
Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

1

Notes:

1

Merging Branches using Perforce

Naveen Patil
Senior SCM Engineer

QuickBooks Software , Intuit
5/10/2005 11:18 AM

Abstract:

During the past 3 years, the need to do Parallel Development on the QuickBooks product at Intuit has
evolved from using a Main branch for development and a Release branch for Change Control to several
streams of development that use Main almost only for integration between branches. The associated
frequency and cost of merging these branches has also significantly increased.

This presentation focuses on describing the practical learnings from using Perforce for Merging between
branches. It discusses the repeatable procedure that has been successfully used to merge between
branches, the algorithm Perforce uses to find the Base and Contributor versions, the merge conflict
resolution and it's effect on future merges, and developer best practices that can aid this task. Several
examples are used to illustrate the decisions associated with resolving a merge conflict. The significant
improvements in the 2004.2 release that help with merging are also discussed.

Biography:

Naveen Patil (http://public.perforce.com/guest/naveen_patil/pct.html), Intuit (www.intuit.com)

Naveen works at Intuit as Senior SCM Engineer in the QuickBooks Group. Since Oct 1989, he has
worked in various SCM related positions at companies like TiVo, Silicon Graphics, Kubota Graphics and
Olivetti. He has also consulted on SCM tasks at companies like Corsair Communications and
Perspecta. He is a Perforce Consulting Partner since Mar 2004 and Certified Trainer since Oct 2004.
Merging Branches using Perforce is the topic of Naveen's talk.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

2

Notes:

2

Not in Agenda

Theory or Principles of Branching & Merging
http://www.perforce.com/perforce/life.html

(Software Life-Cycle Modelling)

http://www.perforce.com/perforce/branch.html
(Inter-File™ Branching)

http://www.perforce.com/perforce/bestpractices.html
http://www.cmcrossroads.com/bradapp/acme/branching/

(similar to Writing Solid Code and Continuous Integration,
a must-read for Parallel Development)

Strategy and Planning

Instructions for Branching,
and Developer Setup on each Branch
http://www.perforce.com/perforce/technotes/note004.html

Each product should have a documented Branching and Merging Strategy for Parallel Development. It
should be communicated and well understood by all stakeholders - Project Management, Engineering,
Quality Control, SCM, etc. It’s objectives should include (i) support for development on multiple releases
at the same time, (ii) avoid the pitfalls of branching and merging, (iii) reduce the time spent on making
decisions, (iv) conform to best practices, and (v) increase the confidence in knowing where to submit
Changes and their merge into other branches.

Also See:

Writing Solid Code
(http://c2.com/cgi/wiki?WritingSolidCode)

Continuous Integration
(http://www.martinfowler.com/articles/continuousIntegration.html)

The Importance of Branching Models in SCM
(http://csdl.computer.org/comp/mags/co/2002/09/r9031abs.htm)

Advanced SCM Branching Strategies
(http://www.vance.com/steve/perforce/Branching_Strategies.html)

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

3

Notes:

3

Agenda [1 of 5]

QuickBooks Development Environment

Procedure for merging between branches

Inter-File Branching Algorithm
used by Perforce to set up files for merging

Conflict resolution, and
its effect on future merges

Best Practices and
New features in Perforce v2004.2
that aid merging

Q&A

Discuss briefly the evolution of branching needs for QuickBooks development, and the Daily Workflow
that promotes Continuous Integration for both Concurrent and Parallel Development.

Next, focus on Merging for Parallel Development, and list the steps that cover the different possibilities
that can exist in a merge.

Then discuss the contribution of Perforce to a merge and the manual contribution needed to resolve
conflicts. Illustrate the effects of each type of resolution with examples. Perforce contributes some
merge errors too, and these get fixed quickly, so the tool is getter better with each release. It is harder to
control the errors contributed by humans.

Finally, describe the development best practices and the improvements in Perforce v2004.2 that aid the
task of merging branches.

Emphasize that the tool cannot make up for lack of planning or shifting plans. Like any other tool,
Perforce can be only as good as humans use it. Explain that there are 2 realities – (i) business needs
and (ii) strengths/limitations of Perforce as a tool to support development, and while we cannot let a tool
drive business goals, we should also find ways to rein in changes to development plans to make prudent
use of Perforce and not tie knots in the integration history that become harder and harder to understand
and untangle.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

4

Notes:

4

Branching then …

Main

Beta1 Beta2 Beta3 MR

Until a few years ago, the release cycle for QuickBooks development consisted of one major release per
year followed by several slipstream (maintenance) releases for bugfixes and compliance related
changes. A simple branching strategy was used. The Main branch was used for ongoing development of
features for the annually scheduled release. To support Change Control for an upcoming milestone, a
release branch was forked off of the Main branch. Changes approved on the release branch had to be
either checked into both the Main and Release branches (double checkin) or only checked into the
Release branch. The release branches were short-lived, and there was no need for merging back from
the release branches.

The need to support more than one major release per year, past releases for up to 3 years, and new
development, some with a multi-year schedule, lead to development of a branching strategy. Multiple
checkins could not be used any more because each branch has it’s own policy and schedule for
accepting changes.

As we developed code on multiple branches, we had to deal with the more arduous task of merging
these branches, and do it in a way that would help these branches converge towards a single code base
that included new features as well as bugfixes, and could serve as base for future development.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

5

Notes:

5

Branching now …

CurrentRelease

FeatureDev(s)

LongTermFeatureDev(s)

CurrentReleaseMR

Main

PastReleaseMR(s)

Typically, we start development on a new release from a shipped release.

In early development, we may have several branches (FeatureDev(s) and LongTermFeatureDev(s)) to
isolate development on new features.

At some point, some of these early development branches (FeatureDev(s)) become stable enough and
are approved for integration into the main development branch for the next release. The remaining ones
are either deferred to a future release, or are abandoned.

The main development branch for the next release (CurrentRelease) goes through an integration phase
of new features and bugfixes from older release, and reaches it’s Feature Complete milestone, at which
point, it gets branched off into another branch (CurrentReleaseMR) for Change Control.

During the Beta cycles, the CurrentRelease branch is used for ongoing bugfixes and CurrentReleaseMR
branch is used for bugfixes approved by Change Control. There are several merges and mergebacks
between the 2 branches

After the Beta cycles, the current release gets shipped off of the Change Control branch
CurrentReleaseMR, which is then used for minor (slipstream) releases.

Bugfixes made on these branches get merged back into Main in preparation for the next major release.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

6

Notes:

6

Daily Workflow

Tinderbox type Daytime Debug and Release
builds are run on multiple branches to support
Continuous Integration of Concurrent changes

Midnight builds generate an installable product
and label/tag a buildable source configuration

Automated Build Acceptance Tests (BATS) and
Feature Sanity Tests (FSTS) are run to qualify a
build label

Developers retrieve source using label and
download corresponding prebuilt derived
objects

QA tests product and Merges between branches
are done from a well qualified build/label

The QuickBooks Development Environment uses the following workflow to support concurrent and
parallel development:

Tinderbox type Debug and Release builds are continuously run on multiple branches during the day to
provide Continuous Integration of concurrently developed changes. They ensure the branch is in a
buildable state after each checkin.

Midnight builds are run off the Changelist built into the last successful daytime build. They generate an
installable product and create a label, which is used to identify each build. Automated Build Acceptance
Tests (BATS) and Feature Sanity Tests (FSTS) are used to qualify each build label.

