
Using Perforce for Distributed
Versioning

2015.1
March 2015

Using Perforce for Distributed Versioning
2015.1

March 2015

Copyright © 2015 Perforce Software.

All rights reserved.

Perforce software and documentation is available from http://www.perforce.com/. You can download and use Perforce programs, but you
can not sell or redistribute them. You can download, print, copy, edit, and redistribute the documentation, but you can not sell it, or sell any
documentation derived from it. You can not modify or attempt to reverse engineer the programs.

This product is subject to U.S. export control laws and regulations including, but not limited to, the U.S. Export Administration Regulations,
the International Traffic in Arms Regulation requirements, and all applicable end-use, end-user and destination restrictions. Licensee shall not
permit, directly or indirectly, use of any Perforce technology in or by any U.S. embargoed country or otherwise in violation of any U.S. export
control laws and regulations.

Perforce programs and documents are available from our Web site as is. No warranty or support is provided. Warranties and support, along
with higher capacity servers, are sold by Perforce Software.

Perforce Software assumes no responsibility or liability for any errors or inaccuracies that might appear in this book. By downloading and
using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce Software.

All other brands or product names are trademarks or registered trademarks of their respective companies or organizations.

Any additional software included within Perforce software is listed in License Statements on page 33.

Using Perforce for Distributed Versioning iii

Table of Contents

About this manual ... v

Getting started with Perforce distributed versioning .. v
Perforce documentation .. v
Please give us feedback .. v

Chapter 1 Introduction ... 1

Chapter 2 Installation ... 3

Installing Perforce Server 15.1 on a Macintosh ... 3
Installing Perforce Server 15.1 on Linux .. 3

Without OS-specific packages ... 3
With OS-specific packages .. 4

Installing Perforce Server 15.1 on Windows ... 5

Chapter 3 Initializing a Personal Server .. 7

Initialize an empty server ... 7
Read this first .. 7
Run p4 init .. 7

Directories and files ... 8
Add files ... 8
Prepare to fetch and push content between servers .. 8

Initialize a server and populate it with files ... 8
Run p4 clone ... 9

Directories and files ... 9
Get the latest changes ... 9

Chapter 4 Fetching and Pushing ... 11

Configure security for fetching and pushing .. 11
Specify what to copy .. 12

Fetch a limited subset of history .. 12
Fetching, pushing and changelists ... 13
When things go wrong ... 13

Access denial ... 13
History does not fit .. 13
Files with filetype modifiers +k, +l or +S ... 14
Using triggers with fetch and push ... 14

Using Perforce for Distributed Versioning

iv Using Perforce for Distributed Versioning

Chapter 5 Streams and Branching .. 15

List streams .. 15
Create streams .. 15
Switch between streams .. 17

Chapter 6 Understanding Remotes ... 19

Choose a remote .. 20
Create a remote .. 20

Example ... 20
A closer look at a remote spec .. 23

Specify mappings ... 25
Using wildcards in remote specs ... 25
Mapping part of the depot .. 26
Mapping files to different locations on the local server ... 26
Excluding files and directories .. 26

Chapter 7 Rewriting History ... 27

Resolve conflicts by rewriting local history .. 27
Rewrite history to revise local work .. 27

Scenario 1: You forgot to map a file ... 28
Scenario 2: Combine two changes together to remove "noise" from the history 28

Chapter 8 Git:Perforce Command Mappings ... 31

License Statements ... 33

Using Perforce for Distributed Versioning v

About this manual
This guide tells you how to use the distributed versioning features of Perforce. Distributed versioning
allows you to work disconnected from a shared central server. If you’re new to version management
systems, you don’t know basic Perforce concepts, or you’ve never used Perforce before, read
Introducing Perforce before reading this guide.

Getting started with Perforce distributed versioning
This guide assumes you are an experienced Perforce user. As such, you should understand the
following concepts: changelist, depot, client workspace, sync, and submit.

Perforce documentation
This guide (Using Perforce for Distributed Versioning), the P4 Command Reference, and the p4
help command are the primary documentation sources for working with distributed versioning.
For documentation on other Perforce applications, see the documentation web page at http://
www.perforce.com.

For specific information about… See this documentation

The basics of Perforce Introducing Perforce

Installing and administering the Perforce service,
including user management, security settings
and configuring distributed environments that
include proxies, replicas, and edge servers

Perforce Server Administrator’s Guide:
Fundamentals and Perforce Server Administrator’s
Guide: Multi-site Deployment

p4 command line flags and options (reference) P4 Command Reference, p4 help

P4V, the cross-platform Perforce Visual Client P4V User’s Guide

Perforce plug-ins and integrations IDEs: Using IDE Plug-ins
Defect trackers: Defect Tracking Gateway Guide
Others: online help from the Perforce menu or
web site

Developing custom Perforce applications using
the Perforce C/C++ API

C/C++ API User’s Guide

Working with Perforce in Ruby, Perl, Python,
and PHP

APIs for Scripting

Please give us feedback
We are interested in hearing about your experience using this guide to learn about Perforce distributed
versioning. Please let us know what you think; we can be reached at manual@perforce.com. To
provide feedback on the distributed versioning features, contact support@perforce.com.

http://www.perforce.com/perforce/r15.1/manuals/intro/index.html
http://www.perforce.com/perforce/r15.1/manuals/cmdref/index.html
http://www.perforce.com
http://www.perforce.com
http://www.perforce.com/perforce/r15.1/manuals/intro/index.html
http://www.perforce.com/perforce/r15.1/manuals/p4sag/index.html
http://www.perforce.com/perforce/r15.1/manuals/p4sag/index.html
http://www.perforce.com/perforce/r15.1/manuals/p4dist/index.html
http://www.perforce.com/perforce/r15.1/manuals/p4dist/index.html
http://www.perforce.com/perforce/r15.1/manuals/cmdref/index.html
http://www.perforce.com/perforce/r15.1/manuals/p4v/index.html
http://www.perforce.com/perforce/r15.1/manuals/p4dtg/index.html
http://www.perforce.com/
http://www.perforce.com/perforce/r15.1/manuals/p4api/index.html
http://www.perforce.com/perforce/r15.1/manuals/p4script/index.html
mailto:manual@perforce.com
mailto:support@perforce.com

vi Using Perforce for Distributed Versioning

Using Perforce for Distributed Versioning 1

Chapter 1 Introduction
This release of the Perforce Server introduces distributed versioning.

