>

‘S’ is for ‘Source’: The Role of the Build
System in Configuration Management

Anders Johnson, NVIDIA Corporation
Gary Holt, Safe-View Incorporated

Copyright © NVIDIA Corporation 2005

What is Configuration Management? <%

Defect Tracking
Source Control
Variant Management
Compilation
Dependency Tracking
Testing
Packaging

Release Engineering

Customer Installation

Copyright © NVIDIA Corporation 2005

In a Nutshell <A

® Configuration Management is all of the engineering
that starts with your hand-edited files and ends with
customers using your product

Copyright © NVIDIA Corporation 2005

What is Hardware Design?

® Design = Source

® Source 2 Complexity (Kolmogorov)

® More primitives = More realizable complexity
® More abstraction = Less source

Copyright © NVIDIA Corporation 2005

c. 1900 - 1985

® Paper schematics and hardware prototyping

Sy = |‘

Copyright © NVIDIA Corporation 2005

1975 - 1995

® Graphical entry and simulation

Copyright © NVIDIA Corporation 2005

1985 - Present

® Textual entry, simulation and synthesis

& Active HDL 4.1 [zerial_adder] - c-\My_Designzhzenal_addes\archzerial_testerv « [H[=] EX
v Misw ian on

put i
output o3
RAUTOIMPUT

L& i E
i [zevial adde libnaay

S Em f
AUTOOUT

- % Fird

=]
Amodul e

Copyright © NVIDIA Corporation 2005

HCM vs. SCM <A

® Configuration management for a modern, complex
hardware design is fundamentally similar to
software configuration management

® But...

® Simulation is slow and sometimes inaccurate

® Releases take a long time (roughly 3 months to samples)

® Dependencies are harder to manage, because design is at
a lower level of abstraction

Copyright © NVIDIA Corporation 2005

What is Perforce? <A

® Perforce is not just for software

® Perforce does not address the entire configuration
management problem

® The build (a.k.a. make) system addresses most of
what Perforce does not

Copyright © NVIDIA Corporation 2005

A Naive View <X

 software < Haraware . ® Don’t use Perforce for
(Defect Tracking o variant management

® Use Perforce’s powerful
facility for tracking defects
across branches (p4 jobs)

Use the build system to
automate testing,
packaging and (to some
extent) release engineering

Testing

Packaging

Release Engineering

(
(
(

-

WA LW

Customer Installation

Copyright © NVIDIA Corporation 2005

Our View <N

Software ' - Hardware

® Perforce is Source (not
Software) configuration
management (a.k.a. SCM)

® The build system is almost
everything else

“«C Customer Installation 4

Copyright © NVIDIA Corporation 2005

Prior Art @

® Evidence of this philosophy can be gleaned from
the ubiquitous GNU build tool chain:
® Dependency tracking: make, autoconf
® Testing: make test
® Packaging: make dist
® Variant management: make CFLAGS='"-g -DDEBUG"

® Unfortunately, the GNU build tool chain is limited in
its capacity to solve build problems in general

Copyright © NVIDIA Corporation 2005

Reliability and Efficiency <X

® The more you rely on the build system for your
mission critical configuration management needs,
the more important it is that the build system be
reliable and efficient

® Having a reliable, efficient build system is also a
plus for routine compilation

Copyright © NVIDIA Corporation 2005

Build Problems

Copyright © NVIDIA Corporation 2005

Perforce Client Options

® Choose reliability over paranoia

® nomodtime

® If the build system is relying on the timestamp being
updated when the file changes, then this is a must

® clobber

® If you want sync to succeed when a generated file has
become a source file since the previous sync

® rmdir

® If you want the build to succeed when a new generated file
takes the place of an old source directory

Copyright © NVIDIA Corporation 2005

Build Reliability Issues

Missing file dependencies
Missing implicit file
dependencies

® Missing command
dependencies

® Missing environment
dependencies

® Circular dependencies
® Missing targets

Copyright © NVIDIA Corporation 2005

>

Using stale generated files
Using corrupted files

Using edited generated files
Recursive make

“.d” files

Writing through links

Wildcards ignoring targets
that haven’t been built yet

Do You Feel Lucky? <X

® If you’re very lucky, the unreliable build will fail
immediately after it makes a mistake

® If you’re lucky, the unreliable build will fail
downstream of the first mistake it makes

® If you’re unlucky, the unreliable build will succeed,
but produce incorrect results!