Developers retrieve source into their Client using the label created by the midnight build, and download
corresponding derived objects. This ensures that they start their daytime work with a buildable product.

QA starts testing a well qualified build that has already passed basic install and feature sanity tests. This
ensures the quality of QA testing and makes better use of their time.

This workflow is followed every single day to ensure that the product is in a usable state.

Merges between branches are also done from a well qualified label to ensure the quality of changes
being propagated from one branch to another. Builds and Tests are run after each merge to determine
the quality of merged code.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

7

Notes:

7

Agenda [2 of 5]

QuickBooks Development Environment

Procedure for merging between branches

Inter-File Branching Algorithm
used by Perforce to set up files for merging

Conflict resolution, and
its effect on future merges

Best Practices and
New features in Perforce v2004.2
to aid merging

Q&A

The next section of slides discuss the terminology and procedure associated with merging between
branches used to support parallel development.

Each step in the procedure may not have files associated with it in every merge, but making it part of the
procedure ensures that all the different cases are accounted for. The set of files associated with each
case are preferably submitted in independent changelists to aid debugging of merge errors.

Command line names and options have been used in the instructions because they can be concisely
presented. But, P4Win can be used too, and “P4 to P4Win Translation Guide”
(http://www.perforce.com/perforce/doc.042/manuals/cmd2win/index.html) can be used to map between
the CLI (P4) and GUI (P4Win).

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

8

Notes:

8

Definitions [1 of 3]

Concurrent Development: Developers doing edit, change,
resolve and submit of files on the same branch
(similar to multi-processing on the same system)
http://www.perforce.com/perforce/doc.042/manuals/p4guide/05
_conflicts.html#1041981

Parallel Development: On a broader scale, we need
Branches to support releases, new development, etc
(similar to distributed development on multiple systems)
http://www.perforce.com/perforce/doc.042/manuals/p4guide/0

9_branching.html#1043880

Interactions and Interdependencies in Parallel
Development are harder to manage than in Concurrent
Development

Perforce’s mechanism for resolving merges is the same
for both of the above types of development

This presentation focuses on the Merging aspects of
Parallel Development

Just as problems like file locking, synchronization and inter-process communication between processes
in a distributed system are harder than that of multi-processing on the same system, interactions and
interdependencies in Parallel Development are harder to manage than in Concurrent Development.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

9

Notes:

9

Definitions [2 of 3]

Branching: (virtually) copying a canonical set of source files
to support a new codeline (Inter-File Branching™)

Merging: propagating changes from one branch to another
under control of our SCM system (Perforce) to prevent re-
work (multiple edits)

Together, they cause development to diverge and
converge, form the cost of doing Parallel Development, and
we pay for it either up-front with lots of planning and
design, or back-end when all the damage is already done,
or as-you-go

Part of feature development on a branch is a need to
ensure that it can be integrated back into rest of the
source code

Concurrent Development leads to the benefits of Continuous Integration as users edit, resolve and
submit changes on the same branch. Since developers modifying the same set of files are familiar with
the code, they can usually resolve conflicts much easier than merging branches that have diverged for a
while. Since the duration of divergence between developers workspaces is usually small, most conflicts
are easily resolved.

Similarly, regular planned merges between branches as-you-go helps control the complexity of each
merge. In a large scale project, it may not be feasible to merge between branches per Changelist (see
http://www.perforce.com/perforce/conf2003/berarducci/berarducci.pdf and
http://www.perforce.com/perforce/conf2003/berarducci/berarducci_ppt.pdf) because of differences in
policy and release management, so merges need to be planned less frequently. The frequency of
merges can be either biweekly, weekly, monthly or at certain stability milestones depending on the type
of changes happening on the branches. The responsibility of negotiating and maintaining a
Branch/Merge Plan falls into the SCM group.

Code Champions and Architects need to evaluate at design time the impact of developing a new feature
on code being developed on other branches.

Setting up the p4review.py review daemon and getting email notification of changes to specific parts of
the source tree is an effective way of communicating changes to the source tree and reducing the
impact of surprises.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

10

Notes:

10

Definitions [3 of 3]

Parent and Child Branches
– Perforce Branches have an integration hierarchy,

as defined by mappings in BranchSpecs
– Main branch is the Trunk, and normally has no Parent

Source and Target Branches
– Integrations can happen in either direction
– “from branch” (THEIRS) is Source, and “into branch” (YOURS) is Target

Forward Merge (Rebase) and Reverse Mergeback
– Forward Merge has Parent as Source, and Child as Target
– Reverse Mergeback has Child as Source and Parent as Target

Complete, Selective and Subtractive Merge(back)
– Including all files until a reference point is Complete
– Can be Selective using Changelists or Versions, partially too
– Subtractive Merge(back) is commonly referred to as “rolling back”

Direct and Indirect Merge(back)
– Branches in a Direct Merge(back) have Parent/Child relationship
– Branches in an Indirect Merge(back) are related in integration hierarchy,

but have no direct Parent/Child relationship

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

11

Notes:

11

Instructions for Merging [1 of 8]

Preparation

P4 branches – list available BranchSpecs

P4 branch branchspec – verify parent and child
branch names of a BranchSpec, which is used
for both forward merge (p4 integrate) and
reverse mergeback (p4 integrate –r)

P4 client – map target branch into the Client;
the source branch need not be mapped

P4 opened – make sure integrated files are not
mixed with those opened for add/edit/delete;
use Changelists to isolate/group changes

Branch names are normally same as those of BranchSpecs, and are used interchangeably in different
contexts, but they mean different things. A BranchSpec lists mappings between source paths to target
paths. A Branch name is normally the target path. Assuming each depot starts off with a Main branch,
each new branch created will have a specification and target path named the same, and the “p4
integrate –r” option is used to refer to the reverse mapping.

Perforce supports integration using either a BranchSpec or a FileSpec. Using a BranchSpec has the
benefits of (i) being able to list branch specifications using “p4 branches”, (ii) displaying mappings in
branch specification using “p4 branch –o <branchspec>”, and (iii) concisely reusing the mappings using
“p4 integrate –b <branchspec>”. A FileSpec is normally used to move, rename or split files within a
branch.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

12

Notes:

12

Instructions for Merging [2 of 8]

Set up files for resolution

P4 integrate –t [-r] [-o] –b branchspec
[@Label | @ChangeM,ChangeN] - schedule
integrations from one branch to another using
Label/Changelist; if M=N, selects 1 Changelist

“p4 integrate –b branchspec” is similar to “p4 sync” used in concurrent development to set up an edited
file for resolve with newer version(s) checked into the depot.

The “p4 integrate -t” option is needed to propagate filetype changes from one branch to another.

The “p4 integrate –o” option displays the base file name and revision which will be used in subsequent
resolves if a resolve is needed.

The “p4 resolve –o” option displays the base file name and revision which will be used during the the
merge.

