforce
servers from the command line, or use the Perforce-supplied utility svcinst.exe, to
configure additional Perforce services.

Understanding the precedence of environment variables in determining Perforce
configuration is useful when configuring multiple Perforce services on the same machine.
Before you begin, read and understand “Windows configuration parameter precedence”
on page 149.

To set up a second Perforce service:

1. Create a new directory for the Perforce service.

Note If you are running Release 99.1 or earlier, press Ctrl-C in the Command
Prompt window, or simply close the window.

Although this method of stopping a Perforce server works in all versions of
Perforce, it is not necessarily “clean”. With the availability of the p4 admin
stop command in 99.2, this method is no longer recommended.

Warning! Setting up multiple services to increase the number of users you support
without purchasing more user licenses is a violation of the terms of your
Perforce End User License Agreement.
Perforce 2009.2 System Administrator’s Guide 147

Chapter 8: Perforce and Windows
2. Copy the server executable, service executable, and your license file into this
directory.

3. Create the new Perforce service using the svcinst.exe utility, as described in the
example below. (The svcinst.exe utility comes with the Perforce installer, and can
be found in your Perforce server root.)

4. Set up the environment variables and start the new service.

We recommend that you install your first Perforce service using the Perforce installer.
This first service is called Perforce and its server root directory contains files that are
required by any other Perforce services you create on the machine.

Example: Adding a second Perforce service.

You want to create a second Perforce service with a root in C:\p4root2 and a service name of
Perforce2. The svcinst executable is in the server root of the first Perforce installation you
installed in C:\perforce.

Verify that your p4d.exe executable is at Release 99.1/10994 or greater:
p4d -V

(If you are running an older release, you must first download a more recent release from
http://www.perforce.com and upgrade your server before continuing.)

Create a P4ROOT directory for the new service:
mkdir c:\p4root2

Copy the server executables, both p4d.exe (the server) and p4s.exe (the service), and your
license file into the new directory:

copy c:\perforce\p4d.exe c:\p4root2
copy c:\perforce\p4d.exe c:\p4root2\p4s.exe
copy c:\perforce\license c:\p4root2\license

Use Perforce’s svcinst.exe (the service installer) to create the “Perforce2” service:
svcinst create -n Perforce2 -e c:\p4root2\p4s.exe -a

After you create the Perforce2 service, set the service parameters for the Perforce2
service:

p4 set -S Perforce2 P4ROOT=c:\p4root2
p4 set -S Perforce2 P4PORT=1667
p4 set -S Perforce2 P4LOG=log2
p4 set -S Perforce2 P4JOURNAL=journal2

Finally, use the Perforce service installer to start the Perforce2 service:
svcinst start -n Perforce2.

The second service is now running, and both services will start automatically the next time
you reboot.
148 Perforce 2009.2 System Administrator’s Guide

http://www.perforce.com

Chapter 8: Perforce and Windows
Windows configuration parameter precedence

Under Windows, Perforce configuration parameters can be set in many different ways.
When a Perforce client program (such as p4 or P4V), or a Perforce server program (p4d)
starts up, it reads its configuration parameters according to the following precedence:

1. The program’s command-line flags have the highest precedence.

2. The P4CONFIG file, if P4CONFIG is set

3. User environment variables

4. System environment variables

5. The Perforce user registry (set by p4 set)

6. The Perforce system registry (set by p4 set -s)

When a Perforce service (p4s) starts up, it reads its configuration parameters from the
environment according to the following precedence:

1. Windows service parameters (set by p4 set -S servicename) have the highest
precedence.

2. System environment variables

3. The Perforce system registry (set by p4 set -s)

User environment variables can be set with any of the following:

• The MS-DOS set command

• The AUTOEXEC.BAT file

• The User Variables tab under the System Properties dialog box in the Control Panel

System environment variables can be set with:

• The System Variables tab under the System Properties dialog box in the Control Panel

Resolving Windows-related instabilities

Many large sites run Perforce servers on Windows without incident. There are also sites in
which a Perforce service or server installation appears to be unstable; the server dies
mysteriously, the service can’t be started, and in extreme cases, the system crashes. In
most of these cases, this is an indication of recent changes to the machine or a corrupted
operating system.
Perforce 2009.2 System Administrator’s Guide 149

Chapter 8: Perforce and Windows
Though not all Perforce failures are caused by OS-level problems, a number of symptoms
can indicate the OS is at fault. Examples include: the system crashing, the Perforce server
exiting without any error in its log and without Windows indicating that the server
crashed, or the Perforce service not starting properly.

In some cases, installing third-party software after installing a service pack can overwrite
critical files installed by the service pack; reinstalling your most-recently installed service
pack can often correct these problems. If you’ve installed another application after your
last service pack, and server stability appears affected since the installation, consider
reinstalling the service pack.

Users having trouble with P4EDITOR or P4DIFF

Your Windows users might experience difficulties using the Perforce Command-Line
Client (p4.exe) if they use the P4EDITOR or P4DIFF environment variables.

The reason for this is that Perforce clients sometimes use the DOS shell (cmd.exe) to start
programs such as user-specified editors or diff utilities. Unfortunately, when a Windows
command is run (such as a GUI-based editor like notepad.exe) from the shell, the shell
doesn’t always wait for the command to complete before terminating. When this happens,
the Perforce client then mistakenly behaves as if the command has finished and attempts
to continue processing, often deleting the temporary files that the editor or diff utility had
been using, leading to error messages about temporary files not being found, or other
strange behavior.

You can get around this problem in two ways:

• Unset the environment variable SHELL. Perforce clients under Windows use cmd.exe
only when SHELL is set; otherwise they call spawn() and wait for the Windows
programs to complete.

• Set the P4EDITOR or P4DIFF variable to the name of a batch file whose contents are the
command:
start /wait program %1 %2

where program is the name of the editor or diff utility you want to invoke. The /wait
flag instructs the system to wait for the editor or diff utility to terminate, enabling the
Perforce client program to behave properly.

Some Windows editors (most notably, Wordpad) do not exhibit proper behavior, even
when instructed to wait. There is presently no workaround for such programs.
150 Perforce 2009.2 System Administrator’s Guide

Chapter 9 Perforce Proxy
Perforce is built to handle distributed development in a wide range of network topologies.
Where bandwidth to remote sites is limited, P4P, the Perforce Proxy, improves
performance by mediating between Perforce clients and servers to cache frequently
transmitted file revisions. By intercepting requests for cached file revisions, P4P reduces
demand on the Perforce server and network.

To improve performance obtained by multiple Perforce clients accessing a central
Perforce server across a WAN, configure P4P on the side of the network close to the
clients and configure the clients to access P4P; then configure P4P to access the central
Perforce server. (On a LAN, you can also obtain performance improvements by setting up
proxies to divert workload from the central server’s CPU and disks.)

The following diagram illustrates a typical P4P configuration.

