
Helix Versioning Engine User
Guide

2015.2
October 2015

Helix Versioning Engine User Guide
2015.2

October 2015

Copyright © 2015 Perforce Software.

All rights reserved.

Perforce software and documentation is available from http://www.perforce.com/. You can download and use Perforce programs, but you
can not sell or redistribute them. You can download, print, copy, edit, and redistribute the documentation, but you can not sell it, or sell any
documentation derived from it. You can not modify or attempt to reverse engineer the programs.

This product is subject to U.S. export control laws and regulations including, but not limited to, the U.S. Export Administration Regulations,
the International Traffic in Arms Regulation requirements, and all applicable end-use, end-user and destination restrictions. Licensee shall not
permit, directly or indirectly, use of any Perforce technology in or by any U.S. embargoed country or otherwise in violation of any U.S. export
control laws and regulations.

Perforce programs and documents are available from our Web site as is. No warranty or support is provided. Warranties and support, along
with higher capacity servers, are sold by Perforce Software.

Perforce Software assumes no responsibility or liability for any errors or inaccuracies that might appear in this book. By downloading and
using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce Software.

All other brands or product names are trademarks or registered trademarks of their respective companies or organizations.

Any additional software included within Perforce software is listed in License Statements on page 135.

Helix Versioning Engine User Guide iii

Table of Contents

Preface .. ix

Getting started with Helix ... ix
What’s new in this guide for 2015.2 ... ix
Helix documentation ... xi
Syntax conventions .. xii
Please give us feedback .. xii

Chapter 1 Installing P4 ... 1

Installing P4 on UNIX and OS X ... 1
Installing P4 on Windows .. 1
Verifying the installation .. 1

Chapter 2 Configuring P4 ... 3

Configuration overview .. 3
What is a client workspace? .. 3
How Helix manages the workspace .. 4

Configuring Helix settings .. 4
Using the command line .. 4
Using config files ... 5
Using environment variables .. 6
Using the Windows registry or OS X system settings ... 7

Defining client workspaces ... 7
Verifying connections ... 9

Connecting over IPv6 networks ... 10
Refining workspace views .. 10

Specifying mappings .. 10
Using wildcards in workspace views ... 11
Mapping part of the depot .. 12
Mapping files to different locations in the workspace ... 12
Mapping files to different filenames .. 12
Rearranging parts of filenames .. 12
Excluding files and directories .. 13
Restricting access by changelist ... 13
Avoiding mapping conflicts .. 13
Mapping different depot locations to the same workspace location 14
Dealing with spaces in filenames and directories .. 14
Mapping Windows workspaces across multiple drives ... 15
Using the same workspace from different machines ... 15
Automatically pruning empty directories from a workspace .. 16

Changing the location of your workspace .. 16
Configuring workspace options ... 16

Helix Versioning Engine User Guide

iv Helix Versioning Engine User Guide

Configuring submit options .. 17
Configuring line-ending settings ... 18
Deleting client workspace specifications .. 19
Security .. 19

SSL-encrypted connections .. 19
Connecting to services that require plaintext connections 21

Passwords .. 21
Setting passwords ... 21
Using your password ... 21

Connection time limits .. 22
Logging in and logging out .. 22
Working on multiple machines ... 22

Working with Unicode ... 23
Setting P4CHARSET on Windows ... 23
Setting P4CHARSET on UNIX .. 24

Chapter 3 Issuing P4 Commands .. 25

Command-line syntax ... 25
Specifying filenames on the command line .. 27
Helix wildcards .. 28
Restrictions on filenames and identifiers .. 29

Spaces in filenames, pathnames, and identifiers .. 29
Length limitations .. 29
Reserved characters .. 29
Filenames containing extended (non-ASCII) characters ... 30

Specifying file revisions .. 31
Date and time specifications .. 33
Revision ranges .. 33

Reporting commands .. 34
Using Helix forms .. 34

Chapter 4 Managing Files and Changelists ... 37

Managing files .. 37
Syncing (retrieving) files ... 38
Adding files ... 39

Add files outside of Helix and then use p4 reconcile -k ... 40
Ignoring groups of files when adding .. 40

Reporting ignored files ... 41
Changing files .. 41
Discarding changes (reverting) .. 42
Deleting files .. 42

Managing changelists ... 43
Creating numbered changelists ... 43
Submitting changelists .. 44
Deleting changelists .. 45
Renaming and moving files .. 45

Helix Versioning Engine User Guide

Helix Versioning Engine User Guide v

Shelving work in progress .. 45
Displaying information about changelists .. 47

Diffing files .. 48
Working offline .. 49

Chapter 5 Resolving Conflicts ... 51

How conflicts occur .. 51
How to resolve conflicts ... 51

Your, theirs, base and merge files .. 52
Options for resolving conflicts ... 52
Accepting yours, theirs, or merge .. 53
Editing the merge file ... 54
Merging to resolve conflicts .. 54
Full list of resolve options ... 54
Resolving Branched Files, Deletions, Moves and Filetype Changes 56
Resolve command-line options .. 58
Resolve reporting commands .. 59

Locking files ... 59
Preventing multiple resolves by locking files .. 59
Preventing multiple checkouts .. 60

Chapter 6 Codelines and Branching .. 61

Basic terminology ... 61
Organizing the depot .. 61
Populating Codelines .. 62

A shortcut: p4 populate .. 63
Branching Codelines ... 63

When to branch .. 64
Creating branches ... 64

Using branch specifications ... 64
Using file specifications .. 65

Integrating changes .. 66
Integrating using branch specifications .. 67
Integrating between unrelated files .. 68
Integrating specific file revisions ... 68
Reintegrating and reresolving files .. 68
Integration reporting .. 68

Chapter 7 Streams .. 71

Introduction ... 71
Stream workflow .. 71
Stream procedures .. 72

Create a stream depot ... 73
Create a mainline stream .. 73

Helix Versioning Engine User Guide

vi Helix Versioning Engine User Guide

Create a workspace .. 73
Populate a mainline stream ... 74

Add files .. 74
Branch from other depots ... 75

Populate child streams .. 76
Propagate changes .. 76

Comparing changes between streams .. 76
Merging changes from a more stable stream .. 76
Copying changes to a more stable stream .. 77
Propagating change across the stream hierarchy ... 77

Key streams concepts ... 77
The stream specification .. 78

More on options ... 81
Updating streams ... 81

Making changes to a stream spec and associated files atomically 81
Stream types .. 82

Task streams .. 83
Virtual streams ... 84

Stream paths .. 85
Stream paths and inheritance between parents and children 86

Stream workspaces ... 89
Managing stream workspaces ... 90
Viewing a stream as of a specific changelist ... 91

Stream depots .. 92

Chapter 8 Labels ... 93

Tagging files with a label .. 93
Untagging files ... 93
Previewing tagging results .. 94
Listing files tagged by a label .. 94
Listing labels that have been applied to files .. 94
Using a label to specify file revisions ... 94
Deleting labels .. 95
Creating a label for future use .. 95
Restricting files that can be tagged .. 96
Using static labels to archive workspace configurations .. 96
Using automatic labels as aliases for changelists or other revisions .. 97
Preventing inadvertent tagging and untagging of files .. 98
Using labels on edge servers ... 99

Chapter 9 Working with Jobs ... 101

Creating, editing, and deleting a job .. 101
Searching jobs ... 102

Searching job text ... 102
Searching specific fields .. 103
Using comparison operators .. 103

Helix Versioning Engine User Guide

Helix Versioning Engine User Guide vii

Searching date fields ... 104
Fixing jobs .. 105

Linking automatically ... 105
Linking manually ... 105
Linking jobs to changelists .. 106

Chapter 10 Scripting and Reporting .. 107

Common options used in scripting and reporting ... 107
Scripting with Helix forms .. 107
File reporting .. 108

Displaying file status .. 109
Displaying file revision history .. 110
Listing open files .. 110
Displaying file locations .. 111
Displaying file contents ... 111
Displaying annotations (details about changes to file contents) 112
Monitoring changes to files ... 113

Changelist reporting ... 113
Listing changelists .. 113
Listing files and jobs affected by changelists ... 114

Label reporting ... 114
Branch and integration reporting ... 115
Job reporting .. 115

Listing jobs ... 115
Listing jobs fixed by changelists .. 116

System configuration reporting .. 116
Displaying users ... 116
Displaying workspaces .. 117
Listing depots ... 117

Sample script .. 117

Glossary ... 119

Helix File Types ... 127

Helix file types ... 127
File type modifiers .. 128
Specifying how files are stored in Helix ... 130
Assigning File Types for Unicode Files .. 130

Choosing the file type ... 131
Helix file type detection and Unicode .. 132

Overriding file types ... 132
Preserving timestamps .. 132
Expanding RCS keywords ... 133

Helix Versioning Engine User Guide

viii Helix Versioning Engine User Guide

License Statements ... 135

Helix Versioning Engine User Guide ix

Preface
This guide tells you how to use the Helix Command-Line Client (p4). If you’re new to version
management systems, you don’t know basic Helix concepts, or you’ve never used Helix before, read
Introducing Helix before reading this guide. This guide assumes a good basic understanding of version
control.

Perforce provides many applications that enable you to manage your files, including the Helix
Command-Line Client, GUIs — such as P4V — and plug-ins. The Helix Command-Line Client enables
you to script and to perform administrative tasks that are not supported by Helix GUIs.

Getting started with Helix
If this is your first time working with Helix, here’s how to get started:

1. Read Introducing Helix to learn the basics.

At a minimum, learn the following concepts: changelist, depot, client workspace, sync, and submit. For
short definitions, refer to the glossary at the back of this guide.