As described in “p4 help undoc”, @=ChangeM can be used as an alternative to @ChangeM,ChangeM
to selectively integrate a single Changelist.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

13

Notes:

13

Instructions for Merging [3 of 8]

Resolution (Normal Cases)

P4 resolve –as – safe resolution of non-conflicting changes,
avoids duplicate sections of code during mergebacks

P4 resolve –am – automatic resolution of non-conflicting
changes; needs review for duplicate sections

P4 resolve – interactive resolution of conflicting changes; avoid
editing a merged file; forms bulk of the merge work.
Use following commands to understand conflicts:
– P4 annotate [-a] [-c], or P4V’s Time-lapse View
– P4 describe [-s]
– P4 filelog [-i], or P4V’s Revision Graph
– P4 diff [-dw] [-db]
– p4 diff2 [-dw] [-db]
– Diff – compare ORIGINAL, THEIRS and YOURS sections

P4 resolve –af – in automatic mode, accept a merged file even if
there are conflicts; checkin files with complex conflicts so that
they can be resolved incrementally, possibly by multiple people

Safe and Automatic resolution ([-as] and [-am]) are reliable and significantly reduce the amount of work
required to do the merge. Manual resolution of conflicts have much lower reliability, and require a review
process to provide redundancy.

To understand conflicts, it’s often easier to save the ORIGINAL, THEIRS and YOURS sections of each
conflict into different files and use a tool like Araxis Compare (http://www.araxis.com) to inspect the
differences between them, with and without white space changes. “p4 resolve” has options too for listing
these differences, and they compare the entire files, not the ORIGINAL, THEIRS and YOURS sections
of each conflict .

The [-af] option is useful for resolving files with a large number of conflicts or when conflicts need to be
resolved by several people. By using it, we lose the benefits of using resolve options and visual merge
tools. If files get checked in with conflict markers, then conflict blocks become part of annotated history.

Note that “p4 resolve –f” uses the saved contents of the previous resolve action as YOURS version, and
this is different from the YOURS version of the original resolve, which only has changes from the target
branch or edited file.

Conflict resolution forms the foundation of the merge, and affects the overall stability of the merged code
base and quality of current and future merges. Lingering “merge errors” are hard to diagnose and
reduce confidence in the merge procedure.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

14

Notes:

14

Instructions for Merging [4 of 8]

Set up files for resolution (Special Cases)

P4 integrate –t [-r] [-o] –b branchspec
[@Label | @ChangeM,ChangeN] – repeated
command to list files that need [-i] or [-d]
option because it’s easy to miss this information
from the earlier output

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

15

Notes:

15

Instructions for Merging [5 of 8]

Resolution (Re-added Files and Baseless Merges)

P4 integrate –Di - ignore that a source file had been
deleted and re-added when looking for the base
P4 resolve – 3-way merge with base and contributor
versions

P4 integrate –i –t [-r] –b branchspec [@Label |
@ChangeM,ChangeN] – set up baseless merge between
independently added files
P4 resolve [-at | -ay] – accept one of the versions in
baseless merge because no “common ancestor” exists;
edit, if necessary, in a separate Change

Once a baseless merge is resolved,
it initiates integration history,
which is then used for future merges

If “p4 integrate –i” is used on files that have been re-added, the re-added version will be chosen as the
base for the resolve, possibly skipping unintegrated versions before the delete. For re-added files, file
history needs to be reviewed before using either [-Di] or [-i].

When the same filenames are independently added on multiple branches, sometimes with different
content, Perforce has no integration history between them, so cannot find a common ancestor version.
The “p4 integrate –i” option is needed to set up a baseless merge between the files, and the entire
contents on one of the contributor versions needs to be accepted; if changes are needed in the merged
version, they need to be edited in a separate Changelist to avoid an “add into/from” type of conflict
resolution. Once a baseless merge is resolved, it initiates integration history, which is then used for
future merges.

NOTE008 How do you get deleted files back?
(http://www.perforce.com/perforce/technotes/note008.html)

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

16

Notes:

16

Instructions for Merging [6 of 8]

Resolution (Deleted/Moved/Split Files)

P4 integrate –Dt –t [-r] [-o] –b branchspec
[@Label | @ChangeM,ChangeN] - re-branch a source file
on top of a deleted target file (undo delete)

P4 integrate –Ds –t [-r] [-o] –b branchspec
[@Label | @ChangeM,ChangeN] - delete a modified target
file if the source file has been deleted (ignore edit)

[-Dt] and [-Ds] are more specific options than [-d]

For moved/renamed/split files on target branch, adding
mappings in BranchSpec from obsolete location to new
location enables p4 integrate to follow history;
in pre-2003.2 versions, files had to be edited at their new
location.

When merging back, disable such mappings so that the
parent branch gets the structure of the child branch

SCM Process for handling Moved/Renamed/Split files
When splitting files, integrate from original file to all destination files.
When moving or renaming files, integrate from original to destination files.
Add mapping in BranchSpec from original location on parent branch to destination location on child
branch; note that in the case of split files, the last mapping overrides the earlier ones, which can
then be merged using FileSpec.
When merging back, disable such mappings so that the parent branch gets the structure of the child
branch.

Perforce maintains integration records when branching/merging and moving/renaming/splitting files, and
these can now be followed across multiple integration levels. By adding mappings in a BranchSpec from
obsolete location to new location, bugfixes from release branches can now be integrated into the new
location of files.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

17

Notes:

17

Instructions for Merging [7 of 8]

Resolution (Delete Obsolete Files)

Obsolete files are not part of a Label, so we
delete files w.r.t a date that is closest to the
Label used for merging

P4 integrate –n [-r] –b branchspec @yyyy/mm/dd
| grep “delete from” | sed -e 's/#.*//' | p4 -x -
integrate [-r] -b branchspec

“p4 integrate //srcPath/…#delete //destPath/…” can also be used, but may include files that have been
deleted after the labels was created. Note that “#delete” is an unsupported revision specifier
documented in “p4 help undoc”.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

18

Notes:

18

Instructions for Merging [8 of 8]

P4 submit – checkin merged files before building
to avoid having to edit them for fixes;
use independent Changes for following to help
organize the merge and debug errors:
– Safely resolved files [-as]
– Automatically resolved files [-am]
– Force resolved files [-af]
– Manually resolved files
– Files that needed [-Di] or [-i] or [-Dt] or [-Ds]
– Deleted files

This step differs from that of developers,
who normally build and test before submit,
but helps avoid “impure merges” and conflicts
(re-work) during mergeback

Keep similarly resolved files together in the same Changelist.

As described in http://www.perforce.com/perforce/branch.html (Inter-File Branching), “impure merges”
are those versions that had edits in the same Changelist as resolved changes, and they are identified by
integration records “edit from/into” or “add from/into”.

When a version created by an “impure merge” is merged back into its originating branch, Perforce
presents it and the original change as a conflict, which then needs to be re-evaluated. When merging
back from the outer level branches, such conflicts form re-work because they’re not automatically
resolved. They’re normally resolved by [-at] (accept theirs) when merging back from development
branches.

White space introduced in an “impure merge” cause Perforce to accept duplicate sections of code from
both contributor versions and split/misaligned YOURS section in conflicts. See CALL #670605 - There
are a few known snags with the merge algorithm, most of which involve duplication of code during a
mergeback of an edited resolve – empty lines and white space cause different/split Chunks.