In this configuration, file revisions requested by users at a remote development site are
fetched first from a central Perforce server (p4d running on central) and transferred over
a relatively slow WAN. Subsequent requests for that same revision, however, are
delivered from the Perforce Proxy, (p4p running on outpost), over the remote
development site’s LAN, reducing both network traffic across the WAN and CPU load on
the central server.

WAN

outpostcentral

P4PORT=outpost:1999P4PORT=central:1666

/src/p4root/... /var/proxyroot/...

p4d p4p
Perforce 2009.2 System Administrator’s Guide 151

Chapter 9: Perforce Proxy
System requirements

To use Perforce Proxy, you must have:

• A Perforce server at Release 2002.2 or higher

• Sufficient disk space on the proxy host to store a cache of file revisions

Installing P4P

UNIX

To install P4P on UNIX, do the following:

1. Download the p4p executable to the machine on which you want to run the proxy.

2. Select a directory on this machine (P4PCACHE) in which to cache file revisions.

3. Select a port (P4PORT) on which p4p will listen for requests from Perforce client
programs.

4. Select the target Perforce server (P4TARGET) for which this proxy will cache.

Windows

Install P4P from the Windows installer’s custom/administrator installation dialog.

Running P4P

To run P4P, invoke the p4p executable, configuring it with environment variables or
command-line flags. Flags you specify on the command line override environment
variable settings.

For example, the following command line starts a proxy that communicates with a central
Perforce server located on a host named central, listening on port 1666.

p4p -p 1999 -t central:1666 -r /var/proxyroot

To use the proxy, Perforce client programs connect to P4P on port 1999 on the machine
where the proxy runs. P4P file revisions are stored under a directory named
/var/proxyroot.
152 Perforce 2009.2 System Administrator’s Guide

Chapter 9: Perforce Proxy
Running P4P as a Windows service

To run P4P as a Windows service, either install P4P from the Windows installer, or specify
the -s flag when you invoke p4p.exe, or rename the P4P executable to p4ps.exe.

To pass parameters to the P4Proxy service, set the P4POPTIONS registry variable using the
p4 set command. For example, if you normally run the Proxy with the command:

p4p -p 1999 -t mainserver:1666

you can set the P4POPTIONS variable for a Windows service named Perforce Proxy by
setting the service parameters as follows:

p4 set -S "Perforce Proxy" P4POPTIONS="-p 1999 -t mainserver:1666"

When you run P4P under the "Perforce Proxy" service, the Proxy will listen to port 1999
and communicate with the Perforce Server at mainserver:1666.

P4P flags

The following command-line flags specific to the proxy are supported.

The following general options are supported.

Flag Meaning

-c Do not compress files transmitted from the Perforce server to P4P.

(This option reduces CPU load on the central server at the expense of
slightly higher bandwidth consumption.)

-d Run as daemon - fork first, then run (UNIX only).

-f Do not fork - run as a single-threaded server (UNIX only).

-i Run for inetd (socket on stdin/stdout - UNIX only).

-q Run quietly; suppress startup messages.

-s Run as an NT service (Windows only).

Running p4p.exe -s is equivalent to invoking p4ps.exe.

-e size Cache only those files that are larger than size bytes. Default is
P4PFSIZE, or zero (cache all files) if P4PFSIZE is not set.

Flag Meaning

-h or -? Display a help message.

-L logfile Specify the location of the log file. Default is P4LOG, or the directory
from which p4p is started if P4LOG is not set.

-p port Specify the port on which P4P will listen for requests from Perforce
client programs. Default is P4PORT, or 1666 if P4PORT is not set.
Perforce 2009.2 System Administrator’s Guide 153

Chapter 9: Perforce Proxy
Administering P4P

No backups required

You never need to back up the P4P cache directory.

If necessary, P4P reconstructs the cache based on Perforce server metadata.

Stopping P4P

P4P is effectively stateless; to stop P4P under UNIX, kill the p4p process with SIGTERM or
SIGKILL. Under Windows, click End Process in the Task Manager.

Managing disk space consumption

P4P caches file revisions in its cache directory. These revisions accumulate until you
delete them. P4P does not delete its cached files or otherwise manage its consumption of
disk space.

Determining if your Perforce client is using the proxy

If your Perforce client program is using the proxy, the proxy’s version information
appears in the output of p4 info.

-r root Specify the directory where revisions are cached. Default is P4PCACHE,
or the directory from which p4p is started if P4PCACHE is not set.

-t port Specify the port of the target Perforce server (that is, the Perforce server
for which P4P acts as a proxy). Default is P4TARGET or perforce:1666
if P4TARGET is not set.

-v level Specifies server trace level. Debug messages are stored in the proxy
server’s log file. Debug messages from p4p are not passed through to
p4d, and debug messages from p4d are not passed through to instances
of p4p. Default is P4DEBUG, or none if P4DEBUG is not set.

-V Display the version of the Perforce Proxy.

Warning! If you do not delete cached files, you will eventually run out of disk
space.

To recover disk space, remove files under the proxy’s root. It is safe to
delete the proxy’s cached files while the proxy is running.

Flag Meaning
154 Perforce 2009.2 System Administrator’s Guide

Chapter 9: Perforce Proxy
For example, if a Perforce server is running on central:1666 and you direct your
Perforce client to a Perforce Proxy running on outpost:1999, the output of p4 info
resembles the following:

P4P and protections

To apply the IP address of a Perforce Proxy user’s workstation against the protections
table, prepend the string proxy- to the workstation’s IP address.

For instance, consider an organization with a remote development site with workstations
on a subnet of 192.168.10.0/24. The organization also has a central office where local
development takes place; the central office exists on the 10.0.0.0/8 subnet. A Perforce
server resides on the 10.0.0.0/8 subnet, and a Perforce Proxy resides on the
192.168.10.0/24 subnet. Users at the remote site belong to the group remotedev, and
occasionally visit the central office.

To ensure that members of the remotedev group use the proxy while working at the
remote site, but do not use the proxy when visiting the local site, add the following lines
to your protections table:

The first line denies list access to all users in the remotedev group if they attempt to
access Perforce without using the proxy from their workstations in the 192.168.10.0/24
subnet. The second line grants write access to all users in remotedev if they are using a
Perforce Proxy server and are working from the 192.168.10.0/24 subnet. Users of
workstations at the remote site must use the proxy.

$ export P4PORT=outpost:1999

$ p4 info

User name: p4adm
Client name: admin-temp
Client host: remotesite22
Client root: /home/p4adm/tmp
Current directory: /home/p4adm/tmp
Client address: 192.168.0.123:55768
Server address: central:1666
Server root: /usr/depot/p4d
Server date: 2008/06/28 15:03:05 -0700 PDT
Server uptime: 752:41:23
Server version: P4D/FREEBSD4/2008.1/156375 (2008/05/25)
Proxy version: P4P/SOLARIS26/2008.1/156884 (2008/05/25)
Server license: P4 Admin <p4adm> 20 users (expires 2009/01/01)
Server license-ip: 10.0.0.2

list group remotedev 192.168.10.0/24 -//...
write group remotedev proxy-192.168.10.0/24 //...
list group remotedev proxy-10.0.0.0/8 -//...
write group remotedev 10.0.0.0/8 //...
Perforce 2009.2 System Administrator’s Guide 155

Chapter 9: Perforce Proxy
Similarly, the third and fourth lines deny list access to remotedev users when they
attempt to use the proxy from workstations on the central office’s subnet (10.0.0.0/8),
but grant write access to remotedev users who access the Perforce server directly from
workstations on the central office’s subnet. When visiting the local site, users from the
remotedev group must access the Perforce server directly.

