
 1

Writing Triggers in Perforce 
 

S. Vance 
J. Bowles 

 
April 26, 2005 

 
Abstract 

 
Perforce has introduced new trigger types with the 2004.2 release.  The triggers allow a 
new range of capabilities to maintain the development environment, enforce development 
policies, and implement development support services.  This paper discusses several 
techniques for implementing trigger scripts and examines a several purposes for triggers 
ranging from form modification and validation to automatic integration and build scripts. 
This paper elaborates upon the Scripting with Perforce paper for the Perforce 2005 User 
Conference. 

 

1 Introduction 
Perforce introduced the first server-side trigger in release 99.1 with the pre-submit 
trigger. This trigger satisfied a long-standing desire in the user community, but demand 
continued for more hooks. In release 2004.2, Perforce squarely hit the need with the 
addition of five new trigger types.  Release 2005.1 adds yet one more trigger type to this 
list rounding out one of the categories of triggers to completeness. 

This paper discusses triggers, techniques for implementing them and purposes for using 
them. It presumes a general knowledge of scripting. The examples follow in several 
programming languages. They should be easy to follow with knowledge of general 
programming, and any more arcane constructs will be explained. 

The paper also presumes a reasonable knowledge of Perforce scripting alternatives, such 
as that presented in [Bowles2005].  Although this paper will address the scripting of 
triggers comprehensively, it will refer to other Perforce scripting contexts and to Perforce 
commands with an assumption of familiarity. 

1.1 What is a trigger? 
Triggers are programs that run on the server immediately in response to some well-
defined event in Perforce. Therefore, the context for a trigger is running on the server 
using the trigger mechanism to start. 

Triggers are typically written in a shell script such as Perl, Python or Ruby due to the 
flexibility and facilities they provide. However, triggers can be written in any 
programming language that can interface with Perforce, including UNIX shell (sh, ksh, 
csh and work-alikes) and compiled languages like C/C++. 



 2

1.2 Types of triggers 
Triggers fall into two categories. Pre-submit triggers enable actions in response to the 
submission of changelists. Form triggers allow actions in response to various stages of 
the life cycle of a form, regardless of the form type. This section provides a brief 
overview of the trigger types in preparation for the more detailed discussion. 

1.2.1 Pre-submit triggers 
There are three types of pre-submit triggers corresponding to different points in the life 
cycle of a submission. 

• “Submit” triggers execute after the changelist has been created but before the files 
have been transferred, allowing inspection of the changelist details but 
disallowing file inspection. 

• “Content” triggers execute after file transfer but before commit, allowing for 
inspection of the files. 

• “Commit” triggers execute after the commit, allowing inspection of the changelist 
and file contents, but disallowing canceling of the submission. 

1.2.2 Form triggers 
Form triggers come in four types depending on the point in the form’s life cycle in which 
they are invoked. 

• “Out” triggers execute when the form is generated and can modify the form 
before it is presented to the user. 

• “In” triggers execute when the form is sent back to Perforce but before it is 
parsed, also allowing modification of the form on its way in. 

•  “Save” triggers execute after the form has been parsed but before it is saved, 
allowing reaction to the form but not modification. 

• “Delete” triggers execute before a form is deleted, allowing failure of the deletion. 

1.3 Why use a trigger? 
Knowing why to use a trigger is partially a matter of knowing what are the competing 
alternatives. The alternatives naturally come from other contexts, since triggers define a 
context of their own. This section details the salient operational characteristics of triggers 
and contrasts them with Perforce alternatives. The three primary alternatives to triggers 
are wrapper scripts, such as p4wrapper, 1 review daemons, and journal tailers. A variation 
on the wrapper script would be a script available from the Tools menu in P4Win. 

                                                 
1 p4wrapper can be found in the Public Depot at //public/perforce/utils/p4wrapper. 



 3

1.3.1 Synchronous execution 
Triggers execute synchronously in response to their associated event. This provides an 
immediacy of response that is sometimes required or at least highly desirable. One option 
that provides synchronous execution could be an action invoked from a wrapper script 
such as p4wrapper. Another option would be to forego synchronous execution and rely 
on frequently running review daemons. Journal tailers would also perform 
asynchronously, although with very rapid and event-driven response. 

1.3.2 Immediate user feedback on error 
Triggers can provide messages back to the user, but only on error. Messages are not 
delivered on successful execution. A wrapper script can deliver messages to the user 
regardless of whether an error occurs or not. Review daemons and journal tailers can only 
provide feedback through indirect mechanisms. 