To prevent “impure merges”, changes with resolved conflicts are checked in even if the resolved file is
broken because of changes needed in sections that didn’t conflict.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

19

Notes:

19

Files that need special handling

Files that need updated signature from an external tool with
merged contents

Merged .pl scripts need to be rebuilt into checked in .exe files
using Perl2Exe

Files that have ranges of sequentially numbered definitions that
may merge, but need to be redefined; macro values need to be
changed in source files affected by such redefinition

Files updated by the build process need not be merged because
they’ll be rebuilt and checked in, and some of them need to be
merged occasionally when there are other changes

Binary files cannot be edited in parallel on branches because
they can only be 2-way merged

Some files have changes specific to branch and stage of
development that may not apply for target branch of merge

… this is not a complete list …

This knowledge comes from understanding the source and build infrastructure, and is product specific.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

20

Notes:

20

Post-Merge Changes

Submit following in independent Changes to
help organize the merge and debug errors:
– Files that need special handling
– Build fixes, and Merge fixes
– Installer fixes
– BATS fixes [SCM handoff happens at this point]
– FST fixes
– QA fixes

Independent Changes is not strict, but nice,
requirement

Use the merge capabilities of Perforce before applying syntactic/semantic/product knowledge to fix what
it doesn’t understand.

Resist the temptation to fix all types of errors in the same Change.

Developers often suggest “accept theirs” or “accept yours” to workaround the conflict resolution process
so that they can edit their way through a merge, but that’s re-work that merging is supposed to avoid
and the integration records that get created affect future merges/mergebacks.

“p4 integrate –h –f <revision range>” can be used to force Perforce to re-integrate versions that have
already been integrated, resolved and submitted. The [-h] option is needed to make integrate use the
same target version on the client (the ‘#have’ revision) as the earlier one. The revision range used by
the earlier integrate should be noted from its integration record, and specified for the re-integrate.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

21

Notes:

21

Agenda [3 of 5]

QuickBooks Development Environment

Procedure for merging between branches

Inter-File Branching Algorithm
used by Perforce to set up files for merging

Conflict resolution, and
its effect on future merges

Best Practices and
New features in Perforce v2004.2
to aid merging

Q&A

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

22

Notes:

22

Inter-File Branching Algorithm [1 of 2]

http://www.perforce.com/perforce/branch.html (Section 3)

http://www.perforce.com/perforce/technotes/note057.html

http://www.perforce.com/perforce/technotes/note065.html

http://www.perforce.com/perforce/doc.042/manuals/p4guide/09_b
ranching.html#1043880

This is what Perforce (tool) contributes to the Merge

p4 integrate determines the common ancestor, base
(ORIGINAL) and contributor versions (THEIRS/SOURCE and
YOURS/TARGET)

Integration records maintain an audit trail of versions that
have already merged, and integration credit is given for
versions already merged, so subsequent merges are
incremental based on previous one(s)

Common Ancestor + Integration Credits = Base Version(s)

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

23

Notes:

23

Inter-File Branching Algorithm [2 of 2]

Lines of code are delimited by \n (0x0a) for text files and
NULL (0x00) for binary files, and
changes to Chunks of lines are compared

Equality of Chunks is evaluated as BOTH, but
differences are not interpreted for Syntax or Semantic equality

A “pure merge” is one in which the merged version includes
only deltas/diffs from the source revision(s),
so does not need to be merged back into the source

Avoid edits to a merged version in the same Change because it
leads to an “impure merge” and
shows up as a conflict during mergeback

Actually, if a file was originally resolved to be a “pure merge”,
and then edited, Perforce optimizes data transfer by ignoring
contents of the Client file; data is not lost right away, but
submitted version differs from Client file (p4 diff –se)

When resolving conflicts, a good rule of thumb is to limit edits to sections of code within the conflict
markers. If such edits completely resolve a file, then it avoids the need to edit them in a separate
Changelist. If a purely merged file needs to be edited, then do so in a separate Changelist that is
checked in after the one that contains the merge.

With a pure-merged file, Perforce saves the resolved contents in a read-only file to discourage further
edits. “p4 edit” needs to be used to make the file writable before edits, and doing so makes the merge
impure by changing the resolve action to “accept edit”. The general rule of thumb is that if it’s read-only
in the workspace, edits made to the file after changing its attributes won’t be transferred to the server
during submit. “p4 resolved” displays the resolve action on files that haven’t yet been submitted into
Perforce.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

24

Notes:

24

Agenda [4 of 5]

QuickBooks Development Environment

Procedure for merging between branches

Inter-File Branching Algorithm
used by Perforce to set up files for merging

Conflict resolution, and
its effect on future merges

Best Practices and
New features in Perforce v2004.2
that aid merging

Q&A

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

25

Notes:

25

Conflict Resolution

Conflicts occur when comparison of the 2 contributor versions
to the base yields differences in matching chunks. Resolution is
the task of reviewing the differences and fixing them.

This is what the integrator (human) contributes to the Merge

Resolve decisions affect future merges and mergebacks.
A special advantage is gained by doing “pure merges” which
need not be merged back (helps avoid future work)

Irrespective of resolve decision, source revision(s) always get
integration credit for future merges, so subsequent merges are
incremental w.r.t all previous ones; hence, pay as-you-go

Each conflict is individually resolved, but there is no tracking of
how individual conflicts within a file were resolved

For “pure merges”, the resulting diff after merge should show
changes that came from the other branch

Isolating and Diagnosing merge errors is hard, especially when
conflicts were manually resolved

Conflict resolution is different from reviewing the effective differences that exist in a merged version.

There is no easy way of reviewing conflict resolution because conflicting sections of code cannot be
differentiated from the non-conflicting ones after the conflicts are resolved and conflict markers
removed.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

26

Notes:

26

Examples [1 of 15]

137 >>>> ORIGINAL Makefile#4

138 $(UTILITIES_LIB_FILES)\

139 ==== THEIRS Makefile#8

140 $(UTILITIES_LIB_FILES)\

141 $(CONTEXTMANAGEMENT_LIB_FILES) \

142 QBGDataSecurity.LIB \

143 ==== YOURS Makefile

144 $(UTILITIES_LIB_FILES) \

145 $(CONTEXTMANAGEMENT_LIB_FILES) \

146 <<<<

The ORIGINAL and THEIRS sections refer to contents in the base (Makefile#4) and contributor
(Makefile#8) versions on the source branch. They are always displayed above the YOURS section,
which refers to content in the contributor version, normally the head revision, on the target branch. “p4
integrate –o” and “p4 resolve –o” can be used to display the base file name and revision.

This conflict is resolved by selecting the THEIRS section because it subsumes the non-whitespace
changes made in the YOURS section, and inserting a space before the continuation character on the 1st

line.

Resolved Result:
137 $(UTILITIES_LIB_FILES) \
138 $(CONTEXTMANAGEMENT_LIB_FILES) \
139 QBGDataSecurity.LIB \

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

27

Notes:

27

Examples [2 of 15]

141 >>>> ORIGINAL Makefile#4

142

143

144 ==== THEIRS Makefile#8

145

146

147 !if DEFINED(DEBUG)

148 LINKFLAGS = $(LINKFLAGS) /nodefaultlib:LIBCMTD.lib

149 !else

150 LINKFLAGS = $(LINKFLAGS) /nodefaultlib:LIBCMT.lib

151 !endif

152 ==== YOURS Makefile

153 $(NULL)

154 <<<<

This example has the same base and contributor versions as in the previous one. The change in the
YOURS section is actually a continuation of the resolved contents of the previous example.

This conflict is resolved by accepting the contents of both the THEIRS and YOURS sections, but moving
the YOURS content higher in the file such that it is immediately after the resolved contents of the
previous example.