Determining if specific files are being delivered from the proxy

Use the -Zproxyverbose flag with p4 to display messages indicating whether file
revisions are coming from the proxy (p4p) or the central server (p4d).

For instance:

Maximizing performance improvement

Reducing server CPU usage by disabling file compression

By default, P4P compresses communication with the central Perforce server, imposing
additional overhead on the server.

To disable compression, specify the -c option when you invoke p4p. This option is
particularly effective if you have excess network and disk capacity and are storing large
numbers of binary file revisions in the depot, because the proxy (rather than the server)
decompresses the binary files from its cache before sending them to Perforce clients.

Network topologies versus P4P

If network bandwidth on the same subnet as the central Perforce server is nearly
saturated, deploying proxy servers on the same subnet will not likely result in a
performance improvement. Instead, deploy the proxy servers on the other side of a router
so that the traffic from the clients to the proxy server is isolated to a subnet separate from
the subnet containing the central Perforce server.

$ p4 -Zproxyverbose sync noncached.txt
//depot/main/noncached.txt - refreshing /home/p4adm/tmp/noncached.txt

$ p4 -Zproxyverbose sync cached.txt
//depot/main/cached.txt - refreshing /home/p4adm/tmp/cached.txt
File /home/p4adm/tmp/cached.txt delivered from proxy server
156 Perforce 2009.2 System Administrator’s Guide

Chapter 9: Perforce Proxy
For example:

Deploying an additional proxy server on a subnet when network bandwidth on the
subnet is nearly saturated will not likely result in a performance improvement. Instead,
split the subnet into multiple subnets and deploy a proxy server in each resulting subnet.

In the illustrated configuration, a server room houses a company’s Perforce server (p4d), a
network storage device (NAS), and a database server (RDBMS). The server room’s
network segment is saturated by heavy loads placed on it by a sales force constantly
querying a database for live updates, and by developers and graphic artists frequently
accessing large files through the Perforce server.

Deploying two instances of Perforce Proxy (one on the developers’ subnet, and one on the
graphic artists’ subnet) enables all three groups to benefit from improved performance
due to decreased use on the server room’s network segment.

(router)

p4d

NAS

RDMBS

192.168.10.0/24

p4p

p4p

192.168.21.0/24

192.168.30.0/24

192.168.22.0/24
(artists’ subnet)

(development subnet)

(server room) (sales subnet)
Perforce 2009.2 System Administrator’s Guide 157

Chapter 9: Perforce Proxy
Preloading the cache directory for optimal initial performance

P4P stores file revisions only when one of its clients submits a new revision to the depot or
requests an existing revision from the depot. That is, file revisions are not prefetched.
Performance gains from P4P occur only after file revisions are cached.

After starting P4P, you can effectively prefetch the cache directory by creating a dedicated
client workspace and syncing it to the head revision. All other clients that subsequently
connect to the proxy immediately obtain the performance improvements provided by
P4P. For example, a development site located in Asia with a P4P server targeting a
Perforce server in North America can preload its cache directory by using an automated
job that runs a p4 sync against the entire Perforce depot after most work at the North
American site has been completed, but before its own developers arrive for work.

By default, p4 sync writes files to the client workspace. If you have a dedicated client
workspace that you use to prefetch files for the proxy, however, this step is redundant. If
the client machine has slower I/O performance than the machine running the Perforce
Proxy, it can also be time-consuming.

To preload the proxy’s cache without the redundant step of also writing the files to the
client workspace, use the -Zproxyload option when syncing. For example:

Both files are now cached, but nonwritten.txt is never written to the the prefetch client
workspace. When prefetching the entire depot, the time savings can be considerable.

Distributing disk space consumption

P4P stores revisions as if there were only one depot tree. If this approach stores too much
file data onto one filesystem, you can use symbolic links to spread the revisions across
multiple filesystems.

For instance, if the P4P cache root is /disk1/proxy, and the Perforce server it supports
has two depots named //depot and //released, you can split data across disks, storing
//depot on disk1 and //released on disk2 as follows:

The symbolic link means that when P4P attempts to cache files in the //released depot
to /disk1/proxy/released, the files are stored on /disk2/proxy/released.

$ export P4CLIENT=prefetch

$ p4 sync //depot/main/written.txt
//depot/main/written.txt - refreshing /home/prefetch/main/written.txt

$ p4 -Zproxyload sync //depot/main/nonwritten.txt
//depot/main/nonwritten.txt - file(s) up-to-date.

mkdir /disk2/proxy/released
cd /disk1/proxy
ln -s /disk2/proxy/released released
158 Perforce 2009.2 System Administrator’s Guide

Chapter 10 Perforce Replication
What is Replication?

Replication is the duplication of server data from one Perforce Server to another Perforce
Server, ideally in real time. Replication is used to reduce server load, for example, by
using the replicated data for reporting tasks, and for disaster recovery, to minimize
downtime and data loss.

Perforce’s p4 replicate utility replicates server metadata (that is, the information
contained in the db.* files) unidirectionally from one server to another (the replica
server). To achieve a fully functional replica server, you can configure the replica server to
read the source server’s versioned files (the ,v files that contain the deltas that are
produced when new versions are submitted), or use third-party or native OS functionality
to mirror the versioned content to the replica server’s root.

Replica servers are intended to be used for read-only purposes. If you require read/write
access to a remote server, use the Perforce Proxy.

Why Replicate?

You can use replication to:

• Reduce load and downtime on the primary server

Long-running queries and reports, builds, and checkpoints can be run against a replica
server, reducing lock contention. For reports and checkpoints, only metadata needs to
be replicated. For builds, ensure that the build processes have read access (but not write
access) to the master server’s versioned files.

• Provide warm standby servers

You can use p4 replicate to maintain a replica server as an up-to-date warm standby
system, to be used if the master server fails. These replica servers require that both
server metadata and versioned files are replicated. The p4 replicate command
replicates metadata only. To mirror the master server’s versioned files, use tools such as
rsync.
Perforce 2009.2 System Administrator’s Guide 159

Chapter 10: Perforce Replication
How does replication work?

Metadata replication works by using the same data as Perforce’s backup and restore
features.

The p4 replicate command maintains transactional integrity while reading transactions
out of an originating server and copying them into a replica server’s database.