1.3.3 Enforceability 
Enforceability refers to the ability of an administrator to ensure that the script will run 
regardless of the client program used to initiate the operation. Because triggers are 
installed on and executed by the server in response to server events, they will execute 
regardless of the client program. Wrapper scripts will only be invoked when the wrapper 
is used, whereas direct use of p4 or use of a different client program will circumvent the 
desired action.  Review daemons and journal tailers are also enforceable due to their 
context on the server. 

1.3.4 Modify a form 
Form triggers can modify a form as it is delivered to the user or as it is sent back to 
Perforce. Wrapper scripts share this characteristic. Review daemons and journal tailers 
can not modify forms except to the extent that any user or administrator can after the 
operation has finished. 

1.3.5 Customize any action 
Form triggers have a limited ability to customize actions that involve forms, but they do 
not have the ability to react to any arbitrary command. Similarly, pre-submit triggers can 
only react to submits. Review daemons can only react to commands whose side effects 
can be reliably observed, something that is not readily available from the command line 
in many cases or from review mechanisms. Journal tailers have the ability to react to any 
action that affects database entries, which includes almost all. 

1.3.6 Optimization for bulk processing 
The review mechanism gives the ability to process a large number of actions in an 
orderly and efficient manner as long as those changes impact a counter. This optimization 
is not readily if at all available to triggers, wrappers or journal tailers due to their 
association with individual commands or journal entries. 



 4

1.3.7 Deterministic execution 
Triggers and wrappers provide an exact and deterministic understanding of when they 
will execute relative to the command that initiates them. Review daemons are generally 
driven in a time-based manner and therefore do not execute deterministically relative to 
the Perforce command. Journal tailers are closer to deterministic than review daemons, 
but can conceivably execute prior to completion of a command. 

1.3.8 Summary 
The following table summarizes the characteristics of the scripting contexts that compete 
with triggers for Perforce scripting. 

Characteristic Trigger Wrapper Review Daemon Journal Tailer 
Synchronous     
Success feedback     
Error feedback     
Enforceable     
Modify form     
Customize any action partial   most 
Bulk optimization     
Deterministic     
     
     
     
     
     
     

2 Trigger Techniques 
This section discusses techniques used to create triggers of the different types. Some 
techniques have applicability to contexts other than triggers, but all are relevant to 
triggers. The following techniques build upon the techniques presented in 
[Bowles2005], but are commonly or exclusively used in the trigger context. 

2.1 Exit codes 
This is an almost trivially simple technique that applies solely to triggers. The trigger 
communicates whether the associated action is successful or not through its exit status. 
An exit status of 0 indicates success. Any other exit status indicates failure. The exact 
value of a non-zero exit status can not be meaningfully used. Some languages provide 
implicit non-zero exit status with common error handling facilities, such as die() in 
Perl. 



 5

if( $success ) 
{ 
 exit 0; 
} 
else 
{ 
 die "Operation failed. Fix problem."; 
} 

Figure 1. Perl example of trigger exit status 

2.2 Error messages 
Ordinary scripting delivers all output messages to the caller. Triggers can only provide 
custom feedback to the user through messages that accompany error exit status. Messages 
output during script execution will be discarded when the trigger is successful. Figure 1 
shows a message that will be sent back to the user on failure. 

2.3 Multiple different actions on same files 
With triggers you have the ability to invoke multiple triggers on the same object until one 
of the triggers fails. An object is a particular file or file path for pre-submit triggers, or a 
particular form type for form triggers. This is accomplished by defining multiple triggers 
with different names on the same object definition. Triggers fire in the order presented in 
the triggers definition. 

success1 submit //... "ruby submit_trigger.rb" 
failure1 submit //... "ruby always_fails.rb" 
success2 submit //... "ruby another_trigger.rb" 

Figure 2. Example of multiple submit triggers on the same path. 

In the above example, the third trigger will never fire because the second trigger always 
fails. 

2.4 Same action on multiple file patterns 
A single trigger also has the ability to operate on multiple file patterns. Multiple lines 
with the same name as shown in Figure 3 are considered to be a single trigger. 

doit submit //....h "python trigger1.py" 
doit submit //....c "python trigger2.py" 

Figure 3. Example of a single multi-line trigger. 

Note that only the first command is significant. If a file matches the pattern for the 
second line, the command from the first line will be executed. 



 6

2.5 Tagged  output 
A technique that is applicable to all scripting is the use of tagged output in general or 
marshaled output from Python or, if comfortable with undocumented functionality, Ruby. 
With the appropriate global option flag, p4 will output the results of commands in 
marshaled object format for the chosen language. Figure 4 and  Figure 5 show 
examples using Python and Ruby, respectively. 

$ p4 –G label –o mylabel | processlabel.py 

Figure 4. Example of Python marshaled object output. 

