PERFORCE

APIs for Scripting

2014.2
November 2014

APIs for Scripting
2014.2

November 2014

Copyright © 2008-2014 Perforce Software.

All rights reserved.

Perforce software and documentation is available from http://www.perforce.com/. You can download and use Perforce programs,
but you can not sell or redistribute them. You can download, print, copy, edit, and redistribute the documentation, but you can not
sell it, or sell any documentation derived from it. You can not modify or attempt to reverse engineer the programs.

This product is subject to U.S. export control laws and regulations including, but not limited to, the U.S. Export Administration
Regulations, the International Traffic in Arms Regulation requirements, and all applicable end-use, end-user and destination
restrictions. Licensee shall not permit, directly or indirectly, use of any Perforce technology in or by any U.S. embargoed country or
otherwise in violation of any U.S. export control laws and regulations.

Perforce programs and documents are available from our Web site as is. No warranty or support is provided. Warranties and
support, along with higher capacity servers, are sold by Perforce Software.

Perforce Software assumes no responsibility or liability for any errors or inaccuracies that might appear in this book. By
downloading and using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce Software.
All other brands or product names are trademarks or registered trademarks of their respective companies or organizations.

Any additional software included within Perforce software is listed in License Statements on page 165.

Table of Contents

Chapter1 ADOUE ThiS MANUAIeveeeeieeee et 1
Please give us feedbackoiiiiiiiiiiiiii 1
Chapter2 PARUDY .ottt 3
INErOAUCHON ..ivviiiiiiiiiiiiiiiii e 3
System Requirementsccccuuuiiiiiiiiiiiiiiiiiiiiiiiiii 3
Installing PARUDYcoooiiiiiiiiii 3
Programming with PARUDYccccccoiiiiiiiiiiii 4
Connecting to SSL-enabled serverscccccociiii 4
PARUDY ClaSS@Suuuuiiiiiiiiiiiiiiii e 4
PA oo 5
PAEXCEPHION ..ot 8
P4::DepotFile ... 8
P4:REVISION ovvviiiiiiiiiiiiiiiicc e 9
P4:Integrationcooooiiiiiiiiiiiii 9
PAMAD o 10
Pd:MergeDataooooiiiiiiiiiiii 10
P4:MESSAZE ..vvvviiiiiniiiiiii i 11
P4::OutputHandlerooooiii 11
PAiPTOZIOSS oo 11
PA:Spec ..o 12
Class P4 ..o 13
DeSCIIPHON Luuviiiiiiiiiiiic e 13
Class Methodsccciiiiiiiiiiiiii 13
P4.identify -> aStringcccooeiiiiiiiiiii 13

Pdnew > aP4 ... 13

Instance Methodsoooiiiiiiiiiiiiii 14
p4.api_level= anInteger -> anIntegerccccccceeiiiiiiiiii, 14
pd.api_level -> anIntegercccooeiiiiiiiiiii 14
p4.at_exception_level(lev) { ... } =>self .ccceeiiiniiiiiiiiii 14
p4.charset= aString > aStringccccuvveereeeeiimiiiiiieeee e 14
p4.charset -> aStringcccoooiiiiiiiiiiiiii 15

pé.client= aString -> aStringccccccoiiiiiiiiii 15

pé.client > aString ... 15
pd.connect ->aBool ... 15
pé.connected? > aBoolcccccciiii 15

pd.cwd= aString -> aString ... 16

pA.cwd > aString ... 16
p4.delete_<spectype>([options], name) -> anATrraycccccceeerrvuvvreeeeeen. 16
pA.disconnect -> true ..o 16
p4.each_<spectype<(arguments) -> anNATITAYocvvvvereeeeerrnnniiiiieereeeennnns 17

PA.env > SHHNEG ..ooooiiiiiiii 17

PA.EITOIS > QNATTAY ...oivvvvniiiiiiiniiiiii i 17
p4.exception_level= anInteger -> anIntegerccccccoeeiiiiiiiiiiiinn. 18
pd.exception_level -> aNumberooooo 18
p4.fetch_<spectype>([name]) -> aP4::Spec ...c.oovuevvivieiieeiinnniiiiiiicceenis 18
p4.format_spec("<spectype>", aHash)-> aStringccccvveeeiieeiinnnnnnne. 18

APIs for Scripting iii

APIs for Scripting

p4.format_<spectype> aHash -> aHashcc.cc.cccoiiiiiinii. 19
p4.handler= aHandler -> aHandlercocccoeeeiiiiiiiiniiiiiiiicccn 19
p4-handler -> aHandlercccoiiiiiiiiiiiiiee 19
p4.host= aString -> aStringcccooviiiiiiiiiiiic e 19
PA-h0St -> aSEING ..oooiiiiiiiiiii e 19
p4.input= (aString | aHash | anArray) -> aString | aHash | anArray 19
p4.maxlocktime= anlnteger -> anlnteger 20
p4d.maxlocktime -> anlntegercccccoc 20
p4.maxresults= anInteger -> anIntegerccccccvvvmiiiiiiiiiiiiiiiienee 20
p4d.maxresults -> anIntegeruuuieiiiiiiiiiiiiiiiiii e 21
p4.maxscanrows= anlnteger -> anlntegerc.coooiiin . 21
p4.maxscanrows -> anlntegercoooooiiiiiiiiiniii 21
p4.messages -> aP4:MeSSageccooviiiiiiiiiiiiiii 21
p4d.pdconfig_file -> aString ... 22
p4.parse_<spectype>(aString) -> aP4::Specocccuvviiiiiiiiiiiiiiieeees 22
p4.parse_spec("<spectype>", aString) -> aP4::5pecccvvviviiiiiiiiiiiiiieee. 22
p4.password= aString -> aStringcccccccuuermimiiiimiiiiiiiiiiieees 22
pd.password -> aString ... 23
p4.port= aString -> aStringccccoooeiiiiiiiii 23
PAPOTt > ASEIINEG ..eevviiiiiiiiii 23
p4.prog= aString -> aStringcccccccviiiiiiiiiiiiiiii 23
PA.Prog -> aStringooovviiiiiiiiiii 23
p4.progress= aProgress -> aPTOZIeSsSccovviiiiiiiiiiiiiiiiiiie, 23
PA.Progress -> aPTOZIESScooviiiiiiiiiiiiiiiiiiii 24
p4.run_<cmd>(arguments) => ANATTAYocovvvereeereeernriiiirieeeeeeee e 24
p4.run(aCommand, arguments...) -> aNAITAY ...oeevreeeerrniiiiieeeeeeennnninnene. 24
p4.run_filelog(fileSpec) -> anATIIaycccvveeeeeeeriniiiiiiieceeeeeeeeeeeenn 25
p4.run_login(arg...) > QNATTAY ..ccoovvimrriiiieeeeeiiiiieeee e e 26
p4.run_password(oldpass, newpass) > anAITAYccceerrrevrrreeeieeennnnnnns 26
p4.run_resolve(args) [block] -> anArrayccccceeeeiiniiiiiiiieeieiinee, 26
p4.run_submit([aHash], [arg...]) -> anArrayccccoeviiiiiniiiiinni, 27
pA.run_tickets() > ANATTAY ..eooeeririiiiiiiiieieeeiiee e 27
p4.save_<spectype>(hashOrString, [options]) -> anArrayc.ccceeeuneeeen. 27
pé.server_case_sensitive? -> aBoolcco 28
pé.server_level -> anIntegerccccuuuiiiiiiiiiiiiiiiii e 28
pé.server_unicode? ->aBool 28
p4.set_env= (aString, aString) -> aBoOlccccceevmiiiiiriiiieeiiie, 28
pé.streams= -> aBOOLooiiiiiiiiiiiiiiiii s 28
pé.streams? -> aBOOLoooiiiii 29
pa.tagged(aBool) { BIOCK } ..oooeiiiiiiiiiiiiiiii e 29
pé.tagged= aBool -> aBool ... 29
pd.tagged? -> aB0Ol ..., 29
pé.ticketfile= aString -> aStringcccccccviiiiiiiiiiiiis 29
pé.ticketfile -> aString 29
pa.track= -> aBOOLoiiiiiiiiiiiiiii 30
pa.track? -> aBoolooooiiii, 30
pé.track_output -> anATITay ... 30
pd.user= aString -> aStringccccciiiiiiiiii 30
pAuser -> aStringocviiiiiiiiii 30
p4.version= aString -> aStringccccciiiiiiiii 31
pA.version -> aStringccceeeiiiiiiiiiiii 31
PAWArnINgs > aNATITAYoouvviiiiiiiiiiiiii e 31
Class PAEXCEPHIONuuuiiiiiiiiiiiiiiiiiiiiie e 32
Class Methodsccciiiiiiiiiiiiiii i 32

APIs for Scripting

APIs for Scripting

Instance Methodscoooiiiiiiiiiiiiiii 32
Class P4:DepotFileooooiiiiiiiiiiiii 33
DeSCIIPLION .evvvviiiiiiiiiiiiiii 33
Class Methodsccciiiiiiiiiiiiiii i 33
Instance Methodscoooiiiiiiiiiiiiii 33
df.depot_file -> aStringccccocuiiiimiiiiiiiiii 33
df.each_revision { Irev| block } -> reVATIraycccceevviiiiieniiiiiciniieeeens 33
df.TeVISIONS = AATITAY ...evvvveiiiiiiiiiiiiiiiiiiiiieie e 33
Class P4:ReVISIONoooiiiiiiiiiiiiiiiiii i 34
DeSCIIPLION .ovvveiiiiiiiiiiiiiii e 34
Class Methodsccouiiiiiiiiiiiiiii i 34
Instance Methodscocoiiiiiiiiiiiiiii 34
rev.action -> aStringcccoovoiiiiiiiiiiiiii s 34
rev.change -> aNUMDETccccoiiiiiiiiiiiiiii e 34
rev.client -> aStringuuuuiiiiiiiiiiiiiii 34
rev.depot_file -> aStringccccccoiiiiiiiiiiiiii 34
rev.desc -> aStringooooviiiiiiiiiiiiiiii 34
rev.digest -> aString ... 34
rev.each_integration { linteg| block } -> integArraycccccoevuvveerninneenns 34
rev.filesize -> aNUmMDbeTcccccoiiiiiiiiiii 34
rev.integrations -> INtEGATITAYcoooiiiiiiiiiiiiiiiiiii 34
rev.rev -> aNUMDEToooiiiiiiiiiiiiiiiiiiic e 35
rev.time -> aTime ..., 35
rev.type -> aStringcccoeiiiii 35
TeV.USET -> aStIING ..oovvviiiiiiiiiiiiiii 35
Class P4:INte@rationuuueuuuumummmeiiiiiiiiiiiiiiiiee e 36
DeSCIIPLION .vvvvviiiiiiiiiiiiiii e 36
Class Methodsccoiiiiiiiiiiiiiiii i 36
Instance Methodscoooiiiiiiiiiiiiii 36
integ.how > aStringcoocoiiiiiiiiiiiiii e 36
integ.file -> aPathcccooiiiiiiii 36
integ.srev -> aNUMDET ...t 36
integ.erev -> aNUMDbeT ... 36
Class PA:MAP .oooooiiiiiiiiiiiii 37
DeSCIIPLION .ovvvviiiiiiiiiiiiiii e 37
Class Methodscccoiiiiiiiiiiiiiii i 37
Map.new ([anArray]) -> aMap ...oeeeeeeeeeiiiiiiiiiiiiee e 37
Map.join (mapl, map2) -> aMapP «.coeeeeeririiiiiiiiieeeeieee e 37
Instance Methodscoooiiiiiiiiiiiiii 37
MAP.ClEAT > tIUE ..oeiviiiiiiiiiiiiiiiiiiiiiiii e 37
map.count -> anlntegeroooiiiii 37
map.empty? -> aB0oOl ... 37
map.insert(aString, [aString]) -=> aMapccoovvviiiiiiiiieiiiieees 37
map.translate (aString, [aBool])-> aStringcccccvevveeeeiiniiiiiiiiiieeennns 38
map.includes? (aString) -> aB0Olcccoovmiiiiiiiiiiiiiie 38
map.reverse -> aMapcooooiiiiii 38
Map.Jhs -> ANATTAY ..oooviiiiiiiiiiiici e 38
MAP.ThS => ANATTAY ..eeoiiiiiiiiiiiiee it 38
Map.to_a -> ANATTAYoooiiiiiiiiiiiiiiiiiii 38
Class P4:MergeDataooooiiiiiiiiiiiiiii 39
DeSCIIPLION .ovvvviiiiiiiiiiiiiii 39
Class Methodscccuiiiiiiiiiiiiiii i 39
Instance Methodscccoiiiiiiiiiiiii 39
md.your_name() -> aStringcccvvveeeeeriiiiiiiiiiie e 39

APIs for Scripting v

APIs for Scripting

md.their_name() > aStringcccovviiiiiiiiiiieiii e 39
md.base_name() -> aStrINGcceerrrriiimiiiiiieiiiiiieee e 39
md.your_path() -> aStringccoovviiiiiiiiiiei e 39
md.their_path() > aStringccoocoeiiiiiiiiiiii e 40
md.base_path() -> aStringccoccvvieiiiiiiiiiiiice e 40
md.result_path() -> aStringcccoeoiiiiiiiiiii e 40
md.merge_hint() -> aStringcccoceeiiiiiiiiiiii 40
md.run_merge() -> aBOOccooiiiiiiiiiiiiiii e 41

Class PA::IMIESSAZEvvvvuueruinneniiiiiiiieieieieieses et eeaeee 42
DeSCIIPLION .ovvveiiiiiiiiiiiiiii 42
Class MEthOAS ...c.uvviiiiiiiiiii e 42
Instance MEthOdscoocuiiiiiiiiiiiiiii e 42
message.severity() -> anIntegercccuvvveiiieiiiiiiiiiieeicee e 42
message.generic() > anlntegerc.oovvcuririiiieeeiiiiiiiiiieeeee e 42
message.msgid() -> anlntegereveeiieiiiiiiiiiiiiieceeei e 42
message.to_s() => aStIINGcooovviiiiiiiiieiiiie e 42
message.inspect() -> aStringoooeeurieiiieeeiiiiiiiiiie e 42

Class P4::0OutputHandler ..o 43
DeSCIIPLION .ovvveiiiiiiiiiiiiiii 43
Class MethOdscoouiiiiiiiiiiii e 43

new P4:MyHandler.new -> aP4::OutputHandleroooooiiiiiiinin. 43

Instance Methodseiiiiiiiiiiiiiii e 43
outputBinary -> intccoooiiiii 43
outputInfo -> ANt oo 43
outputMessage -> intcccoooiiiiii 43
outputStat -> INtoooiiiii 43
outputText -> Int ..o 43

Class PA:PIOGIESSuuuuuiiiiiiiiiii e 44
DeSCIIPLION .ovvveiiiiiiiiiiiii 44
Class MEethOdScoouiiiiiiiiiiiiiii e 44

new P4:MyProgress.new -> aP4::Progresscoovvviiiiiiiiiiiiiiinn, 44

Instance Methodseiiiiiiiiiiiiiiiic e 44

INIE -> ANt 44
desCription > TNtuuiiiiiiiiiiiiiiiii 44

update -> INt ... 44

total -> DNt ... 44

done -> INt ... 44

Class PA:SPECooooiiiiiiiiiiiii 45
DeSCIIPLION .ovvvviiiiiiiiiiiiiii 45
Class MethOdScoouiiiiiiiiiiii e 45

new P4:Spec.new(anArray) -> aP4:uSPec .ooeevveeeeiiieiiiiiiieee 45

Instance Methodsoiiiiiiiiiiiiiiic e 45
spec._<fieldname> -> aValuecccocooiiii 45
spec._<fieldname>= aValue -> aValuec.ccccceeviiiiiiiiiiiiiiiiiiiiiiiiiieees 45
spec.permitted_fields -> anArrayccccccciiii 45

Chapter3 PAPEI] oottt nan 47
INErOAUCHION ..ttt 47
System Requirementsccoeiiiiiiiiiiiiii 47
Installing PAPET]uuiiiiiiiiiiiiiiiii e 47
Programming with PAPer]cooiiiiiiiiiiiiiii e 47

vl

APIs for Scripting

APIs for Scripting

Connecting to Perforce over SSL ... 48
PAPETIT CLASSES ...t 48
P4 48
P4:DepotFile ... 52
P4:REVISION .vvvviiiiiiiiiiiiiiii 52
P4:Integrationoooooiiiiiiiiiiiiii 53
PA:MAD o 53
P4:MergeDataooooviiiiiiiiiiii 54
P4:MESSAZEooovvviiiiiiiiii i 54
P4::OutputHandler ..., 55
PA:PIOZIeSS .ovvvviiiiiiiiiiiii 55
P4:ReSOIVET ..ooooiiiiiiiiiiii 55
PAiSPOC i 56
CLaSS P4 ..o 57
DeSCIIPLION .evvvviiiiiiiiiiiiiii 57
Class MEthOAS ...c.uvviiiiiiiiiii e 57
PANEW() > P4 oo 57
P4:Tdentify() -> SEENEG «oooveeiiiiiiiieeeei e 57
P4::ClearHandler() == undefcoooiieiiniiiiiiiee e 58
P4::Connect() == DOO0L ..ouiiniieiiii e 58
P4::Disconnect() -> Undefooooiieiiniiiiiie e 58
P4:ErrorCount() > INteETcceeeeeriiiiiiiiiiiieeeeiiiiieeeeeee e et e e 58
PA:EITOrS() == LISt ivvniiiiiei et 58
P4::Fetch<Spectype>([name]) -> hashrefccccccooiiiiiiniii, 58
P4::Format<Spectype>(hash) -> Stringcccocccieiiiiiiiiiniiies 58
P4::FormatSpec($spectype, $string) -> Stringccccvvveeeieeennnniineeeeeeenn. 59
P4::GetApiLevel() -> INtEZET «.cooveviiiieiiieieiiiiiee e 59
P4::GetCharset() => StIINGvveeeiiiiiieeiiiiieeeeice e 59
P4:GetClient() -> SEEINE «.oovvveiiiieiiiieee e 59
P4:GetCwd() => SEHNEG «oovoiiiiieiiiee e 59
P4:GetEnv($var) -> StrNG ..evvevieeeriiiiiiiiieee e 59
P4::GetHandler() -> Handlercoouiieiiiiiiieee e, 59
P4:GetHOst() => SEHNG ...vvvveeiieeeiiiiiiiiiieee e 59
P4::GetMaxLockTime($value) -> INteZErcceevrvimmiieriiieeniniiiiieeeeeennn, 60
P4::GetMaxResults($value) -> INteZErvvvvriieeriniiiiiiiiieeeeiiieeeeeeeenn 60
P4::GetMaxScanRows($value) -> INteZerccoovvvirrrieiiieeeninniiiieeeeeenn, 60
P4::GetPassword() -> Stringoccuvveeieiieiiiiiiiiieeceeeee e 60
P4::GetPort() -> SING «oeeeeeviiiiiiiiiiiee e 60
P4::GetProg() == StIING ...vveeiieieiiiiiiiiiiiee e 60
P4::GetProgress() -> PrOZIeSS «..cccoeviiiiiiieiiieeeeiiiiiieieeeee e e 60
P4::GetTicketFile([$string]) -> Stringc.cooecvviiiiieeeiiiiiiiiieeeee e, 60
P4:GetUser() -> SEING «.oeeevviiiiiiiiiiieee e 60
P4::GetVersion($string) -> Stringcooeeevreeiiiieeiiiiiiiiiieeeeeeeeeeeeeeenn 60
P4::IsConnected() = DOOL ..ounivniiniiiii e 60
P4::18Streams() == DOOL ..covniiniiiiiiiee e 60
P4:IsTagged() == DOOL ...cooviiiiiiiiiiiiiee e 60
PA:ISTTack() == DOOL «.ovniieiiie e 61
P4::Iterate<Spectype>(arguments) -> ObJECtuvvveeieeeeriniiiiiiiieeeeninenne 61
P4::Messages() => LISt cooueiiiiiiiiiiiiiiiiiiie e 61
P4:P4ConfigFile() -> StrING ...eevveeeriiiiiiiiiiiiee e 61
P4::Parse<Spectype>($string) -> hashrefccooiiiiii, 61
P4::ParseSpec($spectype, $string) -> hashrefccoooiiiiiiiniiiiniinnnn. 62
P4:Run<Cmd>([$arg...]) ->list | arrayrefcccoooeiiiiiiiiiiiiinieeeen, 62
P4:Run("<cmd>", [$arg...]) ->list | arrayrefccccceeevimiiiiiiiiiennnnnns 62
APIs for Scripting vii

APIs for Scripting

P4::RunFilelog([$args ...], $fileSpec ...) -> list | arrayrefcc.cceevrnnnnn. 63
P4:RunLogin(...) -=> list | arrayrefcccoooveiiiiiiiieeiiniiiceeee e, 63
P4:RunPassword($oldpass, $newpass) -> list | arrayrefcccoeeueeee. 63
P4::RunResolve([$resolver], [args ...]) -> Stringccccceeevrviiiniiiiieennnnns 63
P4:RunSubmit($arg | $hashref, ...) -> list | arrayrefccccceeeerniiienns 64
P4:RUNTICKES() = LISt ovvniieiiiiiie et 64
P4::Save<Spectype>() -> list | arrayrefcccccevmmiiiiiiiiiieeniiieeeeeen, 65
P4::ServerCaseSensitive() -> INtEZETccovvruiiiiiiiieeeiiiiiiiieeeeee e 65
P4::ServerLevel() -> INtEGET ..ccoovuviiiiiiiiiieeiiiieeceee e 65
P4::ServerUnicode() -> INtEZETevvevieeeiiiiiiiiiiiiieee e 65
P4::SetApiLevel($integer) -> undefcccceeeeviiiiiiiiiiiiicen 65
P4::SetCharset($charset) -> undefoviveiiiiniiiiiiiiieeee e 65
P4::SetClient($client) -> undefooovviiniiiniiiiiie e 66
P4:SetCwd($path) ->undefooooiiiiiiiii 66
P4::SetEnv($var, $value) > undefcoovviivniiiiiiii e 66
P4::SetHandler(Handler) -> Handlercoooviiiiiiiiiiiiiie e 66
P4::SetHost($hostname) -> undefcoouviieniiiniiieiee e, 66
P4::SetInput($string | $hashref | $arrayref) ->undefoccceeeeniien. 66
P4::SetMaxLockTime($integer) -> undefcccceeeeiinmiiiiiiiieieiinne, 66
P4::SetMaxResults($integer) ->undef ..ot 67
P4::SetMaxScanRows($integer) -> undefccccevvviiiiiiiieeeniniiiieeeeeen. 67
P4::SetPassword($password) -> undefcccceeevvvviiiiiiiiiiiinneeen, 67
P4::SetPort($port) > undefcooooviiiiiiiiiiiiiiiiieen 67
P4::SetProg($program_name) -> undefoccciiiiiiiiiiiiiniiiiieees 67
P4::SetProgress(Progress) -> Progresscccceeeviviiiirieiieeennniiieeeeeeenn. 67
P4::SetStreams(0 | 1) -> undefooovniieiiiiii e 67
P4::SetTicketFile([$string]) -> Stringccccvvveeieieiiiiiiieeeeeeeeen 67
P4::SetTrack(0 | 1) -> undef ..oooevieniieiiieiee e 67
P4::SetUser($username) -> undefoooviivviiniiiniiiiiiiieiieeeeeeeeees 67
P4::SetVersion($version) > Undefcooevivniiiiiiiiiiiiiiiie e 68
P4:Tagged(0 | 1 | $coderef) ->undefcoovveiiiiiiiiiiiiiiieeeis 68
P4:TrackOutput() => LISt ..evvvviiiiieeiiiiiiiiiiiiee e 68
P4:WarningCount() => INtEZETceeeeeiriiiimiiiiiieeeiiiiieeeeeeee e 68
P4:Warnings() => LISt ..eevvvveiiieeiiiiiiiiieee e 68
Class P4:DepotFileooooiiiiiiiiiiiii 69
DeSCIIPLION .ovvviiiiiiiiiiiiiiii 69
C1ass MethOdSouuuiiiiiiieee e 69
INStance MeEthOdSooovvuniiiiii e 69
$df->DepotFile() == SEANG ...vvvvvieeeiiiiiiiiiiiieeeee e 69
$AE->REVISIONS() => AITAY ..vvvvvvrieeeeiiiiiiiiiiiieeee et e e e e e e e e e e 69
Class PA:REVISION ...vvuiieiiiiiieiie e et e e e e e e e e ae et e e e e e e eenns 70
DeSCIIPLION .ovvvviiiiiiiiiiiiiii 70
C1ass MethOdSovuuiiiiii it 70
$rev->Integrations() -> AITAY .ocvvvvvreieeeeriiiiiiiieee e e e 70
INStance MeEthOdSoovvvueiiiii e 70
$rev->Action() -> SEENEG «.ooveviiiieiieee e 70
$rev->Change() -> INEGETeviiieiiiiiiieiiiiiieeeie e 70
$rev->Client() -> StING ...coovrrieiiiiiiiiee e 70
$rev->DepotFile() > StrINGccoovveiiiriiiieeiiiie e 70
$rev->Desc() => SEING ...vvvvreiiieeiiiiiiiiee e 70
$rev->Digest() -> SEINEG «.oovvvveeiiieeeeiiie e 70
$rev->FileSize() > StIING ...coceeeriiiiiiiiiiieieeiie e 70
$rev->Rev() -> INEEZET ..eovveiiiiiiiiieeeiiieeee e 70
$rev->Time() -> StING ..ooeeeriiiiiiiiiiiie e 71

viii APIs for Scripting

APIs for Scripting

$rev->Type() -> SEENE «ooovvviiiiiiiiieeee e 71
$rev->User() -> StIING ..oeviieiiiiiiiiiiiiee e 71
Class P4:INte@rationueuuuuuumummmeiiiiiiiiiiiiiiiiieieie e 72
DeSCIIPLION .vvvveiiiiiiiiiiiiiii 72
Class MethOdscoouiiiiiiiiiiiiiii e 72
Instance Methodseiiiiiiiiiiiiiiii e 72
$integ->HOW() > SIIING ..evvvreiiiiiiiiiiiiiiii e 72
$integ->File() == StANG ...vvvveiiieiiiiiiiiiiiee e 72
$integ->SReV() > INEZETuvvreiiieeiiiiiiiiiiiieee e e e 72
$integ->EReV() > INEETeevvieeiiiiiiiiiiiiiieeeiiiieeec e 72
Class PA:MAP .oooooiiiiiiiiiiiii 73
DeSCIIPLION .ovvveiiiiiiiiiiiiiii 73
Class MethOdscoouiiiiiiiiiiiiiii e 73
$map = new P4:Map([array]) -> aMapoeeeeeeeeiiniiiiiiiiiieniiieeeeeeennn 73
$map->Join(mapl, map2) -> aMap ..cooocuiiriiiiiieeei e 73
Instance Methodsoiiiiiiiiiiiiiiic e 73
$map->Clear() -> undefcccceeeiimiiiiiiiieee e 73
$map->Count() > INEEGETevvvieeeiiiiiiiiiiiiieeee e 73
$map->ISEMpty() -> DOOL ...eeviiiiiiiiiiiiiiiiiiei e 73
$map->Insert(string ...) -=> undefccccceeeiiiiiiiii e 73
$map->Translate(string, [bool]) -> Stringccccevvviiiiiiiiieeiinniiieeeeeen, 74
$map->Includes(string) -> OOcceviiiiiiiiiiiiieeee 74
$map->Reverse() => aMap ...ccoovviiiiiiiiiieiiiee e 74
$map->Lhs() -> arraycoooviiiiiiiiiii e 74
$Map->RIS() > AITAY ..eeeeiiiiiiiiiiiiieeeiiie e 74
$mMap->ASATTAY() => AITAY .vevveieeeiiiiiiiiieeeeee e e e e e e e 74
Class P4:MergeDataooooeiiiiiiiiiiiiiiii 75
DeSCIIPLION .vvvvviniiiiiiiiiiiii 75
Class MEethOdScoouiiiiiiiiiiii e 75
Instance Methodseiiiiiiiiiiiiiiii e 75
$md.YourName() -> SErNG ...ovvvveeeeriiiiiiiiiiiieee e 75
$md.TheirName() > SENGccooviiiiiiiiiiieiiiice e 75
$md.BaseName() -> SEINGvvvveiireeiiiiiiiiiiiieee e 75
$md.YourPath() => StrNgcoovvuiiiiiiiiiiiiiiicc e 75
$md.TheirPath() -> StrNGc..oeeeiiiiiiiiiiiiiieiecec e 75
$md.BasePath() -> Stringccccviiiiiiiiiiiiiiic e 75
$md.ResultPath() -> SrNgGccevveeiiiiiiiiiiiii e 75
$md.MergeHInt() -> StrINGccoovvvimimiiiiiieiiiiiieeeee e 75
$md.RunMergeToo0l() -> INtEGET ...covvveriiiiiiiieeeiiiiiiieeee e 76
Class PA:IMIESSAZEvvvuuuereueninniiiiiiieieieieieee et eneneae 77
DeSCIIPLION .vvvvviiiiiiiiiiiiiii 77
Class MEthOAS ...c.uuviiiiiiiiiii e 77
Instance MethOdscoocuiiiiiiiiiiiiii e 77
$message.GetSeverity() == Ntcc.uvveeiiieiiiiiiiiiicce e 77
$message.GetGeneric() => INtocuuvieiiiiiiiiiiiiice e 77
$message.GetId() = Nt ..oooeuiiiiiiiiieiii e 77
$message.GetText() -> INtoeiiiiiriiiiiiiiiiiiiiei e 77
Class P4::0OutputHandlerccoooiiiiiiiiiiii e 78
DeSCIIPLION .ovvvviiiiiiiiiiiiiii 78
Class MEethOdScoouiiiiiiiiiiii e 78
Instance Methodseiiiiiiiiiiiiiiii e 78
$handler.OutputBinary() -> Intcooocuieiiriiiiiieiiiiieeeieeeeeee e 78
$handler.OutputInfo() -> INt ccc.eeveiiiiiiiiiiiiiieeecee e 78
$handler.OutputMessage() -> INtovvieeriiiieiiiiiieeiiiiiee e 78

APIs for Scripting ix

APIs for Scripting

$handler.OutputStat()-> Itccoovvuriiiiiiiiiiiiiiice e 78
$handler.OutputText() > INt ..ccoourriieiiiiiiiiiiiiieee e 78

Class PA:PIOGIESSuuuuuiiiiiiiiiiii e 79
DeSCIIPLION .ovvveiiiiiiiiiiiiiii 79
Class MethOdscoouiiiiiiiiiiiciii e 79
Instance Methodseiiiiiiiiiiiiiiii e 79
$progress.Init() == INt ..ooeeeririiiiiiiiiieeii e 79
$progress.Description(string, int) -> Ntcccvvveiiieieniiiiiiiiie e, 79
$progress.Update() => INt ..oooeeeriiiiiiiiiiiiieniiiee e 79
$progress. Total()-> INt ...coovviiiiiiiiiiiiii e 79
$progress.Done() => INt ..ooeeeeeiiiiiiiiiiiiiieeeii e 79

Class PA:RESOLVETcoooeiiiiiiiiiiiiiiiiii 80
DeSCIIPLION .ovvveiiiiiiiiiiiiiii 80
Class MethOdscoouiiiiiiiiiiiiiii e 80
Instance Methodseiiiiiiiiiiiiiiii e 80
$resolver.Resolve() -> SEINGeeveiieeiiiiiiiiiiiiieeeeiice e 80