You run p4 replicate on the machine that will host the replica Perforce Server. p4
replicate fetches journal records from the master Perforce Server, and provides these
records to a subprocess that restores the records into a database.

Finally, you run a p4d for the replica Perforce Server that points to the database being
restored. Users may connect to the replica server as they would connect to the master
server.

System requirements

• The master and replica servers must be revision 2009.2 or higher.

• The replica server must have a license file. (Any license file will do; it does not have to
be the same license file as used on the master server.)

• The master and replica servers must have the same time zone setting.

Warnings

• Bidirectional replication is not supported, because it can corrupt the versioned files on
both the master and replica servers.

Limits and restrictions

• p4 replicate does not read compressed journals. Therefore, the master server must
not compress rotated journals until the replica server has fetched all journal records
from older journals.

• p4 replicate only replicates metadata. If your application requires the replication of
(or access to) archive files, these archive files need to be accessible to the replica Perforce
Server. Use a network mounted file system or utilities such as rsync or SAN replication.

Windows On Windows, the time zone setting is system-wide.

On UNIX, the time zone setting is controlled by the TZ environment
variable at the time the replica server is started.
160 Perforce 2009.2 System Administrator’s Guide

Chapter 10: Perforce Replication
• Client workspaces on the master and replica servers must be mutually exclusive. Users
must be certain that their P4PORT, P4CLIENT, and other settings are configured such that
files from the replica server are not inadvertently synced to client workspaces used with
the master server, nor vice versa.

• Users must not submit changes to the replica server. To prevent submission of changes,
set permissions on the replica archive files to read-only (relative to the userid that owns
the replica p4d process.) Other mechanisms, such as the use of trigger scripts on both
the master and the replica server, written such that they would always succeed on the
master server and fail on the replica server, could be used to enforce this requirement.

Replication commands

Replica servers are supplied with metadata from a master server by means of a p4
replicate command. The p4 replicate command polls the master server for new
journal entries, and outputs them either on standard output, or pipes the records to a
subprocess, also supplied on the command line.

To start a replica server, you must first run p4 replicate:
p4 replicate [replicate-flags] command [command-flags]

and then start the replica server:
p4d -r replicaroot -p replicaport

In most cases, the command supplied to p4 replicate will be a variation of p4d -jr, to
read in the journal records from the master server into a set of database files used by the
replica server.

Warning! The replica server’s root must not be the same as the master server’s root.

Always specify the replica server’s root by means of a command line flag,
or from within a script. The command line flags override any P4ROOT
variable setting, reducing the risk that you will inadvertently start a replica
server that points to your master server’s db.* files.

For further protection, it is recommended to run your replica server as a
different user than the one used to run your master server. The userid that
owns the replica server’s process should not have write privileges to any of
the directories managed by the master server.
Perforce 2009.2 System Administrator’s Guide 161

Chapter 10: Perforce Replication
p4 replicate flags

A typical invocation of p4 replicate looks like this:
p4 replicate -s statefile -i interval [-k] [-x] [-J prefix] command

Use -s to specify the state file. The state file is a one-line text file that determines where
subsequent invocations of p4 replicate will start reading data. The format is
journalno/byteoffset, where journalno is the number of the most recent journal, and
byteoffset is the number of bytes to skip before reading. If you do not specify a byte
offset, p4 replicate starts reading at the start of the specified journal file. If no statefile
exists, replication commences with the first available journal, and a statefile is created for
you.

Use -i to specify the polling interval in seconds. The default is two seconds. To disable
polling (that is, to check once for updated journal entries and then exit), specify an
interval of 0.

Use -J prefix to specify a filename prefix for the journal, such as that used with p4d -jc
prefix.

By default, p4 replicate shuts down the pipe to the command process between polling
intervals; in most cases, you will want to use -k to keep the pipe to the command
subprocess open. This is the most common use case.

By default, p4 replicate continues to poll the master server until it is stopped by the
user. Use -x to have p4 replicate exit when journal rotation is detected. This option is
typically used in offline checkpointing configurations.

For a complete list of all the flags usable with p4 replicate, see the Command Reference
entry for p4 replicate.

Note If you are using -k, you must use the -jrc (see “p4 replicate commands”
on page 163) option for consistency checking. Conversely, if you are not
using -jrc, do not use -k to keep the connection open.
162 Perforce 2009.2 System Administrator’s Guide

Chapter 10: Perforce Replication
p4 replicate commands

A typical command supplied to p4 replicate looks like this:
p4d -r replicaroot -f -b 1 -jrc -

The invocation of the p4d command makes use of three new (as of release 2009.2) flags to
p4d:

The -jrc flag instructs p4d to check for consistency when reading journal records. Batches
of journal records are read in increasing size until p4d processes a marker which indicates
that all transactions are complete. After the marker is processed, the affected database
tables are locked, the changes are applied, and the tables are unlocked. Because the server
always remains in a state of transactional integrity, it is possible for other users to use the
replica server while the journal transactions are being applied from the master server.

The -b 1 flag refers to bunching journal records, sorting them, and removing duplicates
before updating the database. The default is 5000 records per update, but in the case of
replication, serial processing of journal records (a bunch size of 1) is required; hence, each
line is read individually.

The -f flag supplied to p4d in conjunction with the -jr flag forces p4d to ignore failures to
delete records. This flag is required for certain replication configurations because some
tables on the replica server (depending on use cases) will differ from those on the master
server.

Replication Examples

Offloading Reporting and Checkpointing Tasks

The basic replication configuration consists of a master server and a replica server. The
replica server has a replica of the master server’s metadata, but none of the versioned files.
This configuration is useful for offloading server-intensive report generation, and for
performing offline checkpoints.

1. Create a server root directory for the replica server.

2. Checkpoint the master server:

You could also use p4 -p master:1666 admin checkpoint.

3. When the checkpoint is complete, copy the checkpoint file (checkpoint.nnn) to the
replica server’s server root and note the checkpoint sequence number (nnn).

replica$ mkdir /usr/replica/root

master$ p4d -r /usr/master/root -jc
Perforce 2009.2 System Administrator’s Guide 163

Chapter 10: Perforce Replication
4. On the replica server, recover the checkpoint to the replica server’s root directory:

This saves time by creating an initial set of db.* files for the replica server to use;
from this point forward, transfer of data from the master will be performed by p4
replicate.

5. Install a license file in the P4ROOT directory on the replica server.

6. p4 replicate keeps track of its state (the most recent checkpoint sequence number
read, and a byte offset for subsequent runs) in a statefile.

The first time you run p4 replicate, you must set the checkpoint sequence number
in the statefile as follows:

7. Start replication by issuing the following command:

The specified user requires super access on the master server (in this case,
master:1666).

The default polling interval is 2 seconds. (In this example, we have used -i 10 to
specify a polling interval of 10 seconds.)

8. The replica server’s metadata is now being updated by p4 replicate; you can now
start the replica server itself:

Users should now be able to connect to the replica server on replica:6661 and run
basic reporting commands (p4 jobs, p4 filelog, and so on) against it.