A distributed version control architecture gives users access to an entire repository of archived
content — and changes to that content — from a personal server ("local server") on their local machine.
This means that the entire history of a file is contained on each user’s personal server. A user can
manage versioned content without interacting with any other Perforce server unless desired. A user
can also rewrite and revise history to discard unwanted intermediate information. In general, the
distributed model allows users to work more experimentally, to try out changes and branch new
streams, without fear of interfering with others' work.

Perforce distributed versioning functionality also provides a collaborative workflow, via shared
servers ("remote servers"); these are classic Perforce servers that allow users to share their work with
each other. In this model, users can work disconnected from the network and the shared servers until
they’re ready to copy content to or from the shared servers. Moreover, unlike other version control
systems such as git, users can copy a subset of the shared server content to their personal server, rather
than the entire shared server repository. In this "hub and spoke" model, the shared server becomes the
center of communication for the surrounding personal servers.

This release also allows synchronization of content across multiple offices or teams. This might
happen using the new p4 fetch and p4 push commands if the servers are networked or the new
p4 zip and p4 unzip commands if they’re not. Synchronization of content across sites is covered in
the "Administering Perforce: Superuser Tasks" chapter of the Perforce System Administrator’s Guide:
Fundamentals.

This book, Using Perforce for Distributed Versioning, covers the following topics:

• Starting up a personal server — either empty or populated with files

• Fetching and pushing files between servers

• Branching

• Understanding remotes

• Rewriting history

• Mapping of Git commands to Perforce commands

http://www.perforce.com/perforce/r15.1/manuals/p4sag/index.html
http://www.perforce.com/perforce/r15.1/manuals/p4sag/index.html

2 Using Perforce for Distributed Versioning

Using Perforce for Distributed Versioning 3

Chapter 2 Installation

Installing Perforce Server 15.1 on a Macintosh
1. Open a web browser.

2. Navigate to http://www.perforce.com/downloads.

3. Click the Select button.

4. Find the section titled P4D: Server.

5. Choose your operating system from the dropdown menu in that section.

6. Click the Accept and Continue button in that section.

7. Click the Clients tab.

8. Find the section titled P4: CommandLine Client.

9. Select your operating system from the dropdown menu in that section.

10. Click the Accept and Continue button in that section.

11. Open a Terminal window.

12. Make the downloaded files executable:

chmod +x Downloads/p4*

13. Move the files into a common execution path:

sudo mv Downloads/p4* /usr/local/bin/

Installing Perforce Server 15.1 on Linux

Without OS-specific packages
1. Open a web browser.

2. Navigate to http://www.perforce.com/downloads.

3. Click the Select button.

4. Find the section titled P4D: Server.

5. Click the Accept and Continue button in that section.

6. Click the Clients tab.

7. Find the section titled P4: CommandLine Client.

http://www.perforce.com/downloads
http://www.perforce.com/downloads

Chapter 2. Installation

4 Using Perforce for Distributed Versioning

8. Select your operating system from the dropdown menu in that section.

9. Click the Accept and Continue button in that section.

10. Open a terminal window.

11. Make the downloaded files executable:

chmod +x _downloads_path_/p4*

12. Move the files into a common execution path:

sudo mv _downloads_path_/p4* /usr/local/bin/

With OS-specific packages
1. Add the Perforce package repository.

For RPM packages, create a file called /etc/yum.repos.d/perforce.repo with the following
content:

[perforce]
name=Perforce
baseurl=http://package.perforce.com/yum/rhel/6/x86_64/
enabled=1
gpgcheck=1

For the Debian package, create a file called /etc/apt/sources.list.d/perforce.sources.list with
the following line:

deb http://package.perforce.com/apt/ubuntu precise release

2. Import the Perforce package signing key.

Run one of the following:

a. For RPM (run this command as root):

rpm --import http://package.perforce.com/perforce.pubkey

b. For Debian:

$ wget -q http://package.perforce.com/perforce.pubkey -O- | sudo apt-key add -
$ sudo apt-get update

Chapter 2. Installation

Using Perforce for Distributed Versioning 5

For information about how to verify the authenticity of the signing key, see http://
answers.perforce.com/articles/KB_Article/Public-Key-for-Installation-Packages.

3. Install the perforce-server package.

a. For CentOS and Red Hat, run (as root):

yum install perforce-server

b. For Ubuntu, run:

$ sudo apt-get install perforce-server

4. Install the perforce-cli package.

a. For CentOS and Red Hat, run (as root):

yum install perforce-cli

b. For Ubuntu, run:

$ sudo apt-get install perforce-cli

Installing Perforce Server 15.1 on Windows
Note You need administrator privileges to install the server.

1. Open a web browser.

2. Navigate to http://www.perforce.com/downloads.

3. Click the Select button.

4. Find the section titled P4D: Server.

5. Choose your operating system from the dropdown menu in that section.

6. Click the Accept and Continue button.

7. Run the .exe file you downloaded

8. Accept all of the defaults.

This gives you the p4d executable (Perforce Server) and the p4 executable (Perforce Client).

http://answers.perforce.com/articles/KB_Article/Public-Key-for-Installation-Packages
http://answers.perforce.com/articles/KB_Article/Public-Key-for-Installation-Packages
http://www.perforce.com/downloads

6 Using Perforce for Distributed Versioning

Using Perforce for Distributed Versioning 7

Chapter 3 Initializing a Personal Server
This section describes how to start up a personal server, presenting two different approaches.

1. The first approach initializes an empty server. Choose this if you want to work in isolation on a
personal server, developing and possibly branching code, and versioning locally. See “Run p4
init” on page 7.

2. The second approach copies content from another server to populate the newly initialized server
with files and history; this is known as "cloning." This approach is best when working collectively
on an existing project; users work on a set of project files that are managed on a shared server. The
users make changes to the files on their personal server and then push the changes to a shared
server. The shared server makes these changes available to other project users. At any given time,
users can fetch the latest content from the shared server. See “Run p4 clone” on page 9.

Initialize an empty server
In this workflow, you invoke the p4 init command in your working directory to initialize a personal
server and set it up with everything needed to start versioning files. Use this approach if you want to
work in isolation on a personal server, developing and possibly branching code.