2. Ask your Helix administrator for the host and port for your Helix service.

If you intend to experiment with Helix and don’t want to risk damaging your production depot,
ask the Helix administrator to start another service for test purposes. For details about installing the
Helix service, refer to the Helix Versioning Engine Administrator Guide: Fundamentals.

3. Use this guide to help you install the Helix Command-Line Client and configure your client
workspace, unless your system administrator has already configured your machine. See Chapter 2,
“Configuring P4” on page 3, for details.

4. Learn to perform the following tasks:

• sync (transfer selected files from the repository to your computer)

• submit (transfer changed files from your workspace to the repository)

• revert (discard changes)

See Chapter 4, “Managing Files and Changelists” on page 37, for details.

5. Learn to refine your client view. See “Refining workspace views” on page 10 for details.

These basic skills enable you to do much of your daily work. Other tasks involving code base
maintenance (streams, branching and labeling) and workflow (jobs) tend to be less frequently done.
This guide includes details about performing these tasks using p4 commands.

What’s new in this guide for 2015.2
This section provides a list of changes to this guide for the Helix Versioning Engine 2015.2 release.
For a list of all new functionality and major bug fixes in Helix Versioning Engine 2015.2, see the Helix
Versioning Engine 2015.2 Release Notes.

http://www.perforce.com/perforce/r15.2/manuals/intro/index.html
http://www.perforce.com/perforce/r15.2/manuals/intro/index.html
http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html
http://www.perforce.com/perforce/r15.2/user/relnotes.txt
http://www.perforce.com/perforce/r15.2/user/relnotes.txt

Preface

x Helix Versioning Engine User Guide

Streams are now documented
in their own chapter

See Chapter 7, “Streams” on page 71.

Pass label specifier in stream’s
import path

You can now pass a label specifier in an import path for a stream.
See “The stream specification” on page 78.

Store streams more than one
level below depot name

Stream path depths are no longer limited to 1. Your administrator
sets the permitted level for a depot using the p4 depot command;
the names of all streams rooted in that depot must conform to
this depth. This means that the stream name you set in the Stream
field of the stream spec must conform to this depth. For more
information, see the discussion of the Stream field in “The stream
specification” on page 78.

p4 stream edits current
stream by default

By default, p4 stream edits the stream associated with your current
workspace. The command throws an error if you’re not using a
stream workspace. See “Stream workspaces” on page 89.

Pass changelist to p4 switch You can now set the workspace view to match the version of a
stream as of a specified changelist and sync the files to the versions
matching that same changelist, by passing stream@change to p4
switch. See “Managing stream workspaces” on page 90.

Stream specs openable and
submittable

Stream specifications may now be opened and submitted, enabling
them to be staged on a particular client and tested before being
submitted atomically in a changelist along with a set of files. See
“Updating streams” on page 81.

p4 submit submits open
stream specs

When you run p4 submit, in addition to any open files being
submitted, now any open stream specifications will also be
submitted. See “Making changes to a stream spec and associated
files atomically” on page 81.

p4 shelve shelves open
stream specs

When you run p4 shelve, in addition to any open files being
shelved, now any open stream specifications will also be shelved.
See “Making changes to a stream spec and associated files
atomically” on page 81.

p4 shelve unshelves open
stream specs

When you run p4 unshelve, in addition to any shelved files being
unshelved, now any shelved stream specifications will also be
unshelved. See “Making changes to a stream spec and associated
files atomically” on page 81.

Update client’s have list to
match workspace contents

A user can now update their client’s have list to match what’s in
the client workspace, using the p4 reconcile command’s new -k
option. See “Add files outside of Helix and then use p4 reconcile -
k” on page 40.

Helix now supports the UTF8
file type

See Helix File Types on page 127.

Preface

Helix Versioning Engine User Guide xi

Report ignore mappings Helix can now report the ignore mappings computed from the
rules in the P4IGNORE file, using the new p4 ignores command. See
“Reporting ignored files” on page 41.

Helix documentation
The following table lists and describes key documents for Helix users, developers, and administrators.
For complete information see the following:

http://www.perforce.com/documentation

For specific information about… See this documentation…

Introduction to version control concepts
and workflows; Helix architecture, and
related products.

Introducing Helix

Using the command-line interface to
perform software version management
and codeline management; working with
Helix streams; jobs, reporting, scripting,
and more.

Helix Versioning Engine User Guide

Basic workflows using P4V, the cross-
platform Helix desktop client.

P4V User Guide

Working with personal and shared
servers and understanding the distributed
versioning features of the Helix Versioning
engine.

Using Distributed Versioning with Helix

p4 command line (reference). P4 Command Reference, p4 help

Installing and administering the Helix
versioning engine, including user
management, security settings.

Helix Versioning Engine Administrator Guide:
Fundamentals

Installing and configuring Helix servers
(proxies, replicas, and edge servers) in a
distributed environment.

Helix Versioning Engine Administrator Guide: Multi-site
Deployment

Installing and administering a Helix
server cluster for high performance and
automated failover.

Helix Versioning Engine Administrator Guide: Cluster
Management

Helix plug-ins and integrations. IDEs: Using IDE Plug-ins
Defect trackers: Defect Tracking Gateway Guide
Others: online help from the Helix menu or web site

Developing custom Helix applications
using the Helix C/C++ API.

C/C++ API User Guide

http://www.perforce.com/documentation
http://www.perforce.com/perforce/r15.2/manuals/intro/index.html
http://www.perforce.com/perforce/r15.2/manuals/p4guide/index.html
http://www.perforce.com/perforce/r15.2/manuals/p4v/index.html
http://www.perforce.com/perforce/r15.2/manuals/dvcs/index.html
http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html
http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html
http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html
http://www.perforce.com/perforce/r15.2/manuals/p4dist/index.html
http://www.perforce.com/perforce/r15.2/manuals/p4dist/index.html
http://www.perforce.com/perforce/r15.2/manuals/p4cmgr/index.html
http://www.perforce.com/perforce/r15.2/manuals/p4cmgr/index.html
http://www.perforce.com/perforce/r12.1/manuals/p4plugins/index.html
http://www.perforce.com/perforce/r15.2/manuals/p4dtg/index.html
http://www.perforce.com/
http://www.perforce.com/perforce/r15.2/manuals/p4api/index.html

Preface

xii Helix Versioning Engine User Guide

For specific information about… See this documentation…

Working with Helix in Ruby, Perl, Python,
and PHP.

APIs for Scripting

Syntax conventions
Helix documentation uses the following syntax conventions to describe command line syntax.

Notation Meaning

literal Monospace font indicates a word or other
notation that must be used in the command
exactly as shown.

italics Italics indicate a parameter for which you must
supply specific information. For example, for a
serverid parameter, you must supply the id of the
server.

[-f] Square brackets indicate that the enclosed
elements are optional. Omit the brackets when
you compose the command.

Elements that are not bracketed are required.

… Ellipses (…) indicate that the preceding element
can be repeated as often as needed.

element1 | element2 A vertical bar (|) indicates that either element1
or element2 is required.

Please give us feedback
We are interested in receiving opinions on this manual from our users. In particular, we’d like to hear
from users who have never used Perforce before. Does this guide teach the topic well? Please let us
know what you think; we can be reached at manual@perforce.com.

If you need assistance, or wish to provide feedback about any of our products, contact
support@perforce.com.

http://www.perforce.com/perforce/r15.2/manuals/p4script/index.html
mailto:manual@perforce.com
mailto:support@perforce.com

Helix Versioning Engine User Guide 1

Chapter 1 Installing P4
This chapter tells you how to install the Helix Command-Line Client (p4) on your workstation. For
details about installing the Helix Versioning Engine, refer to the Helix Versioning Engine Administrator
Guide: Fundamentals.

Installing P4 on UNIX and OS X
To install the Helix Command-Line Application (p4) on a UNIX or Mac OS X machine, perform the
following steps:

1. Download the p4 executable file from the Perforce web site:

http://www.perforce.com/downloads/complete_list

Helix applications are typically installed into /usr/local/bin.

2. Make the p4 file executable (chmod +x p4).

3. Configure the port setting, client workspace name, and user name.

You can specify these settings by configuring the P4PORT, P4CLIENT, and P4USER environment
variables. (For details, see Chapter 2, “Configuring P4” on page 3.)

Installing P4 on Windows
To install the Helix Command Line (p4.exe) on Windows, download and run the Helix Windows
installer (perforce.exe) from the Downloads page of the Perforce web site:

http://www.perforce.com/downloads/complete_list

The Helix installer enables you to install and uninstall the Helix Command Line and other Helix
Windows components.

Verifying the installation
To verify that you have successfully installed the Helix Command Line, type p4 info at the command
line and press Enter. If the Helix service is running on the specified host and port, the following
message is displayed:

http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html
http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html
http://www.perforce.com/downloads/complete_list
http://www.perforce.com/downloads/complete_list

Chapter 1. Installing P4

2 Helix Versioning Engine User Guide

User name: ona
Client name: ona-agave
Client host: agave
Client root: /home/ona/p4-ona
Current directory: /home/ona/p4-ona
Client address: 10.0.0.196
Server address: perforce:1666
Server root: /usr/depot/p4d
Server date: 2012/03/28 12:11:47 -0700 PDT
Server uptime: 752:41:33
Server version: P4D/FREEBSD/2012.1/406375 (2012/01/25)
Server license: P4Admin <p4adm> 20 users (expires 2013/01/01)
Server license-ip: 10.0.0.2
Case handling: sensitive

If your configuration settings are incorrect, an error message is displayed:

Perforce client error:
 Connect to server failed; check $P4PORT.
 TCP connect to <hostname> failed.
 <hostname>: host unknown.