Using replica servers

The replica server can be stopped, and checkpoints can be performed against it, just as
they would be with the master server. The advantage is that the checkpointing process
can now take place without any downtime on the master server.

Users connect to replica servers by setting P4PORT as they would with any other server.

Commands which require access to versioned file data (p4 sync, for example) will fail,
because this basic configuration replicates only the metadata, but does not have access to
the versioned files.

replica$ p4d -r /usr/replica/root -jr checkpoint.nnn

replica$ echo nnn > state

replica$ p4 -p master:1666 -u super replicate -s state -i 10 -k p4d
-r /usr/replica/root -f -b 1 -jrc -

replica$ p4d -p 6661 -r /usr/replica/root
164 Perforce 2009.2 System Administrator’s Guide

Chapter 10: Perforce Replication
Configuring for Continuous Builds

To support continuous builds, a replica server requires read-only access to the versioned
files that reside on the master server.

Because the depot table (db.depot) is part of the replicated metadata, the replica server
must access the versioned files through paths that are identical to those on the master
server. If the master server’s depot table has archives specified with full paths (that is, if
local depots on the master server were specified with absolute paths, rather than paths
relative to the master server’s root directory), the same paths must exist on the replica
server. If the master server’s local depots were specified with relative paths, the versioned
files can be located anywhere on the replica server by using links from the replica server’s
root directory.

Providing a Warm Standby Server

To support warm standby servers, a replica server requires an up-to-date copy of both the
master server’s metadata and its versioned files. To replicate the master server’s metadata,
use p4 replicate .

To replicate the versioned files from the master server, use native operating system or
third-party utilities. Ensure that the replicated versioned files can remain synchronized
with the metadata (check the polling interval used by p4 replicate to replicate
transactions being applied to the master server’s db.* files). The %changeroot% trigger
variable may be of use; it contains the top-level directory of files affected by a changelist.

Disaster recovery and failover strategies are complex and tend to be site-specific. Perforce
Consultants are available to assist organizations in the planning and deployment of
disaster recovery and failover strategies.

http://perforce.com/perforce/services/consulting.html

Next Steps

For more information about replication, see the Perforce Knowledge Base article:
http://kb.perforce.com/?article=1099

Warning! Replication is unidirectional.

To prevent users from submitting changes to the replica server, run the
replica p4d as a user that does not have write access to the master server’s
archive files.
Perforce 2009.2 System Administrator’s Guide 165

http://kb.perforce.com/?article=1099
http://perforce.com/perforce/services/consulting.html

Chapter 10: Perforce Replication
166 Perforce 2009.2 System Administrator’s Guide

Appendix A Perforce Server (p4d)
Reference
Synopsis

Invoke the Perforce server or perform checkpoint/journaling (system administration)
tasks.

Syntax
p4d [options]
p4d.exe [options]
p4s.exe [options]
p4d -j? [-z] [args ...]

Description

The first three forms of the command invoke the Perforce background process (“Perforce
server”). The fourth form of the command is used for system administration tasks
involving checkpointing and journaling.

On UNIX and Mac OS X, the executable is p4d.

On Windows, the executable is p4d.exe (running as a server) or p4s.exe (running as a
service).

Exit Status

After successful startup, p4d does not normally exit. It merely outputs the following
startup message :

Perforce server starting...

and runs in the background.

On failed startup, p4d returns a nonzero error code.

Also, if invoked with any of the -j checkpointing or journaling flags, p4d exits with a
nonzero error code if any error occurs.

If you attempt to use Zeroconf and mDNS (multicast DNS) is not available, only the
service registration fails. The error is logged in the server log, and the server continues
with startup.
Perforce 2009.2 System Administrator’s Guide 167

Appendix A: Perforce Server (p4d) Reference
Options
Flag Meaning

-0 Register the server as a zero-configuration (Zeroconf) service.
Overrides P4ZEROCONF setting.

-d Run as a daemon (in the background)

-f Run as a single-threaded (non-forking) process

-i Run from inetd on UNIX

-q Run quietly (no startup messages)

-s Run p4d.exe as an NT service (equivalent to running p4s.exe).

-xi Irreversibly reconfigure the Perforce server (and its metadata)
to operate in Unicode mode. Do not use this flag unless you
know you require Unicode mode. See the Release Notes and
Internationalization Notes for details.

-xu Run database upgrades and exit.

-c command Lock database tables, run command, unlock the tables, and exit.

-jc [prefix] Journal-create; checkpoint and save/truncate journal.

-jd file Journal-checkpoint; create checkpoint without
saving/truncating journal.

-jj [prefix] Journal-only; save and truncate journal without checkpointing.

-jr file Journal-restore; restore metadata from a checkpoint and/or
journal file.

-jrc file Journal-restore with integrity-checking. Because this option
locks the database, this option is intended only for use by
replica servers started with the p4 replicate command.

-b bunch -jr file Read bunch lines of journal records, sorting and removing
duplicates before updating the database. The default is 5000,
but can be set to 1 to force serial processing. This combination
of flags is intended for use with by replica servers started with
the p4 replicate command.

-f -jr file Ignore failures to delete records; this meaning of -f applies
only when -jr is present. This combination of flags is intended
for use with by replica servers started with the p4 replicate
command.

-z Compress (in gzip format) checkpoints and journals.

-h, -? Print help message.
168 Perforce 2009.2 System Administrator’s Guide

Appendix A: Perforce Server (p4d) Reference
Usage Notes

• On all systems, journaling is enabled by default. If P4JOURNAL is unset when a server
starts, the default location for the journal is $P4ROOT/journal. If you want to manually
disable journaling, you must explicitly set P4JOURNAL to off.

• Take checkpoints and truncate the journal often, preferably as part of your nightly
backup process.

• Checkpointing and journaling preserve only your Perforce metadata (data about your
stored files). The stored files themselves (the files containing your source code) reside
under P4ROOT and must be also be backed up as part of your regular backup procedure.

• If your users are using triggers, don’t use the -f (non-forking mode) flag; the Perforce
server needs to be able to spawn copies of itself (“fork”) in order to run trigger scripts.

• After a hardware failure, the flags required for restoring your metadata from your
checkpoint and journal files can vary, depending on whether data was corrupted.

• Because restorations from backups involving loss of files under P4ROOT often require
the journal file, we strongly recommend that the journal file reside on a separate
filesystem from P4ROOT. This way, in the event of corruption of the filesystem
containing P4ROOT, the journal is likely to remain accessible.

-V Print server version.

-A auditlog Specify an audit log file. Overrides P4AUDIT setting. Default is
null.

-Id description A service description (optional) that will be advertised as a
zero-configuration (Zeroconf) service. Use with -0. Overrides
P4DESCRIPTION setting.

-In name A service name (required) that will be advertised as a zero-
configuration (Zeroconf) service. Use with -0. Overrides
P4NAME setting.