Class PA:SPEC ...oooooiiiiiiiiiiii 81
DeSCIIPLION .ovvveiiiiiiiiiiiiiii 81
Class MethOdscoouiiiiiiiiiiii e 81
$spec = new P4::Spec($fieldMap) -> arrayocccvvveeeeeeerniiiiiiieieeenennes 81

Instance Methodseiiiiiiiiiiiiiii e 81
$spec->_<fieldname> -> Stringccccccevviiiiiiiiiiii 81
$spec->_<fieldname>($string)-> Stringcccceeevrreiiieiiieeeriniiiiieeeeeennn 81
$spec->PermittedFields() -> arraycccccvveeieeeeiiniiiiiiiiiiee e, 81

Chapterd PAPYENON ...ttt ssss s saseans 83

INtroductionccoviiiiiiiiii 83
System Requirementsccoeiiiiiiiiiiiiiii 83
Installing PAPYHRONoiiiiiiiiiiiiiii e 83
Programming with PAPYthoOncooccoiiiiiiiiiiii e 83
Submitting @ ChangeliStcooiuiiiiiiiiiiieiiii e 84
Logging into Perforce using ticket-based authenticationcccccceeviiiieennnn. 85
Connecting to Perforce over SSLccco 85
Changing your passwordcoocuuiieiiiiieiiiiiiee e 85
Timestamp CONVEISIONcooiiiiiiiiiiiiiiiiiiii e 86
Working with comments in SPECScccuviieiiiiiiiiiiiiiie it 86
PAPYhON CLASSES ...evvvieeiiiiiieeeiiiie ettt e 87
PA oo 87
P4.PAEXCEPHION ..uviiiiiiiiiiiiiiic i 90
PADEPOLFILE ...t 90
P4 REVISION ...vviiiiiiiiiiiiiiiiiiiiti 91
P4.INtegrationoouiiiiiiiiiiiiiii 91
PAMAD coeiiiiiiiiii s 92
P4.MergeDataccooiiiiiiiiiiiiii 92
PAMESSAZE ...vvvvniiiiiiiiiiiiiic e 93
P4.OutputHandIeroouuiiiiiiiiiiiiiiiiiiiiiiiie i 93
PAPIOGIESS ..uvviiiiiiiiiiiiiici e 93
PARESOIVET ...eiiiiiiiiiiiiiiiiiiiec e 94
PASPEC woeviiiiiii s 94
Class P4 ..o 95
DeSCIIPLION .vvvvviiiiiiiiiiiiiii 95

APIs for Scripting

APIs for Scripting

Instance AttribULescooiiiiiiiiiiiiiiiiii 95
phapi_level ->int ... 95
PA.charset -> SENGooeeiiiiiiiiiiiii e 96
pa.client -> String ... 96
PAowd -> SETNG ..o 96
p4.disable_tmp_cleanup -> Stringcccccoeeoiiiiiiiiiiiiis 96
pd.encoding -> StrNGccoooiiiiiii e 97
pa.errors -> list (read-0nly)cccceeiimiiiiiiiiiiiiiii e 97
pé.exception_level -> INtuuiiiiiiiiiiiiiiiii 97
p4-handler -> handler ..o 98
PAHOSt -> SEENG ..ooeiiiiiiiii e 98
pd.ignore_file -> StriNgGcccccciiiii 98
pd.input -> string | dict | List ... 98
p4.iterate_<spectype>(arguments) -> P4.SPeCcccceeeeeiimniiiiieiiieeennnns 99
pd.maxlocktime -> Int ... 99
PAMaxTesults -> INtoeiiiiiiiiiiiiiiii e 99
P4.maxscanrows -> INt ...t 99
p4.messages -> list (read-0nly)ccoovrviiiiiiiiiiiiiiiiiee e 99
p4.p4config_file -> string (read-0only)ccccceervriiiiiiiiiieeniiiiiieeeeee e 99
pd.password -> SN ... 99
PA.POrt -> SETING «oovvviiiii 100
PA.PTOg -> SITING ..oviiiiiiiiiii 100
PA.PTOZIESS = PIOGTESS ..evvvnnririinnriiiiieeiiiiee et e e e e eraaees 100
pé.server_case_insensitive -> booleanoo 100
pé.server_level -> int (read-only)ccoovviiiiiiiiiiiiiiiiii e 100
pé.server_unicode -> booleancccccoiiiiiiiiiiiiii 101
p.streams -> INtoeiiiiiiiiiii 101
pAtagged -> Itoiiiiiiiiiiii e 101
pé.ticket_file -> String ... 101
pa.track -> b0o0oleanouiiiiiiiiiiiiiiiiiiii 101
p4.track_output -> list (read-0only)ccccoevvvviiiiiiiiiiiiiieee 101
PpA.USer > SIING ...ooiiiiiiiii 102
PA.version > StHNEooviiiiiiiiiiiiiii 102
p4.warnings -> list (read-only)ccoovveiiiiiiiiiiiiiiiiiien 102

Class Methodscccuiiiiiiiiiiiiiii i 102
PAPA() wooiiiiiiie 102
PAAAentify() «ooooeeeiiiiiiieiieee e 103

Instance Methodscccciiiiiiiiiiiii 103
Pp4-at_exception_level()oooouiriiiiiiiiiiii e 103
PA-CONIECE() -evvveeieeeeiiiiiiiiee e e et e e e e et e e e e e e e e 103
p4.connected() -> D0O0leancceeeiiiiiiiiiiiiiiieiieen 104
p4.delete_<spectype>([options], name) -> listccccoeiiiiiiiiiiinnnn. 104
PA-AISCONNECE() +vvvveeeeeiiiiiiiiiiit et e e 105
PAENV(VAL) weiiiiiiiiiiiiiiiitie ettt e 105
p4.fetch_<spectype>() -> PA.SPECccovvuiiiiiiiiiiiiiiiiicceic e, 105
p4.format_spec("<spectype>", dict) -> Stringccccceeeeeriniiiiiiiiiieennnnas 105
p4.format_<spectype>(dict) -> Stringcccceveeeeeriiiiiiiiieeieeee 105
p4.is_ignored("<path>") -> b0oOleanccccevvuriieiniiiiieeniiiieeinieeeens 106
p4.parse_spec("<spectype>", string) -> PA.Specccccvviiiiiiiiiniiiiienenn. 106
p4.parse_<spectype>(string) -> P4.Speccccuvvveiiiieiiiiiiiiiieeee 106
pA.run("<emd>", [arg, ...]) ceeeiieeii e 107
PATUN_<CNAS() weeviiiiiiiiiiiiiiie e 108
p4.run_filelog(<fileSpec>) -> LIStuuviiiiiiiiiiiiiiiiiicceeeeeeeeeee 108
p4.run_login(<arg>...) > LSt ..occuiiiiiiiiiiii e 109

APIs for Scripting xi

APIs for Scripting

p4.run_password(oldpass, newpass) => listcccccovrviiiiiiiiieiiiniiinnnnn. 109
p4.run_resolve([<resolver>], [arg...]) -> listcccviiiiiiiiiiiniiieees 109
p4.run_submit([hash |, [arg...]) => list ccceeeviiiiniiiiniiiiicccce, 110
pA.run_tickets() => LSt ..eeeiieiiiiiiiiiiiiie e 110
PA-Save_<SPECEYPE>()> woreeieiiiiiiiiiiiee et 110
pa.set_env(var, Value)coooviiiiiiiieiiiiiceeeee e 111
p4.temp_client("<prefix>", "<template>")cccccciiiiiiniiii 111
p4.while_tagged(boolean)coocuiiiiiiiiiiiiiiiiiieiieee e 111
Class PA.PAEXCEPIONcoeviiiiiiiiiieieie e 113
DeSCIIPLION ..ovvvviiiiiiiiiiiiiiic 113
Class ALtTIDULESuuuuiiiiiiiiiiiiiiiiiie e 113
Class MethOdsccoouiiiiiiiiiiiiiiic e 113
Class PA.DEPOtFILEcuuuiiiiiiiiiiiiiiiiiiiiiiieee e 114
DeSCIIPLION ..ovvvviiiiiiiiiiiiiiic 114
Instance AtrIDULESuuuiiiiiiiiiiiiii e 114
df.depotFile -> Stringcccoooiiiiiiiiiii s 114
df.1eviSioNs => LIStuuiiiiiiiiiiiiiiii 114
Class MethOdsccoouiiiiiiiiiiiiiiic e 114
Instance Methodsoeiiiiiiiiiiiiiiiicii e 114
Class PA.REVISIONouiuiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeee e 115
DeSCIIPLION ..ovvvviiiiiiiiiiiiiii 115
Instance AtrIDULESuuuuimiiiiiiiiiii e 115
rev.action -> StIINGcooooviiiiiiiiiiii 115
rev.change -> Ntoooiiiiiiiiii e 115
rev.client -> SErNEouuiiiiiiiiiiiiiiiiiiiieeeee s 115
rev.depotFile -> Stringcccoeeiiii 115
rev.desc -> SIINGooooviiiiiiiiiiiiii 115
rev.digest -> SNccccc 115
rev.fileSize -> String ... 115
rev.integrations -> Listccccooiiiiiiiii 115
TeV.IeV -> ANt ..ot 115
rev.time -> datetime 115
rev.type > SHHNE ..oooiiiiiiii 116
TEV.USET > SETINE «oevvvvniiiiiii i 116
Class MethOdsccoouiiiiiiiiiiiiiiic e 116
Instance Methodsoeiiiiiiiiiiiiiiic e 116
Class P4.Integrationccccciiiiiiiii 117
DeSCIIPLION ..ovvvviiiiiiiiiiiiiii 117
Instance AttrIDULESuuuiiiiiiiiiiiiiii e 117
integ.how -> StrING ...ccovviiiiiiiiiii e 117
integ.file -> SEHINEG ... 117
INteg.STeV > INt ..ottt 117
integ.erev -> Ntt 117
Class MethOdsccoouiiiiiiiiiiiiiii e 117
Instance Methodsoeiiiiiiiiiiiiiiic e 117
CLASS PAMAP ..eevviiiiiiiiiiiiiiiiiii i 118
DeSCIIPLION ..ovvvviiiiiiiiiiiiiii 118
Instance AtrIDULESuuuuiiiiiiiiiiiii e 118
Class MethOdsccoouiiiiiiiiiiiiiic e 118
PAMap([list]) => PAMAD .eeevvreiiiiiiiieiieeeeeeeieeeeee e 118
P4.Map.join (mapl, map2) ->PAMap ...ccooveiriiiiiiiieiiieeeee 118
Instance Methodsoviiiiiiiiiiiiiiicc e 118
MAP.CLEAT() ..vvviiieeiiiiiiiiiiii et 118
MapP.COUNE() - INE ceoiiiiiiiiiiiee e 118

xii APIs for Scripting

APIs for Scripting

map.is_empty() > DOOLEANocuvuiiiiiiiiiiiiiiiiice e 118
MAaP.ANSert(StIING ...) couuvreriiieeiiiiiiiriet e 119
map.translate (string, [boolean |) -> Stringccoccceveeiniiiiieiniiieeennnne. 119
map.includes(string) -> booleancccccceevrriiiiiiiiiiiiii e 119
map.reverse() -> PAMapooooiiiiiiiiiiiiii 119

MAP.JhS() => LISt e 119

MAP.Ths() => LISt coueiiiiiiiiiiic e 119
map.as_array() => LSteoeeeeiiiiiiiiic i 119

Class PA.MergeDatauuuuuuuiimiiiiiiiiiiiiiiiiiiieiiie e 120
DeSCIIPLION ..ovvvviiiiiiiiiiiiiiic 120
Instance AIIDULEScoooiiiiiiiiiiiiiiiiiii 120
md.your_name -> Stringcoo 120
md.their_name -> StriNGooorriiiiiiiiiiiiiiiiccee e 120
md.base_name -> Stringeuuuuiiiiieiiiiiiiiiiiiiiieiieeeee e 120
md.your_path -> StriNgcooeeiiiiiiiiiiiiii 120
md.their_path -> Stringccocciiiiiiiiiiiii 120
md.base_path -> Stringccoccoviiiiiiiiiiiii e 120
md.result_path -> Stringccoeviiiiiiiii 120
md.merge_hint => StrNGccccoiiiiiiiiiiiiii e 120

Instance Methodscccoiiiiiiiiiiiiii 120
md.run_merge() -> DOOLeANccovveiiiiiiiiiieiiiiiic e 120

Class PAMESSAZEccoooiviiiiiiiiiiiiiiiii 121
DeSCIIPLION ..ovvvviiiiiiiiiiiiiii 121
Class Methodsccouiiiiiiiiiiiiiiiii e 121
Instance AIIbULEScoooiiiiiiiiiiiiiiiiiii 121
message.severity -> Nt ..., 121
message.generic -> Ntccoooiiiiii 121
message.msgid -> int ... 121

Class P4.OutputHandlercccccciiiii 122
DeSCIIPLION ..ovvvviiiiiiiiiiiiiii 122
Class Methodscccuiiiiiiiiiiiiiii i 122
class MyHandler(P4.OutputHandler)ccccceeevimniiiiiiiiiiieiiiiiieeeen. 122

Instance Methodscccciiiiiiiiiiiiii 122
outputBinary -> intccccooiiiii 122
outputInfo -> ANt oo, 122
outputMessage -> intccoooiiiii 122
outputStat -> INtcoooiiiii 122
outputText -> Intcooooiiiii 122

Class PAPTOGIESScoooviiiiiiiiiiiiiiiiiiiiiiiieee 123
DeSCIIPLION ..ovvvviiiiiiiiiiiiiii 123
Instance AIIDULEScoooiiiiiiiiiiiiiiiiiiii 123
Class Methodsccouiiiiiiiiiiiiiiii i 123
class MyProgress(PA.Progress)ccuuveveeeeeeemiiiiiiieiieeeeiniiireeeeee e e 123

Instance Methodscccciiiiiiiiiiiii 123
Progress.init() - ANt .oooocueviiiiiiiiiiii e 123
progress.setDescription(string, int) -> itcccceeeeeeirniiiiiieereeeennne, 123
progress.update() -> Ntoeeeiiiiiiiiiiiiiiiiiee e 123
progress.setTotal(<total>) >INtooeeeiiminiiiiiiiiiiiii e 123
Progress.done() - ANt ..ooeeuviiiiiieiiiiiiec e 123

Class P4ARESOIVETcoooiiiiiiiiiiiiiiiiiiiiii e 124
DeSCIIPLION ..ovvvviiiiiiiiiiiiiiic 124
Instance AIIDULESooooiiiiiiiiiiiiiiiiiiii 124
Class Methodscoouiiiiiiiiiiiiiii i 124
Instance Methodscoccuiiiiiiiiiiiiii 124
APIs for Scripting xiii

APIs for Scripting

resolver.resolve(self, mergeData) -> Stringccooecvvveeiieeeeniniiinieneeen. 124

CLASS PA.SPEC ..ttt 125
DeSCIIPLION ..ovvvviiiiiiiiiiiiiiii 125
Instance AIIDULESooooiiiiiiiiiiiiiiiiiii 125
spec._<fieldname> -> Stringcccooc 125
spec.comment -> diCtoouiiiiiiiiiiiiiiiiiii 125
spec.permitted_fields -> dictccooeiiiiiiiiiii 125

Class Methodsccouiiiiiiiiiiiiiiiii i 125
P4.Specnew(dict) => PA.SPEC ...vvviiiiiiiiiiiiiiiiieceeee e 125

Instance Methodscocciiiiiiiiiiiiii 125

Chapter 5 PAPHP ..ttt se s sss s s sssssasans 127

INtrodUuctioncociviiiiiiiiii 127
System Requirementsovviiiiiiiiiiiiii 127
Installing PAPHD ... 127
Programming with PAPHPccccciiiiiiiiiiiiiiiiieiiceee e 127
Submitting @ Changelistccoocuviiiiiiiiii i 128
Logging into Perforce using ticket-based authenticationccecceeennnie. 129
Connecting to Perforce over SSL ..o 129
Changing your passwordcceiieiiiiiieiiiiiieeiiiee et 129
L N e G = PP 130
PA oo 130
P4_EXCEPHIONooovviiiiiiiiiiiiiiiii s 133

P4 DepotFile ... 133

2 A T 13 1o) o 133
P4_Integrationcooooiiiiiiiiiiiiiiiiii 134
PA_MAPD oo 134
P4_MergeDataccoooiiiiiiiiiiiiiiii 135
P4_OutputHandlerAbstractcccccccci 135

| =10) A=) 135
Class P4ooiiiiiiiiii 137
DeSCIIPLION ..ovvvviiiiiiiiiiiiiii 137
Propertiescccooviiiiiiiiiiii 137
P4::api_level > It ...ooeeiiiiiiii 137
P4::charset -> StrINGoeeeviiiiiiiiiiiieeeic e 138

P4::client -> SErNGovviviiiiiiiiiiiiiiiiiiiiii e 138

Pd:icwd -> SEINEG wovvviiiiiiiiiiiiiiiiiiiiiieeeee e 138

P4::errors -> array (read-only)eeeeeieeiiiiiiiiiiiieeeiiiieeeeee e 139
P4::exception_level ->int ... 139
P4::expand_sequences -> boolc.cooo 139
P4:handler -> handlercocooiiiiiiiiiii 140

P4:ROSt > SEEANE conevieieeiiiiiec e 140

P4:input -> string | arrayccccocc 140
P4::maxlocktime > INt ... 141
P4:maxresults -> int ..o 141
P4:maxscanrows -> INtceeiiiiiiiiiiii 141
P4::p4config_file -> string (read-only)ccccvveeiiiiiiiiiiiiiiieeee 141
P4::password -> StrNGuuuiiiuimiiiiiiiiiiiiiiiiiii 141

P4::port -> Stringoooovviiiiiii 142

P4::prog -> StrING ..oovvvveiiiiiiiiiii 142
P4::server_level -> int (read-only)ccccevveviiieeiiiiiceeen 142

X1v

APIs for Scripting

APIs for Scripting

P4::streams -> D00coooiiiiiiiiiiiiiii 143
P4:tagged > DOOL ...ooooviiiiiiiiiiiiiiiiii 143
P4::ticket_file -> SEriNgooovviiiiiiiiiiiiiiiiiiiiii 143
P4:user -> Stringceeviiiiiiiiiii 143
P4::version -> Stringcceoviiiiiiiiiiiiiiii 144
P4::warnings -> array (read-0only)ccccoovveiiiiiieeeeniniiieeeee e 144
(@03 g7 4 e () 144
) 2 S o0) 0 1] o o & Lot A 144
Static Methodscooiiiiiiiiiii 145
P4::identify() == STIANG ..vvvveeeeeiiiiiiiiiiec e 145
Instance Methodscocciiiiiiiiiiiiii 145
P4::connect() = DOOL ..uvivniieiiie e 145
Pd::connected() == DOOL ..ooniinniieiiiii e 145
P4::delete_<spectype>([options], name) -> arrayccooeeeuvveveereeeennnns 146
P4::disconnect() == VOId c...vvniiiniieiiiii e 146
P4::env(var) -> StING «.oeeeeviiiiiiiiiieeeee e 147
P4:fetch_<spectype>() => arraycccooveiiieeiiiiiiieiiiiieeeeiieee e 147
P4::format_spec("<spectype>", array) -> Stringccccceeevrvvcuirreeeieeennnnns 147
P4::format_<spectype>(array) -> Stringccccceeeeeernrviiineeeeeeeeenniineee, 147
P4::parse_spec("<spectype>", String) > arrayccooeecuvveereeeeerrninnnnnnn. 148
P4::parse_<spectype>(String) -> arrayccccceeeeeeeeemnneiineeeereeeennnnnnnee 148
P4:run(<cmd>, [arg, ...]) -> mixedcooovmiiiiiiiiiiii 148
Pd:run_<cmd>() > miIXed ..ovoiiniiiiii e 150
P4::run_filelog(<fileSpec>) => Arrayccccvveeeeeeririiiiiiieeieeeenniieeeeeeenn 151
P4:run_login(arg...) => rTaY ...c.ceeevrrrioiimieeeeeeeeniiiiieeeeeeeeeeiireeeeeeee e 151
P4::run_password(oldpass, NEWPass) => ArTayeeeeeeeerrrrmrrereeeeeeennnns 151
P4::run_resolve([<resolver>], [arg...]) -=> arraycccccevevreeernnnineennenn. 152
P4:run_submit([array |, [arg...]) -=>arrayoccocceeevviiiiiniiiiiiniieces 152
P4::save_<SPeCtYPE>()> .uuviiiiiiiiieiiiiiiieieee et 153
Class P4_EXCEPHIONuuiiiiiiiiiiiiiiiiiiiiiiiiiieie e 154
DeSCIIPLION ..ovvvviiiiiiiiiiiiiii 154
Class AHTIDULESevvviiiiiiiiiiiiiiii 154
Static Methodscoooiiiiiiiiii 154
Class P4_DepotFilecooooiiiiiiiiiiii 155
DeSCIIPLION ..ovvvviiiiiiiiiiiiiii 155
Propertiescccooviiiiiiiiiiiii 155
$df->depotFile -> Stringccccooioiii e 155
BAL->TEVISIONS => ATTAY ..evvvvveeniiiiiiiiiiiiiiiiiiiiiite e 155
Static Methodsc.coooiiiiiiiiiii 155
Instance Methodscccciiiiiiiiiiiii 155
(@ =T TR A S T3 o) o N 156
DeSCIIPLION ..ovvvviiiiiiiiiiiiiiic 156
Propertiescccooviiiiiiiiiiiii 156
$rev->action -> StrINGcoooeviiiiiiiiiiii 156
$rev->change => LONG ...ccovvuiiiiiiiiiiiiiii e 156
$rev->client -> SEHNEG ... 156
$rev->depotFile -> Stringcccccoviiiiiiiiiiiiiiii 156
Brev->desc -> StIINGuuuuiiimiiiiiiiiiii e 156
$rev->digest -> StINGooooeviiiiiiiiii 156
$rev->fileSize -> 1oNG ... 156
$rev->integrations -> AITAYceevevriiiiiiiiiiiiiiiiiiiiiiiieiiieeeeeeeeeeeeeeeeeeeeee 156
Brev->rev > LONG ...oviiiiiiiiiiiiiiii 156
$rev->time -> StrINgGoooeviiiiiiiiiiii 156
Prev->type -> SrING ..o 157

APIs for Scripting xXv

APIs for Scripting

$rev->user -> SIrNG ... 157
Static Methodscccoooiiiiiiiiiii 157
Instance Methodscocciiiiiiiiiiiii 157

Class P4_INterationuuuuuuummmmmmmemiiiiiiiiiiiiiiieeieeeieee e neneeenenenees 158
DeSCIIPLION ..ovvvviiiiiiiiiiiiiii 158
Propertiescccooviiiiiiiiiiii 158

$integ->how -> SEING ...ccoviiiiiiiiiiiii e 158

$integ->file -> string ... 158

$integ->srev -> INt ... 158

Pinteg->TeV -> INteuuiiiiiiiiiiiiiiiiii s 158
Static Methodscoooiiiiiiiiiii 158
Instance Methodscocciiiiiiiiiiiiii 158

Class PA_Mapooooiiiiiiiiiiiiiii 159
DeSCIIPLION ..ovvvviiiiiiiiiiiiiiic 159
Propertiesccceoviiiiiiiiiiiii 159
(@03 g7 4 e () 159

P4 Map::__construct([array]) ->P4_Map ...coooveiiiiiiiiiiiiiiiceeeee 159
Static Methodscoooiiiiiiiiiii 159

P4_Map:join (mapl, map2) -> P4 Map ...oooeevinniiiiiiiiiieieiiieceeeee 159
Instance Methodscccoiiiiiiiiiiiiii 159

$map->clear() -> VOIdeevieiiiiiiiiiiiiiie e 159

$map->count() => TNt ..oeeiieiiiiiiiiiiiiieeen e 159

$map->is_empty() > DOOLoeviiiiiiiiiiiiiiiiiee e 159

$map->insert(string ...) => VOIdovvveeiiiiiiiii e 160

$map->translate (string, [bool |)-> Stringcccccoovveiiiiiiiiiiinniiiieeenn. 160

$map->includes(string) -=> D00lccceviiiiiiiiiiiiiiii e 160

$map->reverse() -> P4 Map ...ooooeiiiiiiiiiiiii e 160

$mMap->Ths() => ArTaY «...evveeeiiiiiiiii e 160

$map->rhs() -> arrayooeeeviiiiiiiiii e 160

$map->as_array() -> AITAY .cccvvvereereeeemiiiiireeeeeeeeeniiiineeeeeeeeeesiinneeeeeeeens 160

Class P4_MergeDatacooooviiiiiiiiiiiiiiii 161
DeSCIIPLION ..ovvvviiiiiiiiiiiiiii 161
Propertiesccoooviiiiiiiiiiiii 161

$md->your_name -> Stringcccccooiiiiiiiiii s 161

$md->their_name -> Stringccoeviiiiiiiiiiiieiiiee e 161

$md->base_name -> StriNgcooeeiiiiiiiiiiiiiiiiiiiiiiiiiiiieeee 161

$md->your_path -> StriNgGccceeiiiiiiiiiiiiic 161

$md->their_path -> Stringccoeoiiiiiiiiiiii e 161

$md->base_path -> StriNgcoeoriiiiiiiiiiiii e 161

$md->result_path -> Stringcccceeeriiiiiiiiiiiiie 161

$md->merge_hint -> Stringccoovviiiiiiiiiiiiiiii e 161

Class P4_OutputHandlerAbstractccoooviiiiiiiiiiiiiiii, 162
DeSCIIPLION ..ovvvviiiiiiiiiiiiiii 162
Class Methodscocuiiiiiiiiiiiiiiii i 162

class MyHandler extends P4_OutputHandlerAbstractccccccuuennnee 162
Instance Methodscccciiiiiiiiiiiii 162

$handler->outputBinary -> Intcccceeeriiiiiiiniiiiieiiieeeeee e 162

$handler->outputInfo -> Itcooriiiiiiiiiiiiiieiice e 162

$handler->outputMessage -> INtccovviiiieiniiiieiiiiiieeeieeeeeeee e 162

$handler->outputStat -> Itccocoviiiiiiiiiiiiiiieeceeee e 162

$handler->outputText -> INt ...occuveiiiiiiiiiiiiiiiieceeee e 162

CIaSS P4 _RESOIVET ..vniiiiiiieie ettt ettt ettt e e 163
DeSCIIPLION ..ovvvviiiiiiiiiiiiiiic 163
Propertiescccooviiiiiiiiiiii 163

xvi APIs for Scripting

APIs for Scripting

Static MEthOAS ..oveniieeeii e e 163

INStAnNCe MEthOdSovveniiieeii e 163
$resolver->resolve(self, mergeData) -> Stringcccccceevveiiireeiieeernnnnns 163

LICENSE STATEMENTS ...ttt sae s s s s enasbenes 165

APIs for Scripting xvii

xviii APIs for Scripting

Chapter 1 About This Manual

This guide contains details about using the derived APIs for Ruby, Perl, Python, and PHP to
create scripts that interact correctly with the Perforce versioning service. You can download
these APIs from the Perforce web site:

http:/ /www.perforce.com / product/components/apis

These derived APIs depend on the C/C++ APL See the Perforce C/C++ API User’s Guide for
details.

Please give us feedback

If you have any feedback for us, or detect any errors in this guide, please email details to
<manual@perforce.com>.

APIs for Scripting

http://www.perforce.com/product/components/apis

APIs for Scripting

Chapter 2 P 4Ru by

Introduction

P4Ruby is an extension to the Ruby programming language that allows you to run Perforce
commands from within Ruby scripts, and get the results in a Ruby-friendly format.

The main features are:

e Get Perforce data and forms in hashes and arrays.

e Edit Perforce forms by modifying hashes.

* Exception based error handling.

¢ Controllable handling of warnings such as "File(s) up-to-date." on a sync.
® Run as many commands on a connection as required.

¢ The output of a command is returned as a Ruby array. For non-tagged output, the elements
of the array are strings. For tagged output, the elements of the array are Ruby hashes. For
forms, the output is an array of P4: : Spec objects.

e Thread-safe and thread-friendly; you can have multiple instances of the P4 class running in
different threads.

* Exception-based error handling. Trap P4Exceptions for complete, high-level error handling.

The most recent release of P4Ruby is 2014.1.

System Requirements

P4Ruby is supported on Windows, Linux, Solaris, OS X, and FreeBSD.

To build P4Ruby, your development machine must also have:

Ruby 1.8 or 1.9 development files.

make (or nmake on Windows).

The 2014.1 Perforce C/C++ API for your target platform. Older releases might work, but are
not supported.

The same C++ compiler used to build the Perforce C++ API on your target platform.

(If you get "unresolved symbol" errors when building or running P4Ruby, you probably
used the wrong compiler or the wrong Perforce API build.)

Installing P4Ruby

You can download P4Ruby from the Perforce web site:
http:/ /www.perforce.com / product/components/apis

After downloading, you can either run the installer or build the interface from source, as
described in the release notes.

APIs for Scripting 3

http://www.perforce.com/product/components/apis

Chapter 2. PARuby

Programming with P4Ruby

The following example shows how to create a new client workspace based on an existing
template:

require "P4"

template = "my-client-template"
client_root = 'c:\p4-work'

p4 = P4.new

p4.connect

begin

Run a "p4 client -t template -o0" and convert it into a Ruby hash
spec = p4.fetch_client("-t", template, "my-new-client")

Now edit the fields in the form
spec["Root"] = client_root
spec["Options"] = spec["Options"].sub("normdir", "rmdir")

Now save the updated spec
p4.save_client(spec)

Point to the newly-created client
p4.client="my-new-client"

And sync it.
p4.run_sync

rescue P4Exception
If any errors occur, we'll jump in here. Just log them
and raise the exception up to the higher level

p4.errors.each { |e| $stderr.puts(e) }
raise

end

Connecting to SSL-enabled servers

Scripts written with P4Ruby use any existing PATRUST file present in their operating
environment (by default, .p4trust in the home directory of the user that runs the script).

If the fingerprint returned by the server fails to match the one installed in the PATRUST file

associated with the script's run-time environment, your script will (and should!) fail to connect
to the server.

P4Ruby classes

The P4 module consists of several public classes:

* “P4” on page 5

* “P4Exception” on page 8

4 APIs for Scripting

Chapter 2. PARuby

e “P4::DepotFile” on page 8

* “P4::Revision” on page 9

® “P4::Integration” on page 9

® “P4:Map” on page 10

® “P4:MergeData” on page 10

* “P4::Message” on page 11

e “P4::OutputHandler” on page 11

e “P4::Progress” on page 11

® “P4::Spec” on page 12

The following tables provide brief details about each public class.

P4

The main class used for executing Perforce commands. Almost everything you do with
P4Ruby will involve this class.

Method Description

identify Return the version of P4ARuby in use (class method).
new Construct a new P4 object (class method).
api_level= Set desired API compatibility level.

api_level Return current API compatibility level.

at_exception_level

Execute the associated block under a specific exception level,
returning to previous exception level when block returns.

charset= Set character set when connecting to Unicode servers.

charset Get character set when connecting to Unicode servers.

client= Set client workspace (P4CLIENT).

client Get current client workspace (P4CLIENT).

connect Connect to the Perforce Server, raise P4Exception on failure.

connected? Test whether or not session has been connected and /or has been
dropped.

cwd= Set current working directory.

cwd Get current working directory.

delete <spectype>

Shortcut methods for deleting clients, labels, etc.

disconnect

Disconnect from the Perforce Server.