Copyright © NVIDIA Corporation 2005

Missing File Dependencies <A

® Most common case is missing implicit

dependencies
® For example, if foo.c contains #include "bar.h", then
foo.o (not foo.c) depends on bar.h

® Consequences:

® If both the target and the dependency are up-to-date, then
it builds nothing, which happens to be the right thing

® If the dependency is a modified source file, then the target
won’t get updated before being fed to the linker

® If the dependency is a generated file that doesn’t exist yet,
then the compiler uses a version later in the include path

® If the dependency is an outdated generated file, then the
compiler will use it before it gets updated

Copyright © NVIDIA Corporation 2005

Missing Command Dependencies <A

® Example:
® make
® make CFLAGS="-03 -DNDEBUG"

® GNU Make will not recompile in this case!

® Ditto for environment variables, rule actions,
compute platform
® Adding dependencies on the makefile is neither

necessary nor sufficient

® Causes all the targets to be rebuilt when only one rule
changes

® Won'’t catch make include file changes or command-line
variable settings changes, etc.

Copyright © NVIDIA Corporation 2005

Using Bogus Files

® It is normally bad to use files that...
® Were once generated, but no longer have a rule

® Were manually edited after being generated
® Were left behind by an action that failed

® Common case is the “.0” file left behind by a
renamed “.c” file

® Linker might choose symbols from the stale object file
over the symbols from the current object file

® Converse is also a problem: i.e. not using targets
just because they haven’t been built yet

Copyright © NVIDIA Corporation 2005

“ d” Files <A

® From GNU Make texinfo: “Generating Prerequisites

Automatically”:

%.d: %.c
@set -e; rm -F $@; \ $(CC) -M $(CPPFLAGS) $< > $0.$$$$5; \
sed "s,\($*\)\.o[:1*.\1.0 $0 : ,g" < $@-$$3$% > $0; \
rm -T $0.$$$$

® Fails when a header file is deleted
® Work around by adding a dummy rule for every header

® Doesn’t work for generated headers

® $(CC) -M doesn’t know where in the include path the
header file is going to be found

® Bizarre failure modes if you also have dummy rules

Copyright © NVIDIA Corporation 2005

Build Efficiency Issues <X

® Recompiling unchanged files

® Unnecessary dependencies (especially makefile
dependencies)

® Re-building in the same build run
® Forced rebuilding

® Comparing copy-if-changed targets
® Loading all the makefiles up-front

® NOTE: Most of these problems arise from naive
attempts to improve reliability

Copyright © NVIDIA Corporation 2005

Copy-if-changed Targets <X

® A target might not change after it is regenerated,
even though some of its dependencies changed
® No need to continue rippling its effect through the system

® A weak attempt to avoid downstream work:
mytarget.tmp: depl dep2
generate_mytarget depl dep2 > $@
mytarget: mytarget.tmp
cmp -s $@ $< || cp $< %0
processed target: mytarget
process $< > $@ # takes a long time
® In addition to the ugliness, now mytarget always
appears out of date, so it gets compared every time

Copyright © NVIDIA Corporation 2005

Unnecessary Rebuilding <X

® Force targets are a bad way to compensate for

missing dependencies:
_PHONY: FORCE

mytarget: FORCE
generate_mytarget # depends on lots of things

® False dependencies also create unnecessary work

® Recursive make often causes targets to be rebuilt:
all: tl t2

tl: dl
$(MAKE) -C dir t
cat dir/t d1 > $0

t2: d2
$(MAKE) —C dir t
cat dir/t d2 > $0

Copyright © NVIDIA Corporation 2005

Idiot-proofing the Build

® If the build system isn’t simple to
use, then it won’t be used correctly

® “make foo” is fine

® The following isn’t:
make -C path1 all
make -C path2 all
make foo

If you get “unresolved symbol mysym,” then “make -C
mylib clean,” and try again

® If you get “no rule to make file.h”’, then “rm *.d” and
try again

® Don’t require users to do the build system’s job!

