

Merge as you go

Chris Berarducci
Handspring

January 2003

Introduction

This paper explains how Handspring utilizes the standard Perforce branch mechanism
and a branch specification to keep multiple project trees up to date with the appropriate
changes and bug fixes. Handspring refers to this process as “Merge as you go”, which
consists of a change based merge and merge daemon script.

A change based merge is simply merging changes from a single specific change number
in Perforce to another branch or source tree. This keeps a one-to-one relationship
between the original submission and the submission on the destination source tree.

To make this process sustainable in a live development environment we utilize a daemon
process to schedule the merges every N minutes.

A successful process requires more than just strong SCM tools — it also requires a
balance between the tools and the entire development team. We hope to illustrate how
clear ownership and role definitions, as well as cooperation from the whole team, reduce
extra overhead and contribute to the success of “Merge as you go” in our development
environment.

 2

Overview

Handspring’s development model is evolving depending on the project needs. When the
“Merge as you go” process was being created the development team tended to work on
similar projects at the same time and utilize software branches to isolate the changes. An
example of this can be seen in Figure 1. Throughout the explanation we will be referring
to this development model.

Figure 1

Main Branch

Domestic Branch

Localization Branch

150 152 155

158

151 154

157

153

156

160

Project A was separated into two branches, a domestic
branch and a localized branch. The domestic development
branch is isolated from the localized changes but the
localized branch takes every domestic change to the
project. All changes migrate to the main branch.

Auto merging of source code can be very powerful provided the merges are done
correctly. With this in mind the merge part of “Merge as you go” is handled with
standard Perforce commands in the automation scripts. Any merge that the merge
daemon completes could have been accomplished with native Perforce commands from a
user’s command line shell. We are simply using automation to separate the merges that
Perforce flags as a conflict and completing the merges that Perforce does not flag; with
this approach we feel that the quality of our merge process is very high.

A change based merge will merge the changes from a single Perforce submission into
another branch maintaining the following:

• The new submission will contain only the files in the original Perforce
change number. Possibly a subset, if not all the files in the original change
are represented in the branch specification. This is standard Perforce
merging.

• The new submission will carry the comments from the original Perforce
change number into the new change. This is a script enhancement in our
process.

 3

• The new submission will add additional information about the branch
specification used for the merge and the change number that the merge
originated from. This is a script enhancement in our process.

All of this together helps to create a standard look and feel for a merge. Additionally, we
have adopted a semi-standard syntax that engineers use when submitting changes to
Perforce.

Anybody reviewing a changed based merge submission can easily see the comments
from the original change. While this sounds trivial, when we couple this with our semi-
standard syntax it quickly shows a non-technical person what changes have been merged
in. For example, bug fixes or features are called out in a certain way and are easy to see
in the submission comments. Also, a merged change may actually be merged multiple
times depending on the branch methodology in use. In these cases it is invaluable for us
to carry the comments forward. Program Managers and Quality Engineers, who are not
typically Perforce users, create release notes from the submission notes. Having the
merged submission comments brought forward makes their job easier and the resulting
release notes more accurate.

Changed based merging is a technique that can be used locally by an engineer to
manually merge a change. In this case all of the benefits listed above are received but the
merge is not done in a scheduled manner. While good for one or two changes it does not
scale well to have engineers spending time doing single change merges.

The auto merge daemon allows for specific branches to be scheduled for change-based
merges. It allows the development engineers to concentrate on coding and not merging;
from a process standpoint they are not the gating factor for a merge taking place but are
available to resolve conflicts when they occur. When conflicts do occur there is
immediate feedback, based on the frequency of the merge daemon. Generally speaking,
the conflict is easier, more lightweight to resolve being that one engineer has made the
changes and is still familiar with what they were trying to accomplish in the code.