APIs for Scripting

Chapter 2. PARuby

Method

Description

each <spectype>

Shortcut methods for iterating through clients, labels, etc.

env Get the value of a Perforce environment variable, taking into account
P4CONFIG files and (on Windows or OS X) the registry or user
preferences.

errors Return the array of errors that occurred during execution of

previous command.

exception_level=

Control which types of events give rise to exceptions
(P4: :RAISE_NONE, RAISE_ERRORS, or RAISE_ALL).

exception level

Return the current exception level.

fetch <spectype>

format_spec

Shortcut methods for retrieving the definitions of clients, labels, etc.

Convert fields in a hash containing the elements of a Perforce form
(spec) into the string representation familiar to users.

format_<spectype>

Shortcut method; equivalent to:

p4.format_spec("<spectype>", aHash)

handler= Set output handler.

handler Get output handler.

host= Set the name of the current host (P4HOST).

host Get the current hostname.

input= Store input for next command.

maxlocktime= Set MaxLockTime used for all following commands.
maxlocktime Get MaxLockTime used for all following commands.
maxresults= Set MaxResults used for all following commands.
maxresults Get MaxResults used for all following commands.
Maxscanrows= Set MaxScanRows used for all following commands.
Maxscanrows Get MaxScanRows used for all following commands.
messages Returns all messages from the server as P4: :Message objects.

paconfig file

Get the location of the configuration file used (P4CONFIG).

parse_<spectype>

Shortcut method; equivalent to:

APIs for Scripting

Chapter 2. PARuby

Method Description
p4.parse_spec("<spectype>", aString)
parse_spec Parses a Perforce form (spec) in text form into a Ruby hash using the
spec definition obtained from the server.
password= Set Perforce password (P4PASSWD).
password Get the current password or ticket.
port= Set host and port (P4PORT).
port Get host and port (P4PORT) of the current Perforce server.
prog= Set program name as shown by p4 monitor show -e
prog Get program name as shown by p4 monitor show -e.
progress= Set progress indicator.
progress Get progress indicator.
run_cmd Shortcut method; equivalent to:
p4.run("cmd", arguments...)
run Runs the specified Perforce command with the arguments supplied.

run_filelog

run_login

Runs a p4 filelog on the fileSpec provided, returns an array of
P4::DepotFile objects.

Runs p4 login using a password or ticket set by the user.

run_password

A thin wrapper to make it easy to change your password.

run_resolve

Interface to p4 resolve.

run_submit

Submit a changelist to the server.

run_tickets

save_<spectype>

Get a list of tickets from the local tickets file.

Shortcut method; equivalent to:

p4.input = hashOrString
p4.run("<spectype>", "-i")

server_case_sensitiv

server_level

Detects whether or not the server is case sensitive.

Returns the current Perforce server level.

APIs for Scripting

Chapter 2. PARuby

Method Description

server_unicode? Detects whether or not the server is in unicode mode.

set_env On Windows or OS X, set a variable in the registry or user
preferences.

streams= Enable or disable support for streams.

streams? Test whether or not the server supports streams

tagged Toggles tagged output (true or false). By default, tagged output is
on.

tagged= Sets tagged output. By default, tagged output is on.

tagged? Detects whether or not tagged output is enabled.

ticketfile= Set the location of the P4TICKETS file.

ticketfile Get the location of the P4TICKETS file.

track= Activate or disable server performance tracking.

track? Detect whether server performance tracking is active.

track output Returns server tracking output.

user= Set the Perforce username (P4USER).

user Get the Perforce username (P4USER).

version= Set your script's version as reported to the server.

version Get your script's version as reported by the server.

warnings Returns the array of warnings that arose during execution of the last
command.

P4Exception
Used as part of error reporting and is derived from the Ruby RuntimeError class.
P4::DepotFile

Utility class allowing access to the attributes of a file in the depot. Returned by
Pa#trun_filelog().

Method Description
depot_file Name of the depot file to which this object refers.
each_revision Iterates over each revision of the depot file.

APIs for Scripting

Chapter 2. PARuby

Method Description
revisions Returns an array of revision objects for the depot file.
P4::Revision

Utility class allowing access to the attributes of a revision P4: :DepotFile object. Returned by
P4#run_filelog().

Method Description

action Action that created the revision.
change Changelist number.

client Client workspace used to create this revision.
depot_file Name of the file in the depot.
desc Short changelist description.
digest MD?5 digest of this revision.
filesize Returns the size of this revision.
integrations Array of P4: :Integration objects.
rev Revision number.

time Timestamp.

type Perforce file type.

user User that created this revision.

P4::Integration

Utility class allowing access to the attributes of an integration record for a P4: :Revision object.
Returned by P4#trun_filelog().

Method Description

how Integration method (merge /branch/copy/ignored).
file Integrated file.

srev Start revision.

erev End revision.

APIs for Scripting 9

Chapter 2. PARuby

P4::Map

A class that allows users to create and work with Perforce mappings without requiring a
connection to the Perforce Server.

Method Description

new Construct a new map object (class method).
join Joins two maps to create a third (class method).
clear Empties a map.

count Returns the number of entries in a map.
empty? Tests whether or not a map object is empty.
insert Inserts an entry into the map.

translate Translate a string through a map.

includes? Tests whether a path is mapped.

reverse Returns a new mapping with the left and right sides reversed.
lhs Returns the left side as an array.

rhs Returns the right side as an array.

to_a Returns the map as an array.

P4::MergeData

Class encapsulating the context of an individual merge during execution of a p4 resolve
command. Passed as a parameter to the block passed to P4#run_resolve().

Method Description

your_name Returns the name of "your" file in the merge. (file in workspace)
their name Returns the name of "their" file in the merge. (file in the depot)
base_name Returns the name of "base" file in the merge. (file in the depot)
your_path Returns the path of "your" file in the merge. (file in workspace)
their_path Returns the path of "their" file in the merge. (temporary file on

workstation into which their_name has been loaded)
base_path Returns the path of the base file in the merge. (temporary file on

workstation into which base_name has been loaded)

10

APIs for Scripting

Chapter 2. PARuby

Method

Description

result_path

merge hint
run_merge

P4::Message

Returns the path to the merge result. (temporary file on workstation
into which the automatic merge performed by the server has been
loaded)

Returns hint from server as to how user might best resolve merge.

If the environment variable PAMERGE is defined, run it and return a
boolean based on the return value of that program.

Utility class allowing access to the attributes of a message object returned by P4#imessages().

Method Description

severity Returns the severity of the message.

generic Returns the generic class of the error.

msgid Returns the unique ID of the error message.

to s Returns the error message as a string.

inspect Converts the error object into a string for debugging purposes.

P4::0utputHandler

Handler class that provides access to streaming output from the server; set P4#thandler () to an
instance of a subclass of P4: :OutputHandler to enable callbacks:

Method

Description

outputBinary

Process binary data.

outputInfo

Process tabular data.

outputMessage

Process information or errors.

outputStat
outputText

P4::Progress

Process tagged output.

Process text data.

Handler class that provides access to progress indicators from the server; set P4#progress()
to an instance of a subclass of P4: :Progress with the following methods (even if the
implementations are empty) to enable callbacks:

Method

Description

Initialize progress indicator as designated type.

APIs for Scripting

11

Chapter 2. PARuby

Method Description

total Total number of units (if known).

description Description and type of units to be used for progress reporting.
update If non-zero, user has requested a cancellation of the operation.
done If non-zero, operation has failed.

P4::Spec

Subclass of hash allowing access to the fields in a Perforce specification form. Also
checks that the fields that are set are valid fields for the given type of spec. Returned by
Pa#tfetch_<spectype>().

Method Description
spec._fieldname Return the value associated with the field named fieldname.
spec. fieldname= Set the value associated with the field named fieldname.

spec.permitted_field Returns an array containing the names of fields that are valid in this
spec object.

12

APIs for Scripting

Chapter 2. PARuby

Class P4

Description

Main interface to the Perforce client API. Each P4 object provides you with a thread-safe API
level interface to Perforce. The basic model is to:

1. Instantiate your P4 object.
2. Specify your Perforce client environment.
e client
* host
e password
® port
® user
3. Set any options to control output or error handling:
e exception_level
4. Connect to the Perforce service.

The Perforce protocol is not designed to support multiple concurrent queries over the same
connection. Multithreaded applications that use the C++ API or derived APIs (including
P4Ruby) should ensure that a separate connection is used for each thread, or that only one
thread may use a shared connection at a time.

5. Run your Perforce commands.

6. Disconnect from the Perforce service.

Class Methods
P4.identify -> aString

Return the version of PARuby that you are using. Also reports the version of the OpenSSL
library used for building the underlying Perforce C++ API with which P4Ruby was built.

ruby -rP4 -e 'puts(P4.identify)’

Some of this information is already made available through the predefined constants
P4::VERSION, P4::0S, and P4: :PATCHLEVEL.

P4.new -> aP4

Constructs a new P4 object.

p4 = P4.new()

APIs for Scripting 13

Chapter 2. PARuby

Instance Methods

p4.api_level= aninteger -> aninteger

Sets the API compatibility level desired. This is useful when writing scripts using Perforce
commands that do not yet support tagged output. In these cases, upgrading to a later server
that supports tagged output for the commands in question can break your script. Using this
method allows you to lock your script to the output format of an older Perforce release and
facilitate seamless upgrades. This method must be called prior to calling P4#connect ().

p4 = P4.new
p4.api_level = 67 # Lock to 2010.1 format
p4.connect

For the API integer levels that correspond to each Perforce release, see:

http:/ /kb.perforce.com/article/512

p4.api_level -> aninteger

Returns the current Perforce API compatibility level. Each iteration of the Perforce Server is
given a level number. As part of the initial communication, the client protocol level is passed
between client application and the Perforce Server. This value, defined in the Perforce AP,
determines the communication protocol level that the Perforce client will understand. All
subsequent responses from the Perforce Server can be tailored to meet the requirements of that
client protocol level.

For more information, see:

http:/ /kb.perforce.com/article /512

p4.at_exception_level(lev){...}-> self

Executes the associated block under a specific exception level. Returns to the previous
exception level when the block returns.

p4 = P4.new
p4.client = "www"
p4.connect

p4.at_exception_level(P4::RAISE_ERRORS) do
p4.run_sync

end

p4.disconnect

p4.charset= aString -> aString

Sets the character set to use when connect to a Unicode enabled server. Do not use when
working with non-Unicode-enabled servers. By default, the character set is the value of

APIs for Scripting

http://kb.perforce.com/article/512
http://kb.perforce.com/article/512

Chapter 2. PARuby

the P4CHARSET environment variable. If the character set is invalid, this method raises a
P4Exception.

p4 = P4.new

p4.client = "www"
p4.charset = "iso8859-1"
p4.connect

p4.run_sync
p4.disconnect

p4.charset -> aString

Get the name of the character set in use when working with Unicode-enabled servers.

p4 = P4.new
p4.charset = "utf8"
puts(p4.charset)

p4.client= aString -> aString

Set the name of the client workspace you wish to use. If not called, defaults to the value of
PACLIENT taken from any PACONFIG file present, or from the environment as per the usual
Perforce convention. Must be called before connecting to the Perforce server.

p4 = P4.new
p4.client = "www"
p4.connect
p4.run_sync
p4.disconnect

p4.client -> aString

Get the name of the Perforce client currently in use.

p4 = P4.new
puts(p4.client)

p4.connect -> aBool

Connect to the Perforce Server. You must connect before you can execute commands. Raises a

P4Exception if the connection attempt fails.

p4 = P4.new
p4.connect

p4.connected? -> aBool

Test whether or not the session has been connected, and if the connection has not been
dropped.

APIs for Scripting

15

Chapter 2. PARuby

p4 = P4.newp4.connected?

p4.cwd= aString -> aString

Sets the current working directly. Can be called prior to executing any Perforce command.
Sometimes necessary if your script executes a chdir() as part of its processing.

p4 = P4.new
p4a.cwd = "/home/bruno”

p4.cwd -> aString

Get the current working directory.

p4 = P4.new
puts(p4.cwd)

p4.delete_<spectype>([options], name) -> anArray

The delete methods are simply shortcut methods that allow you to quickly delete the
definitions of clients, labels, branches, etc. These methods are equivalent to:

p4.run("<spectype>", '-d', [options], "spec name")

For example:

require "P4"
require "parsedate"
include ParseDate
now = Time.now
p4 = P4.new
begin
p4.connect
p4.run_clients.each do
|client|
atime = parsedate(client["Access"])
if((atime + 24 * 3600 * 365) < now)
p4.delete client('-f', client["client"])
end
end
rescue P4Exception
p4.errors.each { |e| puts(e) }
ensure
p4.disconnect
end

p4.disconnect -> true

Disconnect from the Perforce Server.

APIs for Scripting

Chapter 2. PARuby

p4 = P4.new
p4.connect
p4.disconnect

p4.each_<spectype<(arguments) -> anArray

The each_<spectype> methods are shortcut methods that allow you to quickly iterate through
clients, labels, branches, etc. Valid <spectype>s are clients, labels, branches, changes,
streams, jobs, users, groups, depots and servers. Valid arguments are any arguments that
would be valid for the corresponding run_<spectype> command.

For example, to iterate through clients:

p4.each_clients do
Icl

work with the retrieved client spec
end

is equivalent to:

clients = p4.run_clients
clients.each do
lcl
client = p4.fetch_client(c['client'])
work with the retrieved client spec
end

p4.env -> string

Get the value of a Perforce environment variable, taking into account P4CONFIG files and (on
Windows and OS X) the registry or user preferences.

p4 = P4.new
puts p4.env("P4PORT")

p4.errors -> anArray

Returns the array of errors which occurred during execution of the previous command.

p4 = P4.new
begin
p4.connect
p4.exception_level(P4::RAISE_ERRORS) # ignore "File(s) up-to-date"
files = p4.run_sync
rescue P4Exception
p4.errors.each { |e| puts(e) }
ensure
p4.disconnect
end

APIs for Scripting

17

Chapter 2. PARuby

p4.exception_level= aninteger -> aninteger

Configures the events which give rise to exceptions. The following three levels are supported:

® P4::RAISE_NONE disables all exception raising and makes the interface completely
procedural.

® P4::RAISE_ERRORS causes exceptions to be raised only when errors are encountered.

® P4::RAISE_ALL causes exceptions to be raised for both errors and warnings. This is the
default.

p4 = P4.new

p4.exception_level = P4::RAISE_ERRORS

p4.connect # P4Exception on failure

p4.run_sync # File(s) up-to-date is a warning so no exception is raised
p4.disconnect

p4.exception_level -> aNumber
Returns the current exception level.
p4.fetch_<spectype>([name]) -> aP4::Spec

The fetch_<spectype> methods are shortcut methods that allow you to quickly fetch the
definitions of clients, labels, branches, etc. They're equivalent to:

p4.run("<spectype>", '-o', ...).shift

For example:

p4 = P4.new

begin
p4.connect
client = p4.fetch_client()
other_client = p4.fetch_client("other")
label = p4.fetch_label("somelabel")

rescue P4Exception

p4.errors.each { |e| puts(e) }
ensure

p4.disconnect
end

p4.format_spec("<spectype>", aHash)-> aString

Converts the fields in a hash containing the elements of a Perforce form (spec) into the string
representation familiar to users.

The first argument is the type of spec to format: for example, client, branch, label, and so on.
The second argument is the hash to parse.

APIs for Scripting

Chapter 2. PARuby

There are shortcuts available for this method. You can use:

p4.format_<spectype>(hash)

instead of:

p4.format_spec("<spectype>", hash)

where <spectype> is the name of a Perforce spec, such as client, label, etc.

p4.format_<spectype> aHash -> aHash

The format_<spectype> methods are shortcut methods that allow you to quickly fetch the
definitions of clients, labels, branches, etc. They're equivalent to:

p4.format_spec("<spectype>", aHash)

p4.handler= aHandler -> aHandler

Set the current output handler. This should be a subclass of P4: :OutputHandler.
p4.handler -> aHandler

Get the current output handler.

p4.host=aString -> aString

Set the name of the current host. If not called, defaults to the value of P4HOST taken from any

P4CONFIG file present, or from the environment as per the usual Perforce convention. Must be
called before connecting to the Perforce server.

p4 = P4.new
p4.host = "workstation123.perforce.com"
p4.connect

p4.disconnect

p4.host -> aString

Get the current hostname.

p4 = P4.new
puts(p4.host)

p4.input= (aString|aHash|anArray) -> aString|aHash|anArray

Store input for the next command.

APIs for Scripting

Chapter 2. PARuby

Call this method prior to running a command requiring input from the user. When the
command requests input, the specified data will be supplied to the command. Typically,
commands of the form p4 cmd -1i are invoked using the P4#save_<spectype>() methods,
which call P4#input() internally; there is no need to call P4#input() when using the
P4#tsave <spectype>() shortcuts.

You may pass a string, a hash, or (for commands that take multiple inputs from the user) an
array of strings or hashes. If you pass an array, note that the array will be shifted each time
Perforce asks the user for input.

p4 = P4.new
p4.connect

change = p4.run_change("-o").shift
change["Description"] = "Autosubmitted changelist"

p4.input = change
p4.run_submit("-i")

p4.disconnect

p4.maxlocktime= aninteger -> aninteger

Limit the amount of time (in milliseconds) spent during data scans to prevent the server from
locking tables for too long. Commands that take longer than the limit will be aborted. The
limit remains in force until you disable it by setting it to zero. See p4 help maxlocktime for
information on the commands that support this limit.

p4 = P4.new
begin
p4.connect
p4.maxlocktime = 10000 # 10 seconds
files = p4.run_sync
rescue P4Exception => ex
p4.errors.each { |e| $stderr.puts(e) }
ensure
p4.disconnectend

p4.maxlocktime -> aninteger

Get the current maxlocktime setting.

p4 = P4.new
puts(p4.maxlocktime)

p4.maxresults= aninteger -> aninteger

Limit the number of results Perforce permits for subsequent commands. Commands that
produce more than this number of results will be aborted. The limit remains in force until you
disable it by setting it to zero. See p4 help maxresults for information on the commands that
support this limit.

20

APIs for Scripting

Chapter 2. PARuby

p4 = P4.new
begin
p4.connect
p4.maxresults = 100
files = p4.run_sync
rescue P4Exception => ex
p4.errors.each { |e| $stderr.puts(e) }
ensure
p4.disconnect
end

p4.maxresults -> aninteger

Get the current maxresults setting.

p4 = P4.new
puts(p4.maxresults)

p4.maxscanrows= aninteger -> aninteger

Limit the number of database records Perforce will scan for subsequent commands.
Commands that attempt to scan more than this number of records will be aborted. The
limit remains in force until you disable it by setting it to zero. See p4 help maxscanrows for
information on the commands that support this limit.

p4 = P4.new
begin
p4.connect
p4.maxscanrows = 100
files = p4.run_sync
rescue P4Exception => ex
p4.errors.each { |e| $stderr.puts(e) }
ensure
p4.disconnectend

p4.maxscanrows -> aninteger

Get the current maxscanrows setting.

p4 = P4.new
puts(p4.maxscanrows)

p4.messages -> aP4::Message

Returns a message from the Perforce Server in the form of a P4: :Message object.

APIs for Scripting

Chapter 2. PARuby

p4 = P4.new

p4.exception_level = P4::RAISE_NONE

p4.run_sync

p4.run_sync # this second sync should return "File(s) up-to-date.’
W = p4.messages[0]

puts (w.to s)

p4.p4config_file -> aString

Get the path to the current P4CONFIG file.

p4 = P4.new
puts(p4.piconfig file)

p4.parse_<spectype>(aString) -> aP4::Spec

This is equivalent to:

p4.parse_spec("<spectype>", aString)

p4.parse_spec("<spectype>", aString) -> aP4::Spec

Parses a Perforce form (spec) in text form into a Ruby hash using the spec definition obtained
from the server.

The first argument is the type of spec to parse: client, branch, label, and so on. The second
argument is the string buffer to parse.

Note that there are shortcuts available for this method. You can use:

p4.parse_<spectype>(buf)

instead of:

p4.parse_spec("<spectype>", buf)

Where <spectype> is one of client, branch, label, and so on.

p4.password= aString -> aString

Set your Perforce password, in plain text. If not used, takes the value of P4PASSWD from any
P4CONFIG file in effect, or from the environment according to the normal Perforce conventions.
This password will also be used if you later call p4.run_login to login using the 2003.2 and
later ticket system.

p4 = P4.new
p4.password = "mypass”
p4.connect
p4.run_login

22

APIs for Scripting

Chapter 2. PARuby

p4.password -> aString

Get the current password or ticket. This may be the password in plain text, or if you've used
P4#trun_login(), it'll be the value of the ticket you've been allocated by the server.

p4 = P4.new
puts(p4.password)

p4.port= aString -> aString

Set the host and port of the Perforce server you want to connect to. If not called, defaults to the
value of P4PORT in any P4CONFIG file in effect, and then to the value of PAPORT taken from the
environment.

p4 = P4.new
p4.port = "localhost:1666"
p4.connect

p4.disconnect

p4.port -> aString

Get the host and port of the current Perforce server.

p4 = P4.new
puts(p4.port)

p4.prog= aString -> aString

Set the name of the program, as reported to Perforce system administrators running p4
monitor show -ein Perforce 2004.2 or later releases.

p4 = P4.new
p4.prog = "sync-script"”
p4.connect

p4.disconnect

p4.prog -> aString

Get the name of the program as reported to the Perforce Server.

p4 = P4.new
p4.prog = "sync-script"
puts(p4.prog)

p4.progress= aProgress -> aProgress

Set the current progress indicator. This should be a subclass of P4: :Progress.

APIs for Scripting 23

Chapter 2. PARuby

p4.progress -> aProgress
Get the current progress indicator.
p4.run_<cmd>(arguments) -> anArray

This is equivalent to:

p4.run("cmd", arguments...)

p4.run(aCommand, arguments...) -> anArray

Base interface to all the run methods in this API. Runs the specified Perforce command with
the arguments supplied. Arguments may be in any form as long as they can be converted to
strings by to_s.

The P4#run() method returns an array of results whether the command succeeds or fails;
the array may, however, be empty. Whether the elements of the array are strings or hashes
depends on (a) server support for tagged output for the command, and (b) whether tagged
output was disabled by calling p4.tagged = false.

In the event of errors or warnings, and depending on the exception level in force at the time,
Pattrun() will raise a P4Exception. If the current exception level is below the threshold for the
error/ warning, P4#run() returns the output as normal and the caller must explicitly review
Patterrors() and P4#warnings() to check for errors or warnings.

p4 = P4.new

p4.connect

spec = p4.run("client", "-0").shift
p4.disconnect

Shortcuts are available for P4#run(). For example:

p4.run_command(args)

is equivalent to:

p4.run("command", args)

There are also some shortcuts for common commands such as editing Perforce forms and
submitting. Consequently, this:

p4 = P4.new

p4.connect

clientspec = p4.run_client("-o").shift
clientspec["Description”] = "Build client"

p4.input = clientspec
p4.run_client("-i")
p4.disconnect

24

APIs for Scripting

Chapter 2. PARuby

may be shortened to:

p4 = P4.new

p4.connect

clientspec = p4.fetch_client

clientspec["Description”] = "Build client"
p4.save_client(clientspec)

p4.disconnect

The following are equivalent:

p4.delete <spectype> p4.run("<spectype>", "-d")

p4.fetch_<spectype>(p4.run("<spectype>", "-o").shift

p4.save_<spectype>(p4.input = specp4.run("<spectype>", "-i")

As the commands associated with P4#fetch_<spectype>() typically return only one item,
these methods do not return an array, but instead return the first result element.

For convenience in submitting changelists, changes returned by P4#fetch_change() can be
passed to P4#frun_submit. For example:

p4 = P4.new

p4.connect

spec = p4.fetch_changespec["Description”] = "Automated change"
p4.run_submit(spec)

p4.disconnect

p4.run_{filelog(fileSpec) -> anArray

Runs a p4 filelog on the fileSpec provided and returns an array of P4: :DepotFile results
when executed in tagged mode, and an array of strings when executed in non-tagged mode.
By default, the raw output of p4 filelog is tagged; this method restructures the output into a
more user-friendly (and object-oriented) form.

p4 = P4.new
begin
p4.connect
p4.run_filelog("index.html").shift.each_revision do
|r]
r.each_integration do
|1l
Do something
end
end

rescue P4Exception

p4.errors.each { |e| puts(e) }
ensure

p4.disconnect
end

APIs for Scripting

25

Chapter 2. PARuby

p4.run_login(arg...) -> anArray
Runs p4 login using a password or ticket set by the user.
p4.run_password(oldpass, newpass) -> anArray

A thin wrapper to make it easy to change your password. This method is (literally) equivalent
to the following code:

p4.input([oldpass, newpass, newpass])
p4.run("password")

For example:

p4 = P4.new
p4.password = "myoldpass”
begin
p4.connect
p4.run_password("myoldpass", "mynewpass")
rescue P4Exception
p4.errors.each { |e| puts(e) }
ensure
p4.disconnect
end

p4.run_resolve(args) [block] -> anArray

Interface to p4 resolve. Without a block, simply runs a non-interactive resolve (typically an
automatic resolve).

p4.run_resolve("-at")

When a block is supplied, the block is invoked once for each merge scheduled by Perforce. For
each merge, a P4: :MergeData object is passed to the block. This object contains the context of
the merge.

The block determines the outcome of the merge by evaluating to one of the following strings:

Block Meaning

string

ay Accept Yours.

at Accept Theirs.

am Accept Merge result.
ae Accept Edited result.
s Skip this merge.

26

APIs for Scripting

Chapter 2. PARuby

Block Meaning
string
q Abort the merge.

For example:

p4.run_resolve() do
[md|
puts("Merging...")
puts("Yours: #{md.your name}")
puts("Theirs: #{md.their name}")
puts("Base: #{md.base_name}")
puts("Yours file: #{md.your path}")
puts("Theirs file: #{md.their path}")
puts("Base file: #{md.base_path}")
puts("Result file: #{md.result_path}")
puts("Merge Hint: #{md.merge hint}")

result = md.merge hint
if(result == "e")
puts("Invoking external merge application”)

result = "s" # If the merge doesn't work, we'll skip
result = "am" if md.run_merge()

end

result

end

p4.run_submit([aHash], [arg...]) -> anArray

Submit a changelist to the server. To submit a changelist, set the fields of the changelist as
required and supply any flags:.

change = p4.fetch_change
change._description = "Some description”
p4.run_submit("-r", change)

You can also submit a changelist by supplying the arguments as you would on the command
line:

p4.run_submit("-d", "Some description”, "somedir/...")

p4.run_tickets() -> anArray

Get a list of tickets from the local tickets file. Each ticket is a hash object with fields for Host,
User, and Ticket.

p4.save_<spectype>(hashOrString, [options]) -> anArray

The save_<spectype> methods are shortcut methods that allow you to quickly update the
definitions of clients, labels, branches, etc. They are equivalent to:

APIs for Scripting 27

Chapter 2. PARuby

p4.input = hashOrStringp4.run("<spectype>", "-i")

For example:

p4 = P4.new
begin
p4.connect
client p4.fetch client()
client["Owner"] = p4.user
p4.save_client(client)
rescue P4Exception
p4.errors.each { |e| puts(e) }
ensure
p4.disconnect
end

p4.server_case_sensitive? -> aBool
Detects whether or not the server is case-sensitive.

p4.server_level -> aninteger

Returns the current Perforce server level. Each iteration of the Perforce Server is given a

level number. As part of the initial communication this value is passed between the client
application and the Perforce Server. This value is used to determine the communication that
the Perforce Server will understand. All subsequent requests can therefore be tailored to meet
the requirements of this Server level.

For more information, see:

http:/ /kb.perforce.com/article /571

p4.server_unicode? -> aBool
Detects whether or not the server is in unicode mode.
p4.set_env=(aString, aString) -> aBool

On Windows or OS X, set a variable in the registry or user preferences. To unset a variable,
pass an empty string as the second argument. On other platforms, an exception is raised.

p4 = P4.new
p4.set_env
p4.set_env

("P4CLIENT", "my workspace")
(IIP4CLIENTII’ nn)

p4.streams=-> aBool

Enable or disable support for streams. By default, streams support is enabled at 2011.1 or
higher (P4#api_level() >=70). Raises a P4Exception if you attempt to enable streams on
a pre-2011.1 server. You can enable or disable support for streams both before and after
connecting to the server.

28

APIs for Scripting

http://kb.perforce.com/article/571

Chapter 2. PARuby

p4 = P4.new
p4.streams = false

p4.streams? -> aBool

Detects whether or not support for Perforce Streams is enabled.

p4 = P4.new

puts (p4.streams?)
p4.tagged = false
puts (p4.streams?)

p4.tagged(aBool) { block }

Temporarily toggles the use of tagged output for the duration of the block, and then resets it
when the block terminates.

p4.tagged= aBool -> aBool

Sets tagged output. By default, tagged output is on.

p4 = P4.new
p4.tagged = false

p4.tagged? -> aBool

Detects whether or not you are in tagged mode.

p4 = P4.new

puts (p4.tagged?)
p4.tagged = false
puts (p4.tagged?)

p4.ticketfile= aString -> aString

Sets the location of the P4TICKETS file.

p4 = P4.new
p4.ticketfile = "/home/bruno/tickets"

p4.ticketfile -> aString

Get the path to the current P4TICKETS file.

p4 = P4.new
puts(p4.ticketfile)

APIs for Scripting

29

Chapter 2. PARuby

p4.track=-> aBool

Instruct the server to return messages containing performance tracking information. By
default, server tracking is disabled.

p4 = P4.new
p4.track = true

p4.track? -> aBool

Detects whether or not performance tracking is enabled.

p4 = P4.new
p4.track = true
puts (p4.track?)
p4.track = false
puts (p4.track?)

p4.track_output -> anArray

If performance tracking is enabled with p4.track=, returns a list of strings corresponding to
the performance tracking output for the most recently-executed command.

p4 = P4.new

p4.track = true

p4.run_info

puts (p4.track_output[o0].slice(0,3)) # should be "rpc"

p4.user= aString -> aString

Set the Perforce username. If not called, defaults to the value of PAUSER taken from any
P4CONFIG file present, or from the environment as per the usual Perforce convention. Must be
called before connecting to the Perforce server.

p4 = P4.new
p4.user = "bruno"
p4.connect

p4.disconnect

p4.user -> aString

Returns the current Perforce username.

p4 = P4.new
puts(p4.user)

30

APIs for Scripting

Chapter 2. PARuby

p4.version= aString -> aString

Set the version of your script, as reported to the Perforce Server.

p4.version -> aString

Get the version of your script, as reported to the Perforce Server.

p4.warnings -> anArray

Returns the array of warnings that arose during execution of the last command.

p4 = P4.new
begin
p4.connect
p4.exception level(P4::RAISE ALL) # File(s) up-to-date is a warning
files = p4.run_sync
rescue P4Exception => ex
p4.warnings.each { |w| puts(w) }
ensure
p4.disconnect
end

APIs for Scripting

31

Chapter 2. PARuby

Class P4Exception

Shallow subclass of RuntimeError to be used for catching Perforce-specific errors. Doesn't
contain any extra information. See P4#ferrors() and P4#twarnings for details of the errors giving
rise to the exception.

Class Methods

None.

Instance Methods

None.

32 APIs for Scripting

Chapter 2. PARuby

Class P4::DepotFile

Description
Utility class providing easy access to the attributes of a file in a Perforce depot. Each
P4: :DepotFile object contains summary information about the file, and a list of revisions

(P4: :Revision objects) of that file. Currently, only the P4#run_filelog() method returns an
array of P4: :DepotFile objects.

Class Methods

None.

Instance Methods

df.depot_file -> aString

Returns the name of the depot file to which this object refers.

df.each_revision { [rev| block } -> revArray

Iterates over each revision of the depot file.

df.revisions -> aArray

Returns an array of revisions of the depot file.