-J journal Specify a journal file. Overrides P4JOURNAL setting. Default is
journal.

-L log Specify a log file. Overrides P4LOG setting. Default is stderr.

-p port Specify a port to listen to. Overrides P4PORT. Default 1666.

-r root Specify the server root directory. Overrides P4ROOT. Default is
current working directory.

-v subsystem=level Set server trace flags. Overrides value P4DEBUG setting. Default
is null.

Flag Meaning
Perforce 2009.2 System Administrator’s Guide 169

Appendix A: Perforce Server (p4d) Reference
• The database upgrade flag (-xu) can require considerable disk space. See the Release
Notes for details when upgrading.

• Zeroconf service registration requires support for mDNS (multicast DNS) and DNS-SD
(DNS-based service discovery) on the server machine, such as Bonjour (for OS X),
Bonjour for Windows (for Windows), or Avahi (for Linux or UNIX).

Related Commands
To start the server, listening to port
1999, with journaling enabled and
written to journalfile.

p4d -d -p 1999 -J /opt/p4d/journalfile

To checkpoint a server with a non-
default journal file, the -J argument
(or the environment variable
P4JOURNAL) must match the journal
file specified when the server was
started.

Checkpoint with:

p4d -J /p4d/jfile -jc

or

P4JOURNAL=/p4d/jfile ; export P4JOURNAL
p4d -jc

To create a compressed checkpoint
from a server with files in directory
P4ROOT

p4d -r $P4ROOT -z -jc

To create a compressed checkpoint
with a user-specified prefix of “ckp”
from a server with files in directory
P4ROOT

p4d -r $P4ROOT -z -jc ckp

To restore metadata from a
checkpoint named checkpoint.3
for a server with root directory
P4ROOT

p4d -r $P4ROOT -jr checkpoint.3

To restore metadata from a
compressed checkpoint named
checkpoint.3.gz for a server with
root directory P4ROOT

p4d -r $P4ROOT -z -jr checkpoint.3.gz

To advertise availability as a zero-
configuration service

p4d -0 -In "Artists\’ storage" -Id "Use
this server for art assets"
170 Perforce 2009.2 System Administrator’s Guide

Index
A
access level

and protections 82
access levels 83
access logging 23, 62
admin access level 39, 84
administrator

force flag 51
privilege required 147

administrators
and job specifications 95

allocating disk space 20
AppleSingle 30
.asp files 49
audit log file

specifying 169
auditing 23, 62
authentication 39

with triggers 121
automated checkpoints 27
automating Perforce 43
.avi files 49
B
backing up 31
backup

procedures 31
recovery procedures 33

backups
and Perforce Proxy 154

.bmp files 49
branches

namespace 66
.btr files 49
buffering

of input/output in scripts 131
C
can 146
case-sensitivity

and cross-platform development 24

UNIX and Windows 24, 57
change review 128
changelist numbers

highest possible 130
pending vs. submitted changelists 131

changelist submission triggers 108
changelist triggers 113
changelists

deleting 47
editing 47

checkpoint
as part of backup script 31
creating 26
creation of, automating 27
defined 26
ensuring completion of 32
failed 27
introduced 25
managing disk space 20
when to call support 27

checkpoints
creating with p4 admin 27, 31

client
and port 15

clients
namespace 66

.cnf files 49
commands

forcing 51
concurrent development 51
content

trigger type 114, 115
counter

limits 130
CPU

and performance 135
CR/LF conversion 64
creating checkpoints 26
creating users 43
Perforce 2009.2 System Administrator’s Guide 171

Index
creation of users
preventing 43

cross-platform development
and case sensitivity 24

.css files 49
D
daemon

change review 128
daemons 105

changelist numbers 131
creating 129

database files 62
defined 25
where stored 25

db.* files 25
defect tracking

integrating with Perforce 103
deleting

changelists 47
depots 68
files, permanently 46
user groups 88

deleting users 45
depot

and Mac file formats 30
and server root 66

depot files
see versioned files 30

depots
defined 25
defining 65
deleting 68
listing 68
local 66
mapping field 71
multiple 65
namespace 66
remote 65, 72
remote, defining 71

disabling journaling 30
disk

performance 133
sizing 134

disk space
allocating 20
and server trace flags 60
estimating with p4 sizes 135
freeing up 46

distributed development 69
DNS

and performance 136, 137
.doc files 49
.dot files 49
drives

and db.*and journal file 19
E
editing

changelists 47
editor

Wordpad, limitation 150
environment variables

P4PCACHE 152, 154
P4PORT 152
P4TARGET 152, 154

error logging 23
error messages

and p4 verify 47
example

specifying journal files 29
exclusionary mappings

and protections 86
exclusive locking 51
.exp files 49
F
fields

of job template 96
file formats

AppleSingle 30
file names

mapping to file types 48
file specification

and protections 82
file types 49

mapping to file names 48
files

access to, limiting 86
172 Perforce 2009.2 System Administrator’s Guide

Index
.asp 49

.avi 49

.bmp 49

.btr 49

.cnf 49

.css 49
database 25
.doc 49
.dot 49
.exp 49
.gif 49
.htm 49
.html 49
.ico 49
.inc 49
.ini 49
.jpg 49
.js 49
left open by users, reverting 45
.lib 49
.log 49
logging access to 23, 62
matching Perforce file types to file names

48
.mpg 49
.pdf 49
.pdm 49
permanent deletion of 46
.ppt 49
subscribing to 129
verification of 47
versioned 25
.xls 49
.zip 49

filesystems
and performance 133
large 21
NFS-mounted, caveats 22, 134

firewall
defined 53
running Perforce through 53

fix

trigger type 116

fix status
default 100

fix triggers 116
fixes

triggers 116
flags

and Perforce Proxy 153
-f to force 51
server, listed 167

form triggers 120
form-commit

trigger type 120
forms

triggers 117
G
.gif files 49
groups

and protections 82, 87
and subgroups 87
deleting 88
editing 87
of users 87

H
history of changes to forms 66
hostname

changing your server’s 65
hosts

and protections 82
hosts file

on Windows and UNIX 137
.htm files 49
.html files 49
I
-i

and inetd 56
automating job submissions 104
automating user creation 43

.ico files 49
in

trigger type 119
.inc files 49
inetd 56, 168
.ini files 49
Perforce 2009.2 System Administrator’s Guide 173

Index
installation
Windows 16

installing
license file 19
on network drives 22
on NFS filesystems 22, 134
on UNIX 13
on Windows 16
on Windows network drives 147
Perforce Proxy 152