If your administrator has configured Perforce to require SSL, the first time you attempt to connect
to the Perforce service, you will need to verify the server’s fingerprint. See “SSL-encrypted
connections” on page 19.

Helix Versioning Engine User Guide 3

Chapter 2 Configuring P4
This chapter tells you how to configure connection settings.

Configuration overview
Helix is an enterprise version management system in which you connect to a shared versioning
service; users sync files from the shared repository, called the depot, and edit them on your workstation
in your client workspace. This chapter assumes that your system administrator has configured your
organization’s Helix service. For details about setting up the versioning service, refer to the Helix
Versioning Engine Administrator Guide: Fundamentals.

Helix also supports a decentralized (“distributed”) workflow. See Using Distributed Versioning with
Helix.

To set up your workspace so you can work with Helix, perform the following steps:

1. Configure settings for the protocol, host, and port (so you can connect to the Helix service). See
“Configuring Helix settings” on page 4.

2. Define your workspace (at a minimum, assign a name and specify a workspace root where you
want local copies of depot files stored). See “Defining client workspaces” on page 7.

3. Verify the connection. See “Verifying connections” on page 9.

After you configure your workspace, you can populate it by syncing files that are stored in the depot.
For details, see “Syncing (retrieving) files” on page 38 and the description of the p4 sync command
in the P4 Command Reference.

Before you start to configure Helix, ask your Helix administrator for the proper host and port setting.
Also ask whether a workspace has already been configured for your workstation.

What is a client workspace?

A Helix client workspace is a set of directories on your workstation where you work on file revisions
that are managed by Helix. Each workspace is given a name that identifies the client workspace to the
Helix service. If no workspace name is specified (by setting the P4CLIENT environment variable) the
default workspace name is the name of your workstation. To specify the effective workspace name, set
the P4CLIENT environment variable. You can have multiple workspaces on your machine.

All files within a Helix client workspace share a root directory, called the client workspace root. The
workspace root is the highest-level directory of the workspace under which the managed source files
reside.

If you configure multiple workspaces on the same machine, keep workspace locations separate to
avoid inadvertently overwriting files. Ensure that client roots are located in different folders and that
their workspace views do not map depot files to overlapping locations on your workstation.

After you configure your workspace, you can sync files from the depot and submit changes. For details
about these tasks, refer to Chapter 4, “Managing Files and Changelists” on page 37.

http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html
http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html
http://www.perforce.com/perforce/r15.2/manuals/dvcs/index.html
http://www.perforce.com/perforce/r15.2/manuals/dvcs/index.html
http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html

Chapter 2. Configuring P4

4 Helix Versioning Engine User Guide

How Helix manages the workspace
Helix manages the files in a client workspace as follows:

• Files in the workspace are created, updated, and deleted as determined by your changes.

• Write permission is enabled when you edit a file, and disabled when you submit your changes.

The state of your workspace is tracked and managed by Helix. To avoid conflicts with the file
management performed by Helix applications, do not manually change read-only permission
settings on files. Helix has commands that help you determine whether or not the state of your client
workspace corresponds to Helix’s record of that state; see “Working offline” on page 49 for details.

Files in the workspace that you have not put under Helix control are ignored by Helix. For example,
compiled objects, libraries, executables, and developers’ temporary files that are created while
developing software but not added to the depot are not affected by Helix commands.

After defining your client workspace, you can fine-tune the workspace definition. Probably
most important, you can restrict the portion of the depot that is visible to you, to prevent
you from inadvertently syncing the entire depot. For details, refer to “Refining workspace
views” on page 10.

Configuring Helix settings
This guide refers to Helix settings using environment variables (for example, set P4CLIENT), but you
can specify Helix settings such as port, user, and workspace names using the following methods, listed
in order of precedence:

1. On the command line, using options

2. In a config file, if P4CONFIG is set

3. User environment variables (on UNIX or Windows)

4. System environment variables (on Windows, system-wide environment variables are not
necessarily the same thing as user environment variables)

5. On Windows or OS X, in the user registry or settings (set by issuing the p4 set command)

6. On Windows or OS X, in the system registry or system settings (set by issuing the p4 set -s
command)

To configure your workstation to connect to the Helix service, you specify the name of the host where
the service is running, and the port on which it is listening. The default host is perforce and default
port is 1666. If the service is running on your own machine, specify localhost as the host name. If the
service is running on port 1666, you can omit the port specification.

You can specify these settings as described in the sections below. For details about working offline
(without a connection to a Helix service), see “Working offline” on page 49.

Using the command line
To specify these settings on the command line, use the -p option. For example:

Chapter 2. Configuring P4

Helix Versioning Engine User Guide 5

$ p4 -p tcp:localhost:1776 sync //depot/dev/main/jam/Jambase

Settings specified on the command line override any settings specified in config files, environment
variables, the Windows registry, or OS X system settings. For more details about command-line
options, refer to the discussion of global options in the P4 Command Reference.

Using config files
Config files are text files containing Helix settings that are in effect for files in and below the directory
where the config file resides. Config files are useful if you have multiple client workspaces on the same
machine. By specifying the settings in config files, you avoid the inconvenience of changing system
settings every time you want to work with a different workspace.

To use config files, you define the P4CONFIG environment variable, specifying a file name (for example,
.p4config). When you issue a command, Helix searches the current working directory and its parent
directories for the specified file and uses the settings it contains (unless the settings are overridden by
command-line options).

Each setting in the file must be specified on its own line, using the following format:

setting=value

The following settings can be specified in a config file:

Setting Description

P4CHARSET Character set used for translation of Unicode files.

P4COMMANDCHARSET Non-UTF-16 or UTF-32 character set used by Command-Line Client when
P4CHARSET is set to a UTF-16 or UTF-32 character set.

P4CLIENT Name of the current client workspace.

P4DIFF The name and location of the diff program used by p4 resolve and p4 diff.

P4EDITOR The editor invoked by those Helix commands that use forms.

P4HOST Hostname of the client workstation. Only useful if the Host: field of the
current client workspace has been set in the p4 client form.

P4IGNORE A list of files to ignore when using the p4 add and p4 reconcile commands.

P4LANGUAGE This environment variable is reserved for system integrators.

P4MERGE The name and location of the third-party merge program to be used by p4
resolve's merge option.

P4PASSWD Supplies the current Helix user’s password for any Helix command.

P4PORT The protocol, host and port number of the Helix service (including proxies or
brokers) with which to communicate.

http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html

Chapter 2. Configuring P4

6 Helix Versioning Engine User Guide

Setting Description

P4TRUST The location of a file of known (trusted) Helix servers. You manage the
contents of this file with the p4 trust command. By default, this file is
.p4trust in your home directory.

P4USER Current Helix user name.

For details about these settings, refer to the P4 Command Reference.

Example 2.1. Using config files to handle switching between two workspaces.

Ona switches between two workspaces on the same machine. The first workspace is ona-ash. It has a
client root of /tmp/user/ona and connects to the Helix service using SSL at ssl:ida:1818. The second
workspace is called ona-agave. Its client root is /home/ona/p4-ona, and it uses a plaintext connection to
a Helix service at tcp:warhol:1666.

Ona sets the P4CONFIG environment variable to .p4settings. She creates a file called .p4settings in /
tmp/user/ona containing the following text:

P4PORT=ssl:ida:1818
P4CLIENT=ona-ash

She creates a second .p4settings file in /home/ona/p4-ona. It contains the following text:

P4PORT=tcp:warhol:1666
P4CLIENT=ona-agave

Any work she does on files under /tmp/user/ona is managed by the Helix service at ssl:ida:1818 and
work she does on files under /home/ona/p4-ona is managed by the Helix service at tcp:warhol:1666.

Using environment variables
To configure connection settings using environment variables, set P4PORT to protocol:host:port, as in
the following examples:

If the service runs on and listens to port supports encryption
protocol

set P4PORT to

your computer 1666 nothing (plaintext) localhost:1666

perforce 1666 SSL ssl:perforce:1666

houston 3435 nothing (plaintext) tcp:houston:3435

example.com 1818 SSL ssl:example.com:1818

http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html

Chapter 2. Configuring P4

Helix Versioning Engine User Guide 7

If you do not specify a protocol in your P4PORT setting, tcp: (plaintext communication over TCP/IP) is
assumed. If the Helix service has been configured to support SSL, you can encrypt your connection to
Helix by using ssl: as the desired protocol.

Other protocols (for example, tcp4: to require a plaintext IPv4 connection, or ssl64: to require an
encrypted connection, but to prefer the use of the IPv6 transport instead of IPv4) are available for use
in mixed networking environments.

See “Connecting over IPv6 networks” on page 10, and the Helix Versioning Engine Administrator
Guide: Fundamentals, for details.

Using the Windows registry or OS X system settings
On Windows and OS X machines, you can store connection settings in the registry (or system settings)
by using the p4 set command. For example:

$ p4 set P4PORT=ssl:tea.example.com:1667

There are two ways you can configure Helix settings in the registry:

• p4 set setting=value: for the current local user.

• p4 set -s setting=value: for all users on the local machine. Can be overridden by any registry
settings made for the local user. Requires administrative privileges.

To see which settings are in effect, use the p4 set command without arguments. For details about the
p4 set command, see the P4 Command Reference.