APIs for Scripting

33

Chapter 2. PARuby

Class P4::Revision

Description
Utility class providing easy access to the revisions of a file in a Perforce depot. P4: :Revision

objects can store basic information about revisions and a list of the integrations for that
revision. Created by P4#trun_filelog().

Class Methods

None.

Instance Methods

rev.action -> aString

Returns the name of the action which gave rise to this revision of the file.

rev.change -> aNumber

Returns the change number that gave rise to this revision of the file.

rev.client -> aString

Returns the name of the client from which this revision was submitted.

rev.depot_file -> aString

Returns the name of the depot file to which this object refers.

rev.desc-> aString

Returns the description of the change which created this revision. Note that only the first
31 characters are returned unless you use p4 filelog -L for the first 250 characters, or p4
filelog -1 for the full text.

rev.digest -> aString

Returns the MD5 digest for this revision of the file.

rev.each_integration { |integ| block } -> integArray

Iterates over each the integration records for this revision of the depot file.

rev.filesize -> aNumber

Returns size of this revision.

rev.integrations -> integArray

Returns the list of integrations for this revision.

34 APIs for Scripting

Chapter 2. PARuby

rev.rev ->aNumber

Returns the number of this revision of the file.
rev.time -> aTime

Returns the date/time that this revision was created.

rev.type -> aString

Returns this revision's Perforce filetype.

rev.user -> aString

Returns the name of the user who created this revision.

APIs for Scripting

35

Chapter 2. PARuby

Class P4::Integration

Description

Utility class providing easy access to the details of an integration record. Created by
Pattrun_filelog().

Class Methods

None.

Instance Methods

integ.how -> aString

Returns the type of the integration record - how that record was created.
integ.file -> aPath

Returns the path to the file being integrated to/from.

integ.srev -> aNumber

Returns the start revision number used for this integration.

integ.erev -> aNumber

Returns the end revision number used for this integration.

36 APIs for Scripting

Chapter 2. PARuby

Class P4::Map

Description

The P4: :Map class allows users to create and work with Perforce mappings, without requiring
a connection to a Perforce server.

Class Methods
Map.new ([anArray])-> aMap

Constructs a new P4: :Map object.
Map.join (map1, map2) -> aMap
Join two P4: :Map objects and create a third.

The new map is composed of the left-hand side of the first mapping, as joined to the right-
hand side of the second mapping. For example:

Map depot syntax to client syntax
client_map = P4::Map.new
client map.insert("//depot/main/...", "//client/...")

Map client syntax to local syntax
client_root = P4::Map.new
client root.insert("//client/...'

, "/home/bruno/workspace/...")
Join the previous mappings to map depot syntax to local syntax
local map = P4::Map.join(client map, client root)

local path = local map.translate("//depot/main/www/index.html")

local path is now /home/bruno/workspace/www/index.html

Instance Methods

map.clear -> true

Empty a map.

map.count -> aninteger

Return the number of entries in a map.
map.empty? -> aBool

Test whether a map object is empty.
map.insert(aString, [aString]) -> aMap

Inserts an entry into the map.

APIs for Scripting 37

Chapter 2. PARuby

May be called with one or two arguments. If called with one argument, the string is assumed
to be a string containing either a half-map, or a string containing both halves of the mapping.
In this form, mappings with embedded spaces must be quoted. If called with two arguments,
each argument is assumed to be half of the mapping, and quotes are optional.

called with two arguments:
map.insert("//depot/main/...", "//client/...")

called with one argument containing both halves of the mapping:
map.insert("//depot/live/... //client/live/...")

called with one argument containing a half-map:
This call produces the mapping “"depot/... depot/..."
map.insert("depot/...")

map.translate (aString, [aBool])-> aString

Translate a string through a map, and return the result. If the optional second argument
is true, translate forward, and if it is false, translate in the reverse direction. By default,
translation is in the forward direction.

map.includes? (aString) -> aBool

Tests whether a path is mapped or not.

if(map.includes?("//depot/main/..."))

end

map.reverse -> aMap

Return a new P4: :Map object with the left and right sides of the mapping swapped. The
original object is unchanged.

map.lhs -> anArray

Returns the left side of a mapping as an array.
map.rhs -> anArray

Returns the right side of a mapping as an array.
map.to_a -> anArray

Returns the map as an array.

38

APIs for Scripting

Chapter 2. PARuby

Class P4::MergeData

Description

Class containing the context for an individual merge during execution of a p4 resolve.

Class Methods

None.

Instance Methods

md.your_name() -> aString

Returns the name of "your" file in the merge. This is typically a path to a file in the workspace.

p4.run_resolve() do
|md|
yours = md.your_name
md.merge_hint # merge result
end

md.their_name() -> aString

Returns the name of "their" file in the merge. This is typically a path to a file in the depot.

p4.run_resolve() do
|md |
theirs = md.their_name
md.merge_hint # merge result
end

md.base_name() -> aString

Returns the name of the "base" file in the merge. This is typically a path to a file in the depot.

p4.run_resolve() do
|md|
base = md.base_name
md.merge_hint # merge result
end

md.your_path() -> aString

Returns the path of "your" file in the merge. This is typically a path to a file in the workspace.

APIs for Scripting 39

Chapter 2. PARuby

p4.run_resolve() do
|md|
your_path = md.your_path
md.merge_hint # merge result
end

md.their_path() -> aString

Returns the path of "their" file in the merge. This is typically a path to a temporary file on your
local machine in which the contents of P4: :MergeData#itheir name() have been loaded.

p4.run_resolve() do
|md|
their_name = md.their name
their file = File.open(md.their_path)
md.merge_hint # merge result
end

md.base_path() -> aString

Returns the path of the base file in the merge. This is typically a path to a temporary file on
your local machine in which the contents of P4: :MergeData#base_name() have been loaded.

p4.run_resolve() do
|md|
base_name = md.base_name
base file = File.open(md.base path)
md.merge_hint # merge result
end

md.result_path() -> aString

Returns the path to the merge result. This is typically a path to a temporary file on your local
machine in which the contents of the automatic merge performed by the server have been
loaded.

p4.run_resolve() do
md|
result_file = File.open(md.result_path)
md.merge_hint # merge resultend

md.merge_hint() -> aString

Returns the hint from the server as to how it thinks you might best resolve this merge.

p4.run_resolve() do

|md|

puts (md.merge _hint) # merge result
end

40

APIs for Scripting

Chapter 2. PARuby

md.run_merge() -> aBool

If the environment variable PAMERGE is defined, P4: :MergeData#irun_merge() invokes the
specified program and returns a boolean based on the return value of that program.

p4.run_resolve() do
|md|
if (md.run_merge())
n amll
else
n SIl
end

end

APIs for Scripting

41

Chapter 2. PARuby

Class P4::Message

Description

P4: :Message objects contain error or other diagnostic messages from the Perforce Server;
retrieve them by using the P4#messages () method.

Script writers can test the severity of the messages in order to determine if the server message
consisted of command output (E_INFO), warnings, (E_WARN), or errors (E_FAILED/E_FATAL).

Class methods

None.

Instance methods

message.severity() -> aninteger

Severity of the message, which is one of the following values:

Value Meaning

E_EMPTY No error

E_INFO Informational message only
E_WARN Warning message only
E_FAILED Command failed

E_FATAL Severe error; cannot continue.

message.generic() -> aninteger
Returns the generic class of the error.
message.msgid() -> aninteger
Returns the unique ID of the message.
message.to_s() -> aString
Converts the message into a string.
message.inspect() -> aString

To facilitate debugging, returns a string that holds a formatted representation of the entire
P4: :Message object.

42 APIs for Scripting

Chapter 2. PARuby

Class P4::QutputHandler

Description

The P4: :OutputHandler class is a handler class that provides access to streaming output from
the server. After defining the output handler, set P4#handler () to an instance of a subclass of
P4: :OutputHandler (or use a p4.with_handler(handler) block) to enable callbacks.

By default, P4: :OutputHandler returns P4: :REPORT for all output methods. The different return
options are:

Value Meaning

P4: :REPORT Messages added to output.

P4: :HANDLED Output is handled by class (don't add message to output).

P4::CANCEL Operation is marked for cancel, message is added to output.
Class Methods

new P4::MyHandler.new -> aP4::QutputHandler

Constructs a new subclass of P4: :OutputHandler.

Instance Methods

outputBinary -> int

Process binary data.

outputinfo -> int

Process tabular data.

outputMessage -> int

Process informational or error messages.
outputStat -> int

Process tagged data.

outputText -> int

Process text data.

APIs for Scripting 43

Chapter 2. PARuby

Class P4::Progress

Description
The P4: :Progress class is a handler class that provides access to progress indicators from the

server. After defining the output handler, set P4#progress() to an instance of a subclass of
P4::Progress (or use a p4.with_progress(progress) block) to enable callbacks.

You must implement all five of the following methods: init(), description(), update(),
total(), and done(), even if the implementation consists of trivially returning 0.

Class Methods

new P4::MyProgress.new -> aP4::Progress

Constructs a new subclass of P4: :Progress.

Instance Methods

init-> int

Initialize progress indicator.

description -> int

Description and type of units to be used for progress reporting.
update -> int

If non-zero, user has requested a cancellation of the operation.
total -> int

Total number of units expected (if known).

done -> int

If non-zero, operation has failed.

44 APIs for Scripting

Chapter 2. PARuby

Class P4::Spec

Description

The P4: :Spec class is a hash containing key /value pairs for all the fields in a Perforce form. It
provides two things over and above its parent class (Hash):

e Fieldname validation. Only valid field names may be set in a P4: : Spec object. Note that only
the field name is validated, not the content.

e Accessor methods for easy access to the fields.

Class Methods

new P4::Spec.new(anArray) -> aP4::Spec

Constructs a new P4: :Spec object given an array of valid fieldnames.

Instance Methods

spec._<fieldname> -> aValue

Returns the value associated with the field named <fieldname>. This is equivalent to
spec["<fieldname>"] with the exception that when used as a method, the fieldnames may
be in lowercase regardless of the actual case of the fieldname.

client = p4.fetch_client()
root = client._root
desc = client._description

spec._<fieldname>= aValue -> aValue

Updates the value of the named field in the spec. Raises a PAException if the fieldname is not
valid for specs of this type.

p4.fetch client()
client. root "/home/bruno/new-client"
client._description "My new client spec”
p4.save_client(client)

client

spec.permitted_fields -> anArray

Returns an array containing the names of fields that are valid in this spec object. This does
not imply that values for all of these fields are actually set in this object, merely that you may
choose to set values for any of these fields if you want to.

APIs for Scripting 45

Chapter 2. PARuby

client = p4.fetch client()
spec.permitted fields.each do

| field |

printf ("%14s = %s\n", field, client[field])
end

46

APIs for Scripting

Chapter3 P4Per|

Introduction

P4Perl is a Perl module that provides an object-oriented API to the Perforce version
management system. Using P4Perl is faster than using the command-line interface in scripts,
because multiple command can be executed on a single connection, and because it returns the
Perforce Server's responses as Perl hashes and arrays.

The main features are:

* Get Perforce data and forms in hashes and arrays.

Edit Perforce forms by modifying hashes.

¢ Run as many commands on a connection as required.

The output of commands is returned as a Perl array.

The elements of the array returned are strings or, where appropriate, hash references.

The most recent release of P4Perl is 2014.1.

System Requirements

P4Perl is supported on Windows, Linux, Solaris, OS X, and FreeBSD. To build P4Perl, your
development machine must also have:

Perl 5.12, 5.14, or 5.16 (ActivePerl on Windows) development files.

make (or nmake on Windows)

The 2014.1 Perforce C/C++ API for your target platform. Older releases might work, but are
not supported.

The same C++ compiler used to build the Perforce C++ API on your target platform.

(If you get "unresolved symbol" errors when building or running P4Perl, you probably used
the wrong compiler or the wrong Perforce API build.)

Installing P4Perl

You can download P4Perl from the Perforce web site:

http:/ /www.perforce.com / product/components/apis

After downloading, you can either run the installer or build the interface from source, as
described in the release notes.

Programming with P4Perl

The following example shows how to connect to a Perforce server, run a p4 info command,
and open a file for edit.

APIs for Scripting 47

http://www.perforce.com/product/components/apis

Chapter 3. P4Perl

use P4;
my $p4 = new P4;
$p4->SetClient($clientname);
$p4->SetPort($paport);
$p4->SetPassword($p4password);
$p4->Connect()
or die("Failed to connect to Perforce Server");

my $info = $p4->Run("info");
$p4->RunEdit("file.txt");
die("Failed to edit file.txt")
if $p4->ErrorCount()
or $p4->WarningCount;

$p4->Disconnect();

Connecting to Perforce over SSL

Scripts written with P4Perl use any existing P4TRUST file present in their operating
environment (by default, .p4trust in the home directory of the user that runs the script).

If the fingerprint returned by the server fails to match the one installed in the P4TRUST file
associated with the script's run-time environment, your script will (and should!) fail to connect
to the server.

P4Perl Classes

The P4 module consists of several public classes:

* “P4” on page 48

¢ “P4::DepotFile” on page 52

® “P4::Revision” on page 52

* “P4::Integration” on page 53

e “P4::Map” on page 53

e “P4::MergeData” on page 54

® “P4::Message” on page 54

e “P4::OutputHandler” on page 55

® “P4::Progress” on page 55

® “P4::Spec” on page 56

The following tables provide brief details about each public class.

P4

The main class used for executing Perforce commands. Almost everything you do with P4Perl
will involve this class.

48 APIs for Scripting

Chapter 3. P4Perl

Method Description
new() Construct a new P4 object.

Identify()

Print build information including P4Perl version and Perforce API
version.

ClearHandler() Clear the output handler.

Connect() Initialize the Perforce client and connect to the Server.

Disconnect() Disconnect from the Perforce Server.

ErrorCount() Returns the number of errors encountered during execution of the
last command.

Errors() Returns a list of the error strings received during execution of the
last command.

Fetch<Spectype> () Shorthand for running;:

$p4->Run("<spectype>", "-o");
Format<Spectype>() Shorthand for running:

FormatSpec()

$p4->FormatSpec("<spectype>", hash);

Converts a Perforce form of the specified type (client/label etc.) held
in the supplied hash into its string representation.

GetApilevel()

Get current API compatibility level.

GetCharset() Get character set when connecting to Unicode servers.

GetClient() Get current client workspace (P4CLIENT).

GetCwd() Get current working directory.

GetEnv() Get the value of a Perforce environment variable, taking into account
P4CONFIG files and (on Windows or OS X) the registry or user
preferences.

GetHandler() Get the output handler.

GetHost() Get the current hostname.

GetMaxLockTime() Get MaxLockTime used for all following commands.

GetMaxResults() Get MaxResults used for all following commands.

GetMaxScanRows () Get MaxScanRows used for all following commands.

APIs for Scripting

49

Chapter 3. P4Perl

Method Description

GetPassword() Get the current password or ticket.

GetPort() Get host and port (P4PORT).

GetProg() Get the program name as shown by the p4 monitor show -e

command.

GetProgress()

Get the progress indicator.

GetTicketFile() Get the location of the P4TICKETS file.

GetUser() Get the current username (P4USER).

GetVersion() Get the version of your script, as reported to the Perforce Server.

IsConnected() Test whether or not session has been connected and /or has been
dropped.

IsStreams() Test whether or not streams are enabled.

IsTagged() Test whether or not tagged output is enabled.

IsTrack() Test whether or not server performance tracking is enabled.

Iterate<Spectype>() Iterate through spec results.

Messages() Return an array of P4: :Message objects, one for each message sent by

the server.

P4ConfigFile()

Get the location of the configuration file used (P4CONFIG).

Parse<Spectype>() Shorthand for running;:
$p4-ParseSpec("<spectype>", buffer);

ParseSpec() Converts a Perforce form of the specified type (client, label, etc.)
held in the supplied string into a hash and returns a reference to that
hash.

RunCmd () Shorthand for running;:

$p4-Run("cmd", arg, ...);

Run() Run a Perforce command and return its results. Check for errors
with P4: :ExrrorCount().

RunFilelog() Runs a p4 filelog on the fileSpec provided and returns an array of
P4: :DepotFile objects.

RunLogin() Runs p4 login using a password or ticket set by the user.

50

APIs for Scripting

Chapter 3. P4Perl

Method Description

RunPassword() A thin wrapper for changing your password.
RunResolve() Interface to p4 resolve.

RunSubmit () Submit a changelist to the server.
RunTickets() Get a list of tickets from the local tickets file.

Save<Spectype>()

ServerCaseSensitive(

Shorthand for running:

$p4->SetInput($spectype);
$p4->Run("<spectype>", "-i");

Returns an integer specifying whether or not the server is case-
sensitive.

Serverlevel() Returns an integer specifying the server protocol level.
ServerUnicode() Returns an integer specifying whether or not the server is in Unicode

mode.

SetApilevel()

Specify the API compatibility level to use for this script.

SetCharset() Set character set when connecting to Unicode servers.

SetClient() Set current client workspace (P4CLIENT).

SetCwd() Set current working directory.

SetEnv() On Windows or OS X, set an environment variable in the registry or
user preferences.

SetHandler() Set the output handler.

SetHost() Set the name of the current host (P4HOST).

SetInput() Save the supplied argument as input to be supplied to a subsequent
command.

SetMaxLockTime() Set MaxLockTime used for all following commands.

SetMaxResults() Set MaxResults used for all following commands.

SetMaxScanRows () Set MaxScanRows used for all following commands.

SetPassword() Set Perforce password (P4PASSWD).

SetPort() Set host and port (P4PORT).

SetProg() Set the program name as shown by the p4 monitor show -e

command.

APIs for Scripting

51

Chapter 3. P4Perl

Method Description

SetProgress() Set the progress indicator.

SetStreams() Enable or disable streams support.

SetTicketFile() Set the location of the P4TICKETS file.

SetTrack() Activate or deactivate server performance tracking. By default,
tracking is off (0).

SetUser () Set the Perforce username (P4USER).

SetVersion() Set the version of your script, as reported to the Perforce Server.

Tagged()

Toggles tagged output (1 or 0). By default, tagged output is on (1).

TrackOutput()

If performance tracking is enabled with SetTrack() returns an array
of strings with tracking output.

WarningCount()

Returns the number of warnings issued by the last command.

Warnings ()

P4::DepotFile

Returns a list of the warning strings received during execution of the
last command.

Utility class allowing access to the attributes of a file in the depot. Returned by

P4::RunFilelog().

Method Description

DepotFile() Name of the depot file to which this object refers.

Revisions() Returns an array of revision objects for the depot file.
P4::Revision
Utility class allowing access to the attributes of a revision of a file in the depot. Returned by
P4::RunFilelog().

Method Description

Action() Returns the action that created the revision.

Change()

Returns the changelist number that gave rise to this revision of the
file.

Client() Returns the name of the client from which this revision was
submitted.
DepotFile() Returns the name of the depot file to which this object refers.

52

APIs for Scripting

Chapter 3. P4Perl

Method Description

Desc() Returns the description of the change which created this revision.
Digest() Returns the MD5 digest for this revision.

FileSize() Returns the size of this revision.

Integrations()

Returns an array of P4: :Integration objects representing all
integration records for this revision.

Rev Returns the number of this revision.

Time() Returns date/time this revision was created.

Type() Returns the Perforce filetype of this revision.

User() Returns the name of the user who created this revision.
P4::Integration

Utility class allowing access to the attributes of an integration record for a revision of a file in
the depot. Returned by P4: :RunFilelog().

Method Description

How() Integration method (merge /branch/copy/ignored).
File() Integrated file.

SRev() Start revision.

ERev() End revision.

P4::Map

A class that allows users to create and work with Perforce mappings without requiring a
connection to the Perforce Server.

Method Description

New() Construct a new Map object (class method).
Join() Joins two maps to create a third (class method).
Clear() Empties a map.

Count() Returns the number of entries in a map.
IsEmpty() Tests whether or not a map object is empty.
Insert() Inserts an entry into the map.

APIs for Scripting

53

Chapter 3. P4Perl

Method Description

Translate() Translate a string through a map.

Includes() Tests whether a path is mapped.

Reverse() Returns a new mapping with the left and right sides reversed.
Lhs Returns the left side as an array.

Rhs Returns the right side as an array.

AsArray() Returns the map as an array.

P4::MergeData

Class encapsulating the context of an individual merge during execution of a p4 resolve
command. Passed to P4: :RunResolve.

Method Description

YourName() Returns the name of "your" file in the merge. (file in workspace)

TheirName() Returns the name of "their" file in the merge. (file in the depot)

BaseName() Returns the name of "base" file in the merge. (file in the depot)

YourPath() Returns the path of "your" file in the merge. (file in workspace)

TheirPath() Returns the path of "their" file in the merge. (temporary file on
workstation into which TheirName() has been loaded)

BasePath() Returns the path of the base file in the merge. (temporary file on
workstation into which BaseName () has been loaded)

ResultPath() Returns the path to the merge result. (temporary file on workstation
into which the automatic merge performed by the server has been
loaded)

MergeHint() Returns hint from server as to how user might best resolve merge.

RunMergeTool() If the environment variable PAMERGE is defined, run it and indicate

whether or not the merge tool successfully executed.

P4::Message

Class encapsulating the context of an individual error during execution of Perforce commands.

Passed to P4: :Messages().

Method Description
GetSeverity() Returns the severity class of the error.

APIs for Scripting

Chapter 3. P4Perl

Method Description

GetGeneric() Returns the generic class of the error message.
GetId() Returns the unique ID of the error message.
GetText() Get the text of the error message.

P4::0utputHandler

Handler class that provides access to streaming output from the server; call P4: : SetHandler ()
with an implementation of P4: :OutputHandler to enable callbacks:

Method Description

OutputBinary() Process binary data.
OutputInfo() Process tabular data.
OutputMessage() Process information or errors.
OutputStat() Process tagged output.
OutputText() Process text data.

P4::Progress

Handler class that provides access to progress indicators from the server; call
P4::SetProgress() with an implementation of P4: :Progress to enable callbacks:

Method Description
Init() Initialize progress indicator as designated type.
Total() Total number of units (if known).
Description() Description and type of units to be used for progress reporting.
Update() If non-zero, user has requested a cancellation of the operation.
Done() If non-zero, operation has failed.

P4::Resolver

Class for handling resolves in Perforce.

Method Description
Resolve() Perform a resolve and return the resolve decision as a string.

APIs for Scripting 55

Chapter 3. P4Perl

P4::Spec

Utility class allowing access to the attributes of the fields in a Perforce form.

Method Description
fieldname() Return the value associated with the field named fieldname.
fieldname() Set the value associated with the field named fieldname.
PermittedFields() Lists the fields that are permitted for specs of this type.

56

APIs for Scripting

Chapter 3. P4Perl

Class P4

Description

Main interface to the Perforce client API.

This module provides an object-oriented interface to the Perforce version management system.
Data is returned in Perl arrays and hashes and input can also be supplied in these formats.

Each P4 object represents a connection to the Perforce Server, and multiple commands may be
executed (serially) over a single connection.

The basic model is to:
1. Instantiate your P4 object.
2. Specify your Perforce client environment.
e SetClient()
e SetHost()
¢ SetPassword()
e SetPort()
e SetUser()
3. Connect to the Perforce service.

The Perforce protocol is not designed to support multiple concurrent queries over the same
connection. Multithreaded applications that use the C++ API or derived APIs (including
P4Perl) should ensure that a separate connection is used for each thread, or that only one
thread may use a shared connection at a time.

4. Run your Perforce commands.

5. Disconnect from the Perforce service.

Class methods

P4::new() -> P4

Construct a new P4 object. For example:

my $p4 = new P4;

P4::1dentify() -> string

Print build information including P4Perl version and Perforce API version.

print P4::Identify();

APIs for Scripting 57

Chapter 3. P4Perl

The constants 0S5, PATCHLEVEL and VERSION are also available to test an installation of P4Perl
without having to parse the output of P4: :Identify(). Also reports the version of the
OpenSSL library used for building the underlying Perforce C++ API with which P4Perl was
built.

P4::ClearHandler() -> undef
Clear any configured output handler.

P4::Connect() -> bool

Initializes the Perforce client and connects to the server. Returns false on failure and true on
success.

P4::Disconnect() -> undef

Terminate the connection and clean up. Should be called before exiting.
P4::ErrorCount() -> integer

Returns the number of errors encountered during execution of the last command.
P4::Errors() -> list

Returns a list of the error strings received during execution of the last command.
P4::Fetch<Spectype>([name]) -> hashref

Shorthand for running;:

$p4->Run("<spectype>", "-0");

and returning the first element of the result array. For example:

$label = $p4->FetchLabel($labelname);
$change = $p4a->FetchChange($changeno);
$clientspec = $p4->FetchClient($clientname);

P4::Format<Spectype>(hash) -> string

Shorthand for running;:

$p4->FormatSpec("<spectype>", hash);

and returning the results. For example:

$change = $p4->FetchChange();
$change->{ 'Description’ } = 'Some description';
$form = $p4a->FormatChange($change);

printf("Submitting this change:\n\n%s\n", $form);
$p4->RunSubmit($change);

58

APIs for Scripting

Chapter 3. P4Perl

P4::FormatSpec($spectype, $string) -> string

Converts a Perforce form of the specified type (client, label, etc.) held in the supplied hash
into its string representation. Shortcut methods are available that obviate the need to supply
the type argument. The following two examples are equivalent:

my $client = $p4->FormatSpec("client", $hash);

my $client = $p4->FormatClient($hash);

P4::GetApiLevel() -> integer

Returns the current API compatibility level. Each iteration of the Perforce Server is given a
level number. As part of the initial communication, the client protocol level is passed between
client application and the Perforce Server. This value, defined in the Perforce API, determines
the communication protocol level that the Perforce client will understand. All subsequent
responses from the Perforce Server can be tailored to meet the requirements of that client
protocol level.

For more information, see:

http:/ /kb.perforce.com/article /512

P4::GetCharset() -> string

Return the name of the current charset in use. Applicable only when used with Perforce
servers running in unicode mode.

P4::GetClient() -> string

Returns the current Perforce client name. This may have previously been set by
P4::SetClient(), or may be taken from the environment or P4CONFIG file if any. If all that fails,
it will be your hostname.

P4::GetCwd() -> string
Returns the current working directory as your Perforce client sees it.
P4::GetEnv($var) -> string

Returns the value of a Perforce environment variable, taking into account the settings
of Perforce variables in PACONFIG files, and, on Windows or OS X, in the registry or user
preferences.

P4::GetHandler() -> Handler
Returns the output handler.
P4::GetHost() -> string

Returns the client hostname. Defaults to your hostname, but can be overridden with
P4::SetHost()

APIs for Scripting 59

http://kb.perforce.com/article/512

Chapter 3. P4Perl

P4::GetMaxLockTime($value) -> integer
Get the current maxlocktime setting.
P4::GetMaxResults($value) -> integer
Get the current maxresults setting.
P4::GetMaxScanRows($value) -> integer
Get the current maxscanrows setting.
P4::GetPassword() -> string

Returns your Perforce password. Taken from a previous call to P4: : SetPassword() or
extracted from the environment ($ENV{P4PASSWD}), or a P4CONFIG file.

P4::GetPort() -> string

Returns the current address for your Perforce server. Taken from a previous call to
P4::SetPort(), or from $ENV{P4PORT} or a P4CONFIG file.

P4::GetProg() -> string

Get the name of the program as reported to the Perforce Server.

P4::GetProgress() -> Progress

Returns the progress indicator.
P4::GetTicketFile([$string]) -> string
Return the path of the current PATICKETS file.
P4::GetUser() -> String

Get the current user name. Taken from a previous call to P4: :SetUser (), or from $ENV{P4USER}
or a PACONFIG file.

P4::GetVersion($string) -> string

Get the version of your script, as reported to the Perforce Server.

P4::IsConnected() -> bool

Returns true if the session has been connected, and has not been dropped.

P4::1sStreams() -> bool

Returns true if streams support is enabled on this server.

P4::IsTagged() -> bool

Returns true if Tagged mode is enabled on this client.

60

APIs for Scripting

Chapter 3. P4Perl

P4::1sTrack() -> bool

Returns true if server performance tracking is enabled for this connection.

P4::Iterate<Spectype>(arguments) -> object

Iterate over spec results. Returns an iterable object with next() and hasNext() methods.

Valid <spectype>s are clients, labels, branches, changes, streams, jobs, users, groups, depots
and servers. Valid arguments are any arguments that would be valid for the corresponding
P4::RunCmd() command.

Arguments can be passed to the iterator to filter the results, for example, to iterate over only
the first two client workspace specifications:

$p4a->IterateClients("-m2");

You can also pass the spec type as an argument:

$pa->Iterate("changes");

For example, to iterate through client specs:

use P4;

my $p4 = P4->new;
$p4->Connect or die "Couldn't connect";
my $i = $p4->IterateClients();
while($i->hasNext) {
my $spec = $i->next;
print("Client: " . ($spec->{Client} or "<undef>") . "\n");
}

P4::Messages() -> list

Returns an array of P4: :Message() objects, one for each message (info, warning or error) sent
by the server.

P4::P4ConfigFile() -> string
Get the path to the current P4CONFIG file.

P4::Parse<Spectype>($string) -> hashref

Shorthand for running;:

$p4-ParseSpec("<spectype>", buffer);

and returning the results. For example:

APIs for Scripting 61

Chapter 3. P4Perl

$p4 = new P4;
$p4->Connect() or die("Failed to connect to server");
$client = $p4->FetchClient();

Returns a hashref
$client = $p4->FormatClient($client);

Convert to string

$client = $p4->ParseClient($client);
Convert back to hashref

FIXME

Comments in forms are preserved. Comments are stored as a comment key in the spec hash and
are accessible. For example:

my $spec = $pc->ParseGroup('my_group');
print $spec->{'comment'};

P4::ParseSpec($spectype, $string) -> hashref

Converts a Perforce form of the specified type (client/label etc.) held in the supplied string
into a hash and returns a reference to that hash. Shortcut methods are available to avoid the
need to supply the type argument. The following two examples are equivalent:

my $hash = $p4a->ParseSpec("client", $clientspec);

my $hash = $p4->ParseClient($clientspec);

P4::Run<Cmd>([$arg...]) -> list | arrayref

Shorthand for running;:

$p4-Run("cmd", arg, ...);

and returning the results.
P4::Run("<cmd>", [$arg...]) -> list | arrayref

Run a Perforce command and return its results. Because Perforce commands can partially
succeed and partially fail, it is good practice to check for errors using P4: :ExrrorCount().

Results are returned as follows:
* A list of results in array context
¢ An array reference in scalar context

The AutoLoader enables you to treat Perforce commands as methods:

APIs for Scripting

Chapter 3. P4Perl

p4->RunEdit("filename.txt");

is equivalent to:

$p4->Run("edit", "filename.txt");

Note that the content of the array of results you get depends on (a) whether you're using
tagged mode, (b) the command you've executed, (c) the arguments you supplied, and (d) your
Perforce server version.

Tagged mode and form parsing mode are turned on by default; each result element is a
hashref, but this is dependent on the command you ran and your server version.

In non-tagged mode, each result element is a string. In this case, because the Perforce server
sometimes asks the client to write a blank line between result elements, some of these result

elements can be empty.

Note that the return values of individual Perforce commands are not documented because
they may vary between server releases.

To correlate the results returned by the P4 interface with those sent to the command line client,
try running your command with RPC tracing enabled. For example:

Tagged mode: p4 -Ztag -vrpc=1 describe -s 4321
Non-Tagged mode: p4 -vrpc=1 describe -s 4321

FIXME Pay attention to the calls to client-FstatInfo(), client-OutputText(), client-
OutputData() and client-HandleError (). Each call to one of these functions results in either a
result element, or an error element.