If an editor is used to display conflicts, then the THEIRS and YOURS sections can be selected by
deleting the conflict markers and further edited to resolve them. Some visual merge tools only allow
selection of either the THEIRS or YOURS section to resolve a conflict, and in such cases, the merged
code needs to be manually edited to add code from the section that wasn’t selected.

Resolved Result:
140 $(NULL)
141
142 !if DEFINED(DEBUG)
143 LINKFLAGS = $(LINKFLAGS) /nodefaultlib:LIBCMTD.lib
144 !else
145 LINKFLAGS = $(LINKFLAGS) /nodefaultlib:LIBCMT.lib
146 !endif

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

28

Notes:

28

Examples [3 of 15]

207 >>>> ORIGINAL Makefile#4

208 -ApplicationCDS.obj

209

210 ==== THEIRS Makefile#8

211 -ApplicationCDS.obj \

212 -PreferenceCDS.obj \

213 -ConstrictorManagerCDS.obj \

214 -ProfileManagerCDS.obj \

215 -GlobalValueCacheCDS.obj \

216 -CurrentUserAVMCDS.obj \

217 -DebugCDS.obj \

218 -CheckNetConfig.obj \

219 -SendErrorAPIs.obj\

220 -ACEAccessQbxHandler.obj \

221 ==== YOURS Makefile

222 -QbCmdDefs.obj \

223 -Patch.obj \

224 -ApplicationCDS.obj

225

226 <<<<

In this case, additional filenames have been added in both the THEIRS and YOURS sections with a
continuation character after ApplicationCDS.obj only in the THEIRS section.

This conflict is resolved by retaining the THEIRS section and appending part of the YOURS section. The
continuation character after Patch.obj in the YOURS section can be retained without affecting the
interpretation by $(MAKE).

Resolved Result:
207 -ApplicationCDS.obj \
208 -PreferenceCDS.obj \
209 -ConstrictorManagerCDS.obj \
210 -ProfileManagerCDS.obj \
211 -GlobalValueCacheCDS.obj \
212 -CurrentUserAVMCDS.obj \
213 -DebugCDS.obj \
214 -CheckNetConfig.obj \
215 -SendErrorAPIs.obj\
216 -ACEAccessQbxHandler.obj \
217 -QbCmdDefs.obj \
218 -Patch.obj \

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

29

Notes:

29

Examples [4 of 15]

540 >>>> ORIGINAL CWelcomeDialog.cpp#17

541 QBString encodedFilePath = filePath;

542 encodedFilePath.HexEncode();

543 ==== THEIRS CWelcomeDialog.cpp#20

544 Util::String encodedFilePath = filePath;

545 Util::EncodeURIComponent(encodedFilePath);

546 ==== YOURS CWelcomeDialog.cpp

547 QBString encodedFilePath = filePath;

548 if (GetFullPathName(encodedFilePath.c_str(), MAX_PATH, fullpath, &lpName))

549 {

550 encodedFilePath = fullpath;

551 }

552 encodedFilePath.HexEncode();

553 <<<<

This conflict is resolved by accepting the THEIRS section with the changes in the YOURS section
inserted between the 2 lines.

Resolved Result:
540 Util::String encodedFilePath = filePath;
541 if (GetFullPathName(encodedFilePath.c_str(), MAX_PATH, fullpath, &lpName))
542 {
543 encodedFilePath = fullpath;
544 }
545 Util::EncodeURIComponent(encodedFilePath);

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

30

Notes:

30

Examples [5 of 15]

80 >>>> ORIGINAL qblists.h#30

81 ==== THEIRS qblists.h#31

82 extern DataListInfo WorkersCompCodeDataListInfo;

83

84 ==== YOURS qblists.h

85 extern DataListInfo SalesTaxCodeDataListInfo;

86

87 extern DataListInfo PriceLevelDataListInfo;

88

89 extern DataListInfo AttributeDefDataListInfo;

90

91

92 <<<<

A null ORIGINAL section indicates that changes in the THEIRS and YOURS sections were added at the
same location.

In this case, variables corresponding to different features were added on the source and target
branches, and the conflict is resolved by accepting both sets of features.

Resolved Result:
80 extern DataListInfo WorkersCompCodeDataListInfo;
81
82 extern DataListInfo SalesTaxCodeDataListInfo;
83
84 extern DataListInfo PriceLevelDataListInfo;
85
86 extern DataListInfo AttributeDefDataListInfo;
87

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

31

Notes:

31

Examples [6 of 15]

12 >>>> ORIGINAL DeliverySystemServiceManagerForAddins.cpp#6

13 #include "..\qbw\qbwoa13_i.h"

14 ==== THEIRS DeliverySystemServiceManagerForAddins.cpp#7

15 //#include "..\qbw\qbwoa13_i.h"

16 //#import "qbwoa12.tlb" // no_namespace named_guids
exclude("QBRESULT")

17 ==== YOURS DeliverySystemServiceManagerForAddins.cpp

18 #include "..\qbw\qbwoa14_i.h"

19 <<<<

In this case, the commented lines in the THEIRS section will not affect the compilation of this source file.
The filename change from ..\qbw\qbwoa13_i.h to ..\qbw\qbwoa14_i.h is applied in the comment to
ensure this file will compile if the comment characters are removed in a later change.

Resolved Result:
12 //#include "..\qbw\qbwoa14_i.h“
13 //#import "qbwoa12.tlb" // no_namespace named_guids exclude("QBRESULT")

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

32

Notes:

32

Examples [7 of 15]

1232 >>>> ORIGINAL errids.h#254

1233 #if !defined(NO_NSCP)

1234 #define W_NSCP_DISABLE_REMINDER 671

1235 #define W_WEBWRAPNOTFOUND 672

1236 #define W_WEBWRAPNOMEM 673

1237 #define W_WEBWRAPERR 674

1238 #endif // !defined(NO_NSCP)

1239 ==== THEIRS errids.h#263

1240 #define W_NSCP_DISABLE_REMINDER 671

1241 #define W_WEBWRAPNOTFOUND 672

1242 #define W_WEBWRAPNOMEM 673

1243 #define W_WEBWRAPERR 674

1244 ==== YOURS errids.h

1245 #define W_NSCP_DISABLE_REMINDER 671

1246 #define W_WEBWRAPNOTFOUND 672

1247 #define W_WEBWRAPNOMEM 673

1248 #define W_WEBWRAPERR 674

1249 <<<<

In this case, only whitespace differences exist between the THEIRS and YOURS sections.

The [-db] and [-dw] options of “p4 resolve” can be used to ignore whitespace changes or all whitespace
when merging files, and use text from the client file (YOURS), but it may not always be possible to use
these options for all conflicts because valid whitespace changes may also exist.

This conflict is resolved y accepting the THEIRS section because it’s indentation matches those of the
lines surrounding this conflict.

Resolved Result:
1232 #define W_NSCP_DISABLE_REMINDER 671
1233 #define W_WEBWRAPNOTFOUND 672
1234 #define W_WEBWRAPNOMEM 673
1235 #define W_WEBWRAPERR 674

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

33

Notes:

33

Examples [8 of 15]

2752 >>>> ORIGINAL errids.h#254

2753 ==== THEIRS errids.h#263

2754 #define I_RESTARTQBTOINSTALLUPDATES 91

2755 ==== YOURS errids.h

2756 #define I_REVERSE_MIGRATED 91

2757 <<<<

This example is similar to Example #5 in having a null ORIGINAL block followed by changes in the
THEIRS and YOURS sections added at the same location, but resolving by only accepting both sets of
changes will cause a redefinition error from the compiler.