Defining client workspaces
To define a client workspace:

1. Specify the workspace name by setting P4CLIENT; for example, on a UNIX system:

$ P4CLIENT=bruno_ws ; export P4CLIENT

2. Issue the p4 client command.

Helix displays the client workspace specification form in your text editor. (For details about Helix
forms, refer to “Using Helix forms” on page 34.)

3. Specify (at least the minimum) settings and save the specification.

No files are synced when you create a client specification. To find out how to sync files from the depot
to your workspace, refer to “Syncing (retrieving) files” on page 38. For details about relocating files
on your machine, see “Changing the location of your workspace” on page 16.

The minimum settings you must specify to configure a client workspace are:

http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html
http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html
http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html

Chapter 2. Configuring P4

8 Helix Versioning Engine User Guide

• Workspace name

The workspace name defaults to your machine’s hostname, but a your workstation can contain
multiple workspaces. To specify the effective workspace, set P4CLIENT.

• Workspace root

The client workspace root is the top directory of your client workspace, where Helix stores your
working copies of depot files. Be sure to set the workspace root, or you might inadvertently sync
files to your workstation’s root directory. (When specifying a workspace root on Windows, you
must also include the drive letter.)

If the workspace root directory does not exist, you must create it before the Helix application can
make use of it.

The @, #, *, and % characters have specific meaning to Helix; if you have file or folder names that use
these characters, see “Restrictions on filenames and identifiers” on page 29 for details.

Your client workspace view determines which files in the depot are mapped to your workspace and
enables Helix to construct a one-to-one mapping between individual depot and workspace files. You
can map files to have different names and locations in your workspace than they have in the depot, but
you cannot map files to multiple locations in the workspace or the depot. By default, the entire depot is
mapped to your workspace. You can define a client workspace view to map only files and directories
of interest, so that you do not inadvertently sync the entire depot into your workspace. For details, see
“Refining workspace views” on page 10.

Example 2.2. Setting the workspace view.

Bruno issues the p4 client command and sees a form containing this default client workspace view
definition:

Client: bruno_ws
Update: 2014/05/12 09:46:53
Access: 2014/05/12 10:28:40
Owner: bruno
Host: dhcp_24-n102.dhcp.perforce.com
Description: Created by jbruges.
Root: c:\bruno_ws
Options: noallwrite noclobber nocompress unlocked nomodtime normdir
SubmitOptions: submitunchanged
LineEnd: local
View:
 //depot/... //bruno_ws/...

He modifies the view to map only the development portion of the depot.

View:
 //depot/dev/... //bruno_ws/dev/...

He further modifies the view to map files from multiple depots into his workspace.

Chapter 2. Configuring P4

Helix Versioning Engine User Guide 9

View:
 //depot/dev/... //bruno_ws/depot/dev/...
 //testing/... //bruno_ws/testing/...
 //archive/... //bruno_ws/archive/...

Verifying connections
To verify a connection, issue the p4 info command. If P4PORT is set correctly, information like the
following is displayed:

User name: bruno
Client name: bruno_ws
Client host: workstation_12
Client root: c:\bruno_ws
Current directory: c:\bruno_ws
Peer address; 10.0.102.24:61122
Client address: 10.0.0.196
Server address: ssl:example.com:1818
Server root: /usr/depot/p4d
Server date: 2012/03/28 15:03:05 -0700 PDT
Server uptime: 752:41:33
Server version: P4D/FREEBSD/2012.1/406375 (2012/01/25)
ServerID: Master
Server license: P4Admin <p4adm> 20 users (expires 2015/01/01)
Server license-ip: 10.0.0.2
Case handling: sensitive

The Server address: field shows the host to which p4 connected and also displays the host and port
number on which the Helix service is listening. If P4PORT is set incorrectly, you receive a message like
the following:

Perforce client error:
 Connect to server failed; check $P4PORT.
 TCP connect to perforce:1666 failed.
 perforce: host unknown.

If the value you see in the third line of the error message is perforce:1666 (as above), P4PORT has not
been set. Set P4PORT and try to connect again.

If your installation requires SSL, make sure your P4PORT is of the form ssl:hostname:port.

You will be asked to verify the server’s fingerprint the first time you attempt to connect to the service.
If the fingerprint is accurate, use the p4 trust command to install the fingerprint into a file (pointed
to by the P4TRUST environment variable) that holds a list of known/trusted Helix servers and their
respective fingerprints. If P4TRUST is unset, this file is .p4trust in the user’s home directory. For more
information, see “SSL-encrypted connections” on page 19.

If your installation requires plaintext (in order to support older Helix applications), set P4PORT to
tcp:hostname:port.

Chapter 2. Configuring P4

10 Helix Versioning Engine User Guide

Connecting over IPv6 networks

As of Release 2013.1, Helix supports connectivity over IPv6 networks as well as over IPv4 networks.

Depending on the configuration of your LAN or WAN, your system administrator may recommend
different port settings. Your administrator may also recommend that you set the net.rfc3484
configurable to 1, either from the command line or in a P4CONFIG file:

$ p4 configure set net.rfc3484=1

Doing so ensures RFC3484-compliant behavior if the protocol value is not explicitly specified; that
is, if the client-side configurable net.rfc3484 is set to 1, and P4PORT is set to example.com:1666,
or tcp:example.com:1666, or ssl:example.com:1666, the user’s operating system automatically
determines, for any given connection, whether to use IPv4 or IPv6 when communicating with the
versioning service.

Further information is available in the Helix Versioning Engine Administrator Guide: Fundamentals.

Refining workspace views
By default, when you create a client workspace, the entire depot is mapped to your workspace. You
can refine this mapping to view only a portion of the depot and to change the correspondence between
depot and workspace locations.

To display or modify a workspace view, issue the p4 client command. Versioning Engine displays
the client workspace specification form, which lists mappings in the View: field:

Client: bruno_ws
Owner: bruno
Description:
 Created by bruno.
Root: C:\bruno_ws
Options: noallwrite noclobber nocompress unlocked nomodtime normdir
SubmitOptions: submitunchanged
View:
 //depot/... //bruno_ws/...

The sections below provide details about specifying the client workspace view. For more information,
see the p4 client command description and the description of views in the P4 Command Reference.

Specifying mappings

Views consist of multiple mappings. Each mapping has two parts.

• The left-hand side specifies one or more files in the depot and has the form:
//depotname/file_specification

http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html
http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html

Chapter 2. Configuring P4

Helix Versioning Engine User Guide 11

• The right-hand side specifies one or more files in the client workspace and has the form:
//clientname/file_specification

The left-hand side of a client workspace view mapping is called the depot side, and the right-hand side
is the client side.

To determine the location of any workspace file on your workstation, substitute the client workspace
root for the workspace name on the client side of the mapping. For example, if the workspace root is C:
\bruno_ws, the file //depot/dev/main/jam/Jamfile resides in C:\bruno_ws\dev\main\jam\Jamfile.

Later mappings override earlier ones. In the example below, the second line overrides the first line,
mapping the files in //depot/dev/main/docs/manuals/ up two levels. When files in //depot/dev/main/
docs/manuals/ are synced, they reside in c:\bruno_ws\docs\.

View:
 //depot/dev/... //bruno_ws/dev/...
 //depot/dev/main/docs/... //bruno_ws/docs/...

Using wildcards in workspace views
To map groups of files in workspace views, you use Helix wildcards. Any wildcard used on the depot
side of a mapping must be matched with an identical wildcard in the mapping’s client side. You can
use the following wildcards to specify mappings in your client workspace:

Wildcard Description

* Matches anything except slashes. Matches only within a single directory. Case
sensitivity depends on your platform.

... Matches anything including slashes. Matches recursively (everything in and below
the specified directory).

%%1 - %%9 Positional specifiers for substring rearrangement in filenames.

In this simple client workspace view:

//depot/dev/... //bruno_ws/dev/...

all files in the depot’s dev branch are mapped to the corresponding locations in the client workspace.
For example, the file //depot/dev/main/jam/Makefile is mapped to the workspace file C:\bruno_ws
\dev\main\jam\Makefile.

Note To avoid mapping unwanted files, always precede the ... wildcard with a forward
slash.

The mappings in workspace views always refer to the locations of files and directories in the depot;
you cannot refer to specific revisions of a file in a workspace view.

Chapter 2. Configuring P4

12 Helix Versioning Engine User Guide

Mapping part of the depot
If you are interested only in a subset of the depot files, map that portion. Reducing the scope of the
workspace view also ensures that your commands do not inadvertently affect the entire depot. To
restrict the workspace view, change the left-hand side of the View: field to specify the relevant portion
of the depot.

Example 2.3. Mapping part of the depot to the client workspace.

Dai is working on the Jam project and maintaining the web site, so she sets the View: field as follows:

View:
 //depot/dev/main/jam/... //dai-beos-locust/jam/...
 //depot/www/live/... //dai-beos-locust/www/live/...

Mapping files to different locations in the workspace
Views can consist of multiple mappings, which are used to map portions of the depot file tree to
different parts of the workspace file tree. If there is a conflict in the mappings, later mappings have
precedence over the earlier ones.

Example 2.4. Multiple mappings in a single workspace view.

The following view ensures that Microsoft Word files in the manuals folder reside in the workspace in
a top-level folder called wordfiles:

View:
 //depot/... //bruno_ws/...
 //depot/dev/main/docs/manuals/*.doc //bruno_ws/wordfiles/*.doc

Mapping files to different filenames
Mappings can be used to make the filenames in the workspace differ from those in the depot.

Example 2.5. Files with different names in the depot and the workspace

The following view maps the depot file RELNOTES to the workspace file rnotes.txt:

View:
 //depot/... //bruno_ws/...
 //depot/dev/main/jam/RELNOTES //bruno_ws/dev/main/jam/rnotes.txt

Rearranging parts of filenames
Positional specifiers %%0 through %%9 can be used to rearrange portions of filenames and directories.