P4::RunFilelog([$args ...], $fileSpec...) -> list | arrayref

Runs a p4 filelog on the fileSpec provided and returns an array of P4: :DepotFile objects
when executed in tagged mode.

P4::RunLogin(...) -> list | arrayref
Runs p4 login using a password or ticket set by the user.
P4::RunPassword($oldpass, Snewpass) -> list | arrayref

A thin wrapper for changing your password from $oldpass to $newpass. Not to be confused
with P4: :SetPassword().

P4::RunResolve([$resolver], [$args ...]) -> string

Run a p4 resolve command. Interactive resolves require the $resolver parameter to be an
object of a class derived from P4: :Resolver. In these cases, the P4: :Resolve() method of this
class is called to handle the resolve. For example:

APIs for Scripting 63

Chapter 3. P4Perl

$resolver = new MyResolver;
$p4->RunResolve($resolver);

To perform an automated merge that skips whenever conflicts are detected:

use P4;

package MyResolver;
our @ISA = qw(P4::Resolver);

sub Resolve($) {
my $self = shift;
my $mergeData = shift;
"s"kip if server-recommended hint is to "e"dit the file,
because such a recommendation implies the existence of a conflict
return "s" if ($mergeData->Hint() eq "e");
return $mergeData->Hint();

}

1;
package main;

$p4 = new P4;
$resolver = new MyResolver;

$p4->Connect() or die("Failed to connect to Perforce");
$p4->RunResolve($resolver, ...);

In non-interactive resolves, no P4: :Resolver object is required. For example:

$p4->RunResolve("at");

P4::RunSubmit($arg | $hashref, ...) -> list | arrayref

Submit a changelist to the server. To submit a changelist, set the fields of the changelist as
required and supply any flags:

$change = $p4->FetchChange();
$change->{ 'Description’ } = "Some description”;
$p4->RunSubmit("-r", $change);

You can also submit a changelist by supplying the arguments as you would on the command
line:

$p4->RunSubmit("-d", "Some description", "somedir/...");

P4::RunTickets() -> list

Get a list of tickets from the local tickets file. Each ticket is a hash object with fields for Host,
User, and Ticket.

64

APIs for Scripting

Chapter 3. P4Perl

P4::Save<Spectype>() -> list | arrayref

Shorthand for running;:

$p4->SetInput($spectype);
$p4a->Run("<spectype>", "-i");

For example:

$p4->Savelabel($label);
$p4->SaveChange($changeno);
$p4->SaveClient($clientspec);

P4::ServerCaseSensitive() -> integer

Returns an integer specifying whether or not the server is case-sensitive.

P4::ServerLevel() -> integer

Returns an integer specifying the server protocol level. This is not the same as, but is closely
aligned to, the server version. To find out your server's protocol level, run p4 -vrpc=5 info
and look for the server2 protocol variable in the output. For more information, see:

http:/ /kb.perforce.com/article /571

P4::ServerUnicode() -> integer
Returns an integer specifying whether or not the server is in Unicode mode.
P4::SetApiLevel($integer) -> undef

Specify the API compatibility level to use for this script. This is useful when you want your
script to continue to work on newer server versions, even if the new server adds tagged output
to previously unsupported commands.

The additional tagged output support can change the server's output, and confound your
scripts. Setting the API level to a specific value allows you to lock the output to an older
format, thus increasing the compatibility of your script.

Must be called before calling P4: :Connect (). For example:

$p4->SetApilevel(67); # Lock to 2010.1 format
$p4->Connect() or die("Failed to connect to Perforce");
etc.

P4::SetCharset($charset) -> undef

Specify the character set to use for local files when used with a Perforce server running in
unicode mode. Do not use unless your Perforce server is in unicode mode. Must be called
before calling P4: :Connect (). For example:

APIs for Scripting 65

http://kb.perforce.com/article/571

Chapter 3. P4Perl

$p4->SetCharset("winansi");
$p4->SetCharset("iso8859-1");
$pa->SetCharset("utf8");

etc.

P4::SetClient($client) -> undef

Sets the name of your Perforce client workspace. If you don't call this method, then the client
workspace name will default according to the normal Perforce conventions:

1. Value from file specified by P4CONFIG
2. Value from $ENV{P4CLIENT}

3. Hostname

P4::SetCwd($path) -> undef
Sets the current working directory for the client.
P4::SetEnv(Svar, $value) -> undef

On Windows or OS X, set a variable in the registry or user preferences. To unset a variable,
pass an empty string as the second argument. On other platforms, an exception is raised.

$pa->SetEnv("PACLIENT", "my_workspace”);
$P4->SetEnv("PACLIENT", "");

P4::SetHandler(Handler) -> Handler

Sets the output handler.

P4::SetHost($Shostname) -> undef

Sets the name of the client host, overriding the actual hostname. This is equivalent to p4 -
H hostname, and only useful when you want to run commands as if you were on another
machine.

P4::SetInput($string | Shashref | $arrayref) -> undef

Save the supplied argument as input to be supplied to a subsequent command. The input may
be a hashref, a scalar string, or an array of hashrefs or scalar strings. If you pass an array, the
array will be shifted once each time the Perforce command being executed asks for user input.

P4::SetMaxLockTime($integer) -> undef

Limit the amount of time (in milliseconds) spent during data scans to prevent the server from
locking tables for too long. Commands that take longer than the limit will be aborted. The
limit remains in force until you disable it by setting it to zero. See p4 help maxresults for
information on the commands that support this limit.

66

APIs for Scripting

Chapter 3. P4Perl

P4::SetMaxResults($integer) -> undef

Limit the number of results for subsequent commands to the value specified. Perforce will
abort the command if continuing would produce more than this number of results. Once set,
this limit remains in force unless you remove the restriction by setting it to a value of 0.

P4::SetMaxScanRows(Sinteger) -> undef
Limit the number of records Perforce will scan when processing subsequent commands to
the value specified. Perforce will abort the command once this number of records has been

scanned. Once set, this limit remains in force unless you remove the restriction by setting it to
a value of 0.

P4::SetPassword($password) -> undef

Specify the password to use when authenticating this user against the Perforce Server -
overrides all defaults. Not to be confused with P4: :Password().

P4::SetPort($port) -> undef

Set the port on which your Perforce server is listening. Defaults to:

1. Value from file specified by P4CONFIG

2. Value from $ENV{P4PORT}

3. perforce:1666

P4::SetProg($program_name) -> undef

Set the name of your script. This value is displayed in the server log on 2004.2 or later servers.
P4::SetProgress(Progress) -> Progress

Sets the progress indicator.

P4::SetStreams(0 | 1) -> undef

Enable or disable support for streams. By default, streams support is enabled at 2011.1 or
higher (P4: :GetApilLevel() >= 70). Streams support requires a server at 2011.1 or higher. You
can enable or disable support for streams both before and after connecting to the server.

P4::SetTicketFile([$string]) -> string
Set the path to the current P4TICKETS file (and return it).

P4::SetTrack(0| 1) -> undef

Enable (1) or disable (0) server performance tracking for this connection. By default,
performance tracking is disabled.

P4::SetUser(Susername) -> undef

Set your Perforce username. Defaults to:

APIs for Scripting 67

Chapter 3. P4Perl

1. Value from file specified by P4CONFIG
2. Value from C<$ENV{P4USER}>

3. OS username

P4::SetVersion($version) -> undef

Specify the version of your script, as recorded in the Perforce server log file.
P4::Tagged(0| 1| $coderef) -> undef

Enable (1) or disable (0) tagged output from the server, or temporarily toggle it.

By default, tagged output is enabled, but can be disabled (or re-enabled) by calling this
method. If you provide a code reference, you can run a subroutine with the tagged status
toggled for the duration of that reference. For example:

my $GetChangeCounter = sub{ $p4->RunCounter('change')->[0]);
my $changeno = $p4->Tagged(0, $GetChangeCounter);

When running in tagged mode, responses from commands that support tagged output will
be returned in the form of a hashref. When running in non-tagged mode, responses from
commands are returned in the form of strings (that is, in plain text).

P4::TrackOutput() -> list

If performance tracking is enabled with P4: :SetTrack(), returns a list of strings corresponding
to the performance tracking output of the most recently-executed command.

P4::WarningCount() -> integer

Returns the number of warnings issued by the last command.

$p4->WarningCount();

P4::Warnings() -> list

Returns a list of warning strings from the last command

$p4->Warnings();

APIs for Scripting

Chapter 3. P4Perl

Class P4::DepotFile

Description

P4::DepotFile objects are used to present information about files in the Perforce repository.
They are returned by P4: :RunFilelog().

Class Methods

None.

Instance Methods

$df->DepotFile() -> string
Returns the name of the depot file to which this object refers.

$df->Revisions() -> array

Returns an array of P4: :Revision objects, one for each revision of the depot file.

APIs for Scripting

69

Chapter 3. P4Perl

Class P4::Revision

Description

P4: :Revision objects are represent individual revisions of files in the Perforce repository. They
are returned as part of the output of P4: :RunFilelog().

Class Methods

$rev->Integrations() -> array

Returns an array of P4: : Integration objects representing all integration records for this
revision.

Instance Methods

$rev->Action() -> string

Returns the name of the action which gave rise to this revision of the file.
$rev->Change() -> integer

Returns the changelist number that gave rise to this revision of the file.

$rev->Client() -> string

Returns the name of the client from which this revision was submitted.
$rev->DepotFile() -> string

Returns the name of the depot file to which this object refers.

$rev->Desc() -> string

Returns the description of the change which created this revision. Note that only the first
31 characters are returned unless you use p4 filelog -L for the first 250 characters, or p4
filelog -1 for the full text.

$rev->Digest() -> string

Returns the MD5 digest for this revision.

$rev->FileSize() -> string

Returns the size of this revision.

$rev->Rev() -> integer

Returns the number of this revision of the file.

70 APIs for Scripting

Chapter 3. P4Perl

$rev->Time() -> string

Returns the date/time that this revision was created.
$rev->Type() -> string

Returns this revision's Perforce filetype.

$rev->User() -> string

Returns the name of the user who created this revision.

APIs for Scripting

71

Chapter 3. P4Perl

Class P4::Integration

Description

P4::Integration objects represent Perforce integration records. They are returned as part of
the output of P4: :RunFilelog().

Class Methods

None.

Instance Methods

$integ->How() -> string

Returns the type of the integration record - how that record was created.
Sinteg->File() -> string

Returns the path to the file being integrated to/from.

Sinteg->SRev() -> integer

Returns the start revision number used for this integration.
Sinteg->ERev() -> integer

Returns the end revision number used for this integration.

72 APIs for Scripting

Chapter 3. P4Perl

Class P4::Map

Description

The P4: :Map class allows users to create and work with Perforce mappings, without requiring

a connection to a Perforce server.

Class Methods
$map = new P4::Map([array]) -> aMap

Constructs a new P4: :Map object.
$map->Join(map1, map2) -> aMap
Join two P4: :Map objects and create a third.

The new map is composed of the left-hand side of the first mapping, as joined to the right-
hand side of the second mapping. For example:

Map depot syntax to client syntax
$client map = new P4::Map;
$client _map->Insert("//depot/main/...", "//client/...");

Map client syntax to local syntax
$client_root = new P4::Map;
$client root->Insert("//client/...", "/home/bruno/workspace/...");

Join the previous mappings to map depot syntax to local syntax
$local map = P4::Map::Join($client map, $client root);
$local path = $local map->Translate("//depot/main/www/index.html");

$local path is now /home/bruno/workspace/www/index.html

Instance Methods

$map->Clear() -> undef

Empty a map.

$map->Count() -> integer

Return the number of entries in a map.
$map->IsEmpty() -> bool

Test whether a map object is empty.
$map->Insert(string ...) -> undef

Inserts an entry into the map.

APIs for Scripting

73

Chapter 3. P4Perl

May be called with one or two arguments. If called with one argument, the string is assumed
to be a string containing either a half-map, or a string containing both halves of the mapping.
In this form, mappings with embedded spaces must be quoted. If called with two arguments,
each argument is assumed to be half of the mapping, and quotes are optional.

called with two arguments:
$map->Insert("//depot/main/...", "//client/...");

called with one argument containing both halves of the mapping:
$map->Insert("//depot/live/... //client/live/...");

called with one argument containing a half-map:
This call produces the mapping “"depot/... depot/..."
$map->Insert("depot/...");

$map->Translate(string, [bool]) -> string

Translate a string through a map, and return the result. If the optional second argument is 1,
translate forward, and if it is 0, translate in the reverse direction. By default, translation is in
the forward direction.

$map->Includes(string) -> bool

Tests whether a path is mapped or not.

if ($map->Includes("//depot/main/...")) {

, .

$map->Reverse() -> aMap

Return a new P4: :Map object with the left and right sides of the mapping swapped. The
original object is unchanged.

$map->Lhs() -> array

Returns the left side of a mapping as an array.
$map->Rhs() -> array

Returns the right side of a mapping as an array.
$map->AsArray() -> array

Returns the map as an array.

74

APIs for Scripting

Chapter 3. P4Perl

Class P4::MergeData

Description

Class containing the context for an individual merge during execution of a p4 resolve. Users
may not create objects of this class; they are created internally during P4: :RunResolve(), and
passed down to the Resolve() method of a P4: :Resolver subclass.

Class Methods

None.

Instance Methods

$md.YourName() -> string

Returns the name of "your" file in the merge, in client syntax.

$md.TheirName() -> string

Returns the name of "their" file in the merge, in client syntax, including the revision number.
$md.BaseName() -> string

Returns the name of the "base" file in the merge, in depot syntax, including the revision
number.

$md.YourPath() -> string

Returns the path of "your" file in the merge. This is typically a path to a file in the client
workspace.

$md.TheirPath() -> string

Returns the path of "their" file in the merge. This is typically a path to a temporary file on your
local machine in which the contents of P4: :MergeData: : TheirName() have been loaded.

$md.BasePath() -> string

Returns the path of the base file in the merge. This is typically a path to a temporary file on
your local machine in which the contents of P4: :MergeData: :BaseName() have been loaded.

$md.ResultPath() -> string

Returns the path to the merge result. This is typically a path to a temporary file on your local
machine in which the contents of the automatic merge performed by the server have been
loaded.

$md.MergeHint() -> string

Returns a string containing the hint from Perforce's merge algorithm, indicating the
recommended action for performing the resolve.

APIs for Scripting 75

Chapter 3. P4Perl

$md.RunMergeTool() -> integer

If the environment variable PAMERGE is defined, P4: :MergeData: :RunMergeTool() invokes the
specified program and returns true if the merge tool was successfully executed, otherwise
returns false.

76

APIs for Scripting

Chapter 3. P4Perl

Class P4::Message

Description

P4: :Message objects contain error or other diagnostic messages from the Perforce Server; they

are returned by P4: :Messages().

Script writers can test the severity of the messages in order to determine if the server message

consisted of command output (E_INFO), warnings, (E_WARN), or errors (E_FAILED/E_FATAL).

Class methods

None.

Instance methods

$message.GetSeverity() -> int

Severity of the message, which is one of the following values:

Value Meaning

E_EMPTY No error.

E_INFO Informational message only.
E_WARN Warning message only.
E_FAILED Command failed.

E_FATAL Severe error; cannot continue.

$message.GetGeneric() -> int
Returns the generic class of the error.
$message.Getld() -> int

Returns the unique ID of the message.
$message.GetText() -> int

Converts the message into a string.

APIs for Scripting

77

Chapter 3. P4Perl

Class P4::QutputHandler

Description

The P4: :OutputHandler class provides access to streaming output from the server.
After defining the output handler, call P4: : SetHandler () with your implementation of

P4::OutputHandler.

Because P4Perl does not provide a template or superclass, your output handler must
implement all five of the following methods: OutputMessage(), OutputText(), OutputInfo(),
OutputBinary(), and OutputStat(), even if the implementation consists of trivially returning 0

(report only: don't handle output, don't cancel operation).

These methods must return one of the following four values:

Value Meaning

0 Messages added to output (don't handle, don't cancel).

1 Output is handled by class (don't add message to output).

2 Operation is marked for cancel, message is added to output.

3 Operation is marked for cancel, message not added to output.

Class Methods

None.

Instance Methods

$handler.QutputBinary() -> int
Process binary data.

$handler.Outputinfo() -> int

Process tabular data.

$handler.QutputMessage() -> int

Process informational or error messages.

$handler.OutputStat()-> int
Process tagged data.

$handler.OutputText() -> int

Process text data.

78

APIs for Scripting

Chapter 3. P4Perl

Class P4::Progress

Description

The P4: :Progress provides access to progress indicators from the server. After defining the
progress class, call P4: :SetProgress() with your implementation of P4: :Progress.

Because P4Perl does not provide a template or superclass, you must implement all five of
the following methods: Init(), Description(), Update(), Total(), and Done(), even if the
implementation consists of trivially returning 0.

Class Methods

None.

Instance Methods

$progress.Init() -> int

Initialize progress indicator.

$progress.Description(string, int) -> int

Description and type of units to be used for progress reporting.
$progress.Update() -> int

If non-zero, user has requested a cancellation of the operation.
$progress.Total()-> int

Total number of units expected (if known).

$progress.Done() -> int

If non-zero, operation has failed.

APIs for Scripting

Chapter 3. P4Perl

Class P4::Resolver

Description
P4::Resolver is a class for handling resolves in Perforce. It is intended to be subclassed, and
for subclasses to override the Resolve() method. When P4: :RunResolve() is called with a

P4: :Resolver object, it calls the P4: :Resolver: :Resolve() method of the object once for each
scheduled resolve.

Class Methods

None.

Instance Methods

$resolver.Resolve() -> string

Returns the resolve decision as a string. The standard Perforce resolve strings apply:

String Meaning

ay Accept Yours.

at Accept Theirs.

am Accept Merge result.
ae Accept Edited result.
s Skip this merge.

q Abort the merge.

By default, all automatic merges are accepted, and all merges with conflicts are skipped. The
P4::Resolver: :Resolve() method is called with a single parameter, which is a reference to a
P4: :MergeData object.

80 APIs for Scripting

Chapter 3. P4Perl

Class P4::Spec

Description
P4: :Spec objects provide easy access to the attributes of the fields in a Perforce form.

The P4: :Spec class uses Perl's AutoLoader to simplify form manipulation. Form fields can be
accessed by calling a method with the same name as the field prefixed by an underscore (_).

Class Methods
$spec = new P4::Spec($fieldMap) -> array

Constructs a new P4: : Spec object for a form containing the specified fields. (The object also
contains a_fields member that stores a list of field names that are valid in forms of this

type.)

Instance Methods

$spec->_ <fieldname> -> string

Returns the value associated with the field named <fieldname>.

$client = $p4->FetchClient($clientname);
$client-> Root(); # Get client root

$spec->_ <fieldname>($string)-> string

Updates the value of the named field in the spec.

$client = $p4->FetchClient($clientname);
$client-> Root($newroot); # Set client root

$spec->PermittedFields() -> array

Returns an array containing the names of fields that are valid in this spec object. This does
not imply that values for all of these fields are actually set in this object, merely that you may
choose to set values for any of these fields if you want to.

my $client = $p4->FetchClient($clientname);
my @fields = $p4->PermittedFields($client);
foreach $field (@fields) {

print "$field\n";
}

APIs for Scripting 81

82

APIs for Scripting

aaers p4Python

Introduction

P4Python, the Python interface to the Perforce API, enables you to write Python code that
interacts with a Perforce server. P4Python enables your Python scripts to:

Get Perforce data and forms in dictionaries and lists.

Edit Perforce forms by modifying dictionaries.

* Provide exception-based error handling and optionally ignore warnings.

Issue multiple commands on a single connection (performs better than spawning single
commands and parsing the results).

The most recent release of P4Python is 2014.2.

System Requirements

P4Python is supported on Windows, Linux, Solaris, OS X, and FreeBSD.

To build P4Python from source, your development machine must also have:

¢ Python 2.7 or 3.3 development files.

* The 2014.2 Perforce C/C++ API for your target platform.

* The same C++ compiler used to build the Perforce C++ API on your target platform.

(If you get "unresolved symbol" errors when building or running P4Python, you probably
used the wrong compiler or the wrong Perforce API build.)

For the most up-to-date system requirements, see the P4Python release notes: http://
www . perforce.com/perforce/doc.current/user/papythonnotes.txt

Installing P4Python

You can download P4Python from the Perforce web site:

http:/ /www.perforce.com / product/components/apis

After downloading, you can either run the installer or build the interface from source, as
described in the release notes packaged with P4Python.

Programming with P4Python

P4Python provides an object-oriented interface to Perforce that is intended to be intuitive for
Python programmers. Data is loaded and returned in Python arrays and dictionaries. Each P4
object represents a connection to the Perforce server.

When instantiated, the P4 instance is set up with the default environment settings just as the
command line client p4, that is, using environment variables, the registry or user preferences

APIs for Scripting 83

http://www.perforce.com/product/components/apis

Chapter 4. P4Python

(on Windows and OS X) and, if defined, the PACONFIG file. The settings can be checked and
changed before the connection to the server is established with the P4.connect() method.
After your script connects, it can send multiple commands to the Perforce server with the same
P4 instance. After the script is finished, it should disconnect from the server by calling the
P4.disconnect() method.

The following example illustrates the basic structure of a P4Python script. The example
establishes a connection, issues a command, and tests for errors resulting from the command.

from P4 import P4,P4Exception # Import the module

p4 = P4() # Create the P4 instance
p4.port = "1666"

p4.user = "fred"

p4.client = "fred-ws" # Set some environment variables

try: # Catch exceptions with try/except
p4.connect() # Connect to the Perforce server
info = p4.run("info") # Run "p4 info" (returns a dict)
for key in info[0]: # and display all key-value pairs

print key, "=", info[0][key]
p4.run("edit", "file.txt") # Run "p4 edit file.txt"

p4.disconnect() # Disconnect from the server
except P4Exception:
for e in p4.errors: # Display errors
print e

This example creates a client workspace from a template and syncs it:.

from P4 import P4, P4Exception

template = "my-client-template"
client_root = "C:\work\my-root"
p4 = P4()

try:
p4.connect()
Convert client spec into a Python dictionary
client = p4.fetch client("-t", template)
client._root = client_root
p4.save_client(client)
p4.run_sync()

except P4Exception:
If any errors occur, we'll jump in here. Just log them
and raise the exception up to the higher level

Submitting a Changelist

This example creates a changelist, modifies it and then submits it:.

84 APIs for Scripting

Chapter 4. P4Python

from P4 import P4

p4 = P4()
p4.connect()
change = p4.fetch change()

Files were opened elsewhere and we want to
submit a subset that we already know about.

myfiles = ['//depot/some/path/file1i.c', '//depot/some/path/file1.h']
change. description = "My changelist\nSubmitted from P4Python\n"
change. files = myfiles # This attribute takes a Python list
p4.run_submit(change)

Logging into Perforce using ticket-based authentication

On some servers, users might need to log in to Perforce before issuing commands. The
following example illustrates login using Perforce tickets.

from P4 import P4

p4 = P4()

p4.user = "bruno"
p4.password = "my password"
p4.connect()

p4.run_login()

opened = p4.run_opened()

Connecting to Perforce over SSL

Scripts written with P4Python use any existing PATRUST file present in their operating
environment (by default, .p4trust in the home directory of the user that runs the script).

If the fingerprint returned by the server fails to match the one installed in the PATRUST file

associated with the script's run-time environment, your script will (and should!) fail to connect
to the server.

Changing your password

You can use P4Python to change your password, as shown in the following example:

APIs for Scripting 85

Chapter 4. P4Python

from P4 import P4

p4 = P4()

p4.user = "bruno"

p4.password = "MyOldPassword"

p4.connect()

p4.run_password("MyOldPassword", MyNewPassword")

p4.password is automatically updated with the encoded password

Timestamp conversion

Timestamp information in P4Python is normally represented as seconds since Epoch (with
the exception of P4.Revision). To convert this data to a more useful format, use the following
procedure:

import datetime

myDate = datetime.datetime.utcfromtimestamp(int(timestampValue))

Working with comments in specs

As of P4Python 2012.3, comments in specs are preserved in the parse_<spectype> ()

and format_<spectype> () methods. This behavior can be circumvented by using
parse_spec('<spectype>', spec) and format_spec('<spectype>', spec) instead of
parse_<spectype>(spec) and format_<spectype>(spec). For example:

p4 = P4()
p4.connect()

fetch a client spec in raw format, no formatting:
specform = p4.run('client', '-o', tagged=False)[0]

convert the raw document into a spec
client1l = p4.parse_client(specform)

comments are preserved in the spec as well
print(clienti.comment)

comments can be updated
clienti.comment += "# ... and now for something completely different"

the comment is prepended to the spec ready to be sent to the user
formatted1 = p4.format_client(client1)

or you can strip the comments
client2 = p4.parse_spec('client', specform)
formatted2 = p4.format_spec('client', specform)

86

APIs for Scripting

Chapter 4. P4Python

P4Python Classes

The P4 module consists of several public classes:

Iz

* “P4” on page 87

* “P4.P4Exception” on page 90

* “P4.DepotFile” on page 90

® “P4.Revision” on page 91

* “P4.Integration” on page 91

e “P4.Map” on page 92

* “P4.MergeData” on page 92

* “P4.Message” on page 93

e “P4.OutputHandler” on page 93

® “P4.Progress” on page 93

® “P4.Spec” on page 94

The following tables provide more details about each public class.

P4

Perforce client class. Handles connection and interaction with the Perforce server. There is one
instance of each connection.

The following table lists attributes of the class P4 in P4Python. The attributes are readable and
writable unless indicated otherwise. The attributes can be strings, objects, or integers.

Attribute Description

api_level API compatibility level. (Lock server output to a specified server
level.)

charset Charset for Unicode servers.

client P4CLIENT, the name of the client workspace to use.

cwd Current working directory.

disable_tmp_cleanup

Disable cleanup of temporary objects.

encoding Encoding to use when receiving strings from a non-Unicode server.
If unset, use UTF8. Can be set to a legal Python encoding, or to raw
to receive Python bytes instead of Unicode strings. Requires Python
8k

errors An array containing the error messages received during execution of

exception_level

the last command.

The exception level of the P4 instance. Values can be:

APIs for Scripting

87

Chapter 4. P4Python

Attribute

Description

* 0:no exceptions are raised.
* 1:only errors are raised as exceptions.
* 2:warnings are also raised as exceptions.

The default value is 2.

An output handler.

ignore_file

P4HOST, the name of the host used.

The path of the ignore file, P4IGNORE.

input Input for the next command. Can be a string, a list or a dictionary.
maxlocktime MaxLockTime used for all following commands

maxresults MaxResults used for all following commands

Mmaxscanrows MaxScanRows used for all following commands.

messages An array of P4.Message objects, one for each message sent by the

server.

p4config file

The location of the configuration file used (P4CONFIG). This attribute
is read-only.

password P4PASSWD, the password used.

port P4PORT, the port used for the connection.
prog The name of the script.

progress A progress indicator.

server case_insensit

Detect whether or not the server is case sensitive.

server level

Returns the current Perforce server level.

server_unicode

Detect whether or not the server is in Unicode mode.

streams To disable streams support, set the value to 0 or False. By default,
streams output is enabled for servers at 2011.1 or higher.

tagged To disable tagged output for the following commands, set the value
to 0 or False. By default, tagged output is enabled.

track To enable performance tracking for the current connection, set the

value to 1 or True. By default, server tracking is disabled.

track output

If performance tracking is enabled, returns an array containing
performance tracking information received during execution of the
last command.

88

APIs for Scripting

Chapter 4. P4Python

Attribute

Description

ticket file

PATICKETS, the ticket file location used.

user P4USER, the user under which the connection is run.
version The version of the script.
warnings An array containing the warning messages received during

execution of the last command.

The following table lists all public methods of the class P4. Many methods are wrappers
around P4.run(), which sends a command to the Perforce server. Such methods are provided

for your convenience.

Method

Description

at_exception level()

In the context of a with statement, temporarily set the exception level
for the duration of a block.

connect()
connected()

Connects to the Perforce server.

Returns True if connected and the connection is alive, otherwise
False.

delete_<spectype>()

Deletes the spec <spectype>. Equivalent to:

P4.run("<spectype>", "-d")

disconnect() Disconnects from the Perforce server.
env() Get the value of a Perforce environment variable, taking into account

P4CONFIG files and (on Windows or OS X) the registry or user
preferences.

fetch _<spectype>()

format_<spectype>()

Fetches the spec <spectype>. Equivalent to:

n n

P4.run("<spectype>", "-o")

Converts the spec <spectype> into a string.

identify() Returns a string identifying the P4Python module.
is_ignored() Determines whether a particular file is ignored via the P4IGNORE

feature.

iterate <spectype>()

Iterate through specs of form <spectype>.

parse_<spectype>()

Parses a string representation of the spec <spectype> and returns a
dictionary.

APIs for Scripting

89

Chapter 4. P4Python

Method Description

run() Runs a command on the server. Needs to be connected, or an
exception is raised.

run_cmd() Runs the command cmd. Equivalent to:

P4.run("command")

run_filelog()

run_login()

This command returns a list of P4.DepotFile objects. Specialization
for the P4.run() method.

Logs in using the specified password or ticket.

run_password()

Convenience method: updates the password. Takes two arguments:
oldpassword, newpassword

run_resolve()

Interface to p4 resolve.

run_submit()

Convenience method for submitting changelists. When invoked with
a change spec, it submits the spec. Equivalent to:

n_sn

p4.input = myspecp4.run("submit", "-i")

run_tickets()

Interface to p4 tickets.

save_<spectype>()

set_env()

Saves the spec <spectype>. Equivalent to:

n

P4.run("<spectype>", "-i")

On Windows or OS X, set a variable in the registry or user
preferences.

temp_client()
while tagged()

P4.PAException

Creates a temporary client.

In the context of a with statement, temporarily toggle tagged
behavior for the duration of a block.

Exception class. Instances of this class are raised when errors and /or (depending on the
exception_level setting) warnings are returned by the server. The exception contains the
errors in the form of a string. P4Exception is a subclass of the standard Python Exception class.

P4.DepotFile

Container class returned by P4.run_filelog(). Contains the name of the depot file and a list of

P4.Revision objects.

90

APIs for Scripting

Chapter 4. P4Python

Attribute Description

depotFile Name of the depot file.

revisions List of P4.Revision objects
P4.Revision

Container class containing one revision of a P4.DepotFile object.

Attribute Description

action Action that created the revision.

change Changelist number

client Client workspace used to create this revision.

desc Short change list description.

depotFile The name of the file in the depot.

digest MD?5 digest of the revision.

fileSize File size of this revision.

integrations List of P4.Integration objects.

rev Revision.

time Timestamp (as datetime.datetime object)

type File type.

user User that created this revision.
P4.Integration

Container class containing one integration for a P4.Revision object.

Attribute Description

how Integration method (merge/branch/copy/ignored).
file Integrated file.

srev Start revision.

erev End revision.

APIs for Scripting

Chapter 4. P4Python

P4.Map

A class that allows users to create and work with Perforce mappings without requiring a
connection to the Perforce server.

Method Description

P4.Map() Construct a new Map object (class method).
join() Joins two maps to create a third (class method).
clear() Empties a map.

count() Returns the number of entries in a map.
is_empty() Tests whether or not a map object is empty.
insert() Inserts an entry into the map.

translate() Translate a string through a map.

includes() Tests whether a path is mapped.

reverse() Returns a new mapping with the left and right sides reversed.
lhs() Returns the left side as an array.

rhs Returns the right side as an array.

as_array() Returns the map as an array

P4.MergeData

Class encapsulating the context of an individual merge during execution of a p4 resolve
command. Passed to P4.run_resolve().