Read this first
In order to fetch from or push to a shared server, the case sensitivity of your personal server must
match that of your shared server. When you run p4 init, Perforce attempts to set the case sensitivity
of your personal server to match that of the shared server specified in your current P4PORT setting.
If Perforce can’t discover a shared server, the p4 init command will fail. You must then run this
command:

p4 init -Cx

where C0 sets the server to case-sensitive and C1 sets it to case-insensitive; set the option to match the
case sensitivity of the shared server with which you’re communicating.

Similarly, in order to fetch from or push to a shared server, the Unicode support of your personal
server must match that of the shared server. When you run p4 init, Perforce attempts to set the
Unicode support of your personal server to match that of the shared server specified in your current
P4PORT setting. If Perforce can’t discover a shared server, Unicode support defaults to off. If you later
want to turn Unicode support on, you can run this command:

p4d -xi -r /users/username/dvcsdir/.p4root

Run p4 init
Here is the p4 init command syntax:

p4 [-u user] [-d dir] [-c client] init [-h -q] [-c stream] [-Cx] [-xi -n]

Chapter 3. Initializing a Personal Server

8 Using Perforce for Distributed Versioning

p4 init includes a number of command-line arguments:

• To configure your personal server without Unicode support, pass the -n option.

• To have Perforce create the personal server’s files in a directory other than the current directory,
specify the directory with the -d option.

• Use the -q option to suppress informational messages.

• Use the -c [stream] option to create the specified stream as the mainline stream rather than the
default //stream/main.

Directories and files

The p4 init command creates the following directories and files in the directory in which the
command is invoked:

• .p4root - A directory containing the database files that will contain the metadata about files checked
into Perforce.

• .p4ignore - A list of Perforce files Perforce shouldn’t add or reconcile.

• .p4config - A file containing configuration parameters for the client-server connection.

In addition, the p4 init command does the following:

• Creates a P4CLIENT workspace. Note that the client option allwrite is set by default, making files
writable without the need to check them out with p4 edit first. You must, however, issue a p4
reconcile command before shelving or submitting files.

• Creates a stream depot.

• Creates an initial stream, called main.

Add files
At this point, you are ready to add files to your server. You can create them, copy them and then run
p4 reconcile — or p4 rec for short — to mark all of your source files to be added to Perforce and
then p4 submit to submit them. If you are new to Perforce, see the "Managing Files and Changelists"
chapter of the P4 User’s Guide

Prepare to fetch and push content between servers
If you want to subsequently push your work to a shared server or fetch files from a shared
server, you must create a remote spec with the p4 remote command. See Chapter 4, “Fetching
and Pushing” on page 11 and Chapter 6, “Understanding Remotes” on page 19 for more
information.

Initialize a server and populate it with files
This approach is best when working collectively on an existing project; users work on a set of project
files that are managed on a shared server.

http://www.perforce.com/perforce/r15.1/manuals/p4guide/index.html

Chapter 3. Initializing a Personal Server

Using Perforce for Distributed Versioning 9

To start this process, users invoke the p4 clone command to obtain from the shared server a copy of
the files associated with the project. This is a convenient way to ensure that users receive the set of files
they need to participate in the project.

The user can then work on these files and periodically push changes back to the shared server from
which the files were cloned. They can also periodically fetch to get the latest changes made by others to
the shared server files.

Run p4 clone
Here is the p4 clone command syntax:

p4 [-u user] [-d dir] [-c client] clone [-m depth] [-v] -p port -r remote
p4 [-u user] [-d dir] [-c client] clone [-m depth] [-v] -p port -f filespec

p4 clone includes a number of command-line arguments:

• The -d option specifies the directory where you want to create the server’s files. If you don’t specify
this option, the files are created in the current directory.

• The -p option specifies the address of the shared server you wish to clone from.

• The -m option performs a shallow fetch; only the last number of specified revisions of each file are
fetched.

• The -r option specifies the remote spec installed on the remote server to use as a template for
the clone and stream setup. You can obtain the name of the desired remote from the shared
server administrator or run the p4 remotes command against the shared server to obtain a list of
candidates to choose from. At the time of cloning, Perforce will copy the remote from the shared
server to the personal server and name it origin. For more information on remotes, see Chapter 6,
“Understanding Remotes” on page 19.

• The -f option specifies a filespec in the remote server to use as the path to clone; this path will also
be used to determine the stream setup in the local server. You can specify the -f option or the -r
option but not both.

• The -v option specifies verbose mode.

• The -c option lets you customize the name of the stream that p4 clone creates.

Directories and files

The p4 clone command creates all the directories and files that the p4 init command creates. In
addition, p4 clone creates a remote called origin on the personal server. A remote is a mapping of
files on a local server to files on a remote server and is required for fetching, pushing and cloning; it
describes exactly which files should be copied from a local server to a remote server or vice-versa. It is
described in detail in Chapter 6, “Understanding Remotes” on page 19.

Get the latest changes
To update your personal server with the latest changes from the shared server, run p4 fetch. See
Chapter 4, “Fetching and Pushing” on page 11 for more information.

10 Using Perforce for Distributed Versioning

Using Perforce for Distributed Versioning 11

Chapter 4 Fetching and Pushing
Fetching and pushing lie at the heart of a collaborative distributed workflow; they enable users to
perform two major tasks:

1. To copy work developed on their personal (local) servers to shared (remote) servers and vice-versa.

2. To obtain and work with a subset of a shared server’s entire repository.

Fetch and push also allow shared servers to exchange files and history with each other, transferring
between servers both changelists and versioned file content.

Fetch and push are to the distributed versioning model what sync and submit are to classic Perforce’s
central server model.

The p4 fetch command copies the specified set of files and their history from a shared server into
a personal server. The p4 push command copies the specified set of files, and their history from a
personal server to a shared server. Both commands are atomic: either all the specified files are fetched
or pushed or none of them are.

If a p4 push command fails after it has begun transferring files to the shared server, it will leave those
files locked on the shared server. The p4 opened command will display 'locked', and the files cannot
be submitted by any other user. If the p4 push command cannot be quickly retried, you can use the p4
unlock -r commmand to unlock the files on the shared server.