This conflict is resolved by first accepting both sets of changes, and then fixing the redefinition error in
an independent Changelist.

Resolved Result:
2752 #define I_RESTARTQBTOINSTALLUPDATES 91
2753 #define I_REVERSE_MIGRATED 91

Edited Result:
2752 #define I_RESTARTQBTOINSTALLUPDATES 91
2753 #define I_REVERSE_MIGRATED 92

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

34

Notes:

34

Examples [9 of 15]

14 >>>> ORIGINAL load.c#130

15 #ifdef _QBONLINE_

16 ==== THEIRS load.c#138

17 #include "Util/Platform.h"

18 #include "Util/StringEncoding.h"

19 #include "Util/Chars.h"

20

21 #ifdef _QBONLINE_

22 ==== YOURS load.c

23 <<<<

In this case 3 filenames and an empty line got added in the THEIRS section, and the contents of the
ORIGINAL section got deleted in the YOURS section.

This conflict is resolved by accepting the THEIRS section and applying the deletion from the YOURS
section.

Resolved Result:
14 #include "Util/Platform.h“
15 #include "Util/StringEncoding.h“
16 #include "Util/Chars.h“
17

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

35

Notes:

35

Examples [10 of 15]

23 >>>> ORIGINAL password.c#14

24 ==== THEIRS password.c#20

25 #include "SKUPublisher.h" // For SKU definition stuff - CActiveSKU, etc

26

27 #include "UM\UserManager.h"

28 #include "PM\PermissionManager.h"

29

30 ==== YOURS password.c

31 #include "SKUPublisher.h" // For SKU definition stuff - CActiveSKU, etc

32

33 #include "UM\UserManager.h"

34 #include "PM\PermissionManager.h"

35 <<<<

In this case, the empty line #29 is the only difference between the THEIRS and YOURS sections, and
such differences are usually caused by users editing changes into multiple branches (double checkins)
instead of editing into one branch and merging it into other branches.

This conflict can be resolved by choosing either the THEIRS or YOURS section depending on the text
surrounding this conflict.

Resolved Result:
23 #include "SKUPublisher.h" // For SKU definition stuff - CActiveSKU, etc
24
25 #include "UM\UserManager.h“
26 #include "PM\PermissionManager.h"

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

36

Notes:

36

Examples [11 of 15]

>>>> ORIGINAL EDLItemAdapter.cpp#1

pData->salesTaxCode.SetRecNum(static_cast<ELItemPtrType>(element.GetSalesTaxCodeId()));

pData->paymentMethod.SetRecNum(static_cast<ELItemPtrType>(element.GetPaymentMethodId()));

pData->prefVendor.SetRecNum(static_cast<ELItemPtrType>(element.GetPreferredVendorId()));

pData->taxAgency.SetRecNum(static_cast<ELItemPtrType>(element.GetTaxAgencyId()));

pData->wasImported = static_cast<Boolean>(element.GetWasImported());

==== THEIRS EDLItemAdapter.cpp#4

pData->salesTaxCode.SetRecNum(static_cast<ListElementIDType>(element.GetSalesTaxCodeId()));

pData->paymentMethod.SetRecNum(static_cast<ListElementIDType>(element.GetPaymentMethodId()));

pData->prefVendor.SetRecNum(static_cast<ListElementIDType>(element.GetPreferredVendorId()));

pData->taxAgency.SetRecNum(static_cast<ListElementIDType>(element.GetTaxAgencyId()));

pData->wasImported = static_cast<Boolean>(element.GetWasImported());

==== YOURS EDLItemAdapter.cpp

<<<<

In this case, the changes to the type of cast in the THEIRS section are to function calls that have been
deleted in the YOURS section, so they can be ignored.

This conflict is resolved by deleting the entire conflict block.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

37

Notes:

37

Examples [12 of 15]

>>>> ORIGINAL el_citem.c#1

this->ReadFromDisk();

m_pItem->m_item.delCount = delCount;

if (this->SyncMemory()) {

(ItemList.hList.item)[m_recNum].hdr.bits.delCount = delCount;

}

this->SetDirty (USER_DIRTY, HEADER_DIRTY);

return S_OK;

} /* CItem::SetDelCount */

==== THEIRS el_citem.c#14

==== YOURS el_citem.c

this->ReadFromDisk();

m_pItem->m_item.delCount = delCount;

if (this->SyncMemory()) {

(ItemList.hList.item)[m_recNum].hdr.bits.delCount = delCount;

}

this->SetDirty (USER_DIRTY, HEADER_DIRTY);

m_pItem->m_item.userFieldsUpdated = TRUE;

return S_OK;

} /* CItem::SetDelCount */

<<<<

In this case, the change in the YOURS section is to a section of code that has been deleted in the
THEIRS section, so it can be ignored.

This conflict is resolved by deleting the entire conflict block.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

38

Notes:

38

Examples [13 of 15]

>>>> ORIGINAL edlistui.c#1

short runTimeFieldId = pDict-
>GetRunTimeFieldId(component, fieldId, TRUE);

DictEntryPtr pDictEntry = pDict-
>GetDictEntry(runTimeFieldId);

==== THEIRS edlistui.c#21

ListElementCountType runTimeFieldId = pDict-
>GetRunTimeFieldId(component, fieldId, TRUE);

DictEntryPtr pDictEntry = pDict-
>GetDictEntry(runTimeFieldId);

==== YOURS edlistui.c

pSortBag->SetFreeSort(freeSort);

pDictEntry = pDict->GetDictEntry(component, fieldId);

<<<<

In this case, the change made in the THEIRS section is not applicable to the YOURS content because
the variable “runTimeFieldId” and it’s initialization are not needed any more. What really happened here
is the variable “runTimeFieldId” got renamed to “fieldId”, and the declaration/initialization of “fieldId” got
moved up in the file; p4 automatically accepted this earlier initialization as a non-conflicting change. It is
possible that the type of “fieldId” needs to be changed to reflect the change in the THEIRS section, but
such edits outside of a conflict block are done in a separate Changelist from the one which only resolves
conflicts to avoid an “accept edit” type of conflict resolution.

This conflict is resolved by accepting the YOURS section.

Resolved Result:
pSortBag->SetFreeSort(freeSort);
pDictEntry = pDict->GetDictEntry(component, fieldId);

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

39

Notes:

39

Examples [14 of 15]

>>>> ORIGINAL EDLMemorizedReportAdapter.cpp#1

pAbsElement->SetRecordNumber(static_cast<ELItemPtrType>(currRecId));

==== THEIRS EDLMemorizedReportAdapter.cpp#4

pAbsElement->SetRecordNumber(static_cast<ListElementIDType>(currRecId));

==== YOURS EDLMemorizedReportAdapter.cpp

<<<<

//we want to reuse this element w/o calling SetRecNum because SetRecNum will
delete the refdata,

//forcing us to recreate it... a costly sequence when loading a ton of elements.
So just clear it

//and set new recnum manually. jthomas 10/28/04

pAbsElement->ClearElementForReUse(static_cast<ELItemPtrType>(currRecId))

;

In this case, the type of cast changed in the THEIRS section, and the empty YOURS section seems to
indicate that the function call got deleted, so that change in THEIRS is not needed any more. But, the
comment below the conflict block indicates that use of SetRecordNumber() got replaced by
ClearElementForReUse(), and it now needs the type of cast change from the THEIRS section.

