
Copyright © NVIDIA Corporation 2005

‘S’ is for ‘Source’: The Role of the Build
System in Configuration Management

Anders Johnson, NVIDIA Corporation
Gary Holt, Safe-View Incorporated

Copyright © NVIDIA Corporation 2005

What is Configuration Management?

Copyright © NVIDIA Corporation 2005

In a Nutshell

Configuration Management is all of the engineering
that starts with your hand-edited files and ends with
customers using your product

Copyright © NVIDIA Corporation 2005

What is Hardware Design?

Design = Source
Source ≥ Complexity (Kolmogorov)
More primitives = More realizable complexity
More abstraction = Less source

Copyright © NVIDIA Corporation 2005

c. 1900 - 1985

Paper schematics and hardware prototyping

Copyright © NVIDIA Corporation 2005

1975 - 1995

Graphical entry and simulation

Copyright © NVIDIA Corporation 2005

1985 - Present

Textual entry, simulation and synthesis

Copyright © NVIDIA Corporation 2005

HCM vs. SCM

Configuration management for a modern, complex
hardware design is fundamentally similar to
software configuration management
But…

Simulation is slow and sometimes inaccurate
Releases take a long time (roughly 3 months to samples)
Dependencies are harder to manage, because design is at
a lower level of abstraction

Copyright © NVIDIA Corporation 2005

What is Perforce?

Perforce is not just for software
Perforce does not address the entire configuration
management problem
The build (a.k.a. make) system addresses most of
what Perforce does not

Copyright © NVIDIA Corporation 2005

A Naïve View

Don’t use Perforce for
variant management
Use Perforce’s powerful
facility for tracking defects
across branches (p4 jobs)
Use the build system to
automate testing,
packaging and (to some
extent) release engineering

Copyright © NVIDIA Corporation 2005

Our View

Perforce is Source (not
Software) configuration
management (a.k.a. SCM)
The build system is almost
everything else

Copyright © NVIDIA Corporation 2005

Prior Art

Evidence of this philosophy can be gleaned from
the ubiquitous GNU build tool chain:

Dependency tracking: make, autoconf
Testing: make test
Packaging: make dist
Variant management: make CFLAGS="-g -DDEBUG"

Unfortunately, the GNU build tool chain is limited in
its capacity to solve build problems in general

Copyright © NVIDIA Corporation 2005

Reliability and Efficiency

The more you rely on the build system for your
mission critical configuration management needs,
the more important it is that the build system be
reliable and efficient
Having a reliable, efficient build system is also a
plus for routine compilation

Copyright © NVIDIA Corporation 2005

Build Problems

Copyright © NVIDIA Corporation 2005

Perforce Client Options

Choose reliability over paranoia
nomodtime

If the build system is relying on the timestamp being
updated when the file changes, then this is a must

clobber
If you want sync to succeed when a generated file has
become a source file since the previous sync

rmdir
If you want the build to succeed when a new generated file
takes the place of an old source directory

Copyright © NVIDIA Corporation 2005

Build Reliability Issues

Missing file dependencies
Missing implicit file
dependencies
Missing command
dependencies
Missing environment
dependencies
Circular dependencies
Missing targets

Using stale generated files
Using corrupted files
Using edited generated files
Recursive make
“.d” files
Writing through links
Wildcards ignoring targets
that haven’t been built yet

Copyright © NVIDIA Corporation 2005

Do You Feel Lucky?

If you’re very lucky, the unreliable build will fail
immediately after it makes a mistake
If you’re lucky, the unreliable build will fail
downstream of the first mistake it makes
If you’re unlucky, the unreliable build will succeed,
but produce incorrect results!

Copyright © NVIDIA Corporation 2005

Missing File Dependencies

Most common case is missing implicit
dependencies

For example, if foo.c contains #include "bar.h", then
foo.o (not foo.c) depends on bar.h

Consequences:
If both the target and the dependency are up-to-date, then
it builds nothing, which happens to be the right thing
If the dependency is a modified source file, then the target
won’t get updated before being fed to the linker
If the dependency is a generated file that doesn’t exist yet,
then the compiler uses a version later in the include path
If the dependency is an outdated generated file, then the
compiler will use it before it gets updated

Copyright © NVIDIA Corporation 2005

Missing Command Dependencies

Example:
make
make CFLAGS="-O3 -DNDEBUG"

GNU Make will not recompile in this case!
Ditto for environment variables, rule actions,
compute platform
Adding dependencies on the makefile is neither
necessary nor sufficient

Causes all the targets to be rebuilt when only one rule
changes
Won’t catch make include file changes or command-line
variable settings changes, etc.