The p4 push command is not allowed if there are unsubmitted changes in the server from which
you’re pushing; use p4 resubmit to resubmit those changes first, or discard the shelves with p4 shelve
-d if they are not wanted. For more information on p4 unsubmit and p4 resubmit, see Chapter 7,
“Rewriting History” on page 27.

To monitor the progress of the fetch or push, pass the -I option to the command:

p4 -I fetch
p4 -I push

Configure security for fetching and pushing
In order to fetch and push between a personal server and a shared server, the respective servers must
have authentication and access permissions configured correctly:

• The user name must be the same on both servers.

• The user must exist on the shared server.

• The user must have read (fetch) and write (push) permission on the shared server.

• The server.allowpush and server.allowfetch configuration settings must be set to on (they’re
off by default) on both the shared server and the personal server. See the command p4 help
configurables for more information.

• The user must be logged into the shared server via p4 login.

Chapter 4. Fetching and Pushing

12 Using Perforce for Distributed Versioning

Specify what to copy
As described in Chapter 6, “Understanding Remotes” on page 19, you typically specify which
files will be pushed or fetched by listing depot paths in the DepotMap field of the remote spec. You can
further narrow the set of files to be fetched or pushed with one of two command-line arguments: one
specifying a filespec pattern and the other specifying a stream (with the -S option).

If a filespec or stream name is provided, and the remote spec uses differing patterns for the local and
remote sides of the DepotMap, the filespec argument or stream name must specify the files using
the personal server’s depot syntax. Note that the filespec must always be provided using depot
syntax, not client syntax nor filesystem syntax. For more information, see Chapter 6, “Understanding
Remotes” on page 19.

• To specify a remote you pass the -r option and the name of the remote to the p4 fetch or p4 push
command. If -r is not specified, the default is -r origin:

p4 fetch -r markm-remote

• To specify a filespec you pass a filespec pattern to the p4 fetch or p4 push command.

p4 fetch //depot/projectx/...

• To specify a stream you pass the -S option to the p4 fetch or p4 push command. Note that the
stream must be listed in a depot mapping in your remote spec.

p4 fetch -S //stream/dev

where dev is the name of the stream on your personal server

Note that when you specify a filespec or a stream, Perforce Server cannot use the performance
optimization provided by the remote spec.

Unlike other versioning engines such as Git, you do not have to fetch or push the entire contents of the
shared server’s repository; rather, you can fetch or push whatever subset of the respository you like.
You specify this subset in the remote spec or at the command line of the fetch or push command.

Fetch a limited subset of history
If you have a server with a lot of history you may only want to fetch the latest few revisions to save on
local storage. To do so, use the -m N option:

p4 fetch -m 5

This specifies that the server perform a shallow fetch, fetching only the last 5 revisions of each file. You
can also take a slice of your history as noted above.

Chapter 4. Fetching and Pushing

Using Perforce for Distributed Versioning 13

Fetching, pushing and changelists
When changelists are added to the personal server during a fetch or to a shared server during a push
they are given new change numbers but they retain the same description, user, date, type, workspace
and set of files.

When the files are added to the personal server during a fetch or to the shared server during a push,
they are kept in their same changelists, as new revisions starting after the current head. The new
revisions retain the same revision number, file type, action, date, timestamp, digest, and file size.

Although the changelists are new submitted changelists in the personal server for a fetch and in the
shared server for a push, none of the submit triggers are run in the personal server or the shared
server. For more information about submit triggers, see the "Scripting Perforce" chapter in the Perforce
Server Administrator’s Guide: Fundamentals.

If a particular changelist includes some files that match the filespec or stream restriction, and other files
that do not, then only the matching files are included in the fetch or push. Note that if a remote spec is
also provided, only the files that match the restriction and are mapped by the remote spec are included
in the fetch or push. In other words, not all files in the changelist will necessarily be fetched or pushed.
For example, consider the following DepotMap in a remote spec:

//stream/main/p4/... //depot/main/p4/...

Suppose you have a changelist with the following files:

//stream/main/p4/foo
//stream/jam/bar

Only //stream/main/p4/foo will be pushed or fetched, as it matches the remote spec mapping.

When things go wrong
Fetch and push have a couple of failure scenarios that require action on the part of the user or shared
server administrator.

Access denial
If there are permissions or authentication problems for any of the reasons outlined in the section
“Configure security for fetching and pushing” on page 11, the fetch or push will fail with a
message from the shared server. The user or shared server administrator must then address the
problem before the user can attempt the fetch or push again.

History does not fit
A fetch is only allowed if the files being fetched fit cleanly into the personal server, building precisely
on a shared common history. If there are any conflicts or gaps, the fetch is rejected. Otherwise, the
changelists from the shared server become new submitted changelists in the personal server.

http://www.perforce.com/perforce/r15.1/manuals/p4sag/index.html
http://www.perforce.com/perforce/r15.1/manuals/p4sag/index.html

Chapter 4. Fetching and Pushing

14 Using Perforce for Distributed Versioning

If the fetch fails, this is probably because you have attempted to fetch revisions from the shared server
to your personal server that are in conflict with revisions you’ve submitted to your personal server.

Chapter 7, “Rewriting History” on page 27 explains what to do to resolve this situation.

Note As a best practice, you should generate a report of conflicts before attempting a
fetch, with the -n command-line option.

Files with filetype modifiers +k, +l or +S
Files with the filetype modifiers +k, +l, or +S require special considerations.

• Files of type +k have their digests cleared when pushed or fetched. This means certain cross-server
merge conflicts are not detected. To re-generate the digests in the target server after the push or
fetch, use p4 verify.

• When pushing or fetching files of type +l, the new files are not added to the target server if the files
are currently open by a pending changelist in that server. Under these circumstances, Perforce raises
an error.

• When pushing or fetching files of type +S, old archives that exceed the specified limit are not purged
by the push or fetch command.

Using triggers with fetch and push
Perforce triggers are user-written programs called by a Perforce server when certain operations are
performed. You use triggers to extend or customize Perforce functionality. Triggers are of different
types, depending on the event that causes the trigger to execute. Command type triggers allow some
action to be taken before or after a given command.

