
User Management with
Perforce

Tommy Fad
National Instruments

May 8, 2003

Introduction

ØCurrent system includes
• Separate processes
• Adding new users and groups manually
• Modifying protections manually
• Documenting your changes?
• New licensing purchases

Introduction

ØFuture system provides
• Automated user management system
• Central location for information
• Traceability
• Friendly user interface for non Perforce

users
• Security

What should I manage?
ØPerforce related data

• User data
• Group data
• Protections data

ØOther useful information
• Cost center
• Phone numbers
• Specific comments or notes

User data
ØSpecific Perforce user data

• Name
• Full Name
• E-mail

ØOther data
• Phone number
• Cost center

User data

Group data

ØSpecific Perforce group data
• Group
• MaxResults
• MaxScanRows
• Subgroups
• Users

Group data

Protections data

Data considerations
ØKeys

• Useful in a relational database
• Faster searching

ØSecurity
• Protections data should be secure
• Encrypted if necessary
• User level access to database

ØSupplemental information
• People other than Perforce Admin may use this
• Comments for users, groups, protect file

Where does the data live?
ØCentral server

• Database and interface to data
• Replicates data to Perforce servers

User Management
System

Perforce Server

Perforce Server

Perforce Server

Central server
ØUser Interface

• Entry of employee information
• Reports of employee information

ØInterface
• Used by program/script to update user

information to Perforce servers
• Web page
• JDBC, Perl Modules, Other APIs

Migrating data to Perforce

User
Management

Data

Data Extract
Parsed user
management

data

Perforce
updater
program

Perforce Server Perforce Server Perforce Server

Migrating data to Perforce
ØOutput file

• Error checking to verify format
• Store in a secure location
• Frequency (how often)

ØOutput file to Perforce
• Program/Script to push data to Perforce

• Java, Perl, Python, Ruby, etc.
• Use checksum to save processing

Migrating data to Perforce
ØChecksum (Perl example)
my $sha = new SHA;
$sha->reset();

open CHECKSUMLOG, "<$pathtochecksumFile";
my $oldDigest = <CHECKSUMLOG>;
close CHECKSUMLOG;

Next you will want to read in the data file and compare it’s checksum
to the previous checksum:
open DATAFILE, "<$pathtodataFile" or dieOnErr "Can't open data file $!\n";
while (<DATAFILE>)
{
$sha->add($_);

}
close DATAFILE;
my $digest = $sha->hexdigest();
if ($digest eq $oldDigest)
{
exit;

}

Migrating data to Perforce
ØUser data

• Appropriate data structures
• Hash, array, user defined object
• Perl hash (this example)

• User hash should contain
• All user information from user management system
• List of the clients they own
• List of files that the users have opened
• Boolean to specify if those files are on a client owned by

them or not

Migrating data to Perforce
ØUser data (contd.)

• Rule 1
• Don’t delete userA who owns clientA
• If userB has files opened using clientA

• Rule 2
• Don’t delete userA who is using clientB which is not

owned by userA
• If any other user has files opened using clientB

• Send alert
• List the problem why you can’t delete the person

Migrating data to Perforce
ØUser data (contd.)

• Useful commands when deleting users
• p4 users
• p4 groups
• p4 clients
• p4 opened
• p4 user –fd <user>
• p4 client –fd <client>

• Backup clients
• Keep a copy of delete clients on your server in text format
• p4 client –o <client> > client.txt

Migrating data to Perforce

ØUser data (contd.)
• Updated user information

• Hash within a hash
• Regular expressions

• Alerts
• Any users on Perforce server not mentioned in

the user management system output file

Migrating data to Perforce
ØGroup data

• Appropriate data structure
• Hash of groups

• Updating group data logic
• Add/remove existing members to existing groups
• Remove deleted users from groups
• Add new group and users of the group

• Alert
• Groups which are not specified in the output file from the

user management system

Migrating data to Perforce
ØProtections data

• Gather all protections data into a hash
• Updating protections data logic

• Update based on server
• Remove inactive protections
• Add any new protections (utilize ‘below line’

rule)
• Remove/alert if lines which are not in output file

are found in protect file

Migrating data to Perforce

ØProtections data (contd.)
• Print protect to standard output

•p4 –o protect

• Read protect from standard input
•p4 –i protect

Migrating data carefully
ØError checking

• Test numerous use cases
ØEfficiency

• Data structures
• Search routines / sort algorithms

ØAlerts
• Determine when/what to alert on
• Necessary action to take

What did I gain?
ØCentral location of data

• Updates for multiple servers occur a central
location

• Queries of user/group/protections data occurs in
one place

ØSecurity
• Super user commands can occur from a central IP

address
• Encryption of data in database

ØMaintenance
• Updates/changes to user data can be delegated

What did I gain?

ØInformation
• Other departments can benefit from user

management system information
• Allocate budget information

Demonstration