IP address
changing your server’s 65
servers and P4PORT 55

IP forwarding
and ssh 54

J
job fields

data types 99
job specification

and administrators 95
and comments 100
default format 95
defining fields 97
extended example 102
warnings 101

job template
default 95
fields of 96
viewing 96

jobs
comments in 100
other defect tracking systems 103
triggers 116

journal
defined 28
introduced 25
managing size of 20
where to store 20

journal file
specifying 169
store on separate drive 19

journaling
disabling 30

.jpg files 49

.js files 49
L
label

namespace 66
.lib files 49
license 19, 45
licensing information 19
limitations

Wordpad 150
list access level 83
listing

depot names 68
local depots 66
localhost 56
locking

exclusive 51
log file

specifying 169
.log files 49
logging file access 23, 62
logging in 40
login 40
M
Mac

and file formats 30
Macintosh

OS X 13
mappings

and depots 71
maxlocktime

and performance 139
maxresults

and multiple groups 141
and performance 139
use of 139

maxscanresults
and performance 139
use of 139

maxscanrows
and multiple groups 141

MD5 signatures 47
memory
174 Perforce 2009.2 System Administrator’s Guide

Index
and performance 133
requirements 133

metadata
replication 159
see database files 25, 62

monitoring server activity 58
moving servers 62

across architectures 63
from Windows to UNIX 64
new hostname 65
new IP address 65
same architecture 63

.mpg files 49
multiple depots 65
N
naming

depots 66
network

and performance 135, 136
Perforce Proxy configuration 151
problems, diagnosing 136

network drives
and triggers 127
and Windows 22

network interface
directing server to listen to specific 55

NFS
and installation 22, 134

non-forking 168
O
obliterating files 46
open access level 83
operating systems

and large filesystem support 21
OS X

and UNIX 13
out

trigger type 118
P
p4 admin

and Windows 17, 146
creating checkpoints 27, 31
stopping server with 16, 34, 35

p4 jobspec

warnings 101
p4 login 40
p4 monitor 58
p4 set -s

setting variables for Windows services
149

p4 sizes 135
p4 triggers

form 107
p4 typemap 48
p4 verify 47
P4AUDIT 169
p4d

flags, listed 167
security 23, 126
specifying audit log 169
specifying journal file 169
specifying log file 169
specifying port 169
specifying server root 169
specifying trace flags 169

p4d.exe 17
P4DEBUG 169

and proxy server 154
P4JOURNAL 169
P4LOG 169

and proxy server 153
P4P

and remote development 69
see Perforce Proxy 151, 152

P4PCACHE 152, 154
P4PFSIZE

and proxy server 153
P4POPTIONS

and proxy server 153
P4PORT

and client 15
and proxy server 153
and server 15, 169
IP addresses and your server 55
Perforce Proxy 152

P4ROOT 14, 169
Perforce 2009.2 System Administrator’s Guide 175

Index
and depot files 66
p4s.exe 17
P4TARGET 152, 154
passwords 39

setting 20, 43
PDF files

and p4 typemap 48
.pdf files 49
.pdm files 49
Perforce clients

and P4PORT 15
Perforce file types 49
Perforce Proxy 69, 151

backups 154
diskspace usage 154
installation 152
options 153
protections 155
startup 152
stopping 154
troubleshooting 154
tuning 156

Perforce server
and P4PORT 15
and triggers 110
and Windows network drives 22
installing under NFS 22, 134
monitoring 58
moving to another machine 62
running from inetd 56
upgrading 18
verifying 47
vs. service 17

Perforce service
vs. server 17

perforce.exe 16
performance

and memory 133
and scripts 141
and wildcards under Windows 136
CPU 135
monitoring 58
network 135, 151

preventing server swamp 137
slow, diagnosing 136

performance tracking 60
performance tuning

and Perforce Proxy 156
permissions

see protections 85
pessimistic locking 51
port

for client 15
for server 15
specifying 169

ports
running out of TCP/IP 135

.ppt files 49
privileges

administrator 147
protections 81–89

algorithm for applying 88
and commands 89
and groups 87
and Perforce Proxy 155
and performance 139
and superusers 81
commands affected by 89
default 85
exclusionary 86
multiple 85
schemes for defining 84
securing remote depots 72

protections table 81
proxy 151

and remote development 69
python 128
R
RAM

and performance 133
read access level 83
recovery

procedures 33
remote depots 65

and virtual users 72
defining 71
176 Perforce 2009.2 System Administrator’s Guide

Index
securing 72
replication 159
resetting passwords 43
review access level 83
review daemon 128
revision range

and obliterate 47
rich text

and p4 typemap 48
root

must not run p4d 23, 126
S
save

trigger type 117
scripting

buffering standard in/output 131
guidelines for efficient 141
with -i 43

secure shell 53
security

and passwords 20
p4d must have minimal privileges 23, 126
preventing user impersonation 20
restrict remote access 72

server
and triggers 110
auditing file transfers 169
backing up 31
changing IP address 45
disk space required by 135
license file 19
licensing 19, 45
migrating 62
monitoring 58
performance tracking 60
port 15
proxy 151
recovery 33
replication 159
root, specifying 169
running from inetd 56
running in background 168
running single-threaded 168

specifying journal file 169
specifying log file 169
specifying port 169
stopping on Windows 146
stopping with p4 admin 16, 34, 35
trace flags 60
upgrading 18
verifying 47
vs. service 17
Windows 17

server flags
listed 167

server root
and depots 66
and P4ROOT 14
creating 14
defined 14
specifying 169

setting passwords 20, 43
single-threaded 168
spec depot

populating 67
spec depot 66
specification triggers 108, 117, 118, 119
specifications

triggers 117
ssh 53
standard input/output

buffering 131
stopping server

on Windows 146
with p4 admin 16, 34, 35

subgroups
and groups 87

super access level 39, 84
superuser

and triggers 107
force flag 51
Perforce, defining 20

superusers
and protections 81

svcinst.exe 147
symbolic links
Perforce 2009.2 System Administrator’s Guide 177

Index
and disk space 21
T
TCP/IP

and port number 15
running out of ports 135

technical support
when to call 27

template
job, default 95

tickets 39
expiry 40

timeout 40
trace flags

specifying 169
trigger type 113
triggers 105

and Windows 127
authentication 121
content 114, 115
fields 107
firing order 125
fix 116
fix triggers 116
form 107, 120
input 119
multiple 125
naming 107
on changelists 113
output 118
passing arguments to 111
portability 126
save 117
script, specifying arguments to 110
security and p4d 23, 126
specification triggers 117
submit 113
types of 108
warnings 118

troubleshooting
Perforce Proxy 154, 156
slow response times 136

type mapping 48

U
umask(1) 14
unicode 168
UNIX

/etc/hosts file 137
and case-sensitivity 57

upgrading
server 18

user tracking 23, 62
users

access control by groups 87
and protections 82
creating 43
deleting 45
files, limiting access to 86
nonexistent 45
preventing creation of 43
preventing impersonation of 20
resetting passwords 43
virtual, and remote depots 72

V
variables

in trigger scripts 111
setting for a Windows service 149

verifying server integrity 47
version information

and Perforce Proxy 154
clients and servers 19

versioned files 62
defined 25
format and location of 30
introduced 25
where stored 25

versioned specifications 66
view

scope of, and performance 138
W
warnings

and job specifications 101
archive triggers and Windows 127
disk space and Perforce Proxy 154
obliterating files 47
recursive triggers 118
178 Perforce 2009.2 System Administrator’s Guide