You may use command type triggers with p4 push and p4 fetch commands. The command field of
the trigger definition contains the location of the trigger and any arguments you want to pass to it. For
example:

myTrig command post-user-push "/usr/bin/perl /usr/bin/test.pl"

For more information, see "Triggering before or after commands" in the Scripting Perforce: Triggers
and Daemons chapter of the Perforce Server Administrator’s Guide: Fundamentals.

http://www.perforce.com/perforce/r15.1/manuals/p4sag/chapter.scripting.html
http://www.perforce.com/perforce/r15.1/manuals/p4sag/chapter.scripting.html
http://www.perforce.com/perforce/r15.1/manuals/p4sag/index.html

Using Perforce for Distributed Versioning 15

Chapter 5 Streams and Branching
Streams are Perforce’s term for branches. They are variant versions of a body of code. You can read
more about them in the "Codelines, Branching and Streams" chapter of the P4 User’s Guide.

When using a personal server created by p4 init or p4 clone, Perforce uses streams as containers
for your code. Perforce will create a stream named 'main' to contain the content created or cloned. If,
in working with your personal server, you need to create new streams—also known as branching—
you can do so with the p4 switch command. You can then use merge and copy as normal to move
individual changes between streams.

Note Although you can switch between streams on a shared server, you cannot use p4
switch to create new streams on shared servers.

List streams
To display the current stream, issue p4 switch with no options.

$ p4 switch
main

main is the default stream created by the p4 clone command.

Pass the -l option to p4 switch to list all known streams.

$ p4 switch -l
main *

The asterisk indicates the current stream. As we haven’t yet created any other streams, main is the only
one listed and is the current stream.

Create streams
p4 switch -c [stream] creates a new stream and populates it with a copy of all the files in the current
stream.

$ p4 switch -c dev
dev

A quick comparison reveals that the two streams contain identical files:

$ p4 diff2 //stream/main/... //stream/dev/...
==== //stream/main/a/test1.txt#1 (text) - //stream/dev/a/test1.txt#1 (text) ==== identical
==== //stream/main/a/test2.txt#1 (text) - //stream/dev/a/test2.txt#1 (text) ==== identical

http://www.perforce.com/perforce/r15.1/manuals/p4guide/index.html

Chapter 5. Streams and Branching

16 Using Perforce for Distributed Versioning

The -P parent option specifies that p4 switch -c should create a new stream with the specified stream
as its parent, rather than the default of the current stream; thus the new stream will be populated with
the files from the specified parent stream, rather than the files from the current stream.

$ p4 switch -c -P main child_of_main
child_of_main

As the following output demonstrates, //stream/main is the parent of //stream/child_of_main:

$ p4 stream -o //stream/child_of_main
A Perforce Stream Specification.
#
Stream: The stream field is unique and specifies the depot path.
Update: The date the specification was last changed.
Access: The date the specification was originally created.
Owner: The user who created this stream.
Name: A short title which may be updated.
Parent: The parent of this stream, or 'none' if Type is mainline.
Type: Type of stream provides clues for commands run
between stream and parent. Five types include 'mainline',
'release', 'development' (default), 'virtual' and 'task'.
Description: A short description of the stream (optional).
Options: Stream Options:
allsubmit/ownersubmit [un]locked
[no]toparent [no]fromparent mergedown/mergeany
Paths: Identify paths in the stream and how they are to be
generated in resulting clients of this stream.
Path types are share/isolate/import/import+/exclude.
Remapped: Remap a stream path in the resulting client view.
Ignored: Ignore a stream path in the resulting client view.
#
Use 'p4 help stream' to see more about stream specifications and command.

Stream: //stream/child_of_main

Update: 2015/02/06 10:57:04

Access: 2015/02/06 10:57:04

Owner: jschaffer

Name: //stream/child_of_main (created by switch command)

Parent: //stream/main

Type: development

Options: allsubmit unlocked toparent fromparent mergeany

Paths:
 share ...

Chapter 5. Streams and Branching

Using Perforce for Distributed Versioning 17

Switch between streams
To switch between streams issue this command:

p4 switch other_stream

When switching to a different stream, the p4 switch command first runs p4 reconcile to determine
which files have been modified in the current stream. It then shelves any changed files for safekeeping.

After switching to a new stream, switch syncs your client workspace to the head of the new stream,
and unshelves any files that were open and any changelists pending the last time you used that stream.

Note You cannot switch to a new stream if files are open in a numbered changelist. If
files are open in the default changelist, they will be shelved and reverted prior to
switching to the new stream, and will be automatically unshelved when switching
back to this stream.

To switch to a different stream and bring changed files with you from the current stream, pass the -r
option:

$ p4 switch -r

Here’s the list of all of our streams:

$ p4 switch -l
child_of_main
dev *
gui
main

Here’s the stream we’re currently in:

$ p4 switch
dev

Here are the files currently open in //stream/dev:

Chapter 5. Streams and Branching

18 Using Perforce for Distributed Versioning

$ p4 files //stream/dev/...
//stream/dev/asciidoc/branching#1 - branch change 44 (text)
//stream/dev/asciidoc/fetching_and_pushing#1 - branch change 44 (text)
//stream/dev/asciidoc/initializing_a_server#1 - branch change 44 (text)
//stream/dev/asciidoc/intro#1 - branch change 44 (text)
//stream/dev/asciidoc/remote_spec#1 - branch change 44 (text)
//stream/dev/asciidoc/understanding_remotes#1 - branch change 44 (text)
//stream/dev/dvcs_commands/clone.xml#1 - branch change 44 (text)
//stream/dev/dvcs_commands/fetch.xml#1 - branch change 44 (text)
//stream/dev/dvcs_commands/init.xml#1 - branch change 44 (text)
//stream/dev/dvcs_commands/push.xml#1 - branch change 44 (text)
//stream/dev/dvcs_commands/remote.xml#1 - branch change 44 (text)
//stream/dev/dvcs_commands/remotes.xml#1 - branch change 44 (text)
//stream/dev/dvcs_commands/resubmit.xml#1 - branch change 44 (text)
//stream/dev/dvcs_commands/switch.xml#1 - branch change 44 (text)
//stream/dev/dvcs_commands/unsubmit.xml#1 - branch change 44 (text)
//stream/dev/dvcs_commands/unzip.xml#1 - branch change 44 (text)
//stream/dev/dvcs_commands/zip.xml#1 - branch change 44 (text)
//stream/dev/dvcs_user_guide/00_preface.xml#1 - branch change 44 (text)
//stream/dev/dvcs_user_guide/git_to_perforce.xml#1 - branch change 44 (text)
//stream/dev/resubmit.xml#1 - branch change 44 (text)

Now we open new files in dev:

$ p4 add a b c

If we then issue the following command, we switch to the gui stream but bring over the content that
was changed in dev.