The “Merge as you go” process builds upon the standard Perforce merge commands
which turns out to be a nice benefit because it does not limit any options. In other words
because we use the built in merge features Perforce does not distinguish between a
change based merge or any other merge, it is simply a merge. In that way Perforce is the
authority on what has been merged and what integrations are still outstanding.

 4

 “Merge as you go” organization:

“Merge as you go” can be separated into two functional parts:

• “mergechanges.pl” – This script takes as input a branch specification name, the
direction of the merge and a change number. It then attempts to merge that
change into the destination branch based on the specified branch specification.
This script enables automating the change based merge that we talked about in the
summary.

When executed from the merge daemon status of the merge will be communicated
in email. The “mail” configuration file controls who will receive the email and is
checked into Perforce.

For each configured merge an engineer can specify 3 lines in the “mail”
configuration file. They are:

Branch – The name of the branch that you are defining notification for.

“Merge OK” – When a merge is successfully completed for this branch notify
these folks. It can be a comma-separated list or a group alias that is resolved at
the mail server.

“Merge Conflict” – When a merge has conflicts notify these folks. It can be a
comma-separated list or a group alias that is resolved at the mail server.

For example:

Branch: Localized_reverse_Automerge
MERGE OK: Localized_OK_notification@handspring.com
MERGE CONFLICT: joe_engineer@handsprint.com

• “mergereview.pl” – A daemon script to determine if there are any valid Perforce

submissions that need to be merged. If there are it executes “mergechanges.pl”
and performs any post merge steps that are needed based on feedback from
“mergechanges.pl”.

The “mergereview.pl” daemon only runs in one instance and is data driven. A
“merge” configuration file is checked into Perforce controls it. Each time the
daemon wakes up it syncs the “merge” configuration file from Perforce and reads
the merge data. Based on this data a Perforce submission may or may not be
considered a valid merge to attempt.

 5

This approach of separating the configuration data from the script greatly
enhances the engineer’s ability to control the merges. The daemon script does not
need to be started and stopped as configurations are added, modified or deleted.

In the “merge” configuration file a line that begins with ‘#’ is a comment. Any
other non-blank line is a merge definition line.

Each merge definition line has the following structure:

 Branch Name, Direction of merge, Pattern Match, Change Number

For example, the lines

Project_A_Localized,reverse,,150

Would configure the following:
• A Perforce counter based on the branch specification name and the

direction of the merge. Subsequent runs would use that counter to
start looking for changes to merge. This means each configured
branch has its own counter, potentially two, one for each direction.

• The daemon to start at change 150 the very first time it ran for this
project.

• Execute mergechanges.pl when there are outstanding changes to

merge.

Not shown in this example is the “Pattern Match” text field. It is an additional
filter for determining whether to attempt the merge or not. To set up a filter you
simply type the text that is required in the 3rd position of the configuration line. If
a specific change number is eligible for the merge based on information from
Perforce the daemon script then additionally looks for the text in the submission
notes of the original check in. This is specialized usage and left for the reader to
explore further.

It’s easy to turn the auto merge daemon off by commenting out the configuration
line and there is no harm in moving the change number back to previous changes.
Since Perforce is managing all the merge information it will not merge something
that is already merged, unless (obviously) you force it.

 6

Merge Resolve Steps:

By default “mergechanges.pl” takes a pretty conservative approach to what is merged.
Its rules work like this:

It first attempts:

 P4 resolve –af

From the Perforce help files:

“The -af flag forces 'p4 resolve' in automatic mode to accept the
merged file even if there are conflicts.”

From the list of files resolved any files that are flagged for manual resolution or have
conflicts are tracked.

For the files requiring manual resolution we attempt to resolve them with the following
command:

p4 resolve -t -as

From the Perforce help files:

The -as flag performs a 'safe' automatic resolve, accepting only
files that have either your changes or their changes, but not
both. Files with changes to both yours and theirs are skipped.

Any files that had a conflict or could not be integrated with the given commands will
abort the merge. At this point the files will be reverted and if ran from the merge daemon
email notification will be sent.