Chapter 2. Configuring P4

Helix Versioning Engine User Guide 13

Example 2.6. Using positional specifiers to rearrange filenames and directories.

The following view maps the depot file //depot/allfiles/readme.txt to the workspace file
filesbytype/txt/readme:

View:
 //depot/allfiles/%%1.%%2 //bruno_ws/filesbytype/%%2/%%1

Excluding files and directories
Exclusionary mappings enable you to explicitly exclude files and directories from a workspace. To
exclude a file or directory, precede the mapping with a minus sign (-). White space is not allowed
between the minus sign and the mapping.

Example 2.7. Using views to exclude files from a client workspace.

Earl, who is working on the Jam project, does not want any HTML files synced to his workspace. His
workspace view looks like this:

View:
 //depot/dev/main/jam/... //earl-dev-beech/jam/...
 -//depot/dev/main/jam/....html //earl-dev-beech/jam/....html

Restricting access by changelist
You can restrict access to depot paths to a particular point in time by providing the depot path names
and changelist numbers in the ChangeView field of the client workspace specification. Files specified for
the ChangeView field are read-only: they can be opened but not submitted. For example:

ChangeView:
 //depot/path/...@1000

In this example, revisions of the files in //depot/path/... are not visible if they were submitted after
changelist 1000. Files submitted up to and including changelist 1000 are visible but read-only. You can
specify multiple paths.

Avoiding mapping conflicts
When you use multiple mappings in a single view, a single file can inadvertently be mapped to two
different places in the depot or workspace. When two mappings conflict in this way, the later mapping
overrides the earlier mapping.

Example 2.8. Erroneous mappings that conflict.

Joe has constructed a view as follows:

Chapter 2. Configuring P4

14 Helix Versioning Engine User Guide

View:
 //depot/proj1/... //joe/project/...
 //depot/proj2/... //joe/project/...

The second mapping //depot/proj2/... maps to //joe/project and conflicts with the first mapping.
Because these mappings conflict, the first mapping is ignored; no files in //depot/proj1 are mapped
into the workspace: //depot/proj1/file.c is not mapped, even if //depot/proj2/file.c does not
exist.

Mapping different depot locations to the same workspace location
Overlay mappings enable you to map files from more than one depot directory to the same place in a
workspace. To overlay the contents of a second directory in your workspace, use a plus sign (+) in front
of the mapping.

Example 2.9. Overlaying multiple directories in the same workspace.

Joe wants to combine the files from his projects when they are synced to his workspace, so he has
constructed a view as follows:

View:
 //depot/proj1/... //joe/project/...
 +//depot/proj2/... //joe/project/...

The overlay mapping //depot/proj2/... maps to //joe/project, and overlays the first mapping.
Overlay mappings do not conflict. Files (even deleted files) in //depot/proj2 take precedence over files
in //depot/proj1. If //depot/proj2/file.c is missing (as opposed to being present, but deleted), then
//depot/proj1/file.c is mapped into the workspace instead.

Overlay mappings are useful for applying sparse patches in build environments.

Dealing with spaces in filenames and directories
Use quotation marks to enclose files or directories that contain spaces.

Example 2.10. Dealing with spaces in filenames and directories.

Joe wants to map files in the depot into his workspace, but some of the paths contain spaces:

View:
 "//depot/Release 2.0/..." //joe/current/...
 "//depot/Release 1.1/..." "//joe/Patch Release/..."
 //depot/webstats/2011/... "//joe/2011 Web Stats/..."

By placing quotation marks around the path components on the server side, client side, or both sides of
the mappings, Joe can specify file names and/or directory components that contain spaces.

For more information, see “Spaces in filenames, pathnames, and identifiers” on page 29.

Chapter 2. Configuring P4

Helix Versioning Engine User Guide 15

Mapping Windows workspaces across multiple drives
To specify a workspace that spans multiple Windows drives, use a Root: of null and specify the drive
letters (in lowercase) in the workspace view. For example:

Client: bruno_ws
Update: 2011/11/29 09:46:53
Access: 2011/03/02 10:28:40
Owner: bruno
Root: null
Options: noallwrite noclobber nocompress unlocked nomodtime normdir
SubmitOptions: submitunchanged
LineEnd: local
View:
 //depot/dev/... "//bruno_ws/c:/Current Release/..."
 //depot/release/... "//bruno_ws/d:/Prior Releases/..."
 //depot/www/... //bruno_ws/d:/website/...

Using the same workspace from different machines
By default, you can only use a workspace on the machine that is specified by the Host: field. If you
want to use the same workspace on multiple machines with different platforms, delete the Host: entry
and set the AltRoots: field in the client workspace specification. You can specify a maximum of two
alternate workspace roots. The locations must be visible from all machines that will be using them, for
example through NFS or Samba mounts.

Helix compares the current working directory against the main Root: first, and then against the two
AltRoots: if specified. The first root to match the current working directory is used. If no roots match,
the main root is used.

Note If you are using a Windows directory in any of your workspace roots, specify the
Windows directory as your main client Root: and specify your other workspace
root directories in the AltRoots: field.

In the example below, if user bruno’s current working directory is located under /usr/bruno, Helix
uses the UNIX path as his workspace root, rather than c:\bruno_ws. This approach allows bruno to use
the same client workspace specification for both UNIX and Windows development.

Client: bruno_ws
Owner: bruno
Description:
 Created by bruno.
Root: c:\bruno_ws
AltRoots:
 /usr/bruno/

To find out which client workspace root is in effect, issue the p4 info command and check the Client
root: field.

Chapter 2. Configuring P4

16 Helix Versioning Engine User Guide

If you edit text files in the same workspace from different platforms, ensure that the editors and
settings you use preserve the line endings. For details about line-endings in cross-platform settings, see
“Configuring line-ending settings” on page 18.

Automatically pruning empty directories from a workspace
By default, Helix does not remove empty directories from your workspace. To change this behavior,
issue the p4 client command and in the Options: field, change the option normdir to rmdir.

For more about changing workspace options, see “Configuring workspace options” on page 16.

Changing the location of your workspace
To change the location of files in your workspace, issue the p4 client command and change either
or both of the Root: and View: fields. Before changing these settings, ensure that you have no files
checked out (by submitting or reverting open files).

If you intend to modify both fields, perform the following steps to ensure that your workspace files are
located correctly:

1. To remove the files from their old location in the workspace, issue the p4 sync …#none command.

2. Change the Root: field. (The new client workspace root directory must exist on your workstation
before you can retrieve files into it.)

3. To copy the files to their new locations in the workspace, perform a p4 sync. (If you forget to
perform the p4 sync …#none before you change the workspace view, you can always remove the
files from their client workspace locations manually).

4. Change the View: field.

5. Again, perform a p4 sync. The files in the client workspace are synced to their new locations.

Configuring workspace options
The following table describes workspace Options: in detail:

Option Description Default

[no]allwrite Specifies whether unopened files are always writable. By default,
Helix makes unopened files read-only. To avoid inadvertently
overwriting changes or causing syncs to fail, specify noallwrite.

A setting of allwrite leaves unopened files writable by the current
user; it does not set filesystem permissions to ensure that files are
writable by any user of a multiuser system.

If allwrite and noclobber are both set, Helix performs a safe sync,
comparing the content in your client workspace against what was
last synced. If the file was modified outside of Helix control, an
error message is displayed and the file is not overwritten.

noallwrite

Chapter 2. Configuring P4

Helix Versioning Engine User Guide 17

Option Description Default

[no]clobber Specifies whether p4 sync overwrites writable but unopened
workspace files. (By default, Helix does not overwrite unopened
files if they are writable.)

If allwrite and noclobber are both set, Helix performs a safe sync,
comparing the content in your client workspace against what was
last synced. If the file was modified outside of Helix control, an
error message is displayed and the file is not overwritten.

noclobber

[no]compress Specifies whether data is compressed when it is sent between your
workstation and the Helix service.

nocompress

[un]locked Specifies whether other users can use, edit, or delete the client
workspace specification. A Helix administrator can override the
lock with the -f (force) option.

If you lock your client workspace specification, be sure to set
a password for the workspace’s owner using the p4 passwd
command.

unlocked

[no]modtime For files without the +m (modtime) file type modifier, if modtime
is set, the modification date (on the local filesystem) of a newly
synced file is the datestamp on the file when the file was submitted
to the depot. If nomodtime is set, the modification date is the date
and time of sync.

For files with the +m (modtime) file type, the modification date (on
the local filesystem) of a newly synced file is the datestamp on the
file when the file was submitted to the depot, regardless of the
setting of modtime or nomodtime on the client.

nomodtime
(date and time
of sync).

Ignored for
files with the
+m file type
modifier.

[no]rmdir Specifies whether p4 sync deletes empty directories in a
workspace if all files in the directory have been removed.

normdir

Configuring submit options
To control what happens to files in a changelist when you submit the changelist to the depot, set the
SubmitOptions: field. Valid settings are as follows.

Option Description

submitunchanged All open files (with or without changes) are submitted to the depot.

This is the default behavior of Helix.

submitunchanged+reopen All open files (with or without changes) are submitted to the depot,
and all files are automatically reopened in the default changelist.