$ p4 switch -r gui
$ ls
a b c

Using Perforce for Distributed Versioning 19

Chapter 6 Understanding Remotes
A remote describes how depot files are mapped between a local server and a remote server. (Local
servers are also known as personal servers and a remote server is also known as a shared server.) A
remote spec — which describes a remote — is created by the user and has a unique name. A remote is
used with the p4 push, p4 fetch, and p4 clone commands to describe source and target directories.
The following picture illustrates mapping depot files between a local and a remote server.

As depicted in the figure above, a remote holds file mappings between depot paths on the remote
server and depot paths on the local server.

• For fetch and clone operations, it defines the files from the remote server that you want in your local
server and specifies where you want them to reside.

• For a push operation, it defines the files from the local server that you want in the remote server and
specifies where you want them to reside.

Remotes provide a convenient way to give you the exact files you need to work on a particular project.
You can simply clone from a shared server, specifying the remote id of the remote that maps the
desired files. These files are then copied to your personal server. Once they’ve cloned, you can use p4
fetch to refresh the files initially obtained with the p4 clone command.

Using remotes allows you to fetch a subset of all the files on the shared server. This is in contrast to
other distributed versioning systems, such as Git, which require that you fetch all files.

Note that when you clone a set of files from a shared server by specifying a remote, Perforce creates
a new remote named origin and copies the remote into your local system. Future invocations of p4
fetch do not need to pass in -r remote, as origin is now assumed to be the remote.

There are two different scenarios in which remotes are created:

• An administrator creates a remote on a shared server so that users can clone from this server and
obtain the files they need to work on a project.

• You, the individual user, create one or more remotes on your personal server so that you can
eventually push your work to and fetch files from one or more shared servers.

You can create a remote both on a shared server and on a personal server. An administrator would
create a remote on a shared server to dictate which subset of the shared server’s respository a personal

Chapter 6. Understanding Remotes

20 Using Perforce for Distributed Versioning

server retrieves when it clones from the shared server. After cloning, you use the origin remote on
your personal server. You can then either edit the origin remote or create a different remote to control
which streams the personal server fetches and pushes when using that remote.

Choose a remote
How you choose a remote depends on whether you’re doing your initial clone or your daily fetching
and pushing.

If you’re cloning, run the p4 remotes command on the shared server from which you’re cloning and
choose the remote you want to work with. To look at the details of each remote, run p4 remote -o.
Alternatively, you can obtain the id of the remote from a shared server administrator or project leader.

If you want the content of just one depot path, pass the filespec of the path by running p4 clone -f.

In a typical use case, you’ve cloned from a shared server and the remote has been copied to your
personal server and named origin. Because origin is the default remote, you don’t have to pass a
remote id during subsequent fetches and pushes.

In the more complicated case, you’re pushing to or fetching from multiple shared servers, in which
case you would run p4 remotes on your personal server and choose from among the remotes based on
which shared server you’re fetching from or pushing to. Again, you can use p4 remote -o to get the
details of each remote.

Create a remote
Remotes are described by remote specifications or remote specs for short. To create a remote, run the
p4 remote command. This puts the remote specification or spec into a temporary file and invokes
the editor configured by the environment variable P4EDITOR. You then edit the file to specify depot
mappings and other information. Saving the file creates the remote spec.

To modify the remote, invoke p4 remote with the remoteID of the remote you want to modify; make
changes in the editor to the remote spec and then save the file.

Example
In the following example, we get a list of remotes from a shared server, clone from the shared server
using one of those remotes, show the resulting remote in the personal server — with the p4 remotes
command — and then demonstrate that the path listed in the remote spec corresponds to the path
passed to the clone command.

1. First, we query a shared server for a list of remotes:

$ p4 -p perforce:1666 remotes
bpendleton-dev 'To clone bpendleton's dev branch, use this remote spec. '
h_dev localhost:1666 'Created by hmackiernan. '
markm-remote2 'Created by markm. '
mw-dvcs localhost:1666 '[dvcs] Map main server components. Created by mwittenberg. '
p4-client localhost:1666 'Created by cmclouth. '

Chapter 6. Understanding Remotes

Using Perforce for Distributed Versioning 21

2. Then we choose a remote and pass it to the clone command:

$ p4 clone -p perforce:1666 -r markm-remote2
Perforce db files in '/Users/jschaffer/.p4root' will be created if missing...
Perforce server info:
 Server initialized and ready to use.
Remote origin saved.
main

Changes were successfully fetched.
Remote origin saved.
Server jschaffer-dvcs-1422657971 saved.

3. Next we run p4 remotes against the personal server to show that we now have a remote called
"origin," which is the renamed remote we cloned from the shared server:

$ p4 remotes
origin perforce:1666 'Description '

4. Next, we write the contents of the remote we passed to p4 clone to standard output to show the
depot paths it specified in the DepotMap field:

Chapter 6. Understanding Remotes

22 Using Perforce for Distributed Versioning

$ p4 -p perforce:1666 remote -o markm-remote2
A Perforce Remote Specification.
#
RemoteID: The remote identifier.
Address: The P4PORT used by the remote server.
Owner: The user who created this remote.
Options: Remote options: [un]locked, [no]compress.
Update: The date this specification was last modified.
Access: The date of the last 'push/fetch' on this remote.
Description: A short description of the remote server (optional).
LastFetch: The last changelist that was fetched.
LastPush: The last changelist that was pushed.
DepotMap: Lines to map local files to remote files.

RemoteID: markm-remote2

Owner: markm

Options: unlocked compress

Update: 2014/12/11 11:15:15

Description:
 Created by markm.

LastFetch: default

LastPush: default

DepotMap:
 //depot/main/p4/msgs/... //depot/main/p4/msgs/...