$ p4 –R label –o mylabel | processlabel.rb 

 Figure 5. Example of the undocumented Ruby marshaled object output.  

An example of handling marshaled output in Python is given in [Goldstone2005]. More 
information on tagged output is presented in [Bowles2005]. 

Tagged output eliminates the need to write stateful parsers to process commands. 

2.6 Form modification 
Another generic technique that is commonly used in triggers is form parsing and 
modification. Tagged output, discussed in section 2.5, simplifies the task. The essence of 
the technique is to use the -o flag to output the form and the -i flag to input the form. A 
coarse example using Python is shown in . 

$ p4 –G client -o | transformit.py | \ 
p4 -G client -i 

Figure 6. High-level example of form modification. 

2.7 Initiating follow-on processing 
Although this technique is applicable to many contexts, it is particularly useful with 
“save” and “commit” triggers. Neither of these trigger types have the ability to modify 
forms or fail an operation. They faithfully execute after the completion of the operation, 
providing a perfect opportunity to initiate further processing. This processing must not be 
time-consuming, as they still prevent the operation from returning until they finish. 

This approach is also useful when the follow-on processing would lock Perforce 
databases that would already be locked as a natural consequence of the triggering 
operation. Dissociating the processing from the initial operation avoids deadlock 
conditions. 

There are two primary techniques to accomplish this with numerous implementations. 
The first technique starts the processing immediately but does not wait for completion as 
with launching a sub-process. The second technique requires a means of sending a signal 
or “opening the gate” by setting some state that another process will recognize as a cue to 



 7

process. Note that the latter technique includes review daemons, which involves another 
context and does not require cooperation from a trigger. 

Specific implementations are left to the experience and ingenuity of the reader. 

2.8 Coordinated trigger actions 
Triggers execute in the following order: out, in, save, submit, content, commit. Obviously 
not all trigger types execute in all situations. Pre-submit triggers only execute on 
submissions. Out triggers do not execute when submitting a numbered changelist because 
the form has already been generated. The order of execution allows triggers to coordinate 
actions in a manner appropriate to their individual strengths and weaknesses. 

As an optimization, a form trigger that was already processing a form could cache state 
information that would be used by a submit trigger. For example, certain reviewers may 
be required in certain areas of the repository or for certain users. The parsing of reviewer 
information could occur once during the in trigger and be used during the submit trigger 
instead of being re-parsed. 

As another example, whether a build should occur may depend on the nature of the 
change recognized by a content trigger, but the policy for the decision to build or not 
could be encapsulated and acted upon in a commit trigger from where the build should be 
launched. 

3 Trigger Purposes 
This section presents several representative purposes for writing triggers. Providing a 
complete survey of trigger purposes would be impossible. This paper attempts to 
stimulate thought on the range of possibilities by showing canonical or interesting 
applications of each trigger type. Code for several of the examples will be presented at 
the conference, but are not included in the paper for brevity. 

3.1 Ensure related files are submitted together 
Since submit triggers have been available longer than the other trigger types, their use has 
been explored more fully. One of the canonical uses is to ensure that related files are 
submitted together rather than being allowed to track at different rates. 

The key enabler is that the relationship between the files predictably or observably exists 
and that it can be easily discerned by patterns in the file naming or location. The naming 
requirement stems from the submit trigger’s inability to examine the content of files. 

Two common uses for this are 

• To ensure that the implementation file is updated whenever the header file is 
modified in a language like C++. Every time a .h, .hxx or .hpp file is modified, its 
corresponding .c, .cpp, .cxx, .CC, .c++ file is also in the changelist. 



 8

• To ensure that test harnesses are updated whenever their corresponding source 
code is modified. In Java with JUnit, a class named MyClass.java should have a 
test case named MyClassTestCase.java. The test case class will generally be in a 
different directory tree to keep it separate from the production code, but the 
location and naming should be predictable, and the presence of the file is most 
likely required. 

3.2 Verify all header files have company copyright banner 
Some purposes require inspection of the files being submitted, which is accomplished 
with a content trigger. A common use for content triggers checks header files to ensure 
that company copyright information has been included and preserved in the file. This is 
particularly important when the headers are being distributed as part of an API for a 
product. 

In a language like Java, headers usually take the form of interface classes, leading to a 
file pattern for the trigger of “//.../I*.java”. This may catch more than just interface 
classes, leading to an additional use for the content inspection to check whether the class 
is truly an interface or just a class whose name starts with “I.” 

In a language like C/C++, headers may have multiple extensions. This may be to 
distinguish between C and C++ files or to distinguish between header files for different 
platform compiler conventions. Directory locations may also be used to identify the 
relevant files. In any case, application of the technique from section 2.4 applies the same 
action to each of the different file patterns. 