Index
replication 161
security 72
security and p4d 23, 126

wildcards
and protections 82
and Windows performance 136

Windows
and case-sensitivity 24, 58
and p4 admin 17
hosts file 137
installer 16
installing on 16
installing on network drive 22, 147
server 17
service, setting variables in 149
stopping server 146
triggers and network drives 127

Wordpad
limitation 150

write access level 83
X
.xls files 49
Z
Zeroconf 15, 168, 170
.zip files 49
Perforce 2009.2 System Administrator’s Guide 179

Index
180 Perforce 2009.2 System Administrator’s Guide

	Table of Contents
	Preface About This Manual
	Using Perforce?
	Please give us feedback

	Chapter 1 Welcome to Perforce: Installing and Upgrading
	Getting Perforce
	UNIX installation
	Downloading the files and making them executable
	Creating a Perforce server root directory
	Telling Perforce servers which port to listen on
	Telling Perforce client programs which port to connect to
	Starting the Perforce server
	Stopping the Perforce server

	Windows installation
	Windows services and servers
	Starting and stopping Perforce

	Upgrading a Perforce server
	Using old client programs with a new server
	Licensing and upgrades
	Upgrading the server

	Installation and administration tips
	Release and license information
	Observe proper backup procedures
	Use separate physical drives for server root and journal
	Use protections and passwords
	Allocate sufficient disk space for anticipated growth
	Managing disk space after installation
	Large filesystem support
	UNIX and NFS support
	Windows: Username and password required for network drives
	UNIX: Run p4d as a nonprivileged user
	Logging errors
	Logging file access
	Case sensitivity issues
	Enable server process monitoring
	Tune for performance

	Chapter 2 Supporting Perforce: Backup and Recovery
	Backup and recovery concepts
	Checkpoint files
	Journal files
	Versioned files

	Backup procedures
	Recovery procedures
	Database corruption, versioned files unaffected
	Both database and versioned files lost or damaged
	Ensuring system integrity after any restoration

	Chapter 3 Administering Perforce: Superuser Tasks
	Basic Perforce Administration
	Authentication methods: passwords and tickets
	Server security levels
	Password strength
	Resetting user passwords
	Creating users
	Preventing automatic creation of users
	Deleting obsolete users
	Adding new licensed users
	Reverting files left open by obsolete users
	Reclaiming disk space by obliterating files
	Deleting changelists and editing changelist descriptions
	Verifying files by signature
	Defining filetypes with p4 typemap
	Implementing sitewide pessimistic locking with p4 typemap
	Forcing operations with the -f flag

	Advanced Perforce administration
	Running Perforce through a firewall
	Specifying IP addresses in P4PORT
	Running from inetd on UNIX
	Case sensitivity and multiplatform development
	Monitoring server activity
	Perforce server trace and tracking flags
	Auditing user file access

	Moving a Perforce server to a new machine
	Moving between machines of the same architecture
	Moving between different architectures that use the same text format
	Moving between Windows and UNIX
	Changing the IP address of your server
	Changing the hostname of your server

	Using multiple depots
	Naming depots
	Defining new local depots
	Enabling versioned specifications with the spec depot
	Listing depots
	Deleting depots

	Remote depots and distributed development
	When to use remote depots
	How remote depots work
	Using remote depots for code drops

	Managing Unicode Installations
	Overview
	Configuring the Perforce Server
	Configuring Client Machines

	Chapter 4 Administering Perforce: Protections
	When should protections be set?
	Setting protections with p4 protect
	The permission lines’ five fields
	Access levels
	Which users should receive which permissions?
	Default protections
	Interpreting multiple permission lines
	Exclusionary protections
	Which lines apply to which users or files?

	Granting access to groups of users
	Creating and editing groups
	Groups and protections
	Deleting groups

	How protections are implemented
	Access Levels Required by Perforce Commands

	Chapter 5 Customizing Perforce: Job Specifications
	The default Perforce job template
	The job template’s fields
	The Fields: field
	The Values: fields
	The Presets: field
	The Comments: field

	Caveats, warnings, and recommendations
	Example: a custom template
	Working with third-party defect tracking systems
	P4DTG, The Perforce Defect Tracking Gateway
	P4DTI, Perforce Defect Tracking Integration
	Building your own integration

	Chapter 6 Scripting Perforce: Triggers and Daemons
	Triggers
	The trigger table
	Triggering on changelists
	Triggering on fixes
	Triggering on forms
	Using triggers for external authentication
	Archive triggers for external data sources
	Using multiple triggers
	Writing triggers to support multiple Perforce servers
	Triggers and security
	Triggers and Windows

	Daemons
	Perforce’s change review daemon
	Creating other daemons
	Commands used by daemons
	Daemons and counters

	Chapter 7 Tuning Perforce for Performance
	Tuning for performance
	Memory
	Filesystem performance
	Disk space allocation
	Monitoring disk space usage
	Network
	CPU

	Diagnosing slow response times
	Hostname vs. IP address
	Windows wildcards
	DNS lookups and the hosts file
	Location of the p4 executable

	Preventing server swamp
	Using tight views
	Assigning protections
	Limiting database queries
	Scripting efficiently
	Using compression efficiently

	Checkpoints for database tree rebalancing

	Chapter 8 Perforce and Windows
	Using the Perforce installer
	Upgrade notes
	Scripted deployment and unattended installation

	Windows services vs. Windows servers
	Starting and stopping the Perforce service
	Starting and stopping the Perforce server
	Installing the Perforce service on a network drive

	Multiple Perforce services under Windows
	Windows configuration parameter precedence
	Resolving Windows-related instabilities
	Users having trouble with P4EDITOR or P4DIFF

	Chapter 9 Perforce Proxy
	System requirements
	Installing P4P
	UNIX
	Windows

	Running P4P
	Running P4P as a Windows service

	P4P flags
	Administering P4P
	No backups required
	Stopping P4P
	Managing disk space consumption
	Determining if your Perforce client is using the proxy
	P4P and protections
	Determining if specific files are being delivered from the proxy

	Maximizing performance improvement
	Reducing server CPU usage by disabling file compression
	Network topologies versus P4P
	Preloading the cache directory for optimal initial performance
	Distributing disk space consumption

	Chapter 10 Perforce Replication
	What is Replication?
	Why Replicate?
	How does replication work?
	System requirements
	Warnings
	Limits and restrictions

	Replication commands
	p4 replicate flags
	p4 replicate commands

	Replication Examples
	Offloading Reporting and Checkpointing Tasks
	Using replica servers
	Configuring for Continuous Builds
	Providing a Warm Standby Server

	Next Steps

	Appendix A Perforce Server (p4d) Reference
	Synopsis
	Syntax
	Description
	Exit Status
	Options
	Usage Notes
	Related Commands

	Index