Copyright © NVIDIA Corporation 2005

Using Bogus Files

It is normally bad to use files that…
Were once generated, but no longer have a rule
Were manually edited after being generated
Were left behind by an action that failed

Common case is the “.o” file left behind by a
renamed “.c” file

Linker might choose symbols from the stale object file
over the symbols from the current object file

Converse is also a problem: i.e. not using targets
just because they haven’t been built yet

Copyright © NVIDIA Corporation 2005

“.d” Files

From GNU Make texinfo: “Generating Prerequisites
Automatically”:
%.d: %.c

@set -e; rm -f $@; \ $(CC) -M $(CPPFLAGS) $< > $@.$$$$; \
sed 's,\($*\)\.o[:]*,\1.o $@ : ,g' < $@.$$$$ > $@; \
rm -f $@.$$$$

Fails when a header file is deleted
Work around by adding a dummy rule for every header

Doesn’t work for generated headers
$(CC) -M doesn’t know where in the include path the
header file is going to be found
Bizarre failure modes if you also have dummy rules

Copyright © NVIDIA Corporation 2005

Build Efficiency Issues

Recompiling unchanged files
Unnecessary dependencies (especially makefile
dependencies)
Re-building in the same build run
Forced rebuilding
Comparing copy-if-changed targets
Loading all the makefiles up-front

NOTE: Most of these problems arise from naïve
attempts to improve reliability

Copyright © NVIDIA Corporation 2005

Copy-if-changed Targets

A target might not change after it is regenerated,
even though some of its dependencies changed

No need to continue rippling its effect through the system
A weak attempt to avoid downstream work:
mytarget.tmp: dep1 dep2

generate_mytarget dep1 dep2 > $@
mytarget: mytarget.tmp

cmp -s $@ $< || cp $< $@
processed_target: mytarget

process $< > $@ # takes a long time

In addition to the ugliness, now mytarget always
appears out of date, so it gets compared every time

Copyright © NVIDIA Corporation 2005

Unnecessary Rebuilding

Force targets are a bad way to compensate for
missing dependencies:
.PHONY: FORCE
mytarget: FORCE

generate_mytarget # depends on lots of things

False dependencies also create unnecessary work
Recursive make often causes targets to be rebuilt:
all: t1 t2
t1: d1

$(MAKE) -C dir t
cat dir/t d1 > $@

t2: d2
$(MAKE) –C dir t
cat dir/t d2 > $@

Copyright © NVIDIA Corporation 2005

Idiot-proofing the Build

If the build system isn’t simple to
use, then it won’t be used correctly
“make foo” is fine
The following isn’t:

make -C path1 all
make -C path2 all
make foo
If you get “unresolved symbol mysym,” then “make -C
mylib clean,” and try again
If you get “no rule to make file.h”, then “rm *.d” and
try again

Don’t require users to do the build system’s job!

Copyright © NVIDIA Corporation 2005

Makepp

Copyright © NVIDIA Corporation 2005

Makepp Overview

Uses a syntax almost identical to GNU make
Automatically handles cross-makefile
dependencies — no recursive make!
Finds all include files automatically, and makes
them if they don’t yet exist (no “.d” files needed)
Rebuilds if command is different from last build,
even if the files haven’t changed
Can ignore stale files
Can automatically symlink source/object files from
another location if they don’t exist locally
Is easily extensible (written in Perl)

Copyright © NVIDIA Corporation 2005

Automatic Implicit Dependencies

Makepp parses shell commands looking for extra
dependencies (e.g., –L and –l options for links)
Makepp scans source files for #include
Suppose this rule is used to build xyz.o:
%.o : %.c

$(CC) –Idir1 –Idir2 –c $< -o $@
1. Recognizes compilation commands from first word(s)
2. Gets include path from the –I options
3. Scans xyz.c for #include directives
4. Finds where each include file is or will be, and makes it a

dependency
5. Applies same process to #includes in include files

Customizable for other shell commands/languages

Copyright © NVIDIA Corporation 2005

Multiple directory handling

Loads all makefiles simultaneously into memory
Executes commands from different makefiles in the
correct order
Example of ugly of cross-directory dependencies
subdir1/Makeppfile
c : ../subdir2/b

build_c $<
a :

build_a

Makepp executes the following:

cd subdir1
build_a
cd ../subdir2
build_b
cd ../subdir1
build_c

subdir2/Makeppfile
b : ../subdir1/a

build_b $<

Copyright © NVIDIA Corporation 2005

Build inference

Makepp computes a list of all files that can be built
by all the makefiles it loads (even if the files aren’t
requested)

Makepp starts with the existing files and infers what can be built
GNU make starts with final targets and infers how to build them

Wildcards (e.g., *.o) match files that don’t yet exist
but can be built
Include files that don’t yet exist are made correctly
no matter where they are along the include path
Makepp can generate an automatic “clean” target
because it knows which files it can build

Copyright © NVIDIA Corporation 2005

Implicit Makefile Loading

If a file in a directory is referenced, makepp will automatically
attempt to load a makefile from that directory
Makefiles do not have to specify which other makefiles are
needed — makepp figures it out
Complete build example:

Top level makefile
our_program: *.o

$(CC) $^ –Lsubdiraa –Lsubdirbb -laa –lbb –o $@

subdiraa/Makefile
libaa.so: *.o

ld –shared $^ -o $@

subdirbb/Makefile
libbb.so: *.o

ld –shared $^ -o $@

Copyright © NVIDIA Corporation 2005

Build info files

Makepp will execute a build command if:
1. Any file dates have changed since the last build

Input file is replaced by an older version
Some other program damages the output file

2. The build command has changed
You add –DDEBUG to the command line
You change from –g to –O2

3. The architecture has changed (e.g., from Solaris to Linux)
Can compare based on checksum of contents

Checksum of C source files excludes comments/whitespace so
you can re-indent or comment without causing recompilation

Information about build of abc is stored in .makepp/abc.mk
You can look back and see what the build command was
Can be read by your own scripts

Copyright © NVIDIA Corporation 2005

Extensibility

Makepp is 100% Perl
Embed Perl code/expressions in your makefile
X := $(perl ucfirst($Y)) # Evaluate perl expression
output_dir := . # Variable is accessible to perl
perl_begin # Always run snippet of perl code
-d $output_dir or mkdir $output_dir;
$file_list = perl_function_to_compute_file_list();

perl_end
Now $(file_list) contains what the perl code set up

Call your own Perl functions using make syntax
X := $(my_special_function arg1, arg2)

New compiler commands or languages can be
supported by writing a perl module

Copyright © NVIDIA Corporation 2005

Jam/MR and Ant

Jam/MR and Ant solve some of the same problems,
but…
Makepp solves essentially all of them
Makepp’s control language is familiar
Makepp is easy to extend

Copyright © NVIDIA Corporation 2005

Makepp at NVIDIA

Copyright © NVIDIA Corporation 2005

NVIDIA’s Core Business

NVIDIA builds GPU’s (Graphics Processing Units)
for rendering cinematic graphics in real time
Among the most complex integrated circuits on the
planet

Copyright © NVIDIA Corporation 2005

Variant Management

Derivative products are crucial for addressing
multiple cost vs. performance points with the same
basic design
Maintaining sustained variation with inter-file
branching is labor-intensive and error-prone
Maintaining sustained variation with the build
system is straightforward
In the worst case, a former source file can be
generated differently depending on the selected
variant

Copyright © NVIDIA Corporation 2005

Simultaneous Variants

Multiple products may need to coexist in the same
simulation
Generate each variant in a different location
Dependencies always refer to a variant location
(usually the same variant as the target), so that
variant-ness is late-binding
Makepp is wrappered, so that variant directories
can be created during initialization

Copyright © NVIDIA Corporation 2005

Repositories for Variant Management

All source files (including makefiles) are
automatically symbolically linked into the variant
location when they are needed
The Missing Link

If a dependency is missing, it usually
results in a command failing, because
makepp won’t create the link for it
This is a Good Thing

Copyright © NVIDIA Corporation 2005

Sandboxing

NVIDIA uses LSF for distributed processing
60-90 seconds of overhead for each process
File tree is manually partitioned for concurrent
makepp processes
An error results if a process oversteps its sandbox
Determinism is guaranteed

Copyright © NVIDIA Corporation 2005

NVIDIA’s Makepp Build Stats

17,000 source files, 200MB total
10,000 files built by legacy system, 300MB total
33,000 files built by Makepp, 2.5GB total
Top-level compiled simulator target has 4,200
immediate dependencies
Top-level build is partitioned into 11 phases, with an
overall latency of 90 minutes from clean
150 users

Copyright © NVIDIA Corporation 2005

Perl is Fast Enough

NVIDIA’s null build spends about 50% of the time in
I/O wait, even after optimizing the I/O
Makepp execution latency typically disappears in
comparison to the time spent executing build
commands

Copyright © NVIDIA Corporation 2005

Future Directions

Copyright © NVIDIA Corporation 2005

Build Caching

Copies of all recently built files are stored on a
designated NFS file share
Indexed with an MD5 of all the dependencies
This is the definitive alternative to storing generated
data in Perforce
Storing generated data in Perforce is evil because…

It makes it difficult to maintain coherency with the true
source files
It can present a Perforce server load that is several orders
of magnitude greater than that of true source files

Copyright © NVIDIA Corporation 2005

Incremental Testing

Every test result is a file
Result filename must include the random seed, if any

Running a test is equivalent to updating its results
file
Tests that could not have been affected won’t be
rerun
Would you trust your build system this much?

Copyright © NVIDIA Corporation 2005

In Summary

Perforce is a Source (not Software) Configuration
Management tool
Most of the remainder of the configuration
management problem should be addressed with the
build system
Use the build system, not Perforce, for variant
management
Use the build system, not Perforce, for sharing
generated files
Makepp is an exceptionally flexible, scalable,
reliable and efficient build tool