5. Finally, we write the contents of the origin remote spec to standard out to demonstrate that the
depot paths it specifies in the DepotMap field are identical to those of markm-remote2:

Chapter 6. Understanding Remotes

Using Perforce for Distributed Versioning 23

$ p4 remote -o origin
A Perforce Remote Specification.
#
RemoteID: The remote identifier.
Address: The P4PORT used by the remote server.
Owner: The user who created this remote.
Options: Remote options: [un]locked, [no]compress.
Update: The date this specification was last modified.
Access: The date of the last 'push/fetch' on this remote.
Description: A short description of the remote server (optional).
LastFetch: The last changelist that was fetched.
LastPush: The last changelist that was pushed.
DepotMap: Lines to map local files to remote files.

RemoteID: origin

Address: perforce:1666

Owner: jschaffer

Options: unlocked nocompress

Update: 2015/01/30 14:46:51

Description:
 Description

LastFetch: 996270

LastPush: 4024

DepotMap:
 //depot/main/p4/msgs/... //depot/main/p4/msgs/...

Notice that the LastFetch and LastPush values have changed to non-zero numbers to reflect the
highest changelist numbers most recently fetched and pushed.

A closer look at a remote spec

The following is a sample remote spec, describing a remote named server-main-darwin:

Chapter 6. Understanding Remotes

24 Using Perforce for Distributed Versioning

A Perforce Remote Specification.

RemoteID: server-main-darwin

Owner: bruno

Options: unlocked compress

Update: 2014/11/21 08:21:32

Description:
 A fairly complete set of the mainline code for the widget, with the
 test harness limited to the darwin platform. Fetch or clone from
 this remote spec if you want to build and work with the mainline
 widget code on a darwin machine.

LastFetch: default

LastPush: default

DepotMap:
 //stream/main/widget/... //depot/main/widget/...
 //stream/main/widget-test/server/... //depot/main/widget-test/server/...
 //stream/main/widget-test/bin/... //depot/main/widget-test/bin/...
 -//stream/main/widget-test/bin/arch/... //depot/main/widget-test/bin/arch/...
 //stream/main/widget-test/bin/arch/darwin90x86_64/... //depot/main/widget-test/bin/arch/
darwin90x86_64/...
 //stream/main/widget-doc/code/... //depot/main/widget-doc/code/...

The following table describes the remote spec in more detail:

Entry Meaning

RemoteID The remote identifier.

Address The P4PORT used by the remote server.

Owner The user who created this remote.

Options
([un]locked, [no]compress)

The unlocked option setting means people other than the owner
can update the spec. The compress option setting means that when
files are fetched or pushed they’re compressed, as a performance
optimization. You would only set this option to uncompress if
you were fetching or pushing binary files that were already in a
compressed format.

Update The date this specification was last modified.

Access The date of the last push or fetch on this remote.

Description A short description of the remote server (optional).

Chapter 6. Understanding Remotes

Using Perforce for Distributed Versioning 25

Entry Meaning

LastFetch The last changelist that was fetched. If set to default, means no
fetches have yet occurred.

LastPush The last changelist that was pushed. If set to default, means no
pushes have yet occurred.

DepotMap The lines to map local files to remote files. The file paths on the
left-hand side are on the local server. The file paths on the right-
hand side are on the remote server.

Remote specs give you the full power of Perforce client view syntax. For details, see the section
"Defining client workspaces" in the chapter Configuring P4 in the P4 User’s Guide. Below is some basic
information about creating a remote spec.

Specify mappings
Remote specs consist of one or more mappings. Each mapping has two parts:

1. The left-hand side specifies one or more files on the local server.

2. The right-hand side specifies one or more files on the remote server.

Although the two sides don’t have to name identical paths, they can.

Enclose paths with spaces in quotation marks.

Using wildcards in remote specs
To map groups of files in remote specs, you use Perforce wildcards (*, ...). Any wildcard used on the
remote side of a mapping must be matched with an identical wildcard in the mapping’s local side. You
can use the following wildcards to specify mappings in your remote spec:

Wildcard Description

* Matches anything except slashes. Matches only within a single directory. Case sensitivity
depends on your platform.

... Matches anything including slashes. Matches recursively (everything in and below the
specified directory).

Now consider another remote spec’s simple DepotPath:

//stream/main/... //depot/main/...

All files in the remote server’s depot path are mapped to the corresponding locations on the local
server. For example, the remote server file //depot/main/widget-test/server.txt is mapped to the
local server file //stream/main/widget-test/servert.txt.

http://www.perforce.com/perforce/r15.1/manuals/p4guide/chapter.configuration.html
http://www.perforce.com/perforce/r15.1/manuals/p4guide/index.html

Chapter 6. Understanding Remotes

26 Using Perforce for Distributed Versioning

Mapping part of the depot
If you are interested only in a subset of the depot files on the remote server, map only that portion.
Reducing the scope of the local server’s files also ensures that your commands do not inadvertently
affect the entire depot. To restrict the local server scope, map only part of the remote server depot to
the local server.

Example 6.1. Mapping part of the remote server depot to the local server.

Remote Spec:

//stream/main/... //depot/main/widget-doc/code/...

In this case, Perforce server will map only the remote server files under the code subdirectory to the
local server’s //stream/main directory.

Mapping files to different locations on the local server
Remote specs can consist of multiple mappings; these map portions of the remote server file tree to
different parts of the local server. If there is a conflict in the mappings, later mappings have precedence
over earlier ones.

Example 6.2. Multiple mappings in a single local server

The following remote spec ensures that release notes in the remote p4-doc folder reside in the local
server in a top-level folder called doc.

Remote Spec:

 //stream/main/src/... //depot/main/p4/...
 //stream/main/doc/... //depot/main/p4-doc/relnotes/...

Excluding files and directories
Exclusionary mappings enable you to exclude files and directories from being mapped to a local
server. To exclude a file or directory, precede the mapping with a minus sign (-). Whitespace is not
allowed between the minus sign and the mapping.

Example 6.3. Using a remote spec to exclude files from a local server.

Suppose you’re working on a game project and you don’t need the art files to be local:

Remote Spec:
 //stream/main/... //my_game/...
 -//stream/main/art/... //my_game/art/...

Using Perforce for Distributed Versioning 27

Chapter 7 Rewriting History
Perforce allows you rewrite the history of the changes in your server. There are two reasons why you
would want to rewrite history:

1. To resolve conflicts between a local server’s file history and a remote server’s file history that arise
when fetching or pushing.

2. To revise local work: correcting mistakes, clarifying intent, and streamlining the local commit
history by consolidating intermediate changes.