Chapter 2. Configuring P4

18 Helix Versioning Engine User Guide

Option Description

revertunchanged Only those files with content, type, or resolved changes are submitted
to the depot. Unchanged files are reverted.

revertunchanged+reopen Only those files with content, type, or resolved changes are submitted
to the depot and reopened in the default changelist. Unchanged files
are reverted and not reopened in the default changelist.

leaveunchanged Only those files with content, type, or resolved changes are submitted
to the depot. Any unchanged files are moved to the default changelist.

leaveunchanged+reopen Only those files with content, type, or resolved changes are submitted
to the depot. Unchanged files are moved to the default changelist, and
changed files are reopened in the default changelist.

This option is similar to submitunchanged+reopen, except that no
unchanged files are submitted to the depot.

Configuring line-ending settings
To specify how line endings are handled when you sync text files, set the LineEnd: field. Valid settings
are as follows:

Option Description

local Use mode native to the client (default)

unix UNIX-style (and Mac OS X) line endings: LF

mac Mac pre-OS X: CR only

win Windows- style: CR, LF

share The share option normalizes mixed line-endings into UNIX line-end format. The share
option does not affect files that are synced into a client workspace; however, when files
are submitted back to the Helix service, the share option converts all Windows-style CR/
LF line-endings and all Mac-style CR line-endings to the UNIX-style LF, leaving lone `LF`s
untouched.

When you sync your client workspace, line endings are set to LF. If you edit the file on
a Windows machine, and your editor inserts CR’s before each LF, the extra CR’s do not
appear in the archive file.

The most common use of the share option is for users of Windows workstations who
mount their UNIX home directories as network drives; if you sync files from UNIX, but
edit the files on a Windows machine.

For detailed information about how Helix uses the line-ending settings, see “CR/LF Issues and Text
Line-endings” in the Helix knowledge base:

Chapter 2. Configuring P4

Helix Versioning Engine User Guide 19

http://answers.perforce.com/articles/KB_Article/CR-LF-Issues-and-Text-Line-endings

Deleting client workspace specifications
To delete a workspace, issue the p4 client -d clientname command. Deleting a client workspace
removes Helix’s record of the workspace but does not remove files from the workspace or the depot.

When you delete a workspace specification:

1. Revert (or submit) any pending or shelved changelists associated with the workspace.

2. Delete existing files from a client workspace (p4 sync ...#none). (optional)

3. Delete the workspace specification.

If you delete the workspace specification before you delete files in the workspace, you can delete
workspace files using your operating system’s file deletion command.

Security
For security purposes, your Helix administrator can configure the Helix service to require SSL-
encrypted connections, user passwords, and to limit the length of time for which your login ticket is
valid. The following sections provide details:

SSL-encrypted connections

If your installation requires SSL, make sure your P4PORT is of the form ssl:hostname:port. If you
attempt to communicate in plaintext with an SSL-enabled Helix server, the following error message is
displayed:

Failed client connect, server using SSL.
Client must add SSL protocol prefix to P4PORT.

Set P4PORT to ssl:hostname:port, and attempt to reconnect to the server.

The first time you establish an encrypted connection with an SSL-enabled server, you are prompted to
verify the server’s fingerprint:

The authenticity of '10.0.0.2:1818' can't be established,
this may be your first attempt to connect to this P4PORT.
The fingerprint for the key sent to your client is
CA:BE:5B:77:14:1B:2E:97:F0:5F:31:6E:33:6F:0E:1A:E9:DA:EF:E2

Your administrator can confirm whether the displayed fingerprint is correct or not. If (and only if) the
fingerprint is correct, use the p4 trust command to add it to your P4TRUST file. If P4TRUST is unset, this
file is assumed to be .p4trust in your home directory:

http://answers.perforce.com/articles/KB_Article/CR-LF-Issues-and-Text-Line-endings

Chapter 2. Configuring P4

20 Helix Versioning Engine User Guide

$ p4 trust
The fingerprint of the server of your P4PORT setting
'ssl:example.com:1818' (10.0.0.2:1818) is not known.
That fingerprint is
CA:BE:5B:77:14:1B:2E:97:F0:5F:31:6E:33:6F:0E:1A:E9:DA:EF:E2
Are you sure you want to establish trust (yes/no)?
Added trust for P4PORT 'ssl:example.com:1818' (10.0.0.2:1818)

If the fingerprint is accurate, enter yes to trust this server. You can also install a fingerprint directly
into your trust file from the command line. Run:

$ p4 trust -p ssl:hostname:port -i fingerprint

where ssl:hostname:port corresponds to your P4PORT setting, and fingerprint corresponds to a
fingerprint that your administrator has verified.

From this point forward, any SSL connection to ssl:example.com:1818 is trusted, so long as the server
at example.com:1818 continues to report a fingerprint that matches the one recorded in your P4TRUST
file.

If the Helix server ever reports a different fingerprint than the one that you have trusted, the following
error message is displayed:

******* WARNING P4PORT IDENTIFICATION HAS CHANGED! *******
It is possible that someone is intercepting your connection
to the Perforce P4PORT '10.0.50.39:1667'
If this is not a scheduled key change, then you should contact
your Perforce administrator.
The fingerprint for the mismatched key sent to your client is
18:FC:4F:C3:2E:FA:7A:AE:BC:74:58:2F:FC:F5:87:7C:BE:C0:2D:B5
To allow connection use the 'p4 trust' command.

This error message indicates that the server’s fingerprint has changed from one that you stored in your
P4TRUST file and indicates that the server’s SSL credentials have changed.

Although the change to the fingerprint may be legitimate (for example, your administrator controls the
length of time for which your server’s SSL credentials remain valid, and your server’s credentials may
have expired), it can also indicate the presence of a security risk.

Warning If you see this error message, and your Helix administrator has not notified you
of a change to your server’s key and certificate pair, it is imperative that you
independently verify the accuracy of the reported fingerprint.

Unless you can independently confirm the veracity of the new fingerprint (by some
out-of-band means ranging from the company’s intranet site, or by personally
contacting your administrator), do not trust the changed fingerprint.

Chapter 2. Configuring P4

Helix Versioning Engine User Guide 21

Connecting to services that require plaintext connections

If your Helix installation requires plaintext (in order to support older Helix applications), set P4PORT
to tcp:hostname:port. If you attempt to use SSL to connect to a service that expects plaintext
connections, the following error message is displayed:

Perforce client error:
 SSL connect to ssl:_host_:_port_ failed (Connection reset by peer).
 Remove SSL protocol prefix from P4PORT.

Set P4PORT to tcp:hostname:port (or, if you are using applications at release 2011.1 or earlier, set
P4PORT to hostname:port), and attempt to reconnect to the service.

Passwords
Depending on the security level at which your Helix installation is running, you might need to log in
to Helix before you can run Helix commands. Without passwords, any user can assume the identity of
any other Helix user by setting P4USER to a different user name or specifying the -u option when you
issue a p4 command. To improve security, use passwords.

Setting passwords

To create a password for your Helix user, issue the p4 passwd command.

Passwords may be up to 1,024 characters in length. Your system administrator can configure Helix
to require “strong” passwords, the minimum length of a password, and if you have been assigned a
default password, your administrator can further require that you change your password before you
first use Helix.

By default, the Helix service defines a password as strong if it is at least eight characters long and
contains at least two of the following:

• Uppercase letters

• Lowercase letters

• Non-alphabetic characters

In an environment with a minimum password length of eight characters, for example, a1b2c3d4,
A1B2C3D4, aBcDeFgH would be considered strong passwords.

To reset or remove a password (without knowing the password), Helix superuser privilege is required.
If you need to have your password reset, contact your Helix administrator. See the Helix Versioning
Engine Administrator Guide: Fundamentals for details.

Using your password

If your Helix user has a password set, you must use it when you issue p4 commands. To use the
password, you can:

• Log into Helix by issuing the p4 login command, before issuing other commands.

http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html
http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html

Chapter 2. Configuring P4

22 Helix Versioning Engine User Guide

• Set P4PASSWD to your password, either in the environment or in a config file.

• Specify the -P password option when you issue p4 commands (for instance, p4 -P mypassword
submit).

• Windows or OS X: store your password by using the p4 set -s command. Not advised for sites
where security is high. Helix administrators can disable this feature.

Connection time limits
Your Helix administrator can configure the Helix service to enforce time limits for users. Helix uses
ticket-based authentication to enforce time limits. Because ticket-based authentication does not
rely on environment variables or command-line options, it is more secure than password-based
authentication.

Tickets are stored in a file in your home directory. After you have logged in, your ticket is valid for a
limited period of time (by default, 12 hours).

Logging in and logging out

If time limits are in effect at your site, you must issue the p4 login command to obtain a ticket. Enter
your password when prompted. If you log in successfully, a ticket is created for you in the ticket file in
your home directory, and you are not prompted to log in again until either your ticket expires or you
log out by issuing the p4 logout command.

To see how much time remains before your login expires, issue the following command:

$ p4 login -s

If your ticket is valid, the length of time remaining is displayed. To extend a ticket’s lifespan, use p4
login while already logged in. Your ticket’s lifespan is extended by 1/3 of its initial timeout setting,
subject to a maximum of your ticket’s initial timeout setting.

To log out of Helix, issue the following command:

$ p4 logout

Working on multiple machines

By default, your ticket is valid only for the IP address of the machine from which you logged in. If you
use Helix from multiple machines that share a home directory (typical in many UNIX environments),
log in with:

$ p4 login -a

Using p4 login -a creates a ticket in your home directory that is valid from all IP addresses, enabling
you to remain logged into Helix from more than one machine.

Chapter 2. Configuring P4

Helix Versioning Engine User Guide 23

To log out from all machines simultaneously, issue the following command:

$ p4 logout -a

For more information about the p4 login and p4 logout commands, see the P4 Command Reference.