In such cases, it’s hard to decide if edits outside of a conflict should be made in the same Change as the
one that resolves conflicts so that related changes are kept together in the same Changelist, or done in
a separate Changelist to avoid an “accept edit” type of conflict resolution. Changelists are “units of work”
and are often used to selectively merge into other branches, so there is value in keeping related
changes together.

This conflict is resolved by deleting the entire conflict block, and applying the type of cast change from
the THEIRS block to the section of code below it

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

40

Notes:

40

Examples [15 of 15]

DateType curDate = m_pDQE->GetDateType(m_pResultRow, 2);

ELItemPtrType curAccnt = m_pDQE->GetELItemPtrType(m_pResultRow, 6);

>>>> ORIGINAL PrevNextAdapter.cpp#1

DateType curDate = m_dqe.GetDateType(m_pResultRow, 2);

ELItemPtrType curAccnt = m_dqe.GetELItemPtrType(m_pResultRow, 3);

// Should we add

if (m_results.size() == 0) {

toAddDate = curDate; toAddAccnt = curAccnt;

} else {

if (curDate != toAddDate || (!m_useDocNum && curAccnt != toAddAccnt)) { ioRet = IO_OK; break; }

==== THEIRS PrevNextAdapter.cpp#3

DateType curDate = m_dqe.GetDateType(m_pResultRow, 2);

ListElementIDType curAccnt = m_dqe.GetListIDType(m_pResultRow, 3); // ED_LIST_LIMITS : jmarinko : UPDATE issue...

// Should we add

if (m_results.size() == 0) {

toAddDate = curDate; toAddAccnt = curAccnt;

} else {

if (curDate != toAddDate || (!m_useDocNum && curAccnt != toAddAccnt)) { ioRet = IO_OK; break; }

==== YOURS PrevNextAdapter.cpp

// Check for date and view

if (m_results.size() != 0) {

if (curDate != toAddDate || (!m_useDocNum && curAccnt != toAddAccnt)) {

m_hasMultiple = TRUE; ioRet = IO_OK; break;

<<<<

}

} else {

toAddDate = curDate; toAddAccnt = curAccnt;

}

When there have been large changes on the source and/or target branches, the conflict blocks
presented by Perforce often appear out of context with the surrounding sections of code in the target file.
The ORIGINAL and THEIRS sections appear similar because they both come from the source branch,
and they widely differ from the YOURS section. In such cases, there are 3 possibilities – (i) retain the
YOURS section and ignore the changes in THEIRS because they are in code that has been deleted in
the target file, or (ii) the changes in THEIRS are in a section that has moved elsewhere in the target file,
so the YOURS section is retained in place and the changes in THEIRS are applied to the new location
of the code in the target file, or (iii) the changes in THEIRS are in a section that has been moved to
another file, so the YOURS section is retained in place and the changes in THEIRS are applied to the
new location of the code in the other file, which has to be opened for edit.

In this case, some lines belonging to the target version appear outside the conflict block, and the change
in the THEIRS section needs to be applied to a line appearing before the conflict block, which itself has
a change. When conflicts become this complex, it is less error prone to make the edits outside the
conflict block in the same Changelist as the one that resolves conflicts than making them in separate
Changelists to avoid an “accept edit” type of conflict resolution.

Resolved Result:
DateType curDate = m_pDQE->GetDateType(m_pResultRow, 2);
ListElementIDType curAccnt = m_pDQE->GetListIDType (m_pResultRow, 6); // ED_LIST_LIMITS :
jmarinko : UPDATE issue...

// Check for date and view
if (m_results.size() != 0) {

if (curDate != toAddDate || (!m_useDocNum && curAccnt != toAddAccnt)) {
m_hasMultiple = TRUE; ioRet = IO_OK; break;

}
} else {

toAddDate = curDate; toAddAccnt = curAccnt;

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

41

Notes:

41

Resolution (Merge) Tools

http://www.perforce.com/perforce/products/merge.html

http://www.perforce.com/perforce/technotes/note047.html

Text mode – p4 resolve,
provides more control

Visual mode – P4WinMerge and Araxis Merge,
provides extensive color coded information

Each mode works better in some cases, and end result is the
same assuming the same resolve decisions were made.

Perforce compares the merged file with contributor versions to
determine the integration credits for the target branch

Use what your eyes and fingers like

NOTE047 Using third-party merge tools with Perforce

Some applications may have a way of comparing and merging
their proprietary non-text file format, but
such files are normally resolved as either [-at] or [-ay]

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

42

Notes:

42

Effects of Resolution [1 of 5]

[-at] or [Accept Theirs] makes the source and target versions the same,
moves the base version forward on both branches,
so gives integration credit on both branches until the source and target versions.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

43

Notes:

43

Effects of Resolution [2 of 5]

[-ay] or [Accept Yours] ignores the source version(s),
moves the base version on the source branch,
so gives integration credit on the source branch until the source version
unless there are unintegrated (uncredited) revisions before the ignored version(s).

Since the target version has no diffs, it's integration credit doesn't affect mergeback;
contents of source versions continue to exist on the source branch even after a mergeback from the
target branch.

This often affects a release branch which has had changes that were ignored during mergeback and is
reused for the next milestone by getting integrated from it’s parent development branch. “p4 diff2 [-q]”
can be used to compare the contents of the 2 branches at the point where they are supposed to have
the same content.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

44

Notes:

44

Effects of Resolution [3 of 5]

[-as] or [Safe Automatic Resolve] behaves like
[-at] or [-ay] in cases where changes existed
only on source branch [-at], or
changes on one branch subsume those from
the other [-at | -ay]

The effect of [-as] resolution is same as that of
either [-at] or [-as]

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

45

Notes:

45

Effects of Resolution [4 of 5]

[-am] or [Accept Merged] merges changes from both branches in a "pure" way,
moves the base on the source branch unless there are unintegrated (uncredited) revisions before the
merge, and
gives integration credit to only the merged version on the target branch.

This integration credit is identical to that of [-ay],
but doesn’t cause one branch to be different from the other after mergeback.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

46

Notes:

46

Effects of Resolution [5 of 5]

[-ae] or [Accept Edited Merge] and “add into” [Edit Branched File] result in an “impure merge”,
moves the base on the source branch,
and gives no integration credit to the merged version on the target branch; such edits need to be re-
evaluated during mergeback.

This resolve action causes conflicts during mergeback from a branch this is already known to subsume
the other (be a superset of changes) because Perforce tries to be conservative about merging back
resolves that were edited. Such conflicts during mergeback can be resolved as [-at] after reviewing the
integration history.

There is a tradeoff between the benefits of maintaining a “pure merge”, which avoids conflicts in future
mergebacks, and the cost of resolving conflicts and editing changes in separate Changelists.