 7

Roles and responsibilities:

Since Perforce is primarily used as an engineering tool all of the responsibility falls into
the engineering group, however Handspring does have some resources available to
internal tool development. The internal tools group is responsible for supporting the
merge and daemon scripts; any bugs found are reported and fixed.

The configuration of the auto merge daemon is the responsibility of the engineering lead
for the project. The lead engineer configures the branch name, the direction of the merge,
which change number to start with and any header information to key off of when doing
the merge.

Additionally, the development engineers have agreed to manually resolve any merge
conflicts that occur in a timely manner. When there is a conflict the project lead is
notified via email from the merge review daemon and they work with the development
engineer to correct the issue.

Product development cycle:

A common goal of branching is to isolate changes and promote stability in the source
tree, especially when close to critical milestones in the project. However, if you are using
the “Merge as you go” concept then you potentially are bringing in changes that may de-
stabilize the quality of the branch. In a case like this it makes complete sense for the
project lead to turn off auto merging during this critical time period. The merge daemon
is using Perforce counters to track which change number was last merged. That
information will be preserved and available when the branch specification is added back
to the configuration file.

 8

Process flow

Each column represents a task in parallel.

Edit the merge
configuration file to
either configure a

branch to merge or
stop an existing

auto merge
configuration

Merge daemon
reads the

configuration file
and looks for
merges to be

attempted

Update the
Perforce counter

value. Send
email to the

branch owner

Change is
merged

Attempt the merge
manually using the

same Perforce
commands as the

merge daemon (they
were in the email)

DO NOT update
the Perforce

counter value.
Send email to the

branch owner

Sleep for N
minutes

Resolve the
conflict and do a

Perforce
submission

Merge Daemon Process
Project LeadProject Lead

Submit
configuration file

to Perforce Successful
Merge

Merge conflict
encountered

Done

Done

 9

Examples

1. Example merge scenario:

Main Branch

Domestic Branch

Localization Branch

152 155

158

154

157

153

156 159

160

Conflict
 files
 reverted

Eng
 resolves
 conflict

Project A was separated into two branches, a domestic branch and a
localized branch. The domestic development branch is isolated from the
localized changes but the localized branch takes every domestic change
to the project. All changes migrate to the main branch.

The following definitions have been entered in the “merge” configuration file.

 Domestic_Branch,reverse,,150
 Localized_Branch,reverse,,150

They would configure the following:

• A Perforce counter based on the branch specification name and the
direction of the merge, in these cases the counter name would be:

o Domestic_reverse_Automerge
o Localized_reverse_Automerge

• The initial counter value for both counters would be ‘150’. Subsequent
runs would use that counter to start looking for changes to merge.

• Execute mergechanges.pl when there are outstanding changes to merge.

Items in bold signify the auto merge process.

A more detailed example:

1. Change 152 – Engineer submitted to the Main branch. Miscellaneous change not
directly related to any active projects.

2. Change 153 – User submitted to the Domestic branch. This is a feature being
added and needs to be propagated to the localization branch.

3. Change 154 - Auto merge submitted to the Localization branch, the daemon
adds additional header information to the submission notes.

4. Change 155 – Auto merge submitted to the Main branch, the daemon adds
additional header information to the submission notes.

 10

5. Change 156 – User submitted to the Localization Branch. This is a text change
required for localization of the product. The user changed foo.h line 73 in this
submission.

6. Change 157 – Auto merge submitted to the Main branch, the daemon adds
additional header information to the submission notes.

7. Change 158 – User submitted to the Domestic Branch. This is a text change
required for a new feature in the product. The user change foo.h line 73 in this
submission.

8. Merge attempted – Conflicts occurred shown with the red line above. The
files were reverted for the pending change and email was sent to the
appropriate engineers. The merge of change 158 is still outstanding.