Copyright © NVIDIA Corporation 2005

Makepp

N

Copyright © NVIDIA Corporation 2005

Makepp Overview

® Uses a syntax almost identical to GNU make

® Automatically handles cross-makefile
dependencies — no recursive make!

® Finds all include files automatically, and makes
them if they don’t yet exist (no “.d” files needed)

® Rebuilds if command is different from last build,
even if the files haven’t changed

® Can ignore stale files

® Can automatically symlink source/object files from
another location if they don’t exist locally

® Is easily extensible (written in Perl)

Copyright © NVIDIA Corporation 2005

Automatic Implicit Dependencies <X

® Makepp parses shell commands looking for extra
dependencies (e.g., —L and —1 options for links)

® Makepp scans source files for #include
Suppose this rule is used to build xyz.o:
%.0 - %.c

10 Ly

S.

$(CC) —Idirl —Idir2 —c $< -o $0
Recognizes compilation commands from first word(s)
Gets include path from the —1 options
Scans xyz.c for #1nclude directives

Finds where each include file is or will be, and makes it a
dependency

Applies same process to #i1ncludes in include files

® Customizable for other shell commands/languages

Copyright © NVIDIA Corporation 2005

Multiple directory handling @

® Loads all makefiles simultaneously into memory
® Executes commands from different makefiles in the

correct order

® Example of ugly of cross-directory dependencies

subdirl/Makeppfile

c : ../subdir2/b
build c $<

a :
build _a

subdir2/Makeppfile
b - ../subdirl/a
build b $<

Copyright © NVIDIA Corporation 2005

Makepp executes the following:

cd subdirl
burld _a

cd ../subdir2
burld b

cd ../subdirl
burld c

Build inference @

® Makepp computes a list of all files that can be built
by all the makefiles it loads (even if the files aren’t

requested)

® Makepp starts with the existing files and infers what can be built
® GNU make starts with final targets and infers how to build them

® Wildcards (e.g., *.0) match files that don’t yet exist
but can be built

® Include files that don’t yet exist are made correctly
no matter where they are along the include path

® Makepp can generate an automatic “clean” target
because it knows which files it can build

Copyright © NVIDIA Corporation 2005

Implicit Makefile Loading <3

® |If afile in a directory is referenced, makepp will automatically
attempt to load a makefile from that directory

® Makefiles do not have to specify which other makefiles are
needed — makepp figures it out

® Complete build example:

Top level makefile
our_program: *_.o
$(CC) $™ —Lsubdiraa —Lsubdirbb -laa —lbb —o0 $0@

subdiraa/Makefile # subdirbb/Makefile
libaa.so: *.0 libbb_so: *.0
Id —shared $" -0 $0 Id —shared $" -o $0

Copyright © NVIDIA Corporation 2005

Build info files

® Makepp will execute a build command if:

1. Any file dates have changed since the last build
* Input file is replaced by an older version
* Some other program damages the output file

2. The build command has changed
® You add —DDEBUG to the command line
® You change from —g to —02

3. The architecture has changed (e.g., from Solaris to Linux)
® Can compare based on checksum of contents

® Checksum of C source files excludes comments/whitespace so
you can re-indent or comment without causing recompilation

® Information about build of abc is stored in .makepp/abc.mk

® You can look back and see what the build command was
® Can be read by your own scripts

Copyright © NVIDIA Corporation 2005

Extensibility <X

® Makepp is 100% Perl

® Embed Perl code/expressions in your makefile
X = $(perl ucftirst($Y)) # Evaluate perl expression
output dir = . # Variable 1s accessible to perl
perl _begin # Always run snippet of perl code
-d $output_dir or mkdir $output dir;
$ftile_list = perl _function_to compute file list();
perl_end
Now $(Tfile_list) contains what the perl code set up

® Call your own Perl functions using make syntax
X = $(my_special_ Tunction argl, arg2)

® New compiler commands or languages can be
supported by writing a perl module

Copyright © NVIDIA Corporation 2005

Jam/MR and Ant <A

® Jam/MR and Ant solve some of the same problems,
but...