Attribute Description

your_name Returns the name of "your" file in the merge. (file in workspace)
their name Returns the name of "their" file in the merge. (file in the depot)
base_name Returns the name of "base" file in the merge. (file in the depot)
your_path Returns the path of "your" file in the merge. (file in workspace)
their_path Returns the path of "their" file in the merge. (temporary file on

workstation into which their_name has been loaded)

base_path Returns the path of the base file in the merge. (temporary file on
workstation into which base_name has been loaded)

APIs for Scripting

Chapter 4. P4Python

Attribute

Description

result path

merge hint

Returns the path to the merge result. (temporary file on workstation
into which the automatic merge performed by the server has been
loaded)

Returns hint from server as to how user might best resolve merge.

The P4.MergeData class also has one method:

run_merge()

P4.Message

If the environment variable PAMERGE is defined, run it and return a
boolean based on the return value of that program.

Class for handling error messages in Perforce.

Method Description

severity Returns the severity of the message.
generic Returns the generic class of the error.
msgid Returns the unique ID of the error message.

P4.0utputHandler

Handler class that provides access to streaming output from the server; set P4.handler to an
instance of a subclass of P4.0utputHandler to enable callbacks:

Method

Description

outputBinary

Process binary data.

outputInfo

Process tabular data.

outputMessage

Process information or errors.

outputStat
outputText

P4.Progress

Process tagged output.

Process text data.

Handler class that provides access to progress indicators from the server; set P4.progress to an
instance of a subclass of P4.Progress to enable callbacks:

Method Description
init() Initialize progress indicator as designated type.

APIs for Scripting

93

Chapter 4. P4Python

Method Description
setTotal() Total number of units (if known).
setDescription() Description and type of units to be used for progress reporting.
update() If non-zero, user has requested a cancellation of the operation.
done() If non-zero, operation has failed.

P4.Resolver

Class for handling resolves in Perforce.

Method Description
resolve() Perform a resolve and return the resolve decision as a string.

P4.Spec

Class allowing access to the fields in a Perforce specification form.

Attribute Description
fieldname Value associated with the field named fieldname.
comments Array containing comments in a spec object.
permitted fields Array containing the names of the fields that are valid for this spec
object.

94

APIs for Scripting

Chapter 4. P4Python

Class P4

Description

Main interface to the Python client APL.

This module provides an object-oriented interface to the Perforce version management system.
Data is returned in Python arrays and dictionaries (hashes) and input can also be supplied in
these formats.

Each P4 object represents a connection to the Perforce server, and multiple commands may
be executed (serially) over a single connection (which of itself can result in substantially
improved performance if executing long sequences of Perforce commands).

1. Instantiate your P4 object.

2. Specity your Perforce client environment:

e client

host
e password
® port
* user

3. Set any options to control output or error handling:
e exception_level

4. Connect to the Perforce service.
The Perforce protocol is not designed to support multiple concurrent queries over the same
connection. Multithreaded applications that use the C++ API or derived APIs (including
P4Python) should ensure that a separate connection is used for each thread, or that only one
thread may use a shared connection at a time.

5. Run your Perforce commands.

6. Disconnect from the Perforce service.

Instance Attributes

p4.api_level -> int

Contains the API compatibility level desired. This is useful when writing scripts using Perforce
commands that do not yet support tagged output. In these cases, upgrading to a later server
that supports tagged output for the commands in question can break your script. Using this
method allows you to lock your script to the output format of an older Perforce release and
facilitate seamless upgrades. Must be called before calling P4.connect().

APIs for Scripting 95

Chapter 4. P4Python

from P4 import P4

p4 = P4()

p4.api_level = 67 # Lock to 2010.1 format
p4.connect()

p4.disconnect

For the API integer levels that correspond to each Perforce release, see:

http:/ /kb.perforce.com/article /512
p4.charset -> string

Contains the character set to use when connect to a Unicode enabled server. Do not use
when working with non-Unicode-enabled servers. By default, the character set is the value
of the PACHARSET environment variable. If the character set is invalid, this method raises a
P4Exception.

from P4 import P4
p4 = P4()
p4.client = "www
p4.charset = "is08859-1"
p4.connect()
p4.run_sync()
p4.disconnect()

p4.client -> string
Contains the name of your client workspace. By default, this is the value of the P4CLIENT taken

from any P4CONFIG file present, or from the environment according to the normal Perforce
conventions.

p4.cwd -> string

Contains the current working directly. Can be called prior to executing any Perforce
command. Sometimes necessary if your script executes a chdir() as part of its processing.

from P4 import P4
p4 = P4()
p4.cwd = "/home/bruno”

p4.disable_tmp_cleanup -> string

Invoke this prior to connecting if you need to use multiple P4 connections in parallel in a
multi-threaded Python application.

96

APIs for Scripting

http://kb.perforce.com/article/512

Chapter 4. P4Python

from P4 import P4

p4 = P4()
p4.disable tmp cleanup()
p4.connect()

p4.disconnect()

p4.encoding -> string
When decoding strings from a non-Unicode server, strings are assumed to be encoded in

UTF8. To use another encoding, set p4.encoding to a legal Python encoding, or raw to receive
Python bytes instead of a Unicode string. Available only when compiled with Python 3.

p4.errors -> list (read-only)

Returns an array containing the error messages received during execution of the last
command.

from P4 import P4, P4Exceptionps = P4()

try:
p4.connect()
p4.exception_level = 1
ignore "File(s) up-to-date"s
files = p4.run_sync()

except P4Exception:
for e in p4.errors:
print e

finally:
p4.disconnect()

p4.exception_level -> int

Configures the events which give rise to exceptions. The following three levels are supported:

* 0: disables all exception handling and makes the interface completely procedural; you are
responsible for checking the p4.errors and p4.warnings arrays.

* 1: causes exceptions to be raised only when errors are encountered.
® 2: causes exceptions to be raised for both errors and warnings. This is the default.

For example:

from P4 import P4

p4 = P4()

p4.exception_level = 1

p4.connect() # P4Exception on failure

p4.run_sync() # File(s) up-to-date is a warning - no exception raised
p4.disconnect()

APIs for Scripting 97

Chapter 4. P4Python

p4.handler -> handler
Set the output handler to a subclass of P4.0utputHandler.
p4.host -> string

Contains the name of the current host. It defaults to the value of P4HOST taken from any
P4CONFIG file present, or from the environment as per the usual Perforce convention. Must be
called before connecting to the Perforce server.

from P4 import P4

p4 = P4()

p4.host = "workstation123.perforce.com"
p4.connect()

p4.disconnect()

p4.ignore_file -> string

Contains the path of the ignore file. It defaults to the value of P4IGNORE. Set P4.ignore_file
prior to calling P4.is_ignored().

from P4 import P4

p4 = P4()

p4.connect()

p4.ignore file = "/home/bruno/workspace/.ignore"
p4.disconnect()

p4.input -> string | dict | list
Contains input for the next command.

Set this attribute prior to running a command that requires input from the user. When

the command requests input, the specified data is supplied to the command. Typically,
commands of the form p4 cmd -1i are invoked using the P4.save_<spectype>() methods,
which retrieve the value from p4.input internally; there is no need to set p4.input when using
the P4.save_<spectype> () shortcuts.

You may pass a string, a hash, or (for commands that take multiple inputs from the user) an
array of strings or hashes. If you pass an array, note that the first element of the array will be
popped each time Perforce asks the user for input.

For example, the following code supplies a description for the default changelist and then
submits it to the depot:

from P4 import P4

p4 = P4()

p4.connect()

change = p4.run_change("-o")[0]

change["Description"] = "Autosubmitted changelist"

p4.input = change
p4.run_submit("-i")
p4.disconnect()

98

APIs for Scripting

Chapter 4. P4Python

p4.iterate_<spectype>(arguments) -> P4.Spec

The iterate_<spectype> () methods are shortcut methods that allow you to quickly iterate
through clients, labels, branches, etc. Valid <spectypes> are clients, labels, branches,
changes, streams, jobs, users, groups, depots and servers. Valid arguments are any
arguments that would be valid for the corresponding run_<spectype>() command.

For example:

for client in p4.iterate_clients():
do something with the client spec

is equivalent to:

for ¢ in p4.run_clients():
client = p4.fetch_client(c['client'])

p4.maxlocktime -> int

Limit the amount of time (in milliseconds) spent during data scans to prevent the server from
locking tables for too long. Commands that take longer than the limit will be aborted. The
limit remains in force until you disable it by setting it to zero. See p4 help maxlocktime for
information on the commands that support this limit.

p4.maxresults -> int

Limit the number of results Perforce permits for subsequent commands. Commands that
produce more than this number of results will be aborted. The limit remains in force until you
disable it by setting it to zero. See p4 help maxresults for information on the commands that
support this limit.

p4.maxscanrows -> int

Limit the number of database records Perforce scans for subsequent commands. Commands
that attempt to scan more than this number of records will be aborted. The limit remains in
force until you disable it by setting it to zero. See p4 help maxscanrows for information on the
commands that support this limit.

p4.messages -> list (read-only)

Returns a list of P4.Message objects, one for each message (info, warning or error) sent by the
server.

p4.p4config_file -> string (read-only)
Contains the name of the current PACONFIG file, if any. This attribute cannot be set.
p4.password -> string

Contains your Perforce password or login ticket. If not used, takes the value of P4PASSWD
from any P4CONFIG file in effect, or from the environment according to the normal Perforce
conventions.

APIs for Scripting 99

Chapter 4. P4Python

This password is also used if you later call p4.run_login() to log in using the 2003.2 and later
ticket system. After running p4.run_login(), the attribute contains the ticket the allocated by
the server.

from P4 import P4

p4 = P4()

p4.password = "mypass”
p4.connect()
p4.run_login()

p4.port -> string

Contains the host and port of the Perforce server to which you want to connect. It defaults to
the value of P4PORT in any P4CONFIG file in effect, and then to the value of P4PORT taken from
the environment.

from P4 import P4

p4 = P4()
p4.port = "localhost:1666"
p4.connect()

p4.prog -> string

Contains the name of the program, as reported to Perforce system administrators running p4
monitor show -e. The default is unnamed p4-python script.

from P4 import P4

p4 = Pa()

p4.prog = "sync-script"
puts(p4.prog)
p4.connect

p4.progress -> progress

Set the progress indicator to a subclass of P4.Progress.

p4.server_case_insensitive -> boolean

Detects whether or not the server is case-sensitive.

p4.server_level -> int (read-only)

Returns the current Perforce server level. Each iteration of the Perforce server is given a
level number. As part of the initial communication this value is passed between the client
application and the Perforce server. This value is used to determine the communication that

the Perforce server will understand. All subsequent requests can therefore be tailored to meet
the requirements of this server level.

100

APIs for Scripting

Chapter 4. P4Python

This attribute is 0 before the first command is run, and is set automatically after the first
communication with the server.

For the API integer levels that correspond to each Perforce release, see:

http:/ /kb.perforce.com/article /571

p4.server_unicode -> boolean
Detects whether or not the server is in Unicode mode.
p4.streams -> int

If 1 or True, p4.streams enables support for streams. By default, streams support is enabled
at 2011.1 or higher (api_level >=70). Raises a P4Exception if you attempt to enable streams
on a pre-2011.1 server. You can enable or disable support for streams both before and after
connecting to the server.

from P4 import P4
p4 = P4()
p4.streams = False
print p4.streams

p4.tagged -> int

If 1 or True, p4.tagged enables tagged output. By default, tagged output is on.

from P4 import P4
p4 = P4()
p4.tagged = False
print p4.tagged

p4.ticket_file -> string
Contains the location of the P4TICKETS file.
p4.track -> boolean

If set to 1 or True, p4.track indicates that server performance tracking is enabled for this
connection. By default, performance tracking is disabled.

p4.track_output -> list (read-only)

If performance tracking is enabled with p4.track, returns an array containing the performance
data received during execution of the last command.

from P4 import P4

p4 = P4()

p4.track = 1
p4.run_info()

print p4.track output

APIs for Scripting 101

http://kb.perforce.com/article/571

Chapter 4. P4Python

p4.user -> string

Contains the Perforce username. It defaults to the value of P4USER taken from any P4CONFIG file
present, or from the environment as per the usual Perforce convention.

from P4 import P4
p4 = P4a()

p4.user = "bruno"
p4.connect()

p4.disconnect()

p4.version -> string

Contains the version of the program, as reported to Perforce system administrators in the
server log.

from P4 import P4
p4 = P4()
p4.version = "123"
puts(p4.version)
p4.connect()

p4.disconnect()

p4.warnings -> list (read-only)

Contains the array of warnings that arose during execution of the last command.

from P4 import P4, P4Exception
p4 = P4()

try:
p4.connect()
p4.exception level = 2 # File(s) up-to-date is a warning
files = p4.run_sync()

except P4Exception, ex:
for w in p4.warnings:
print w

finally:
p4.disconnect()

Class Methods

P4.P4()

Construct a new P4 object. For example:

102

APIs for Scripting

Chapter 4. P4Python

from P4 import P4
P4.P4()

P4.identify()

Return the version of P4Python that you are using.

python -c "from P4 import P4; print P4.identify()"

The read-only string attributes PATCHLEVEL and 0S are also available to test an installation of
P4Python without having to parse the output of P4.identify().

If applicable, P4.identify() also reports the version of the OpenSSL library used for building
the underlying Perforce C++ API with which P4Python was built.

Instance Methods

p4.at_exception_level()

In the context of a with statement, temporarily set the exception level for a block. For example:

from P4 import P4

p4 = P4()

p4.connect()

with p4.at_exception_level(P4.RAISE_ERRORS):
no exceptions for warnings
p4.run_sync("//depot/main/...")

exceptions back to normal...

p4.connect()

Initializes the Perforce client and connects to the server.

If the connection is successfully established, returns None. If the connection fails and
P4.exception_level is 0, returns False, otherwise raises a P4Exception. If already connected,
prints a message.

from P4 import P4
p4 = Pa()
p4.connect()

p4.disconnect()

P4.connect() returns a context management object that is usable with a with statement within
a block; after the block is finished, the connection is automatically disconnected:

APIs for Scripting 103

Chapter 4. P4Python

import P4
p4 = P4.P4()
with p4.connect():
block in context of connection

p4 is disconnected outside the block

p4.connected() -> boolean

Returns true if connected to the Perforce server and the connection is alive, otherwise false.

from P4 import P4
p4 = P4()

print p4.connected()
p4.connect()
print p4.connected()

p4.delete_<spectype>([options], name) -> list

The delete_<spectype> () methods are shortcut methods that allow you to delete the
definitions of clients, labels, branches, etc. These methods are equivalent to:

p4.run("<spectype>", '-d', [options], "spec name")

The following code uses P4.delete_client() to delete client workspaces that have not been
accessed in more than 365 days:

from P4 import P4, P4Exception
from datetime import datetime, timedelta

now = datetime.now()
p4 = Pa()

try:
p4.connect()
for client in p4.run_clients():
atime = datetime.utcfromtimestamp(int(client["Access"]))
If the client has not been accessed for a year, delete it
if (atime + timedelta(365)) < now :
p4.delete_client('-f', client["client"])

except P4Exception:
for e in p4.errors:
print e

finally:
p4.disconnect()

104 APIs for Scripting

Chapter 4. P4Python

p4.disconnect()

Disconnect from the Perforce server. Call this method before exiting your script.

from P4 import P4
p4 = P4()

p4.connect()

p4.disconnect()

p4.env(var)

Get the value of a Perforce environment variable, taking into account P4CONFIG files and (on
Windows or OS X) the registry or user preferences.

from P4 import P4
p4 = Pa()

print p4.env("P4PORT")

p4.fetch_<spectype>() -> P4.Spec

The fetch_<spectype> () methods are shortcuts for running p4.run("<spectype>", "-
0").pop(0). For example:

label = p4.fetch_label("labelname")
change = p4.fetch_change(changeno)
clientspec = pa.fetch_client("clientname")

are equivalent to:

label = p4.run("label", "-o", "labelname")[0]
change = p4.run("change", "-o", changeno)[0]
clientspec = p4.run("client", "-o0", "clientname")[0]

p4.format_spec("<spectype>", dict) -> string

Converts the fields in the dict containing the elements of a Perforce form (spec) into the string
representation familiar to users. The first argument is the type of spec to format: for example,
client, branch, label, and so on. The second argument is the hash to parse.

There are shortcuts available for this method. You can use p4.format_<spectype>(dict)
instead of p4.format_spec("<spectype>", dict), where <spectype> is the name of a Perforce
spec, such as client, label, etc.

p4.format_<spectype>(dict) -> string

The format_<spectype>() methods are shortcut methods that allow you to quickly fetch the
definitions of clients, labels, branches, etc. They're equivalent to:

APIs for Scripting 105

Chapter 4. P4Python

p4.format_spec("<spectype>", dict)

p4.is_ignored("<path>")-> boolean

Returns true if the <path> is ignored via the P4IGNOREfeature. The <path> can be a local relative
or absolute path.

from P4 import P4
p4 = Pa()

p4.connect()

if (pa.is_ignored("/home/bruno/workspace/file.txt"):
print "Ignored."

else:
print "Not ignored."

p4.disconnect()

p4.parse_spec("<spectype>", string) -> P4.Spec
Parses a Perforce form (spec) in text form into a Python dict using the spec definition obtained
from the server. The first argument is the type of spec to parse: client, branch, label, and so

on. The second argument is the string buffer to parse.

There are shortcuts available for this method. You can use:

p4.parse_<spectype>(buf)

instead of:

p4.parse_spec("<spectype>", buf)

where <spectype> is one of client, branch, label, and so on.
p4.parse_<spectype>(string) -> P4.Spec

This is equivalent to:

p4.parse_spec("<spectype>", string)

For example, parse_job(myJob) converts the String representation of a job spec into a Spec
object.

To parse a spec, P4 needs to have the spec available. When not connected to the Perforce
server, P4 assumes the default format for the spec, which is hardcoded. This assumption can
fail for jobs if the server's jobspec has been modified. In this case, your script can load a job

106

APIs for Scripting

Chapter 4. P4Python

from the server first with the command p4.fetch_job('somename’), and P4 will cache and
use the spec format in subsequent p4.parse_job() calls.

p4.run("<cmd>", [arg, ...])

Base interface to all the run methods in this API. Runs the specified Perforce command with
the arguments supplied. Arguments may be in any form as long as they can be converted to
strings by str().

The p4.run() method returns a list of results whether the command succeeds or fails; the list
may, however, be empty. Whether the elements of the array are strings or dictionaries depends
on:

i. server support for tagged output for the command, and
ii. whether tagged output was disabled by calling p4.tagged = False.

In the event of errors or warnings, and depending on the exception level in force at the time,
p4.run() raises a P4AException. If the current exception level is below the threshold for the
error/ warning, p4.run() returns the output as normal and the caller must explicitly review
p4.errors and p4.warnings to check for errors or warnings.

from P4 import P4

p4 = P4()

p4.connect()

spec = p4.run("client", "-o0")[0]
p4.disconnect()

Shortcuts are available for p4.run(). For example:

p4.run_command(args)

is equivalent to:

p4.run("command", args)

There are also some shortcuts for common commands such as editing Perforce forms and
submitting. For example, this:

from P4 import P4

p4 = Pa()

p4.connect()

clientspec = p4.run_client("-0").pop(0)
clientspec["Description"] = "Build client"
p4.input = clientspec

p4.run_client("-i")

p4.disconnect()

...may be shortened to:

APIs for Scripting 107

Chapter 4. P4Python

from P4 import P4

p4 = P4()

p4.connect()

clientspec = p4.fetch client()

clientspec["Description”] = "Build client"
p4.save client(clientspec)

p4.disconnect()

The following are equivalent:

Shortcut Equivalent to

p4.delete <spectype>() p4.run("<spectype>", "-d ")
p4.fetch_<spectype>() p4.run("<spectype>", "-o ").shift
p4.save_<spectype>(spec) p4.input = spec

p4.run("<spectype>", "-i")

As the commands associated with p4.fetch_<spectype> () typically return only one item,
these methods do not return an array, but instead return the first result element.

For convenience in submitting changelists, changes returned by p4.fetch_change() can be
passed to p4.run_submit(). For example:

from P4 import P4
p4 = P4()
p4.connect()

spec = p4.fetch change()

spec["Description”] = "Automated change"
p4.run_submit(spec)

p4.disconnect()

p4.run_<cmd>()

Shorthand for:

p4.run("<cmd>", arguments...)

p4.run_filelog(<fileSpec>) -> list

Runs a p4 filelog on the fileSpec provided and returns an array of P4.DepotFile results
(when executed in tagged mode), or an array of strings when executed in nontagged mode.
By default, the raw output of p4 filelog is tagged; this method restructures the output into a
more user-friendly (and object-oriented) form.

For example:

108

APIs for Scripting

Chapter 4. P4Python

from P4 import P4, P4Exception
p4 = P4()

try:
p4.connect()
for r in p4.run_filelog("index.html")[0].revisions:
for i in r.integrations:
Do something

except P4Exception:
for e in p4.errors:
print e

finally:
p4.disconnect()

p4.run_login(<arg>...)-> list
Runs p4 login using a password or ticket set by the user.
p4.run_password(oldpass, newpass) -> list

A thin wrapper to make it easy to change your password. This method is (literally) equivalent
to the following;:

p4.input([oldpass, newpass, newpass])
p4.run("password")

For example:

from P4 import P4, P4Exception
p4 = P4()
p4.password = "myoldpass”

try:
p4.connect()
p4.run_password("myoldpass", "mynewpass")

except P4Exception:
for e in p4.errors:
print e

finally:
p4.disconnect()

p4.run_resolve([<resolver>], [arg...]) -> list

Run a p4 resolve command. Interactive resolves require the <resolver> parameter to be an
object of a class derived from P4.Resolver. In these cases, the P4.Resolver.resolve() method
is called to handle the resolve. For example:

p4.run_resolve (resolver=MyResolver())

APIs for Scripting 109

Chapter 4. P4Python

To perform an automated merge that skips whenever conflicts are detected:

class MyResolver(P4.Resolver):
def resolve(self, mergeData):
if not mergeData.merge hint == "e":
return mergeData.merge hint
else:
return

n_n

s" # skip the resolve, there is a conflict

In non-interactive resolves, no P4.Resolver object is required. For example:

p4.run_resolve ("-at")

p4.run_submit([hash], [arg...]) -> list

Submit a changelist to the server. To submit a changelist, set the fields of the changelist as
required and supply any flags:

change = p4.fetch_change()
change._description = "Some description”
p4.run_submit("-r", change)

You can also submit a changelist by supplying the arguments as you would on the command
line:

p4.run_submit("-d", "Some description", "somedir/...")

p4.run_tickets() -> list

p4.run_tickets() returns an array of lists of the form (p4port, user, ticket) based on the
contents of the local tickets file.

p4.save_<spectype>()>

The save_<spectype> () methods are shortcut methods that allow you to quickly update the
definitions of clients, labels, branches, etc. They are equivalent to:

p4.input = dictOrString
p4.run("<spectype>", "-i")

For example:

110 APIs for Scripting

Chapter 4. P4Python

from P4 import P4, P4Exception
p4 = P4()

try:
p4.connect()
client = p4.fetch client()
client["Owner"] = p4.user
p4.save_client(client)

except P4Exception:
for e in p4.errors:
print e

finally:
p4.disconnect()

p4.set_env(var, value)

On Windows or OS X, set a variable in the registry or user preferences. To unset a variable,
pass an empty string as the second argument. On other platforms, an exception is raised.

p4.set_env = ("P4CLIENT", "my workspace")
P4.Set_env = ("P4CLIENT", wn)

p4.temp_dlient("<prefix>", "<template>")

Creates a temporary client, using the prefix <prefix> and based upon a client template
named <template>, then switches P4.client to the new client, and provides a temporary root
directory. The prefix makes is easy to exclude the workspace from the spec depot.

This is intended to be used with a with statement within a block; after the block is finished, the
temp client is automatically deleted and the temporary root is removed.

For example:

from P4 import P4

p4 = P4()

p4.connect()

with p4a.temp client("temp", "my template") as t:
p4.run_sync()
p4.run_edit("foo")
p4.run_submit("-dcomment")

p4.while_tagged(boolean)

In the context of a with statement, enable or disable tagged behavior for the duration of a
block. For example:

APIs for Scripting 111

Chapter 4. P4Python

from P4 import P4

p4 = P4()

p4.connect()

with p4.while tagged(False):
tagged output disabled for this block
print p4.run_info()

tagged output back to normal

112

APIs for Scripting

Chapter 4. P4Python

Class P4.P4Exception

Description
Instances of this class are raised when P4 encounters an error or a warning from the server. The

exception contains the errors in the form of a string. P4Exception is a shallow subclass of the
standard Python Exception class.

Class Attributes

None.

Class Methods

None.

APIs for Scripting 113

Chapter 4. P4Python

Class P4.DepotFile

Description
Utility class providing easy access to the attributes of a file in a Perforce depot. Each
P4.DepotFile object contains summary information about the file and a list of revisions

(P4.Revision objects) of that file. Currently, only the P4.run_filelog() method returns a list of
P4.DepotFile objects.

Instance Attributes

df.depotFile -> string

Returns the name of the depot file to which this object refers.

df.revisions -> list

Returns a list of P4.Revision objects, one for each revision of the depot file.

Class Methods

None.

Instance Methods

None.

114 APIs for Scripting

Chapter 4. P4Python

Class P4.Revision

Description

Utility class providing easy access to the revisions of P4.DepotFile objects. Created by
P4.run_filelog().

Instance Attributes

rev.action -> string

Returns the name of the action which gave rise to this revision of the file.
rev.change -> int

Returns the change number that gave rise to this revision of the file.
rev.client -> string

Returns the name of the client from which this revision was submitted.
rev.depotFile -> string

Returns the name of the depot file to which this object refers.
rev.desc-> string

Returns the description of the change which created this revision. Note that only the first
31 characters are returned unless you use p4 filelog -L for the first 250 characters, or p4
filelog -1 for the full text.

rev.digest -> string

Returns the MD5 digest of this revision.

rev.fileSize -> string

Returns this revision's size in bytes.

rev.integrations -> list

Returns the list of P4.Integration objects for this revision.

rev.rev-> int

Returns the number of this revision of the file.

rev.time -> datetime

Returns the date/time that this revision was created.

APIs for Scripting 115

Chapter 4. P4Python

rev.type -> string

Returns this revision's Perforce filetype.

rev.user -> string

Returns the name of the user who created this revision.

Class Methods

None.

Instance Methods

None.

116

APIs for Scripting

Chapter 4. P4Python

Class P4.Integration

Description

Utility class providing easy access to the details of an integration record. Created by
P4.run_filelog().

Instance Attributes

integ.how -> string

Returns the type of the integration record - how that record was created.
integ.file -> string

Returns the path to the file being integrated to/from.

integ.srev -> int

Returns the start revision number used for this integration.
integ.erev-> int

Returns the end revision number used for this integration.

Class Methods

None.

Instance Methods

None.

APIs for Scripting 117

Chapter 4. P4Python

Class P4.Map

Description

The P4.Map class allows users to create and work with Perforce mappings, without requiring a
connection to a Perforce server.

Instance Attributes

None.

Class Methods
P4.Map([list])-> P4.Map

Constructs a new P4.Map object.
P4.Map.join (map1, map2) -> P4.Map
Join two P4.Map objects and create a third.

The new map is composed of the left-hand side of the first mapping, as joined to the right-
hand side of the second mapping. For example:

Map depot syntax to client syntax
client_map = P4.Map()
client_map.insert("//depot/main/...", "//client/...")

Map client syntax to local syntax
client_root = P4.Map()
client_root.insert("//client/...'

, "/home/bruno/workspace/...")
Join the previous mappings to map depot syntax to local syntax
local _map = P4.Map.join(client_map, client_root)

local path = local map.translate("//depot/main/www/index.html")

local path is now /home/bruno/workspace/www/index.html

Instance Methods

map.clear()

Empty a map.

map.count() -> int

Return the number of entries in a map.
map.is_empty() -> boolean

Test whether a map object is empty.

118 APIs for Scripting

Chapter 4. P4Python

map.insert(string ...)
Inserts an entry into the map.

May be called with one or two arguments. If called with one argument, the string is assumed
to be a string containing either a half-map, or a string containing both halves of the mapping.
In this form, mappings with embedded spaces must be quoted. If called with two arguments,
each argument is assumed to be half of the mapping, and quotes are optional.

called with two arguments:
map.insert("//depot/main/...", "//client/...")

called with one argument containing both halves of the mapping:
map.insert("//depot/live/... //client/live/...")

called with one argument containing a half-map:
This call produces the mapping "depot/... depot/..."
map.insert("depot/...")

map.translate (string, [boolean]) -> string

Translate a string through a map, and return the result. If the optional second argument is 1,
translate forward, and if it is 0, translate in the reverse direction. By default, translation is in
the forward direction.

map.includes(string) -> boolean

Tests whether a path is mapped or not.

if map.includes("//depot/main/..."):

map.reverse() -> P4.Map

Return a new P4.Map object with the left and right sides of the mapping swapped. The original
object is unchanged.

map.lhs() -> list

Returns the left side of a mapping as an array.
map.rhs() -> list

Returns the right side of a mapping as an array.
map.as_array() -> list

Returns the map as an array.

APIs for Scripting 119

Chapter 4. P4Python

Class P4.MergeData

Description

Class containing the context for an individual merge during execution of a p4 resolve.

Instance Attributes

md.your_name -> string

Returns the name of "your" file in the merge. This is typically a path to a file in the workspace.
md.their_name -> string

Returns the name of "their" file in the merge. This is typically a path to a file in the depot.
md.base_name -> string

Returns the name of the "base" file in the merge. This is typically a path to a file in the depot.
md.your_path -> string

Returns the path of "your" file in the merge. This is typically a path to a file in the workspace.
md.their_path -> string

Returns the path of "their" file in the merge. This is typically a path to a temporary file on your
local machine in which the contents of their name have been loaded.

md.base_path -> string

Returns the path of the base file in the merge. This is typically a path to a temporary file on
your local machine in which the contents of base_name have been loaded.

md.result_path -> string

Returns the path to the merge result. This is typically a path to a temporary file on your local
machine in which the contents of the automatic merge performed by the server have been
loaded.

md.merge_hint -> string

Returns the hint from the server as to how it thinks you might best resolve this merge.

Instance Methods

md.run_merge() -> boolean

If the environment variable PAMERGE is defined, md.run_merge() invokes the specified program
and returns a boolean based on the return value of that program.

120

APIs for Scripting

Chapter 4. P4Python

Class P4.Message

Description

P4.Message objects contain error or other diagnostic messages from the Perforce server; they
are returned in P4.messages.

Script writers can test the severity of the messages in order to determine if the server message
consisted of command output (E_INFO), warnings, (E_WARN), or errors (E_FAILED /E_FATAL).

Class Methods

None.

Instance Attributes

message.severity -> int

Severity of the message, which is one of the following values:

Value Meaning

E_EMPTY No error.

E_INFO Informational message only.

E_WARN Warning message only.

E_FAILED Command failed.

E_FATAL Severe error; cannot continue.

message.generic-> int
Returns the generic class of the error.
message.msgid -> int

Returns the unique ID of the message.

APIs for Scripting 121

Chapter 4. P4Python

Class P4.0utputHandler

Description

The P4.0utputHandler class is a handler class that provides access to streaming output from
the server. After defining the output handler, set p4.handler to an instance of a subclass of
P4.OutputHandler, use p4.using_handler(MyHandler()), or pass the handler as a named
parameter for one statement only.