Resolve conflicts by rewriting local history
If there are conflicts between a local server’s file history and a remote server’s file history, a fetch will
fail and report the conflict. This happens when you’ve changed some files in your personal server at
the same time that someone else has changed those files in the shared server.

In this situation, you run p4 fetch -u. This does the following:

1. Unsubmits and creates a shelved changelist for the current local changes.

2. Fetches the remote work from the shared server.

The user then runs p4 resubmit -m to resubmit and automatically merge the conflicting local changes.

If your conflict(s) involved the same line or lines then p4 resubmit -m will fail and you will need to:

1. Run p4 resolve to resolve the conflict(s).

2. Run p4 resubmit -Rm to resume the resubmit.

Consider the following example:

1. User A clones from a shared server, bringing down revision 4 of //stream/main/foo.c (//stream/
main/foo.c#4).

2. User A edits foo.c and then submits it, creating //stream/main/foo.c#5.

3. In the meantime, User B, has made two edits to //stream/main/foo.c and pushed them to the
shared server. The shared server is now at revision 6 (//stream/main/foo.c#6).

4. User A attempts to push their change to the shared server, but the push fails because the file
version history doesn’t fit.

5. User A must now run fetch -u, which unsubmits and shelves User A’s revision 5, and fetches
revisions 5 and 6 from the shared server.

6. User A now runs resubmit -m. User A’s change, originally numbered 5, is submitted as revision 7.

7. User A pushes their change to the shared server. The push succeeds.

Rewrite history to revise local work
This section examines two scenarios in which you might want to revise local work by rewriting
history.

Chapter 7. Rewriting History

28 Using Perforce for Distributed Versioning

Scenario 1: You forgot to map a file
Suppose you wrote a new class in C++: src/module/UserUtils.cpp and it uses the header file inc/
UserUtils.h. You then issue this command:

$ p4 submit UserUtils.cpp

Your build script complains about the missing include file UserUtils.h. To fix this, you would issue
the following commands:

p4 unsubmit UserUtils.cpp
p4 resubmit -e

Now UserUtils.cpp is open. You would then run:

$ p4 add -c NNN UserUtils.h
$ p4 resubmit -Re

Now the permanent history shows that your change contains both UserUtils.cpp and UserUtils.h.

Scenario 2: Combine two changes together to remove "noise" from the
history
Suppose you add a feature in change NNN. A reviewer finds a problem with it, so you make another
change to fix the problem. Then you realize that the second change is just adding "noise" to the history.

To fix this, you would do the following:

(We assume your first change is NNN and your second change is NNN+1)

1. Unsubmit both changes:

p4 unsubmit //…@NNN
Change NNN+1 unsubmitted and shelved
Change NNN unsubmitted and shelved

2. Start the partially-interactive resubmit process:

`p4 resubmit -e`

Now change NNN is open for edit.

3. Make the change you originally made in the second change.

4. Update the change description:

Chapter 7. Rewriting History

Using Perforce for Distributed Versioning 29

p4 change NNN

5. Resume the resubmit process:

`p4 resubmit -Re`

Now the second change is open for edit but you don’t need it. You can demonstrate this to yourself
by running p4 resolve, p4 diff and p4 revert -a to see that nothing is changed by the second
change.

6. Get rid of the second change:

p4 shelve -d -c NNN+1
p4 change -d -c NNN+1

Alternatively, to get rid of the second change you could run p4 resubmit -i and choose “d”.

30 Using Perforce for Distributed Versioning

Using Perforce for Distributed Versioning 31

Chapter 8 Git:Perforce Command Mappings
The following table maps Git commands to their corresponding Perforce commands:

Git Command Perforce Command

git add p4 reconcile

git branch p4 switch -l

git checkout --orphan new_branch p4 switch -cm new_stream

git checkout branch p4 switch stream

git clone repository p4 clone -p host:port -r remote

git commit p4 submit

git init p4 init

git merge branch p4 merge --from stream

git pull p4 fetch -u -r remote -S stream

git pull --all p4 fetch -u

git push p4 push -r remote -S stream

git push --all p4 push

git rebase p4 unsubmit followed by p4 resubmit

git remote p4 remotes

git remote add new_remote repository p4 remote new_remote

git status p4 status

For more details on Perforce commands, see the P4 Command Reference.

http://www.perforce.com/perforce/r15.1/manuals/cmdref/index.html

32 Using Perforce for Distributed Versioning

Using Perforce for Distributed Versioning 33

Appendix License Statements
Perforce software includes software developed by the University of California, Berkeley and its
contributors. This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/).

http://www.openssl.org/

34 Using Perforce for Distributed Versioning

	Using Perforce for Distributed Versioning
	Table of Contents
	About this manual
	Getting started with Perforce distributed versioning
	Perforce documentation
	Please give us feedback

	Chapter 1. Introduction
	Chapter 2. Installation
	Installing Perforce Server 15.1 on a Macintosh
	Installing Perforce Server 15.1 on Linux
	Without OS-specific packages
	With OS-specific packages

	Installing Perforce Server 15.1 on Windows

	Chapter 3. Initializing a Personal Server
	Initialize an empty server
	Read this first
	Run p4 init
	Directories and files

	Add files
	Prepare to fetch and push content between servers

	Initialize a server and populate it with files
	Run p4 clone
	Directories and files

	Get the latest changes

	Chapter 4. Fetching and Pushing
	Configure security for fetching and pushing
	Specify what to copy
	Fetch a limited subset of history

	Fetching, pushing and changelists
	When things go wrong
	Access denial
	History does not fit
	Files with filetype modifiers +k, +l or +S
	Using triggers with fetch and push

	Chapter 5. Streams and Branching
	List streams
	Create streams
	Switch between streams

	Chapter 6. Understanding Remotes
	Choose a remote
	Create a remote
	Example
	A closer look at a remote spec

	Specify mappings
	Using wildcards in remote specs
	Mapping part of the depot
	Mapping files to different locations on the local server
	Excluding files and directories

	Chapter 7. Rewriting History
	Resolve conflicts by rewriting local history
	Rewrite history to revise local work
	Scenario 1: You forgot to map a file
	Scenario 2: Combine two changes together to remove "noise" from the history

	Chapter 8. Git:Perforce Command Mappings
	License Statements