“p4 resolve –af”, which forces accept on a merged file with conflicts, also results in an “impure merge”.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

47

Notes:

47

Integration records

Integration records are displayed by p4 filelog
(Revision History …) and P4V’s Revision Graph at
source and target version
– branch into/from (initial branchpoint from a local depot)
– import into/from (initial branchpoint from a remote depot)
– copy into/from (resolve -at)
– ignored by/ ignored (resolve -ay)
– merge into/from (resolve -am)
– delete into/from (integrate deleted file)
– add into/from (open for branch/edit the file)
– edit into/from (open for integrate/edit the file)

These records (actions) are at a file level, and
not finer grain within a file

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

48

Notes:

48

Miscellaneous ideas

Resolve decisions are not based on when the contributor
versions were submitted, but on contents of contributor
versions

A source version may introduce a conflict with a target
version that was submitted before earlier merges into the
target branch

Conflict resolution in one direction doesn’t mean there
won’t be conflicts when merging in the other direction
because Perforce forces re-evaluation of “accept edit”
resolve action

Resolving smaller conflicts before larger ones, and
resolving some files before others can help work your way
through a merge because differences in resolved files can
be reviewed

Merging needs to be coordinated and tracked;
small teams work better, and knowledge is lost when people drop in and out.

Mergeback from release branches lose importance or cause re-work over time because of obsolete or
reimplemented code. Obsolete code can be ignored using “p4 resolve –ay”. Re-work needs to be edited
into the target branch.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

49

Notes:

49

Agenda [5 of 5]

QuickBooks Development Environment

Procedure for merging between branches

Inter-File Branching Algorithm
used by Perforce to set up files for merging

Conflict resolution, and
its effect on future merges

Best Practices and
New features in Perforce v2004.2
that aid merging

Q&A

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

50

Notes:

50

Developer Best Practices [1 of 2]

Like any other tool, Perforce can be only as good as we use it,
and we can make it work better by better planning and coding
discipline

Do not checkin unchanged versions when you edit more files
than you need to submit (p4 revert –a)

Set [Perforce Objects – Changelists – Automatically deselect
unchanged files before changelist submission]

To rollback (back out) a Change, use the NOTE014 procedure
instead of editing out changes

Use NOTE007 and NOTE024 procedures to move/rename/split
files/directories, and add mappings to BranchSpec when
obsolete files will need merges from other branches

Do not “add” files when they can be integrated

Use Changelists to isolate/group changes, and add good
Description to document and communicate

Avoid editing binary files on multiple branches

The P4Win setting [Perforce Objects – Changelists – Automatically deselect unchanged files before
changelist submission] prevents unchanged versions from getting submitted and impacting merges.
From the command line, use “p4 revert –a”. For filetype changes only, use “p4 submit”, or unset this
option.

When conflicting changes get made on different branches, it’s important to document and communicate
that information in the form of comments in the code or Change Description so that it can be referred to
at the time of merging between those branches.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

51

Notes:

51

Developer Best Practices [2 of 2]

Make original changes on the branch where they are needed and
has evolved the least since branching.

Follow process guidelines set for target branch, and do not
make exceptions without prior communication/approval

Don't share workspaces or usernames;
doing so confuses history and process

No “double/multiple checkins”;
merge existing Change, and then edit, if necessary

Do not copy files from one branch to another;
this might add more or overwrite other changes

Don't work outside of managed workspaces;
cost of Branching and Merging cannot justify a Bad Practice

When integrating Changes between branches, do not make
build/bug fixes and unrelated white space and cosmetic changes
(tabs, comments, indentation, etc) in the same Change because
they cause “impure merges” and conflicts during mergeback

Code Champions and Architects are now responsible for making sure these guidelines are being
followed.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

52

Notes:

52

What leads to a good Merge?

Planning – avoid pitfalls documented well in
http://www.cmcrossroads.com/bradapp/acme/branching/#BranchingTraps

– Merge-mania - Development Freeze - Merge-a-phobia
– Branch-a-holic - Continual Cascading - Mega Monster Merge
– Wrong-Way Merge

Merge from Labels that have been tested and
have good quality, and run regression tests after
the merge

Understand how the branches have diverged

Understand what Perforce’s integrate/resolve
can contribute

Understand software and build infrastructure

Longer you wait for a merge, harder it becomes to do it; complexity increases with duration of isolated
development on branches.

Evaluate cost of merging before creating each branch.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

53

Notes:

53

P4 v2004.2 [1 of 2]

Indirect integration – ‘p4 integrate’ can now find the
common ancestor version on an intermediate branch,
which may not be the source branch of merge;
in 2003.2, this feature was provided by ‘p4 integrate –I’

in 2004.2, [-i] and [-I] both mean ‘baseless integration’,
which is used to initiate an integration record between
files added separately on multiple branches

‘indirect integration’ between branches still needs to be
used judiciously, and does not replace planned/organized
merges between branches

Prior to the v2003.2 release, Perforce could only merge between branches that had a parent-child
relationship. The “p4 integrate –i” option enabled “baseless merges” between branches that didn’t have
a parent-child relationship, which could only get resolved by accepting one of two contributing versions.

In the v2003.2 release, the “p4 integrate –I” option was introduced, and it enabled merges between
branches that didn’t have a direct parent-child relationship. In the v2004.2 release, this is the default
behavior of “p4 integrate”, but this feature should be used sparingly in a branching model that should still
prefer merging between branches that have a direct parent-child relationship so that there is an
organized flow of changes from one branch to another.

These features are supported by the other client interfaces too.

See the reference to “driving through hedges” in “The Flow of Change” presentation at SD West 2005
Conference by Laura Wingerd, Vice President of Product Technology, Perforce Software.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

54

Notes:

54

P4 v2004.2 [2 of 2]

‘p4 integrate –o’ and ‘p4 resolve –o’ display the base
version of merge

‘p4 integrate –Di’ ignores that a source file had been
deleted and readded when looking for an integration base

Since the underlying support for branching is same as that
for splitting/moving/renaming files, indirect integration
makes it easier to merge bugfixes from older branches
into a branch having a reorganized source structure

To enable indirect integration to merge bugfixes from
older branches into a branch having a reorganized source
structure, it is critical that ‘p4 rename’ be used to
move/rename files, and ‘p4 integrate’ be used to split
files

Improved resolve logic reduces conflicting regions with
more complex detection of commonality of changes

Note that “p4 rename” is actually 3 commands – integrate, delete, and submit.

Along with ‘Revision Graph’, these features bring Perforce’s support for parallel development closer to
that of ClearCase.

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

55

Notes:

55

P4Win and P4V v2004.2

Revision Graph displays revision history visually, similar
to ClearCase’s “lsvtree –graphical” and merge hyperlinks

Time-lapse View displays evolution of file’s contents over
time

“Revision Graph…” and “Time-lapse View…” menu items
are enabled in P4Win if P4V is also installed

In P4Win, [Right click on filename – View (depot version)
using – Annotations using Rev#s…] to annotate contents of
a file version

P4V’s File revision history includes integration and label
history

P4V has Built-in differencing and 3-way merge tool

See: http://www.perforce.com/perforce/products/p4win.html
See: http://www.perforce.com/perforce/products/p4v.html
See: http://www.perforce.com/perforce/doc.042/manuals/p4win-gs/p4win-gs.pdf

Perforce User Conference 2005

5/10/2005

Merging Branches using Perforce

56

Notes:

56

Q&A

Thanks to the following people for reviewing this presentation and their feedback:

Bruce Wobbe, Intuit
Sam Stafford, Perforce Software
Steve Smith, Intuit
Vinay Shitikond, Microsoft