3.3 Reject submissions with zero-content deltas 
Another application of content triggers would be to reject changelists with empty deltas. 
This functionality was requested on the perforce-user mailing list in February 20052. The 
ability of a content trigger to inspect the contents and reject the submission is ideal for 
this situation. 

3.4 Run continuous integration build after each submission 
A canonical example of a commit trigger initiates a build based on a submission. Since 
the build would be too time-consuming to complete during trigger execution, the 
techniques from section 2.7 would be used to initiate the build. 

Starting the processing immediately could easily run into race conditions, so signaling the 
processing would be a better option. A review daemon implementation should be 
considered at that point, since it provides the signaling mechanism and the 
implementation will also use scheduled polling. 

                                                 
2 http://maillist.perforce.com/pipermail/perforce-user/2005-February/032851.html 



 9

3.5 Integrate changes on a branch forward 
A common need in a shrink-wrap style release scheme is to propagate fixes to a release 
codeline forward to later releases or back to main. Ignoring issues of process approval, 
this kind of integration is generally highly automatable. Conflicts generally only occur 
when there have been significant overhauls to the affected section of code. Since 
integration is also typically a very fast operation, this purpose can be fulfilled during the 
submission. The brevity of the operation, along with the sanctity of release branches and 
the locality of the change, minimizes the possibility of a race condition. Failures due to 
conflicts would provide notification to a branch owner for manual resolution. Safer 
automatic resolve options could be used for greater confidence in the result. Naturally, a 
follow-on build and test cycle should be signaled, suggesting that this trigger should be 
declared prior to the build trigger. 

3.6 Configurable number of binary revisions 
This novel and daring example of a commit trigger helps to maintain disk space by 
extending the concept behind the +S type modifier to an arbitrary number of revisions. 
The details of this example are discussed extensively in [Baum2005]. 

3.7 Add company-specific content to change form 
In the absence of the hopefully upcoming fully customizable forms3 many installations 
have adopted the convention of putting well-known tags in the changelist Description 
field. Until out triggers became available in 2004.2, this had to be done manually when 
filling in the form, leaving it up to the attention to detail of the submittor. 

Out form triggers allow this policy to be proactively implemented by inserting the 
required information when the form is initially created. A typical example of this usage 
puts a ReviewedBy field in the description to be filled in by the developer to indicate who 
reviewed the code being submitted. 

3.8 Enforce jobs status life cycle 
An example of an “in” form trigger presented in [Bowles2005] enforces defect tracking 
state transition in jobs fixed by a changelist. 

3.9 Enforce finer grained authorization 
The prime example of a “save” form trigger is shown in [Perforce2004.2] on page 98. 
This trigger provides or denies authorization to modify client forms to particular groups. 
It compares the group of the person submitting the form to a list of groups authorized to 
modify client specs and rejects the modification when not allowed. This type of finer 
grained authorization can operate on any type of form and could also take into account 

• User name: similar to group 

                                                 
3 See ‘p4 help undoc’ and look at the ‘p4 spec’ command, but don’t use it yet. 



 10

• View contents: Disallow modification if views contain particular paths 

• Form name: Disallow modifications to branches or labels that contain certain 
naming components, such as “rel” 

• Option changes: Disallow use of particular options, such as “compress” or 
“normdir” 

• Combinations: For example, only administrators are allowed to turn on 
compression on clients that do not involve already compressed binary content. 

3.10 Protect template specs from deletion 
The new “delete” form trigger added in 2005.1 also allows finer grained access control. 
An immediately apparent use is to protect crucial specs from deletion, just as you would 
protect them from modification in section 3.9. Prime examples of the types of forms you 
would want to protect are 

• Release or test marker labels 

• Release branch specs 

• Special build client specs 

4 Conclusion 
Triggers provide a mechanism by which you can implement a wide range of policies for 
your development environment. Understanding the context and the available techniques 
allow you to choose the right implementation for your purpose. This paper attempts to 
give you a head start by cataloging several techniques and purposes in the trigger 
context as the basis for your own library. 



 11

References 
 

 [Baum2005] Baum, Richard, Commit Trigger Example: Configurable Number of 
Revisions, Proceedings of the 2005 Perforce User’s Conference, Las Vegas. 

[Bowles2005] Bowles, Jeff, Scripting with Perforce, Proceedings of the 2005 Perforce 
User’s Conference, Las Vegas. 

[Goldstone2005] Goldstone, John, Using P4G.py From The Command Line, Proceedings 
of the 2005 Perforce User’s Conference, Las Vegas. 

[Perforce2004.2] Perforce Software, Perforce System Administrator’s Guide 2004.2, 
Perforce Software. 