Working with Unicode
The Helix service can be run in Unicode mode to activate support for file names or directory names
that contain Unicode characters, and Helix identifiers (for example, user names) and specifications (for
example, changelist descriptions or jobs) that contain Unicode characters.

In Unicode mode, the Helix service also translates Unicode files and metadata to the character set
configured on the user’s workstation, and verifies that the Unicode files and metadata contain valid
UTF-8 characters.

Note If you only need to manage textual files that contain Unicode characters, but do not
need the features listed above, you do not need to run Helix in Unicode mode. Your
system administrator will tell you if your site is using Unicode mode or not.

For these installations, assign the Helix utf16 file type to textual files that contain
Unicode characters. You do not have to set the P4CHARSET or P4COMMANDCHARSET
environment variables. See “Assigning File Types for Unicode Files” on page 130
for details.

To correctly inter-operate in Unicode mode, and to ensure that such files are translated correctly by the
Helix service when the files are synced or submitted, you must set P4CHARSET to the character set that
corresponds to the format used on your workstation by the applications that access them, such as text
editors or IDEs. These formats are typically listed when you save the file using the Save As… menu
option.

Values of P4CHARSET that begin with utf16 or utf32 further require that you also set P4COMMANDCHARSET
to a non utf16 or utf32 character set in which you want server output displayed. “Server output”
includes informational and error messages, diff output, and information returned by reporting
commands.

For a complete list of valid P4CHARSET values, issue the command p4 help charset.

For further information, see the Helix Versioning Engine Administrator Guide: Fundamentals.

Setting P4CHARSET on Windows
To set P4CHARSET for all users on a workstation, you need Windows administrator privileges. Issue the
following command:

C:\bruno_ws> p4 set -s P4CHARSET=character_set

To set P4CHARSET for the user currently logged in:

http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html
http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html

Chapter 2. Configuring P4

24 Helix Versioning Engine User Guide

c:\bruno_ws> p4 set P4CHARSET=character_set

Your workstation must have a compatible TrueType or OpenType font installed.

Setting P4CHARSET on UNIX
You can set P4CHARSET from a command shell or in a startup script such as .kshrc, .cshrc, or .profile.
To determine the proper value for P4CHARSET, examine the setting of the LANG or LOCALE environment
variable. Common settings are as follows

If LANG is… Set P4CHARSET to

en_US.ISO_8859-1 iso8859-1

ja_JP.EUC eucjp

ja_JP.PCK shiftjis

In general, for a Japanese installation, set P4CHARSET to eucjp, and for a European installation, set
P4CHARSET to iso8859-1.

Helix Versioning Engine User Guide 25

Chapter 3 Issuing P4 Commands
This chapter provides basic information about p4 commands, including command-line syntax,
arguments, and options. For full details about command syntax, refer to the P4 Command Reference.

Certain commands require administrator or superuser permission. For details, consult the Helix
Versioning Engine Administrator Guide: Fundamentals.

Command-line syntax
The basic syntax for commands is as follows:

pass:[<command>p4 [<replaceable>global options</replaceable>\] <replaceable>command</replaceable>
 [<replaceable>command-specific options</replaceable>\] [<replaceable>command arguments</
replaceable>\]</command>]

The following options can be used with all p4 commands:

Global options Description and Example

-c clientname Specifies the client workspace associated with the command. Overrides
P4CLIENT.

$ p4 -c bruno_ws edit //depot/dev/main/jam/Jambase

-C charset Specifies the client workspace’s character set. Overrides P4CHARSET.

$ p4 -C utf8 sync

-d directory Specifies the current directory, overriding the environment variable PWD.

C:\bruno_ws> p4 -d c:\bruno_ws\dev\main\jam\Jambase Jamfile

-G Format all output as marshaled Python dictionary objects (for scripting with
Python).

$ p4 -G info

-H host Specifies the hostname of the client workstation, overriding P4HOST.

$ p4 -H deneb print //depot/dev/main/jam/Jambase

-I Specify that progress indicators, if available, are desired. This option is not
compatible with the -s and -G options.

http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html
http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html
http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html

Chapter 3. Issuing P4 Commands

26 Helix Versioning Engine User Guide

Global options Description and Example

At present, the progress indicator is only supported by two commands:
submitting a changelist with p4 -I submit and “quietly” syncing files with p4 -
I sync -q.

-L language Specifies the language to use for error messages from the Helix service.
Overrides P4LANGUAGE. In order for this option to work, your administrator must
have loaded support for non-English messages in the database.

$ p4 -L language info

-p port Specifies the protocol, host and port number used to connect to the Helix
service, overriding P4PORT.

$ p4 -p ssl:deneb:1818 clients

-P password Supplies a Helix password, overriding P4PASSWD. Usually used in combination
with the -u username option.

$ p4 -u earl -P secretpassword job

-r retries Specifies the number of times to retry a command (notably, p4 sync) if the
network times out.

-Q charset Specifies the character set to use for command input and output; if you have
set P4CHARSET to a UTF-16 or UTF-32 value, you must set P4COMMANDCHARSET to a
non-UTF-16 or -32 value in order to use the p4 command-line client.

$ p4 -Q utf32 -C utf8 sync

-s Prepend a tag to each line of output (for scripting purposes).

$ p4 -s info

-u username Specifies a Helix user, overriding P4USER.

$ p4 -u bill user

-x filename Read arguments, one per line, from the specified file. To read arguments from
standard input, specify -x -.

Chapter 3. Issuing P4 Commands

Helix Versioning Engine User Guide 27

Global options Description and Example

$ p4 -x myargs.txt

-z tag To facilitate scripting, displays the output of reporting commands in the format
as that generated by p4 fstat.

$ p4 -z tag info

-q Quiet mode; suppress all informational message and report only warnings or
errors.

-V Displays the version of the p4 executable.

To display the options for a specific command, issue the p4 help command. For example:

$ p4 help add

 add -- Open a new file to add it to the depot

 p4 add [-c changelist#] [-d -f -I -n] [-t filetype] file ...

 Open a file for adding to the depot. If the file exists on the
 client, it is read to determine if it is text or binary. If it does
 not exist, it is assumed to be text. To be added, the file must not
 already reside in the depot, or it must be deleted at the current
 head revision. Files can be deleted and re-added.
[...]

For the full list of global options, commands, and command-specific options, see the P4 Command
Reference.

Specifying filenames on the command line
Much of your everyday use of Helix consists of managing files. You can specify filenames in p4
commands as follows:

• Local syntax: the file’s name as specified in your local shell or operating system.

Filenames can be specified using an absolute path (for example, c:\bruno_ws\dev\main\jam
\fileos2.c) or a path that is relative to the current directory (for example, .\jam\fileos2.c).

Relative components (. or ..) cannot be specified following fixed components. For example, mysub/
mydir/./here/file.c is invalid, because the dot (.) follows the fixed mysub/mydir components.

• Depot syntax: use the following format: //depotname/file_path, specifying the pathname of the file
relative to the depot root directory. Separate the components of the path using forward slashes. For
example: //depot/dev/main/jam/Jambase.

http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html
http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html

Chapter 3. Issuing P4 Commands

28 Helix Versioning Engine User Guide

• Client syntax: use the following format: //workspacename/file_path, specifying the pathname of the
file relative to the client root directory. Separate the components of the path using forward slashes.
For example: //ona-agave/dev/main/jam/Jambase.

Example 3.1. Using different syntaxes to refer to the same file

Local syntax:

C:\bruno_ws> p4 delete c:\bruno_ws\dev\main\jam\Jambase

Depot syntax:

C:\bruno_ws> p4 delete //depot/dev/main/jam/Jambase

Client syntax:

C:\bruno_ws> p4 delete //bruno_ws/dev/main/jam/Jambase

Helix wildcards
For commands that operate on sets of files, Helix supports two wildcards.

Wildcard Description

* Matches anything except slashes. Matches only within a single directory. Case
sensitivity depends on your platform.

... Matches anything including slashes. Matches recursively (everything in and
below the specified directory).

Helix wildcards can be used with local or Helix syntax, as in the following examples:

Expression Matches

J* Files in the current directory starting with J.

*/help All files called help in current subdirectories.

./... All files under the current directory and its subdirectories.

./....c All files under the current directory and its subdirectories, that end in .c.

/usr/bruno/... All files under /usr/bruno.

//bruno_ws/... All files in the workspace or depot that is named bruno_ws.

//depot/... All files in the depot named depot.

Chapter 3. Issuing P4 Commands

Helix Versioning Engine User Guide 29

Expression Matches

//... All files in all depots.

The * wildcard is expanded locally by the operating system before the command is sent to the Helix
service. To prevent the local operating system from expanding the * wildcard, enclose it in quotes or
precede it with a backslash.

Note The ... wildcard cannot be used with the p4 add command. The ... wildcard is
expanded by the Helix service, and, because the service cannot determine which
files are being added, it can’t expand the wildcard. The * wildcard can be used with
p4 add, because it is expanded by the operating system shell and not by Helix.

Restrictions on filenames and identifiers

Spaces in filenames, pathnames, and identifiers

Use quotation marks to enclose files or directories that contain spaces. For example:

"//depot/dev/main/docs/manuals/recommended configuration.doc"

If you specify spaces in names for other Helix objects, such as branch names, client names, label names,
and so on, the spaces are automatically converted to underscores by the Helix service.

Length limitations

Names assigned to Helix objects such as branches, client workspaces, and so on, cannot exceed 1,024
characters.