9. Change 159 – The project lead manually merged change 158 to the localization
branch. The resolved the conflicts in foo.h

10. Change 160 – Auto merge submitted to the Main Branch, the daemon adds
additional header information to the submission notes

2. Example Merge Submission Notes:

P4 describe –s 154

Change 150 by reviewdaemon@_reviewdaemon_mycomputer_software on
2002/09/17 15:39:36

 "MergeChanges - Domestic_reverse_Automerge"
 >> Change 153 by JoeEngineer@JoeEngineer_2kPC on 2002/09/17 15:37:37
 >>
 >> Fixed bug 25 Device crashes after repeatedly changing fonts
 >>
 >> Affected files ...
 >>
 >> ... //branches/Domestic/Libraries/TextEngine/TextEngine.c#21 edit
 >>

Affected files ...

... //branches/Localized/Libraries/TextEngine/TextEngine.c#26 integrate

 11

3. Example Merge Conflict Mail:

The title of the mail is:

MERGE CONFLICT, Domestic_reverse 158

The content starts with the mergechanges command that was run and then proceeds to
describe all the files that had issues.

mergechanges.pl -s -c=158 -b= Domestic –m -r

The following files had merge conflicts

//branches/BranchA_Localized/foo.h

Diff chunks: 255 yours + 7 theirs + 0 both + 1 conflicting

The following commands can be run to do the merge on your system

p4 integrate –r -b Domestic @158,@158
p4 resolve -af ‘//branches/Localized/foo.h’

Here are the notes from the check in we are merging

>> Change 158 by JoeEngineer@JoeEngineer_2kPC on 2002/10/07 14:13
:37
>>
>> Fixed bug 26 : Fatal error when trying to open the Calculator
>>
>> Affected files ...
>>
>> ... //branches/Domestic/foo.c#150 edit
>>

 12

Closing Summary

 “Merge as you go” makes the most sense when you have projects with different trees
that share some of the same features or bugs. For those projects there are benefits for the
development engineers, QA and program management groups. The “Merge as you go”
process is set up so there is no additional overhead for the tools teams , whether they are
supporting 1 or 10 projects.

“Merge as you go” works well at Handspring when it makes sense, not all of our projects
benefit from this approach. Those other projects have no restrictions to pursue their best
merge options. The idea is to use the tools that make your team productive and “Merge
as you go” is another tool that is available.

Our experience has led us to the following conclusions:

• Critical to the “Merge as you go” success is:

o The Perforce merge facilities
o Established roles and responsibilities
o The daemon runs in one instances
o Conflicts can be handled on the engineers CPU

• Development engineers like it:
o They own the configuration and merging; they do not need to consult with

another group or person to turn on or off the auto merge daemon.
o They are relieved from thinking about merges unless there is a conflict or

configuration change needed. When it is on and configured, changes
checked into one tree will be migrated to the destination tree(s) in a timely
and reliable manner.

o It’s easy to set up and the configuration files are tracked in Perforce.
o It’s easy to turn off and on

• More information is provided in the submission comments:
o Easier for QA and Program Management to generate release notes.

The overhead and benefit is directly related to the development model, the number of
developers, the number of projects and the complexity of the source tree.

Depending on project activity and how merge configurations are set up, Handspring
experiences anywhere from 1 to 25 auto merges daily. Usually any resulting conflicts are
resolved within 24 to 48 hours of the conflict being reported; it is not usually a high
priority task but more a background task.

The scripts are written in Perl and execute the Perforce commands from the command
shell. At the time of development we didn’t know of a Perforce API or Perl module that
could be used to access Perforce. The original developments of these scripts occurred
about 2 years ago and have had only minor updates since then.

 13

Our Perforce server runs Solaris on a Sun Ultra 60 CPU and most of our development
occurs on the Windows platform. The “mergereview.pl” script runs on a Linux
configured system and “mergechanges.pl” runs on both Windows and Linux.