By default, P4.0utputHandler returns REPORT for all output methods. The different return
options are:

Value Meaning

REPORT Messages added to output (don't handle, don't cancel)

HANDLED Output is handled by class (don't add message to output).

REPORT | CANCEL Operation is marked for cancel, message is added to output.

HANDLED | CANCEL Operation is marked for cancel, message not added to output.
Class Methods

class MyHandler(P4.0utputHandler)

Constructs a new subclass of P4.0utputHandler.

Instance Methods

outputBinary -> int

Process binary data.

outputinfo -> int

Process tabular data.

outputMessage -> int

Process informational or error messages.
outputStat -> int

Process tagged data.

outputText -> int

Process text data.

122 APIs for Scripting

Chapter 4. P4Python

Class P4.Progress

Description
The P4.Progress class is a handler class that provides access to progress indicators from
the server. After defining the progress class, set P4.progress to an instance of a subclass of

P4.Progress, use p4.using_progress(MyProgress()), or pass the progress indicator as a
named parameter for one statement only.

You must implement all five of the following methods: init(), setDescription(), update(),
setTotal(), and done(), even if the implementation consists of trivially returning 0.

Instance Attributes

None.

Class Methods

class MyProgress(P4.Progress)

Constructs a new subclass of P4.Progress.

Instance Methods

progress.init() -> int

Initialize progress indicator.

progress.setDescription(string, int) -> int

Description and type of units to be used for progress reporting.

progress.update() -> int

If non-zero, user has requested a cancellation of the operation.
progress.setTotal(<total>) -> int

Total number of units expected (if known).

progress.done() -> int

If non-zero, operation has failed.

APIs for Scripting 123

Chapter 4. P4Python

Class P4.Resolver

Description
P4.Resolver is a class for handling resolves in Perforce. It is intended to be subclassed, and
for subclasses to override the resolve() method. When P4.run_resolve() is called with a

P4.Resolver object, it calls the P4.Resolver.resolve() method of the object once for each
scheduled resolve.

Instance Attributes

None.

Class Methods

None.

Instance Methods

resolver.resolve(self, mergeData) -> string

Returns the resolve decision as a string. The standard Perforce resolve strings apply:

String Meaning

ay Accept Yours.

at Accept Theirs.

am Accept Merge result.
ae Accept Edited result.
s Skip this merge.

q Abort the merge.

By default, all automatic merges are accepted, and all merges with conflicts are skipped. The
P4.Resolver.resolve() method is called with a single parameter, which is a reference to a
P4.MergeData object.

124 APIs for Scripting

Chapter 4. P4Python

Class P4.Spec

Description
Utility class providing easy access to the attributes of the fields in a Perforce form.

Only valid field names may be set in a P4.Spec object. Only the field name is validated, not the
content. Attributes provide easy access to the fields.

Instance Attributes

spec._<fieldname> -> string

Contains the value associated with the field named <fieldname>.
spec.comment -> dict

Contains an array containing the comments associated with the spec object.

spec.permitted_fields -> dict

Contains an array containing the names of fields that are valid in this spec object. This does
not imply that values for all of these fields are actually set in this object, merely that you may
choose to set values for any of these fields if you want to.

Class Methods
P4.Spec.new(dict) -> P4.Spec

Constructs a new P4.Spec object given an array of valid fieldnames.

Instance Methods

None.

APIs for Scripting 125

126 APIs for Scripting

Chapter 5 P4PH P

Introduction

P4APHP, the PHP interface to the Perforce API, enables you to write PHP code that interacts
with a Perforce server. PAPHP enables your PHP scripts to:

¢ Get Perforce data and forms in arrays.
e Edit Perforce forms by modifying arrays.
* Provide exception-based error handling and optionally ignore warnings.

e Issue multiple commands on a single connection (performs better than spawning single
commands and parsing the results).

The most recent release of P4PHP is 2013.1.

System Requirements

P4PHP is supported on Windows, Linux, FreeBSD, and OS X.

To build P4PHP from source, your development machine must also have:

e PHP 5.3.x, 5.4.x, or 5.5.x.

e The 2014.1 Perforce C/C++ API for your target platform

¢ The same C++ compiler used to build the Perforce C++ API on your target platform.

(If you get "unresolved symbol" errors when building or running PAPHP, you probably used
the wrong compiler or the wrong Perforce API build.)

Installing P4PHP

You can download P4PHP from the Perforce web site:

http:/ /www.perforce.com / product/components/apis

You must build the interface from source, as described in the release notes packaged with
P4PHP.

Programming with P4PHP

The following example illustrates the basic structure of a PAPHP script. The example
establishes a connection, issues a command, and tests for errors resulting from the command.

APIs for Scripting 127

http://www.perforce.com/product/components/apis

Chapter 5. PAPHP

<?php

$p4 = new P4();
$pa->port = "1666";
$p4->user = "fred";
$p4->client = "fred-ws";

try {
$p4->connect();
$info = $p4->run("info");
foreach ($info[0] as $key => $val) {
print "$key = $val\n";
}
$p4->run("edit", "file.txt");
$p4->disconnect();
} catch (P4 _Exception $e) {
print $e->getMessage() . "\n";
foreach ($p4->errors as $error) {
print "Error: $error\n";
}
}

>

This example creates a client workspace from a template and syncs it:

<?php

$template = "my-client-template”;
$client_root = "/home/user/work/my-root";
$p4 = new P4();

try {
$p4->connect();

// Convert client spec into an array

$client = $p4->fetch client("-t", $template);
$client['Root'] = $client root;
$p4->save_client($client);

$p4->run_sync();

} catch (P4_Exception $e) {
// If any errors occur, we'll jump in here. Just log them
// and raise the exception up to the higher level

}

>

Submitting a Changelist

This example creates a changelist, modifies it, and then submits it:.

128

APIs for Scripting

Chapter 5. PAPHP

<?php

$p4 = new P4();
$p4->connect();

$change = $p4->fetch _change();

// Files were opened elsewhere and we want to
// submit a subset that we already know about.

$myfiles = array(
'//depot/some/path/file1.c',
'//depot/some/path/file1.h'
)5
$change['description'] = "My changelist\nSubmitted from P4PHP\n";
$change['files'] = $myfiles;

$p4->run_submit($change);

>

Logging into Perforce using ticket-based authentication

On some servers, users might need to log in to Perforce before issuing commands. The

following example illustrates login using Perforce tickets.

<?php

$p4 = new P4();
$p4->user = "bruno";
$p4->connect();

$p4->run_login('my password');

$opened = $p4->
run_opened();

>

Connecting to Perforce over SSL

Scripts written with PAPHP use any existing PATRUST file present in their operating
environment (by default, .p4trust in the home directory of the user that runs the script).

If the fingerprint returned by the server fails to match the one installed in the PATRUST file

associated with the script's run-time environment, your script will (and should!) fail to connect

to the server.

Changing your password

You can use PAPHP to change your password, as shown in the following example:

APIs for Scripting

129

Chapter 5. PAPHP

<?php

$p4 = new P4();

$p4->user = "bruno";

$p4->password = "MyOldPassword";

$p4->connect();

$p4->run_password("MyOldPassword", "MyNewPassword");

// $p4->password is automatically updated with the encoded password

>

P4PHP Classes

The P4 module consists of several public classes:

* “P4” on page 130

* “P4_Exception” on page 133

¢ “P4 DepotFile” on page 133

* “P4 Revision” on page 133

* “P4 Integration” on page 134

* “P4 Map” on page 134

* “P4 MergeData” on page 135

¢ “P4 OutputHandlerAbstract” on page 135

® “P4_Resolver” on page 135

The following tables provide more details about each public class.

P4

Perforce client class. Handles connection and interaction with the Perforce server. There is one
instance of each connection.

The following table lists properties of the class P4 in PAPHP. The properties are readable and
writable unless indicated otherwise. The properties can be strings, arrays, or integers.

Property Description

api_level API compatibility level. (Lock server output to a specified server
level.)

charset Charset for Unicode servers.

client P4CLIENT, the name of the client workspace to use.

cwd Current working directory.

130 APIs for Scripting

Chapter 5. PAPHP

Property

Description

€rrors

exception_level

A read-only array containing the error messages received during
execution of the last command.

The exception level of the P4 instance. Values can be:
* 0:no exceptions are raised

e 1:only errors are raised as exceptions

* 2: warnings are also raised as exceptions

The default value is 2.

expand_sequences

Control whether keys with trailing numbers are expanded into
arrays; by default, true, for backward-compatibility.

handler An output handler.

host P4HOST, the name of the host used.

input Input for the next command. Can be a string, or an array.
maxlocktime MaxLockTime used for all following commands.
maxresults MaxResults used for all following commands.
Maxscanrows MaxScanRows used for all following commands.

paconfig file

The location of the configuration file used (PACONFIG). This property
is read-only.

password P4PASSWD, the password used.
port P4PORT, the port used for the connection
prog The name of the script.

server level

Returns the current Perforce server level. This property is read only.

streams

tagged

Enable or disable support for streams.

To disable tagged output for the following commands, set the value
to 0 or False. By default, tagged output is enabled.

ticket file

PATICKETS, the ticket file location used.

user P4USER, the user under which the connection is run.
version The version of the script.
warnings A read-only array containing the warning messages received during

execution of the last command.

The following table lists all public methods of the class P4.

APIs for Scripting

131

Chapter 5. PAPHP

Method Description

connect() Connects to the Perforce server.

connected() Returns True if connected and the connection is alive, otherwise
False.

delete <spectype>() Deletes the spec <spectype>. Equivalent to the command:

P4::run("<spectypes>", "-d");

disconnect() Disconnects from the Perforce server.

env() Get the value of a Perforce environment variable, taking into account
P4CONFIG files and (on Windows or OS X) the registry or user
preferences.

identify() Returns a string identifying the PAPHP module. (This method is
static.)

fetch_<spectype>() Fetches the spec <spectype>. Equivalent to the command:

P4::run("<spectype>", "-o");

format_<spectype>() Converts the spec <spectype> into a string.

parse_<spectype>() Parses a string representation of the spec <spectype> and returns an
array.

run() Runs a command on the server. Needs to be connected, or an
exception is raised.

run_cmd() Runs the command cmd. Equivalent to:

P4::run("cmd");

run_filelog() This command returns an array of P4_DepotFile objects.
Specialization for the run() command.

run_login() Logs in using the specified password or ticket.

run_password() Convenience method: updates the password. Takes two arguments:
oldpassword, newpassword.

run_resolve() Interface to p4 resolve.

run_submit() Convenience method for submitting changelists. When invoked with

a change spec, it submits the spec. Equivalent to:

132 APIs for Scripting

Chapter 5. PAPHP

Method Description

p4::input = myspec;
p4::run("submit", "-i");

save_<spectype>() Saves the spec <spectype>. Equivalent to the command:

P4::run("<spectype>", "-i");

P4_Exception
Exception class. Instances of this class are raised when errors and /or (depending on the

exception_level setting) warnings are returned by the server. The exception contains the
errors in the form of a string. P4_Exception extends the standard PHP Exception class.

P4_DepotFile

Container class returned by P4: :run_filelog(). Contains the name of the depot file and an
array of P4_Revision objects.

Property Description
depotFile Name of the depot file
revisions Array of Revision objects.

P4 Revision

Container class containing one revision of a P4_DepotFile object.

Property Description

action Action that created the revision.

change Changelist number.

client Client workspace used to create this revision.
desc Short changelist description.

depotFile The name of the file in the depot.

digest MDS5 digest of the revision.

fileSize File size of this revision.

integrations Array of P4_Integration objects.

rev Revision.

APIs for Scripting 133

Chapter 5. PAPHP

Property Description

time Timestamp.

type File type.

user User that created this revision.

P4 _Integration

Container class containing one integration for a P4_Revision object.

Property Description

how Integration method (merge /branch/copy/ignored).
file Integrated file.

srev Start revision.

erev End revision.

P4_Map

A class that allows users to create and work with Perforce mappings without requiring a
connection to the Perforce server.

Method Description

construct() Construct a new Map object.
join() Joins two maps to create a third (static method).
clear Empties a map.

Returns the number of entries in a map.

Tests whether or not a map object is empty.

ar
g B

insert Inserts an entry into the map.

translate() Translate a string through a map.

includes() Tests whether a path is mapped.

reverse() Returns a new mapping with the left and right sides reversed.
lhs() Returns the left side as an array.

,_g
=
@

Returns the right side as an array.

IS)
»
[
=
—
I

Returns the map as an array.

134 APIs for Scripting

Chapter 5. PAPHP

P4_MergeData

Class encapsulating the context of an individual merge during execution of a p4 resolve
command. Passed to P4: :run_resolve().

Property Description

your_name Returns the name of "your" file in the merge. (file in workspace)
their name Returns the name of "their" file in the merge. (file in the depot)
base_name Returns the name of "base" file in the merge. (file in the depot)
your_path Returns the path of "your" file in the merge. (file in workspace)
their_path Returns the path of "their" file in the merge. (temporary file on

workstation into which their_name has been loaded)
base_path Returns the path of the base file in the merge. (temporary file on

workstation into which base_name has been loaded)

result path

merge hint

Returns the path to the merge result. (temporary file on workstation
into which the automatic merge performed by the server has been
loaded.)

Returns hint from server as to how user might best resolve merge.

P4_OutputHandlerAbstract

Handler class that provides access to streaming output from the server; set $p4->handler to an
instance of a subclass of P4_OutputHandlerAbstract to enable callbacks:

Method

Description

outputBinary()

Process binary data.

outputInfo()

Process tabular data.

outputMessage()

Process information or errors.

outputStat()
outputText()

P4 Resolver

Process tagged output.

Process text data.

Abstract class for handling resolves in Perforce. This class must be subclassed in order to be

used.
Method Description
resolve() Perform a resolve and return the resolve decision as a string.

APIs for Scripting

135

Chapter 5. PAPHP

136 APIs for Scripting

Chapter 5. PAPHP

Class P4

Description

Main interface to the PHP client APIL

This module provides an object-oriented interface to the Perforce version management system.
Data is returned in arrays and input can also be supplied in these formats.

Each P4 object represents a connection to the Perforce server, and multiple commands may
be executed (serially) over a single connection (which of itself can result in substantially
improved performance if executing long sequences of Perforce commands).

1. Instantiate your P4 object.

2. Specify your Perforce client environment:

e client

host
e password
® port
* user

3. Set any options to control output or error handling:
e exception_level

4. Connect to the Perforce service.
The Perforce protocol is not designed to support multiple concurrent queries over the same
connection. Multithreaded applications that use the C++ API or derived APIs (including
P4PHP) should ensure that a separate connection is used for each thread, or that only one
thread may use a shared connection at a time.

5. Run your Perforce commands.

6. Disconnect from the Perforce service.

Properties

P4::api_level -> int

Contains the API compatibility level desired. This is useful when writing scripts using Perforce
commands that do not yet support tagged output. In these cases, upgrading to a later server
that supports tagged output for the commands in question can break your script. Using this
method allows you to lock your script to the output format of an older Perforce release and
facilitate seamless upgrades. Must be called before calling P4: : connect().

APIs for Scripting 137

Chapter 5. PAPHP

<?php
$p4 = new P4();

$pa->api_level = 57; // Lock to 2005.1 format
$p4->connect();

$p4->disconnect();

>

For the APl integer levels that correspond to each Perforce release, see:

http:/ /kb.perforce.com/article /512

P4::charset -> string

Contains the character set to use when connect to a Unicode enabled server. Do not use
when working with non-Unicode-enabled servers. By default, the character set is the value
of the PACHARSET environment variable. If the character set is invalid, this method raises a
P4_Exception.

<?php

$pa = new P4();
$pa->client = "www";
$p4->charset = "is08859-1";

$p4->connect();
$p4->run_sync();
$p4->disconnect();

>

P4::client -> string

Contains the name of your client workspace. By default, this is the value of the P4CLIENT taken
from any P4CONFIG file present, or from the environment according to the normal Perforce
conventions.

P4::cwd -> string

Contains the current working directly. Can be called prior to executing any Perforce
command. Sometimes necessary if your script executes a chdir() as part of its processing.

<?php

$p4 = new P4();
$p4a->cwd = "/home/bruno”

>

138 APIs for Scripting

http://kb.perforce.com/article/512

Chapter 5. PAPHP

P4::errors -> array (read-only)

Returns an array containing the error messages received during execution of the last
command.

<?php

$p4 = new P4();

$p4->connect();

$p4->exception_level = 1;

$p4->connect(); // P4 Exception on failure

$p4->run_sync(); // File(s) up-to-date is a warning; no exception raised

$err = $p4->errors;
print r($err);

$p4->disconnect();

>

P4::exception_level -> int
Configures the events which give rise to exceptions. The following three levels are supported:

* 0: disables all exception handling and makes the interface completely procedural; you are
responsible for checking the P4::errors and P4: :warnings arrays.

* 1: causes exceptions to be raised only when errors are encountered.
* 2: causes exceptions to be raised for both errors and warnings. This is the default.

For example:

<?php

$p4 = new P4();

$p4->exception level = 1;

$p4->connect(); // P4 _Exception on failure

$p4->run_sync(); // File(s) up-to-date is a warning; no exception raised
$p4->disconnect();

>

P4::expand_sequences -> bool

Controls whether keys with trailing numbers are expanded into arrays when using tagged
output. By default, expand_sequences is true to maintain backwards compatibility. Expansion
can be enabled and disabled on a per-command basis.

For example:

APIs for Scripting 139

Chapter 5. PAPHP

<?php

$p4 = new P4();

$p4->connect();

$p4->expand_sequences = false; // disables sequence expansion.
$result = $p4->run('fstat', '-0a', '//depot/path/...');
var_dump($result);

>

P4::handler -> handler

Contains the output handler.
P4::host -> string
Contains the name of the current host. It defaults to the value of P4HOST taken from any

P4CONFIG file present, or from the environment as per the usual Perforce convention. Must be
called before connecting to the Perforce server.

<?php

$p4 = new P4();

$p4a->host = "workstationi23.perforce.com";
$p4->connect();

>

P4::input -> string | array
Contains input for the next command.

Set this property prior to running a command that requires input from the user. When

the command requests input, the specified data is supplied to the command. Typically,
commands of the form p4 cmd -1i are invoked using the P4::save_<spectype>() methods,
which retrieve the value from P4: : input internally; there is no need to set P4: : input when
using the P4::save_<spectype> () shortcuts.

You may pass a string, an array, or (for commands that take multiple inputs from the user) an
array of strings or arrays. If you pass an array, note that the first element of the array will be
popped each time Perforce asks the user for input.

For example, the following code supplies a description for the default changelist and then
submits it to the depot:

140

APIs for Scripting

Chapter 5. PAPHP

<?php

$p4 = new P4();
$p4->connect();

$change = $p4->run_change("-o")[0];

$change['Description’] = "Autosubmitted changelist"”;
$p4->input = $change;

$p4->run_submit("-i");

$p4->disconnect();

>

P4::maxlocktime -> int

Limit the amount of time (in milliseconds) spent during data scans to prevent the server from
locking tables for too long. Commands that take longer than the limit will be aborted. The
limit remains in force until you disable it by setting it to zero. See p4 help maxlocktime for
information on the commands that support this limit.

P4::maxresults -> int

Limit the number of results Perforce permits for subsequent commands. Commands that
produce more than this number of results will be aborted. The limit remains in force until you
disable it by setting it to zero. See p4 help maxresults for information on the commands that
support this limit.

P4::maxscanrows -> int

Limit the number of database records Perforce scans for subsequent commands. Commands
that attempt to scan more than this number of records will be aborted. The limit remains in
force until you disable it by setting it to zero. See p4 help maxscanrows for information on the
commands that support this limit.

P4::p4config_file -> string (read-only)
Contains the name of the current PACONFIG file, if any. This property cannot be set.

P4::password -> string

Contains your Perforce password or login ticket. If not used, takes the value of P4PASSWD
from any P4CONFIG file in effect, or from the environment according to the normal Perforce
conventions.

This password is also used if you later call P4: :xun_login() to log in using the 2003.2 and later
ticket system. After running P4: :run_login(), the property contains the ticket the allocated by
the server.

APIs for Scripting 141

Chapter 5. PAPHP

<?php
$p4 = new P4();
$p4->password = "mypass”;

$p4->connect();
$p4->run_login();

$p4->disconnect();

>

P4::port -> string

Contains the host and port of the Perforce server to which you want to connect. It defaults to
the value of PAPORT in any P4CONFIG file in effect, and then to the value of P4PORT taken from
the environment.

<?php
$p4 = new P4();

$p4->port = "localhost:1666";
$p4->connect();

$p4->disconnect();

>

P4::prog -> string

Contains the name of the program, as reported to Perforce system administrators running p4
monitor show -e. The default is unnamed p4-php script

<?php
$p4 = new P4();
$p4->prog = "sync-script”;

print $p4->prog;
$p4->connect();

$p4->disconnect();

>

P4::server_level -> int (read-only)

Returns the current Perforce server level. Each iteration of the Perforce server is given a
level number. As part of the initial communication this value is passed between the client

142 APIs for Scripting

Chapter 5. PAPHP

application and the Perforce server. This value is used to determine the communication that
the Perforce server will understand. All subsequent requests can therefore be tailored to meet
the requirements of this server level.

This property is 0 before the first command is run, and is set automatically after the first
communication with the server.

For the API integer levels that correspond to each Perforce release, see:

http:/ /kb.perforce.com/article /571

P4::streams -> hool

If true, P4: :streams enables support for streams. By default, streams support is enabled at
2011.1 or higher (api_level >= 70). Raises a P4Exception if you attempt to enable streams
on a pre-2011.1 server. You can enable or disable support for streams both before and after
connecting to the server.

<?php

$p4 = new P4();
$p4->streams = false;
print $p4->streams;

>

P4::tagged -> bool

If true, P4::tagged enables tagged output. By default, tagged output is on.

<?php

$p4 = new P4();
$p4->tagged = false;
print $p4->tagged;

>

P4::ticket_file -> string
Contains the location of the P4TICKETS file.
P4::user -> string

Contains the Perforce username. It defaults to the value of P4USER taken from any P4CONFIG file
present, or from the environment as per the usual Perforce convention.

APIs for Scripting 143

http://kb.perforce.com/article/571

Chapter 5. PAPHP

<?php

$p4 = new P4();
$p4->user = "bruno";
$p4->connect();

P4::disconnect();

>

P4::version -> string

Contains the version of the program, as reported to Perforce system administrators in the
server log.

<?php

$p4 = new P4();
$pa->version = "123";
print $p4->version;
$pa->connect();

$p4->disconnect();

>

P4::warnings -> array (read-only)

Contains the array of warnings that arose during execution of the last command.

<?php

$p4 = new P4();

$pa->connect(); // P4_Exception on failure
$p4->exception_level = 2;

$files = $p4->run_sync();

$warn = $p4->warnings;

print_r($warn);

$p4->disconnect();

>

Constructor

P4:: construct

Construct a new P4 object. For example:

144 APIs for Scripting

Chapter 5. PAPHP

<?php
$p4 = new P4();

>

Static Methods

P4::identify() -> string

Return the version of PAPHP that you are using, and, if applicable, the version of the OpenSSL

library used for building the underlying Perforce C++ API with which PAPHP was built).

<?php
print P4::identify();

>

produces output similar to the following:

Perforce - The Fast Software Configuration Management System.
Copyright 1995-2013 Perforce Software. All rights reserved.
Rev. P4PHP/LINUX26X86/2013.1/644389 (2013.1 API) (2013/05/21).

Instance Methods

P4::connect() -> bool

Initializes the Perforce client and connects to the server.

If the connection is successfully established, returns None. If the connection fails and
exception_level is 0, returns False, otherwise raises a P4_Exception. If already connected,
prints a message.

<?php

$p4 = new Pa();
$p4->connect();

$p4->disconnect();

>

P4::connected() -> bool

Returns true if connected to the Perforce server and the connection is alive, otherwise false.

APIs for Scripting

145

Chapter 5. PAPHP

<?php

$p4 = new P4();
if (!'$p4a->connected()) {
print "Not Connected\n";

}
$p4->connect();

if ($p4->connected()) {
print "Connected\n";

}
$p4->disconnect();

>

P4::delete_<spectype>([options], name) -> array

The delete_<spectype> () methods are shortcut methods that allow you to delete the
definitions of clients, labels, branches, etc. These methods are equivalent to:

P4::run("<spectype>", '-d', [options], "spec name");

The following code uses P4::delete_client() to delete client workspaces that have not been
accessed in more than 365 days:

<?php

$p4 = new P4();
try {
$p4->connect();
foreach ($p4->run_clients() as $client) {
$atime = int($client['Access']);
// If the client has not been accessed for a year, delete it
if ((time() - $atime) > 31536000) { // seconds in 365 days
$p4->delete_client("-f", $client["Client"]);
}
}
} catch (P4_Exception $e) {
print $e->getMessage() . "\n";
foreach ($p4->errors as $error) {
print "Error: $error\n";
}
}

>

P4::disconnect() -> void

Disconnect from the Perforce server. Call this method before exiting your script.

146

APIs for Scripting

Chapter 5. PAPHP

<?php

$p4 = new P4();
$p4->connect();

$p4->disconnect();

>

P4::env(var)-> string

Get the value of a Perforce environment variable, taking into account PACONFIG files and (on
Windows or OS X) the registry or user preferences.

<?php

$p4 = new P4();
print $p4->env("P4PORT");

>

P4::fetch_<spectype>() -> array

The fetch_<spectype> () methods are shortcuts for running $p4->run("<spectype>", "-o")
and returning the first element of the array. For example:

$1label = $p4->fetch label("labelname");
$change = $p4->fetch_change(changeno);
$clientspec = $p4->fetch _client("clientname");

are equivalent to:

$label = $p4->run("label", "-o0", "labelname");
$change = $p4->run("change", "-0", changeno);
$clientspec = $p4->run("client", "-o", clientname);

P4::format_spec("<spectype>", array) -> string

Converts the fields in the array containing the elements of a Perforce form (spec) into the string
representation familiar to users. The first argument is the type of spec to format: for example,
client, branch, label, and so on. The second argument is the hash to parse.

There are shortcuts available for this method. You can use $p4->format_<spectype>(array)
instead of $p4->format_spec("<spectype>", array), where <spectype> is the name of a
Perforce spec, such as client, label, etc.

P4::format_<spectype>(array) -> string

The format_<spectype>() methods are shortcut methods that allow you to quickly fetch the
definitions of clients, labels, branches, etc. They're equivalent to:

APIs for Scripting 147

Chapter 5. PAPHP

$p4->format_spec("<spectype>", array);

P4::parse_spec("<spectype>", string) -> array
Parses a Perforce form (spec) in text form into an array using the spec definition obtained from
the server. The first argument is the type of spec to parse: client, branch, label, and so on.

The second argument is the string buffer to parse.

There are shortcuts available for this method. You can use:

$p4->parse <spectype>(buf);

instead of:

$p4->parse_spec("<spectype>", buf);

where <spectype> is one of client, branch, label, and so on.
P4::parse_<spectype>(string) -> array

This is equivalent to:

$p4->parse_spec("<spectype>", string)

For example:

$p4->parse_job(myJob);

converts the String representation of a job spec into an array.

To parse a spec, P4 needs to have the spec available. When not connected to the Perforce
server, P4 assumes the default format for the spec, which is hardcoded. This assumption can
fail for jobs if the server's jobspec has been modified. In this case, your script can load a job
from the server first with the command fetch_job("somename"), andP4 will cache and use the
spec format in subsequent P4: :parse_job() calls.

P4::run(<cmd>, [arg, ...]) -> mixed

Base interface to all the run methods in this API. Runs the specified Perforce command with
the arguments supplied. Arguments may be in any form as long as they can be converted to
strings.

The P4: :run() method returns an array of results whether the command succeeds or fails;
the array may, however, be empty. Whether the elements of the array are strings or arrays
depends on:

148

APIs for Scripting

Chapter 5. PAPHP

i. server support for tagged output for the command, and
ii. whether tagged output was disabled by calling $p4->tagged = false.

In the event of errors or warnings, and depending on the exception level in force at the time,
P4::run() raises a P4_Exception. If the current exception level is below the threshold for the
error/warning, P4: :run() returns the output as normal and the caller must explicitly review
P4::errors and P4::warnings to check for errors or warnings.

<?php

$p4 = new P4();
print $p4->env("P4PORT");

$p4->connect();
$spec = $p4->run("client", "-0")[0];
$p4->disconnect();

>

Shortcuts are available for P4: :run. For example:

$p4->run_command("args);

is equivalent to:

$p4->run("command", args);

There are also some shortcuts for common commands such as editing Perforce forms and
submitting. For example, this:

<?php

$p4 = new P4();
$p4->connect();

$clientspec = array pop($p4->run_client("-o"));
$clientspec["Description"] = "Build Client";

$p4->input = $clientspec;
$pa->run_client("-i");

$p4->disconnect();

>

may be shortened to:

APIs for Scripting 149

Chapter 5. PAPHP

<?php

$p4 = new P4();
$p4->connect();

$clientspec = $p4->fetch_spec();
$clientspec["Description”] = "Build client";

$p4->save client($clientspec);
$p4->disconnect();

>

The following are equivalent:

Shortcut Equivalent to
$p4->delete <spectype>(); $p4->run("<spectype>", "-d ");
$pa->fetch_<spectype>(); array shift($p4->run("<spectype>", "-0 "));

$p4->save <spectype>(spec); $p4->input = $spec;
$p4->run(“"<spectype>", "-i");

As the commands associated with P4: :fetch_<spectype> () typically return only one item,
these methods do not return an array, but instead return the first result element.

For convenience in submitting changelists, changes returned by P4: : fetch_change() can be
passed to P4: :run_submit(). For example:

<?php

$p4 = new P4();
$p4->connect();

$spec = $pa->fetch change();
$spec["Description"] = "Automated change";
$p4->run_submit($spec);
$p4->disconnect();

>

P4::run_<cmd>() -> mixed

Shorthand for:

P4::run("cmd", arguments...);

150 APIs for Scripting

Chapter 5. PAPHP

P4::run_filelog(<fileSpec>) -> array

Runs a p4 filelog on the fileSpec provided and returns an array of P4_DepotFile results
(when executed in tagged mode), or an array of strings when executed in nontagged mode.
By default, the raw output of p4 filelog is tagged; this method restructures the output into a
more user-friendly (and object-oriented) form.

