
(c) 2003 Perforce Software, Inc.

Scripting with Perforce

Using the Perl and Ruby
interfaces

(c) 2003 Perforce Software, Inc.

Introduction

ØWhat are P4Perl and P4Ruby
• Perl & Ruby bindings for the Perforce C++

API
• Object-Oriented
• Interface designed to suit the language

(c) 2003 Perforce Software, Inc.

Why Bother?
ØReasons to be cheerful…

• Data returned as native objects: arrays and
hashes

• Support for both tagged mode and non-
tagged mode

• Smart form processing
• Run many commands over a single

connection.
• Exception based error handling (P4Ruby)

(c) 2003 Perforce Software, Inc.

Getting Started

ØBefore running commands
• Load the module
• Create an instance of the P4 class
• Set options
• Connect

(c) 2003 Perforce Software, Inc.

Getting Started (Examples)
ØPerl

use P4;
my $p4 = new P4;
$p4->Init() or die(“Can’t connect to Perforce”);

ØRuby
require “P4”
p4 = P4.new
p4.connect

(c) 2003 Perforce Software, Inc.

Simple Usage

ØSimple things are simple:
• Running “p4 sync”

p4->Run(“sync”); (Perl)
p4.run(“sync”) (Ruby)

(c) 2003 Perforce Software, Inc.

Command Shorthand
ØBoth P4Perl and P4Ruby have a

shorthand syntax for executing Perforce
commands
ØThey differ slightly due to the desire to

make the interfaces feel natural to each
language
ØMakes P4Perl and P4Ruby less

dependent on server version

(c) 2003 Perforce Software, Inc.

Command Shorthand (Perl)
ØAll unknown methods are assumed to be

Perforce commands
• $p4->NewCommand();
• Runs “p4 newcommand”
• Implemented using Perl’s AUTOLOADER

ØFetch* and Save* commands are special
• $p4->FetchXXX is equivalent to $p4->XXX(“-o”)
• $p4->SaveXXX is equivalent to “$p4->XXX(”-I”)

(c) 2003 Perforce Software, Inc.

Command Shorthand (Ruby)
ØAll unknown methods starting with “run_” are

assumed to be Perforce commands
• p4.run_newcommand
• Runs “p4 newcommand”
• Implemented by “P4#method_missing”

Ø fetch_* and save_* are special
• fetch_xxx is equivalent to p4.run_xxx(“-o”).shift
• save_xxx is equivalent to p4.run_xxx(“-i”).shift

(c) 2003 Perforce Software, Inc.

Error Handling Introduction
ØNot all errors are errors

• Some are warnings
• API users can test the severity of errors directly
• P4Perl and P4Ruby distinguish between errors

and warnings

ØCommands may partially succeed/fail
• May succeed with some files but not with others
• Requires careful handling

(c) 2003 Perforce Software, Inc.

Error Handling
ØPerl

• Requires explicit call to check for errors
• Use P4::ErrorCount() to see how many errors

occurred.
• Use P4::Errors() to get errors as an array

ØRuby
• Exceptions raised on errors and (optionally)

warnings
• Use P4#errors() to get errors as an array

(c) 2003 Perforce Software, Inc.

Error Handling (Perl)

ØExample

$p4->Sync();
if ($p4->ErrorCount()) {
foreach my $e ($p4->Errors()) {

print(STDERR, $e, “\n”);
}

}

(c) 2003 Perforce Software, Inc.

Error Handling (Ruby)
ØException Levels

• 0 = no exceptions raised at all
• 1 = no exceptions on warnings
• 2 = exceptions on both warnings and errors

(default)
ØExceptions raised at command

completion
• Meaning that at least one error occurred

(c) 2003 Perforce Software, Inc.

Error Handling (Ruby)
ØUsing Exception Level 1

p4.exception_level = 1
begin

p4.run_sync
p4.run_edit(“index.html”)
…

rescue P4Exception
p4.errors.each { |e| $stderr.puts(e) }
raise

end

(c) 2003 Perforce Software, Inc.

Overriding methods

ØShorthand methods can be easily
overridden with custom implementations
• Just define the method
• Call the [Rr]un() method to execute the

base command
• Process the results as normal

(c) 2003 Perforce Software, Inc.

Overriding Methods (Perl)
ØCustom implementation of “p4 filelog”

use P4;
package P4;
sub Filelog {

my $self = shift;
my @results = $self->Run(“filelog”, @_);
Post process @results
return @results;

}
package main;

(c) 2003 Perforce Software, Inc.

Overriding Methods (Ruby)
ØCustom implementation of “p4 filelog”

require “P4”
class P4

def filelog(*args)
results = self.run(“filelog”, args)
Post process results
return results

end
end

(c) 2003 Perforce Software, Inc.

Tagged Mode

ØTagged data from server is returned as
a hash
ØAllows direct access to the data you are

interested in without having to parse the
output

(c) 2003 Perforce Software, Inc.

Tagged Mode (Example1)

ØPerl
my $fs = $p4->Fstat(“file.c”);
my $head = $fs->{ “headRev” };

ØRuby
fs = p4.run_fstat(“file.c”)
head = fs[“headRev”]

(c) 2003 Perforce Software, Inc.

Tagged Mode (Example2)

ØPerl
my $fs = $p4->Fstat(“file.c”);
foreach my($key, $value) (@$fs) {

print($key, “ à “ $value);
}

(c) 2003 Perforce Software, Inc.

Tagged Mode (Example2)

ØRuby
p4.run_fstat(“file.c”).each do

|key,value|
puts(key + “ à “ + value)

end

(c) 2003 Perforce Software, Inc.

Form Handling

ØBoth P4Perl and P4Ruby can convert
Perforce forms into hashes
ØBoth can also convert hashes back into

Perforce forms
ØEditing a clientspec or a changelist is as

simple as updating a hash and saving
your changes

(c) 2003 Perforce Software, Inc.

Form Handing (Perl)

ØExample
my $c = $p4->FetchChange();
$c->{ “Description” } = “some text…”;
$p4->SaveChange($c);

(c) 2003 Perforce Software, Inc.

Form Handling (Ruby)
ØExample 1

c = p4.fetch_change
c[“Description”] = “some text…”
p4.save_change(c)

ØExample 2
c = p4.fetch_client
c[“Root”] = ‘d:\work’
c[“Options”].sub!(“normdir”, “rmdir”)
p4.save_client(c)

(c) 2003 Perforce Software, Inc.

Language Wars

(c) 2003 Perforce Software, Inc.

P4Perl vs. P4Ruby
ØFunctionally equivalent
ØBig difference is Exception base error

handling in P4Ruby
• Smaller, more reliable code
• Handles warnings

• (e.g. “File(s) up-to-date”)

ØSome extra support for handling “p4 filelog”
output in P4Ruby
ØRuby is much nicer than Perl. Try it!

(c) 2003 Perforce Software, Inc.

P4Perl/P4Ruby vs. p4 -G

ØMostly personal preference
• Multiple commands per connection
• Separation of output and error streams
• Not Python! ☺

(c) 2003 Perforce Software, Inc.

Questions?

ØNeither P4Perl nor P4Ruby is supported
by Perforce Software.
ØBoth are supported by me personally
ØQuestions, comments etc. to me directly

at either
• tony@perforce.com or
• tony@smee.org