® Makepp solves essentially all of them
® Makepp’s control language is familiar
® Makepp is easy to extend

Copyright © NVIDIA Corporation 2005

Makepp at NVIDIA

Copyright © NVIDIA Corporation 2005

NVIDIA’s Core Business @

® NVIDIA builds GPU’s (Graphics Processing Units)
for rendering cinematic graphics in real time

® Among the most complex integrated circuits on the
JENE

Copyright © NVIDIA Corporation 2005

Variant Management @

® Derivative products are crucial for addressing
multiple cost vs. performance points with the same
basic design

® Maintaining sustained variation with inter-file
branching is labor-intensive and error-prone

® Maintaining sustained variation with the build
system is straightforward

® In the worst case, a former source file can be
generated differently depending on the selected
variant

Copyright © NVIDIA Corporation 2005

Simultaneous Variants <A

® Multiple products may need to coexist in the same
simulation

® Generate each variant in a different location

® Dependencies always refer to a variant location
(usually the same variant as the target), so that
variant-ness is late-binding

® Makepp is wrappered, so that variant directories
can be created during initialization

Copyright © NVIDIA Corporation 2005

Repositories for Variant Management <<%

® All source files (including makefiles) are
automatically symbolically linked into the variant
location when they are needed

® The Missing Link
® If a dependency is missing, it usually b A
results in a command failing, because L## ...
makepp won’t create the link for it .

® This is a Good Thing

Copyright © NVIDIA Corporation 2005

Sandboxing

® NVIDIA uses LSF for distributed processing
® 60-90 seconds of overhead for each process

® File tree is manually partitioned for concurrent
makepp processes

® An error results if a process oversteps its sandbox
® Determinism is guaranteed

Copyright © NVIDIA Corporation 2005

NVIDIA’s Makepp Build Stats <X

® 17,000 source files, 200MB total
® 10,000 files built by legacy system, 300MB total
® 33,000 files built by Makepp, 2.5GB total

® Top-level compiled simulator target has 4,200
immediate dependencies

® Top-level build is partitioned into 11 phases, with an
overall latency of 90 minutes from clean

® 150 users

Copyright © NVIDIA Corporation 2005

Perl is Fast Enough <X

® NVIDIA’s null build spends about 50% of the time in
I/O wait, even after optimizing the 1/O

® Makepp execution latency typically disappears in
comparison to the time spent executing build
commands

Copyright © NVIDIA Corporation 2005

Future Directions

Copyright © NVIDIA Corporation 2005

Build Caching <X

® Copies of all recently built files are stored on a
designated NFS file share

® Indexed with an MD5 of all the dependencies

® This is the definitive alternative to storing generated
data in Perforce

® Storing generated data in Perforce is evil because...

® It makes it difficult to maintain coherency with the true
source files

® It can present a Perforce server load that is several orders
of magnitude greater than that of true source files

Copyright © NVIDIA Corporation 2005

Incremental Testing @

® Every test result is a file
® Result filename must include the random seed, if any

® Running a test is equivalent to updating its results
file

® Tests that could not have been affected won’t be
rerun

® Would you trust your build system this much?

Copyright © NVIDIA Corporation 2005

In Summary <A

® Perforce is a Source (not Software) Configuration
Management tool

® Most of the remainder of the configuration
management problem should be addressed with the
build system

® Use the build system, not Perforce, for variant
management

® Use the build system, not Perforce, for sharing
generated files

® Makepp is an exceptionally flexible, scalable,
reliable and efficient build tool

Copyright © NVIDIA Corporation 2005