For example:

<?php

$p4 = new P4();
try {
$p4->connect();
$filelog = $p4->run_filelog("index.html");
foreach ($filelog->revisions as $revision) {
// do something

}
} catch (P4 _Exception $e) {
print $e->getMessage() . "\n";
foreach ($p4->errors as $error) {
print "Error: $error\n";
}
}

>

P4::run_login(arg...) -> array
Runs p4 login using a password or ticket set by the user.
P4::run_password(oldpass, newpass) -> array

A thin wrapper to make it easy to change your password. This method is equivalent to the
following:

<?php

$p4->input = array($oldpass, $newpass, $newpass);
$p4a->run("password");

>

For example:

APIs for Scripting 151

Chapter 5. PAPHP

<?php

$p4 = new P4();
$p4->password = "myoldpass";

try {
$p4->connect();
$p4->run_password("myoldpass”, "mynewpass");
$p4->disconnect();
} catch (P4 _Exception $e) {
print $e->getMessage() . "\n";
foreach ($p4->errors as $error) {
print "Error: $error\n";
}
}

>

P4::run_resolve([<resolver>], [arg...]) -> array

Run a p4 resolve command. Interactive resolves require the <resolver> parameter to be
an object of a class derived from P4_Resolver. In these cases, the P4: :Resolver: :resolve()
method is called to handle the resolve. For example:

<?php
$p4->run_resolve(new MyResolver());

>

To perform an automated merge that skips whenever conflicts are detected:

<?php

class MyResolver extends P4 Resolver {
public function resolve($merge_data) {
if ($merge data->merge hint = 'e') {
return $merge data->merge hint;
} else {
return "s"; // skip, there's a conflict
}
}
}

>

In non-interactive resolves, no P4_Resolver object is required. For example:

$p4->run_resolve ("-at");

P4::run_submit([array], [arg...]) -> array

Submit a changelist to the server. To submit a changelist, set the fields of the changelist as
required and supply any flags:

152 APIs for Scripting

Chapter 5. PAPHP

$p4->change = $p4->fetch _change();
$change["Description”] = "Some description”;
$p4->run_submit("-r", $change);

You can also submit a changelist by supplying the arguments as you would on the command
line:

$p4a->run_submit("-d", "Some description”, "somedir/...");

P4::save_<spectype>()>

The save_<spectype> () methods are shortcut methods that allow you to quickly update the
definitions of clients, labels, branches, etc. They are equivalent to:

$p4->input = $arrayOrString;
$pa->run(“"<spectype> ", "-i");

For example:

<?php

$p4 = new P4();

try {
$p4->connect();
$client = $pa->fetch client();
$client["Owner"] = $p4->user;
$p4->save_client($client);
$p4->disconnect();

} catch (P4_Exception $e) {
print $e->getMessage() . "\n";
foreach ($p4->errors as $error) {

print "Error: $error\n";
}
}

>

APIs for Scripting 153

Chapter 5. PAPHP

Class P4_Exception

Description
Instances of thiS class are raised when P4 encounters an error or a warning from the server.

The exception contains the errors in the form of a string. P4_Exception is an extension of the
standard Exception class.

Class Attributes

None.

Static Methods

None.

154 APIs for Scripting

Chapter 5. PAPHP

Class P4_DepotFile

Description
Utility class providing easy access to the attributes of a file in a Perforce depot. Each
P4_DepotFile object contains summary information about the file and an array of revisions

(P4_Revision objects) of that file. Currently, only the P4::run_filelog() method returns an
array of P4_DepotFile objects.

Properties

$df->depotFile -> string

Returns the name of the depot file to which this object refers.
$df->revisions -> array

Returns an array of P4_Revision objects, one for each revision of the depot file.

Static Methods

None.

Instance Methods

None.

APIs for Scripting 155

Chapter 5. PAPHP

Class P4 _Revision

Description

Utility class providing easy access to the revisions of P4_DepotFile objects. Created by
P4::run_filelog().

Properties

$rev->action -> string

Returns the name of the action which gave rise to this revision of the file.
$rev->change -> long

Returns the change number that gave rise to this revision of the file.
$rev->client -> string

Returns the name of the client from which this revision was submitted.
$rev->depotFile -> string

Returns the name of the depot file to which this object refers.
$rev->desc-> string

Returns the description of the change which created this revision. Note that only the first
31 characters are returned unless you use p4 filelog -L for the first 250 characters, or p4
filelog -1 for the full text.

$rev->digest -> string

Returns the MD5 digest of this revision.

$rev->fileSize -> long

Returns this revision's size in bytes.

$rev->integrations -> array

Returns the array of P4_Integration objects for this revision.
$rev->rev-> long

Returns the number of this revision of the file.

$rev->time -> string

Returns the date/time that this revision was created.

156

APIs for Scripting

Chapter 5. PAPHP

$rev->type -> string
Returns this revision's Perforce filetype.
$rev->user -> string

Returns the name of the user who created this revision.

Static Methods

None.

Instance Methods

None.

APIs for Scripting 157

Chapter 5. PAPHP

Class P4_Integration

Description

Utility class providing easy access to the details of an integration record. Created by
P4::run_filelog().

Properties

Sinteg->how -> string

Returns the type of the integration record - how that record was created.
Sinteg->file -> string

Returns the path to the file being integrated to/from.

Sinteg->srev -> int

Returns the start revision number used for this integration.
Sinteg->erev -> int

Returns the end revision number used for this integration.

Static Methods

None.

Instance Methods

None.

158 APIs for Scripting

Chapter 5. PAPHP

Class P4_Map

Description

The P4_Map class allows users to create and work with Perforce mappings, without requiring a
connection to a Perforce server.

Properties

None.

Constructor

P4_Map::__ construct([array])->P4_Map

Constructs a new P4_Map object.

Static Methods
P4_Map::join (map1, map2)->P4_Map

Join two P4_Map objects and create a third P4_Map. The new map is composed of the left-hand
side of the first mapping, as joined to the right-hand side of the second mapping. For example:

// Map depot syntax to client syntax
$client_map = new P4 Map();
$client map->insert("//depot/main/...", "//client/...");

// Map client syntax to local syntax
$client_root = new P4 Map();
$client root->insert("//client/...", "/home/bruno/workspace/...");

// Join the previous mappings to map depot syntax to local syntax
$local map = P4 Map::join($client map, $client root);
$local path = $local map->translate("//depot/main/www/index.html");

// local path is now /home/bruno/workspace/www/index.html

Instance Methods

$map->clear() -> void

Empty a map.

$map->count() -> int

Return the number of entries in a map.
$map->is_empty() -> bool

Test whether a map object is empty.

APIs for Scripting 159

Chapter 5. PAPHP

$map->insert(string ...) -> void
Inserts an entry into the map.

May be called with one or two arguments. If called with one argument, the string is assumed
to be a string containing either a half-map, or a string containing both halves of the mapping.
In this form, mappings with embedded spaces must be quoted. If called with two arguments,
each argument is assumed to be half of the mapping, and quotes are optional.

// called with two arguments:
$map->insert("//depot/main/...", "//client/...");

// called with one argument containing both halves of the mapping:
$map->insert("//depot/live/... //client/live/...");

// called with one argument containing a half-map:
// This call produces the mapping "depot/... depot/..."
$map->insert("depot/...");

$map->translate (string, [bool])-> string

Translate a string through a map, and return the result. If the optional second argument is 1,
translate forward, and if it is 0, translate in the reverse direction. By default, translation is in
the forward direction.

$map->includes(string) -> bool

Tests whether a path is mapped or not.

if $map->includes("//depot/main/...") {

.

$map->reverse() -> P4_Map

Return a new P4_Map object with the left and right sides of the mapping swapped. The original
object is unchanged.

$map->lhs() -> array

Returns the left side of a mapping as an array.
$map->rhs() -> array

Returns the right side of a mapping as an array.
$map->as_array() -> array

Returns the map as an array.

160 APIs for Scripting

Chapter 5. PAPHP

Class P4_MergeData

Description

Class containing the context for an individual merge during execution of a p4 resolve.

Properties

$md->your_name -> string

Returns the name of "your" file in the merge. This is typically a path to a file in the workspace.
$md->their_name -> string

Returns the name of "their" file in the merge. This is typically a path to a file in the depot.
$md->base_name -> string

Returns the name of the "base" file in the merge. This is typically a path to a file in the depot.
$md->your_path -> string

Returns the path of "your" file in the merge. This is typically a path to a file in the workspace.
$md->their_path -> string

Returns the path of "their" file in the merge. This is typically a path to a temporary file on your
local machine in which the contents of their name have been loaded.

$md->base_path -> string

Returns the path of the base file in the merge. This is typically a path to a temporary file on
your local machine in which the contents of base_name have been loaded.

$md->result_path -> string

Returns the path to the merge result. This is typically a path to a temporary file on your local
machine in which the contents of the automatic merge performed by the server have been
loaded.

$md->merge_hint -> string

Returns the hint from the server as to how it thinks you might best resolve this merge.

APIs for Scripting 161

Chapter 5. PAPHP

Class P4_QutputHandlerAbstract

Description

The P4_OutputHandlerAbstract class is a handler class that provides access to streaming
output from the server. After defining the output handler, set $p4->handler to an instance of a

subclass of P4_OutputHandlerAbstract.

By default, P4_OutputHandlerAbstract returns HANDLER_REPORT for all output methods. The

different return options are:

Value Meaning

HANDLER_REPORT Messages added to output (don't handle, don't cancel).

HANDLER_HANDLED Output is handled by class (don't add message to output).

HANDLER_CANCEL Operation is marked for cancel, message is added to output.
Class Methods

class MyHandler extends P4_OutputHandlerAbstract

Constructs a new subclass of P4_OutputHandlerAbstract.

Instance Methods

$handler->outputBinary -> int
Process binary data.
$handler->outputinfo -> int
Process tabular data.

$handler->outputMessage -> int

Process informational or error messages.

$handler->outputStat -> int

Process tagged data.
$handler->outputText -> int

Process text data.

162

APIs for Scripting

Chapter 5. PAPHP

Class P4 Resolver

Description
P4_Resolver is a class for handling resolves in Perforce. It must be subclassed, to be used;
subclasses can override the P4: :resolve() method. When P4: :run_resolve() is called with

a P4_Resolver object, it calls the P4_Resolver: :resolve() method of the object once for each
scheduled resolve.

Properties

None.

Static Methods

None.

Instance Methods

$resolver->resolve(self, mergeData) -> string

Returns the resolve decision as a string. The standard Perforce resolve strings apply:

String Meaning

ay Accept Yours.

at Accept Theirs.

am Accept Merge result.
ae Accept Edited result.
s Skip this merge.

q Abort the merge.

By default, all automatic merges are accepted, and all merges with conflicts are skipped. The
P4_Resolver::resolve() method is called with a single parameter, which is a reference to a
P4_MergeData object.

APIs for Scripting 163

164 APIs for Scripting

Appendix | jcense Statements

Perforce software includes software developed by the University of California, Berkeley and
its contributors. This product includes software developed by the OpenSSL Project for use in
the OpenSSL Toolkit (http://www.openssl.org/).

APIs for Scripting 165

166 APIs for Scripting

	APIs for Scripting
	Table of Contents
	Chapter 1. About This Manual
	Please give us feedback

	Chapter 2. P4Ruby
	Introduction
	System Requirements
	Installing P4Ruby
	Programming with P4Ruby
	Connecting to SSL-enabled servers

	P4Ruby classes
	P4
	P4Exception
	P4::DepotFile
	P4::Revision
	P4::Integration
	P4::Map
	P4::MergeData
	P4::Message
	P4::OutputHandler
	P4::Progress
	P4::Spec

	Class P4
	Description
	Class Methods
	P4.identify -> aString
	P4.new -> aP4

	Instance Methods
	p4.api_level= anInteger -> anInteger
	p4.api_level -> anInteger
	p4.at_exception_level(lev) { ... } -> self
	p4.charset= aString -> aString
	p4.charset -> aString
	p4.client= aString -> aString
	p4.client -> aString
	p4.connect -> aBool
	p4.connected? -> aBool
	p4.cwd= aString -> aString
	p4.cwd -> aString
	p4.delete_<spectype>([options], name) -> anArray
	p4.disconnect -> true
	p4.each_<spectype<(arguments) -> anArray
	p4.env -> string
	p4.errors -> anArray
	p4.exception_level= anInteger -> anInteger
	p4.exception_level -> aNumber
	p4.fetch_<spectype>([name]) -> aP4::Spec
	p4.format_spec("<spectype>", aHash)-> aString
	p4.format_<spectype> aHash -> aHash
	p4.handler= aHandler -> aHandler
	p4.handler -> aHandler
	p4.host= aString -> aString
	p4.host -> aString
	p4.input= (aString|aHash|anArray) -> aString|aHash|anArray
	p4.maxlocktime= anInteger -> anInteger
	p4.maxlocktime -> anInteger
	p4.maxresults= anInteger -> anInteger
	p4.maxresults -> anInteger
	p4.maxscanrows= anInteger -> anInteger
	p4.maxscanrows -> anInteger
	p4.messages -> aP4::Message
	p4.p4config_file -> aString
	p4.parse_<spectype>(aString) -> aP4::Spec
	p4.parse_spec("<spectype>", aString) -> aP4::Spec
	p4.password= aString -> aString
	p4.password -> aString
	p4.port= aString -> aString
	p4.port -> aString
	p4.prog= aString -> aString
	p4.prog -> aString
	p4.progress= aProgress -> aProgress
	p4.progress -> aProgress
	p4.run_<cmd>(arguments) -> anArray
	p4.run(aCommand, arguments...) -> anArray
	p4.run_filelog(fileSpec) -> anArray
	p4.run_login(arg...) -> anArray
	p4.run_password(oldpass, newpass) -> anArray
	p4.run_resolve(args) [block] -> anArray
	p4.run_submit([aHash], [arg...]) -> anArray
	p4.run_tickets() -> anArray
	p4.save_<spectype>(hashOrString, [options]) -> anArray
	p4.server_case_sensitive? -> aBool
	p4.server_level -> anInteger
	p4.server_unicode? -> aBool
	p4.set_env= (aString, aString) -> aBool
	p4.streams= -> aBool
	p4.streams? -> aBool
	p4.tagged(aBool) { block }
	p4.tagged= aBool -> aBool
	p4.tagged? -> aBool
	p4.ticketfile= aString -> aString
	p4.ticketfile -> aString
	p4.track= -> aBool
	p4.track? -> aBool
	p4.track_output -> anArray
	p4.user= aString -> aString
	p4.user -> aString
	p4.version= aString -> aString
	p4.version -> aString
	p4.warnings -> anArray

	Class P4Exception
	Class Methods
	Instance Methods

	Class P4::DepotFile
	Description
	Class Methods
	Instance Methods
	df.depot_file -> aString
	df.each_revision { |rev| block } -> revArray
	df.revisions -> aArray

	Class P4::Revision
	Description
	Class Methods
	Instance Methods
	rev.action -> aString
	rev.change -> aNumber
	rev.client -> aString
	rev.depot_file -> aString
	rev.desc -> aString
	rev.digest -> aString
	rev.each_integration { |integ| block } -> integArray
	rev.filesize -> aNumber
	rev.integrations -> integArray
	rev.rev -> aNumber
	rev.time -> aTime
	rev.type -> aString
	rev.user -> aString

	Class P4::Integration
	Description
	Class Methods
	Instance Methods
	integ.how -> aString
	integ.file -> aPath
	integ.srev -> aNumber
	integ.erev -> aNumber

	Class P4::Map
	Description
	Class Methods
	Map.new ([anArray]) -> aMap
	Map.join (map1, map2) -> aMap

	Instance Methods
	map.clear -> true
	map.count -> anInteger
	map.empty? -> aBool
	map.insert(aString, [aString]) -> aMap
	map.translate (aString, [aBool])-> aString
	map.includes? (aString) -> aBool
	map.reverse -> aMap
	map.lhs -> anArray
	map.rhs -> anArray
	map.to_a -> anArray

	Class P4::MergeData
	Description
	Class Methods
	Instance Methods
	md.your_name() -> aString
	md.their_name() -> aString
	md.base_name() -> aString
	md.your_path() -> aString
	md.their_path() -> aString
	md.base_path() -> aString
	md.result_path() -> aString
	md.merge_hint() -> aString
	md.run_merge() -> aBool

	Class P4::Message
	Description
	Class methods
	Instance methods
	message.severity() -> anInteger
	message.generic() -> anInteger
	message.msgid() -> anInteger
	message.to_s() -> aString
	message.inspect() -> aString

	Class P4::OutputHandler
	Description
	Class Methods
	new P4::MyHandler.new -> aP4::OutputHandler

	Instance Methods
	outputBinary -> int
	outputInfo -> int
	outputMessage -> int
	outputStat -> int
	outputText -> int

	Class P4::Progress
	Description
	Class Methods
	new P4::MyProgress.new -> aP4::Progress

	Instance Methods
	init -> int
	description -> int
	update -> int
	total -> int
	done -> int

	Class P4::Spec
	Description
	Class Methods
	new P4::Spec.new(anArray) -> aP4::Spec

	Instance Methods
	spec._<fieldname> -> aValue
	spec._<fieldname>= aValue -> aValue
	spec.permitted_fields -> anArray

	Chapter 3. P4Perl
	Introduction
	System Requirements
	Installing P4Perl
	Programming with P4Perl
	Connecting to Perforce over SSL

	P4Perl Classes
	P4
	P4::DepotFile
	P4::Revision
	P4::Integration
	P4::Map
	P4::MergeData
	P4::Message
	P4::OutputHandler
	P4::Progress
	P4::Resolver
	P4::Spec

	Class P4
	Description
	Class methods
	P4::new() -> P4
	P4::Identify() -> string
	P4::ClearHandler() -> undef
	P4::Connect() -> bool
	P4::Disconnect() -> undef
	P4::ErrorCount() -> integer
	P4::Errors() -> list
	P4::Fetch<Spectype>([name]) -> hashref
	P4::Format<Spectype>(hash) -> string
	P4::FormatSpec($spectype, $string) -> string
	P4::GetApiLevel() -> integer
	P4::GetCharset() -> string
	P4::GetClient() -> string
	P4::GetCwd() -> string
	P4::GetEnv($var) -> string
	P4::GetHandler() -> Handler
	P4::GetHost() -> string
	P4::GetMaxLockTime($value) -> integer
	P4::GetMaxResults($value) -> integer
	P4::GetMaxScanRows($value) -> integer
	P4::GetPassword() -> string
	P4::GetPort() -> string
	P4::GetProg() -> string
	P4::GetProgress() -> Progress
	P4::GetTicketFile([$string]) -> string
	P4::GetUser() -> String
	P4::GetVersion($string) -> string
	P4::IsConnected() -> bool
	P4::IsStreams() -> bool
	P4::IsTagged() -> bool
	P4::IsTrack() -> bool
	P4::Iterate<Spectype>(arguments) -> object
	P4::Messages() -> list
	P4::P4ConfigFile() -> string
	P4::Parse<Spectype>($string) -> hashref
	P4::ParseSpec($spectype, $string) -> hashref
	P4::Run<Cmd>([$arg...]) -> list | arrayref
	P4::Run("<cmd>", [$arg...]) -> list | arrayref
	P4::RunFilelog([$args ...], $fileSpec ...) -> list | arrayref
	P4::RunLogin(...) -> list | arrayref
	P4::RunPassword($oldpass, $newpass) -> list | arrayref
	P4::RunResolve([$resolver], [$args ...]) -> string
	P4::RunSubmit($arg | $hashref, ...) -> list | arrayref
	P4::RunTickets() -> list
	P4::Save<Spectype>() -> list | arrayref
	P4::ServerCaseSensitive() -> integer
	P4::ServerLevel() -> integer
	P4::ServerUnicode() -> integer
	P4::SetApiLevel($integer) -> undef
	P4::SetCharset($charset) -> undef
	P4::SetClient($client) -> undef
	P4::SetCwd($path) -> undef
	P4::SetEnv($var, $value) -> undef
	P4::SetHandler(Handler) -> Handler
	P4::SetHost($hostname) -> undef
	P4::SetInput($string | $hashref | $arrayref) -> undef
	P4::SetMaxLockTime($integer) -> undef
	P4::SetMaxResults($integer) -> undef
	P4::SetMaxScanRows($integer) -> undef
	P4::SetPassword($password) -> undef
	P4::SetPort($port) -> undef
	P4::SetProg($program_name) -> undef
	P4::SetProgress(Progress) -> Progress
	P4::SetStreams(0 | 1) -> undef
	P4::SetTicketFile([$string]) -> string
	P4::SetTrack(0 | 1) -> undef
	P4::SetUser($username) -> undef
	P4::SetVersion($version) -> undef
	P4::Tagged(0 | 1 | $coderef) -> undef
	P4::TrackOutput() -> list
	P4::WarningCount() -> integer
	P4::Warnings() -> list

	Class P4::DepotFile
	Description
	Class Methods
	Instance Methods
	$df->DepotFile() -> string
	$df->Revisions() -> array

	Class P4::Revision
	Description
	Class Methods
	$rev->Integrations() -> array

	Instance Methods
	$rev->Action() -> string
	$rev->Change() -> integer
	$rev->Client() -> string
	$rev->DepotFile() -> string
	$rev->Desc() -> string
	$rev->Digest() -> string
	$rev->FileSize() -> string
	$rev->Rev() -> integer
	$rev->Time() -> string
	$rev->Type() -> string
	$rev->User() -> string

	Class P4::Integration
	Description
	Class Methods
	Instance Methods
	$integ->How() -> string
	$integ->File() -> string
	$integ->SRev() -> integer
	$integ->ERev() -> integer

	Class P4::Map
	Description
	Class Methods
	$map = new P4::Map([array]) -> aMap
	$map->Join(map1, map2) -> aMap

	Instance Methods
	$map->Clear() -> undef
	$map->Count() -> integer
	$map->IsEmpty() -> bool
	$map->Insert(string ...) -> undef
	$map->Translate(string, [bool]) -> string
	$map->Includes(string) -> bool
	$map->Reverse() -> aMap
	$map->Lhs() -> array
	$map->Rhs() -> array
	$map->AsArray() -> array

	Class P4::MergeData
	Description
	Class Methods
	Instance Methods
	$md.YourName() -> string
	$md.TheirName() -> string
	$md.BaseName() -> string
	$md.YourPath() -> string
	$md.TheirPath() -> string
	$md.BasePath() -> string
	$md.ResultPath() -> string
	$md.MergeHint() -> string
	$md.RunMergeTool() -> integer

	Class P4::Message
	Description
	Class methods
	Instance methods
	$message.GetSeverity() -> int
	$message.GetGeneric() -> int
	$message.GetId() -> int
	$message.GetText() -> int

	Class P4::OutputHandler
	Description
	Class Methods
	Instance Methods
	$handler.OutputBinary() -> int
	$handler.OutputInfo() -> int
	$handler.OutputMessage() -> int
	$handler.OutputStat()-> int
	$handler.OutputText() -> int

	Class P4::Progress
	Description
	Class Methods
	Instance Methods
	$progress.Init() -> int
	$progress.Description(string, int) -> int
	$progress.Update() -> int
	$progress.Total()-> int
	$progress.Done() -> int

	Class P4::Resolver
	Description
	Class Methods
	Instance Methods
	$resolver.Resolve() -> string

	Class P4::Spec
	Description
	Class Methods
	$spec = new P4::Spec($fieldMap) -> array

	Instance Methods
	$spec->_<fieldname> -> string
	$spec->_<fieldname>($string)-> string
	$spec->PermittedFields() -> array

	Chapter 4. P4Python
	Introduction
	System Requirements
	Installing P4Python
	Programming with P4Python
	Submitting a Changelist
	Logging into Perforce using ticket-based authentication
	Connecting to Perforce over SSL
	Changing your password
	Timestamp conversion
	Working with comments in specs

	P4Python Classes
	P4
	P4.P4Exception
	P4.DepotFile
	P4.Revision
	P4.Integration
	P4.Map
	P4.MergeData
	P4.Message
	P4.OutputHandler
	P4.Progress
	P4.Resolver
	P4.Spec

	Class P4
	Description
	Instance Attributes
	p4.api_level -> int
	p4.charset -> string
	p4.client -> string
	p4.cwd -> string
	p4.disable_tmp_cleanup -> string
	p4.encoding -> string
	p4.errors -> list (read-only)
	p4.exception_level -> int
	p4.handler -> handler
	p4.host -> string
	p4.ignore_file -> string
	p4.input -> string | dict | list
	p4.iterate_<spectype>(arguments) -> P4.Spec
	p4.maxlocktime -> int
	p4.maxresults -> int
	p4.maxscanrows -> int
	p4.messages -> list (read-only)
	p4.p4config_file -> string (read-only)
	p4.password -> string
	p4.port -> string
	p4.prog -> string
	p4.progress -> progress
	p4.server_case_insensitive -> boolean
	p4.server_level -> int (read-only)
	p4.server_unicode -> boolean
	p4.streams -> int
	p4.tagged -> int
	p4.ticket_file -> string
	p4.track -> boolean
	p4.track_output -> list (read-only)
	p4.user -> string
	p4.version -> string
	p4.warnings -> list (read-only)

	Class Methods
	P4.P4()
	P4.identify()

	Instance Methods
	p4.at_exception_level()
	p4.connect()
	p4.connected() -> boolean
	p4.delete_<spectype>([options], name) -> list
	p4.disconnect()
	p4.env(var)
	p4.fetch_<spectype>() -> P4.Spec
	p4.format_spec("<spectype>", dict) -> string
	p4.format_<spectype>(dict) -> string
	p4.is_ignored("<path>") -> boolean
	p4.parse_spec("<spectype>", string) -> P4.Spec
	p4.parse_<spectype>(string) -> P4.Spec
	p4.run("<cmd>", [arg, ...])
	p4.run_<cmd>()
	p4.run_filelog(<fileSpec>) -> list
	p4.run_login(<arg>...) -> list
	p4.run_password(oldpass, newpass) -> list
	p4.run_resolve([<resolver>], [arg...]) -> list
	p4.run_submit([hash], [arg...]) -> list
	p4.run_tickets() -> list
	p4.save_<spectype>()>
	p4.set_env(var, value)
	p4.temp_client("<prefix>", "<template>")
	p4.while_tagged(boolean)

	Class P4.P4Exception
	Description
	Class Attributes
	Class Methods

	Class P4.DepotFile
	Description
	Instance Attributes
	df.depotFile -> string
	df.revisions -> list

	Class Methods
	Instance Methods

	Class P4.Revision
	Description
	Instance Attributes
	rev.action -> string
	rev.change -> int
	rev.client -> string
	rev.depotFile -> string
	rev.desc -> string
	rev.digest -> string
	rev.fileSize -> string
	rev.integrations -> list
	rev.rev -> int
	rev.time -> datetime
	rev.type -> string
	rev.user -> string

	Class Methods
	Instance Methods

	Class P4.Integration
	Description
	Instance Attributes
	integ.how -> string
	integ.file -> string
	integ.srev -> int
	integ.erev -> int

	Class Methods
	Instance Methods

	Class P4.Map
	Description
	Instance Attributes
	Class Methods
	P4.Map([list]) -> P4.Map
	P4.Map.join (map1, map2) -> P4.Map

	Instance Methods
	map.clear()
	map.count() -> int
	map.is_empty() -> boolean
	map.insert(string ...)
	map.translate (string, [boolean]) -> string
	map.includes(string) -> boolean
	map.reverse() -> P4.Map
	map.lhs() -> list
	map.rhs() -> list
	map.as_array() -> list

	Class P4.MergeData
	Description
	Instance Attributes
	md.your_name -> string
	md.their_name -> string
	md.base_name -> string
	md.your_path -> string
	md.their_path -> string
	md.base_path -> string
	md.result_path -> string
	md.merge_hint -> string

	Instance Methods
	md.run_merge() -> boolean

	Class P4.Message
	Description
	Class Methods
	Instance Attributes
	message.severity -> int
	message.generic -> int
	message.msgid -> int

	Class P4.OutputHandler
	Description
	Class Methods
	class MyHandler(P4.OutputHandler)

	Instance Methods
	outputBinary -> int
	outputInfo -> int
	outputMessage -> int
	outputStat -> int
	outputText -> int

	Class P4.Progress
	Description
	Instance Attributes
	Class Methods
	class MyProgress(P4.Progress)

	Instance Methods
	progress.init() -> int
	progress.setDescription(string, int) -> int
	progress.update() -> int
	progress.setTotal(<total>) -> int
	progress.done() -> int

	Class P4.Resolver
	Description
	Instance Attributes
	Class Methods
	Instance Methods
	resolver.resolve(self, mergeData) -> string

	Class P4.Spec
	Description
	Instance Attributes
	spec._<fieldname> -> string
	spec.comment -> dict
	spec.permitted_fields -> dict

	Class Methods
	P4.Spec.new(dict) -> P4.Spec

	Instance Methods

	Chapter 5. P4PHP
	Introduction
	System Requirements
	Installing P4PHP
	Programming with P4PHP
	Submitting a Changelist
	Logging into Perforce using ticket-based authentication
	Connecting to Perforce over SSL
	Changing your password

	P4PHP Classes
	P4
	P4_Exception
	P4_DepotFile
	P4_Revision
	P4_Integration
	P4_Map
	P4_MergeData
	P4_OutputHandlerAbstract
	P4_Resolver

	Class P4
	Description
	Properties
	P4::api_level -> int
	P4::charset -> string
	P4::client -> string
	P4::cwd -> string
	P4::errors -> array (read-only)
	P4::exception_level -> int
	P4::expand_sequences -> bool
	P4::handler -> handler
	P4::host -> string
	P4::input -> string | array
	P4::maxlocktime -> int
	P4::maxresults -> int
	P4::maxscanrows -> int
	P4::p4config_file -> string (read-only)
	P4::password -> string
	P4::port -> string
	P4::prog -> string
	P4::server_level -> int (read-only)
	P4::streams -> bool
	P4::tagged -> bool
	P4::ticket_file -> string
	P4::user -> string
	P4::version -> string
	P4::warnings -> array (read-only)

	Constructor
	P4::__construct

	Static Methods
	P4::identify() -> string

	Instance Methods
	P4::connect() -> bool
	P4::connected() -> bool
	P4::delete_<spectype>([options], name) -> array
	P4::disconnect() -> void
	P4::env(var) -> string
	P4::fetch_<spectype>() -> array
	P4::format_spec("<spectype>", array) -> string
	P4::format_<spectype>(array) -> string
	P4::parse_spec("<spectype>", string) -> array
	P4::parse_<spectype>(string) -> array
	P4::run(<cmd>, [arg, ...]) -> mixed
	P4::run_<cmd>() -> mixed
	P4::run_filelog(<fileSpec>) -> array
	P4::run_login(arg...) -> array
	P4::run_password(oldpass, newpass) -> array
	P4::run_resolve([<resolver>], [arg...]) -> array
	P4::run_submit([array], [arg...]) -> array
	P4::save_<spectype>()>

	Class P4_Exception
	Description
	Class Attributes
	Static Methods

	Class P4_DepotFile
	Description
	Properties
	$df->depotFile -> string
	$df->revisions -> array

	Static Methods
	Instance Methods

	Class P4_Revision
	Description
	Properties
	$rev->action -> string
	$rev->change -> long
	$rev->client -> string
	$rev->depotFile -> string
	$rev->desc -> string
	$rev->digest -> string
	$rev->fileSize -> long
	$rev->integrations -> array
	$rev->rev -> long
	$rev->time -> string
	$rev->type -> string
	$rev->user -> string

	Static Methods
	Instance Methods

	Class P4_Integration
	Description
	Properties
	$integ->how -> string
	$integ->file -> string
	$integ->srev -> int
	$integ->erev -> int

	Static Methods
	Instance Methods

	Class P4_Map
	Description
	Properties
	Constructor
	P4_Map::__construct([array]) -> P4_Map

	Static Methods
	P4_Map::join (map1, map2) -> P4_Map

	Instance Methods
	$map->clear() -> void
	$map->count() -> int
	$map->is_empty() -> bool
	$map->insert(string ...) -> void
	$map->translate (string, [bool])-> string
	$map->includes(string) -> bool
	$map->reverse() -> P4_Map
	$map->lhs() -> array
	$map->rhs() -> array
	$map->as_array() -> array

	Class P4_MergeData
	Description
	Properties
	$md->your_name -> string
	$md->their_name -> string
	$md->base_name -> string
	$md->your_path -> string
	$md->their_path -> string
	$md->base_path -> string
	$md->result_path -> string
	$md->merge_hint -> string

	Class P4_OutputHandlerAbstract
	Description
	Class Methods
	class MyHandler extends P4_OutputHandlerAbstract

	Instance Methods
	$handler->outputBinary -> int
	$handler->outputInfo -> int
	$handler->outputMessage -> int
	$handler->outputStat -> int
	$handler->outputText -> int

	Class P4_Resolver
	Description
	Properties
	Static Methods
	Instance Methods
	$resolver->resolve(self, mergeData) -> string

	License Statements

