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Introduction

ØCurrent system includes
• Separate processes
• Adding new users and groups manually
• Modifying protections manually
• Documenting your changes?
• New licensing purchases



Introduction

ØFuture system provides
• Automated user management system
• Central location for information
• Traceability
• Friendly user interface for non Perforce 

users
• Security



What should I manage?
ØPerforce related data

• User data
• Group data
• Protections data

ØOther useful information
• Cost center
• Phone numbers
• Specific comments or notes



User data
ØSpecific Perforce user data

• Name
• Full Name
• E-mail

ØOther data
• Phone number
• Cost center



User data



Group data

ØSpecific Perforce group data
• Group
• MaxResults
• MaxScanRows
• Subgroups
• Users



Group data



Protections data



Data considerations
ØKeys

• Useful in a relational database
• Faster searching

ØSecurity
• Protections data should be secure
• Encrypted if necessary
• User level access to database

ØSupplemental information
• People other than Perforce Admin may use this
• Comments for users, groups, protect file



Where does the data live?
ØCentral server

• Database and interface to data
• Replicates data to Perforce servers
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Central server
ØUser Interface

• Entry of employee information
• Reports of employee information

ØInterface
• Used by program/script to update user 

information to Perforce servers
• Web page
• JDBC, Perl Modules, Other APIs



Migrating data to Perforce
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Migrating data to Perforce
ØOutput file

• Error checking to verify format
• Store in a secure location
• Frequency (how often)

ØOutput file to Perforce
• Program/Script to push data to Perforce

• Java, Perl, Python, Ruby, etc.
• Use checksum to save processing



Migrating data to Perforce
ØChecksum (Perl example)
my $sha = new SHA;
$sha->reset();

open CHECKSUMLOG, "<$pathtochecksumFile";
my $oldDigest = <CHECKSUMLOG>;
close CHECKSUMLOG;

# Next you will want to read in the data file and compare it’s checksum
# to the previous checksum:
open DATAFILE, "<$pathtodataFile" or dieOnErr "Can't open data file $!\n";
while (<DATAFILE>)
{
$sha->add($_);

}
close DATAFILE;
my $digest = $sha->hexdigest();
if ($digest eq $oldDigest)
{
exit;

}



Migrating data to Perforce
ØUser data

• Appropriate data structures
• Hash, array, user defined object
• Perl hash (this example)

• User hash should contain
• All user information from user management system
• List of the clients they own
• List of files that the users have opened
• Boolean to specify if those files are on a client owned by 

them or not 



Migrating data to Perforce
ØUser data (contd.)

• Rule 1
• Don’t delete userA who owns clientA 
• If userB has files opened using clientA 

• Rule 2
• Don’t delete userA who is using clientB which is not 

owned by userA 
• If any other user has files opened using clientB

• Send alert
• List the problem why you can’t delete the person



Migrating data to Perforce
ØUser data (contd.)

• Useful commands when deleting users
• p4 users
• p4 groups
• p4 clients
• p4 opened
• p4 user –fd <user>
• p4 client –fd <client>

• Backup clients
• Keep a copy of delete clients on your server in text format
• p4 client –o <client> > client.txt



Migrating data to Perforce

ØUser data (contd.)
• Updated user information

• Hash within a hash
• Regular expressions

• Alerts
• Any users on Perforce server not mentioned in 

the user management system output file



Migrating data to Perforce
ØGroup data

• Appropriate data structure
• Hash of groups

• Updating group data logic
• Add/remove existing members to existing groups
• Remove deleted users from groups
• Add new group and users of the group

• Alert
• Groups which are not specified in the output file from the 

user management system



Migrating data to Perforce
ØProtections data

• Gather all protections data into a hash
• Updating protections data logic

• Update based on server
• Remove inactive protections
• Add any new protections (utilize ‘below line’ 

rule)
• Remove/alert if lines which are not in output file 

are found in protect file 



Migrating data to Perforce

ØProtections data (contd.)
• Print protect to standard output

•p4 –o protect

• Read protect from standard input 
•p4 –i protect



Migrating data carefully
ØError checking

• Test numerous use cases
ØEfficiency

• Data structures
• Search routines / sort algorithms

ØAlerts
• Determine when/what to alert on
• Necessary action to take



What did I gain?
ØCentral location of data

• Updates for multiple servers occur a central 
location

• Queries of user/group/protections data occurs in 
one place

ØSecurity
• Super user commands can occur from a central IP 

address
• Encryption of data in database

ØMaintenance
• Updates/changes to user data can be delegated



What did I gain?

ØInformation
• Other departments can benefit from user 

management system information
• Allocate budget information



Demonstration