Reserved characters

By default, the following reserved characters are not allowed in Helix identifiers or names of files
managed by Helix:

Reserved Character Reason

@ File revision specifier for date, label name, or changelist number

File revision numbers

* Wildcard

... Wildcard (recursive)

%%1 - %%9 Wildcard (positional)

/ Separator for pathname components

These characters have conflicting and secondary uses. Conflicts include the following:

Chapter 3. Issuing P4 Commands

30 Helix Versioning Engine User Guide

• UNIX separates path components with /, but many DOS commands interpret / as a command-line
switch.

• Most UNIX shells interpret # as the beginning of a comment.

• Both DOS and UNIX shells automatically expand * to match multiple files, and the DOS command
line uses % to refer to variables.

To specify these characters in filenames or paths, use the ASCII expression of the character’s
hexadecimal value, as shown in the following table:

Character ASCII

@ %40

%23

* %2A

% %25

Specify the filename literally when you add it; then use the ASCII expansion to refer to it thereafter.
For example, to add a file called recommended@configuration.doc, issue the following command:

$ p4 add -f //depot/dev/main/docs/manuals/recommended@configuration.doc

When you submit the changelist, the characters are automatically expanded and appear in the change
submission form as follows:

//depot/dev/main/docs/manuals/recommended%40configuration.doc

After you submit the changelist with the file’s addition, you must use the ASCII expansion to sync the
file to your workspace or to edit it within your workspace. For example:

$ p4 sync //depot/dev/main/docs/manuals/recommended%40configuration.doc

The requirement to escape the special characters @, #, *, or % also applies if you attempt to use them in
the Root: or AltRoots: fields of your client workspace specification; escape them with %40, %23, %2A, or
%25 respectively.

Filenames containing extended (non-ASCII) characters

Non-ASCII characters are allowed in filenames and Helix identifiers, but entering them from the
command line might require platform-specific solutions. If you are using Helix in Unicode mode,
all users must have P4CHARSET set properly. For details about setting P4CHARSET, see the P4 Command
Reference and the Internationalization Notes.

In international environments, use a common code page or locale setting to ensure that all filenames
are displayed consistently across all machines in your organization. To set the code page or locale:

• Windows: use the Regional Settings applet in the Control Panel

http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html
http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html
http://www.perforce.com/perforce/r15.2/user/i18nnotes.txt

Chapter 3. Issuing P4 Commands

Helix Versioning Engine User Guide 31

• UNIX: set the LOCALE environment variable

Specifying file revisions
Each time you submit a file to the depot, its revision number is incremented. To specify revisions
prior to the most recent, use the # revision specifier to specify a revision number, or @ to specify a date,
changelist, client workspace, or label corresponding to the version of the file you are working on.
Revision specifications can be used to limit the effect of a command to specified file revisions.

Warning Some operating system shells treat the Helix revision character # as a comment
character if it starts a word. If your shell is one of these, escape the # when you use
it in p4 commands.

The following table describes the various ways you can specify file revisions:

Revision needed Syntax and example

Revision number file#n

$ p4 sync //depot/dev/main/jam/Jambase#3

Refers to revision 3 of file Jambase

The revision submitted as
of a specified changelist

file@changelist_number

$ p4 sync //depot/dev/main/jam/Jambase@126

Refers to the version of Jambase when changelist 126 was submitted,
even if it was not part of the change.

$ p4 sync //depot/...@126

Refers to the state of the entire depot at changelist 126 (numbered
changelists are explained in “Managing changelists” on page 43).

The revision in a specified
label

file@label_name

$ p4 sync //depot/dev/main/jam/Jambase@beta

The revision of Jambase in the label called beta. For details about labels,
refer to Chapter 8, “Labels” on page 93.

The revision last synced
to a specified client
workspace

file@client_name

Chapter 3. Issuing P4 Commands

32 Helix Versioning Engine User Guide

Revision needed Syntax and example

$ p4 sync //depot/dev/main/jam/Jambase@bruno_ws

The revision of Jambase last synced to client workspace bruno_ws.

Remove the file file#none

$ p4 sync //depot/dev/main/jam/Jambase#none

Removes Jambase from the client workspace.

The most recent version of
the file

file#head

$ p4 sync //depot/dev/main/jam/Jambase#head

Same as p4 sync //depot/dev/main/jam/Jambase

(If you omit the revision specifier, the head revision is synced.)

The revision last synced to
your workspace

file#have

$ p4 files //depot/dev/main/jam/Jambase#have

The head revision of the
file in the depot on the
specified date

file@date

$ p4 sync //depot/dev/main/jam/Jambase@2011/05/18

The head revision of Jambase as of midnight May 18, 2011.

The head revision of
the file in the depot on
the specified date at the
specified time

file@"date[:time]"

$ p4 sync //depot/dev/main/jam/Jambase@"2011/05/18"

Specify dates in the format YYYY/MM/DD. Specify time in the format
HH:MM:SS using the 24-hour clock. Time defaults to 00:00:00.

Separate the date and the time by a single space or a colon. (If you use
a space to separate the date and time, you must also enclose the entire
date-time specification in double quotes.)

Chapter 3. Issuing P4 Commands

Helix Versioning Engine User Guide 33

Example 3.2. Retrieving files using revision specifiers

Bruno wants to retrieve all revisions that existed at changelist number 30. He types:

$ p4 sync //depot/dev/main/jam/Jambase@30

Another user can sync their workspace so that it contains the same file revisions Bruno has synced by
specifying Bruno’s workspace, as follows:

$ p4 sync @bruno_ws

Example 3.3. Removing all files from the client workspace

$ p4 sync ...#none

The files are removed from the workspace but not from the depot.

Date and time specifications

Date and time specifications are obtained from the time zone of the machine that hosts the Helix
service. To display the date, time, offset from GMT, and time zone in effect, issue the p4 info
command. The versioning service stores times as the number of seconds since 00:00:00 GMT Jan. 1,
1970), so if you move across time zones, the times stored in the service are correctly reported in the
new time zone.

Revision ranges

Some commands can operate on a range of file revisions. To specify a revision range, specify the start
and end revisions separated by a comma, for example, #3,4.

The commands that accept revision range specifications are:

p4 annotate
p4 changes
p4 dirs
p4 filelog

p4 files
p4 fixes
p4 grep
p4 integrate

p4 interchanges
p4 jobs
p4 labels
p4 labelsync

p4 list
p4 merge
p4 print
p4 sizes

p4 sync
p4 tag

For the preceding commands:

• If you specify a single revision, the command operates on revision #1 through the revision you
specify (except for p4 sync, p4 print, and p4 files, which operate on the highest revision in the
range).

• If you omit the revision range entirely, the command affects all file revisions.

Example 3.4. Listing changes using revision ranges

A release manager needs to see a quick list of all changes made to the jam project in July 2010. He
types:

Chapter 3. Issuing P4 Commands

34 Helix Versioning Engine User Guide

$ p4 changes //depot/dev/main/jam/...@2010/7/1,2010/8/1

The resulting list of changes looks like this:

Change 673 on 2010/07/31 by bruno@bruno_ws 'Final build for QA'
Change 633 on 2010/07/1 by bruno@bruno_ws 'First build w/bug fix'
Change 632 on 2010/07/1 by bruno@bruno_ws 'Started work'

Reporting commands
The following table lists some useful reporting commands:

To display Use this command

A list of p4 commands with a brief description p4 help commands

Detailed help about a specific command p4 help command

Command line options common to all Helix commands p4 help usage

Details about Helix view syntax p4 help views

All the arguments that can be specified for the p4 help command p4 help

The Helix settings configured for your environment p4 info

The file revisions in the client workspace p4 have

Preview the results of a p4 sync (to see which files would be
transferred)

p4 sync -n

Preview the results of a p4 delete (to see which files would be marked
for deletion)

p4 delete -n files

Using Helix forms
Some Helix commands, for example p4 client and p4 submit, use a text editor to display a form into
which you enter the information that is required to complete the command (for example, a description
of the changes you are submitting). After you change the form, save it, and exit the editor, Helix parses
the form and uses it to complete the command. (To configure the text editor that is used to display and
edit Helix forms, set P4EDITOR.)

When you enter information into a Helix form, observe the following rules:

• Field names (for example, View:) must be flush left (not indented) and must end with a colon.

• Values (your entries) must be on the same line as the field name, or indented with tabs on the lines
beneath the field name.

Chapter 3. Issuing P4 Commands

Helix Versioning Engine User Guide 35

Some field names, such as the Client: field in the p4 client form, require a single value; other fields,
such as Description:, take a block of text; and others, like View:, take a list of lines.

Certain values, like Client: in the client workspace form, cannot be changed. Other fields, like
Description: in p4 submit, must be changed. If you don’t change a field that needs to be changed, or
vice versa, Helix displays an error. For details about which fields can be modified, see the P4 Command
Reference or use p4 help command.

http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html
http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html

36 Helix Versioning Engine User Guide

Helix Versioning Engine User Guide 37

Chapter 4 Managing Files and Changelists
This chapter tells you how to manage files and work in a team development environment, where
multiple users who are working on the same files might need to reconcile their changes.

Managing files
To change files in the depot (file repository), you open the files in changelists and submit the
changelists with a description of your changes. Helix assigns numbers to changelists and maintains the
revision history of your files. This approach enables you to group related changes and find out who
changed a file and why and when it was changed. Here are the basic steps for working with files.

Task Description

Syncing
(retrieving files
from the depot)

Issue the p4 sync command, specifying the files and directories you want to
retrieve from the depot. You can only sync files that are mapped in your client
view.

Adding files to
the depot

1. Create the file in the workspace.

2. Open the file for add in a changelist (p4 add).

3. Submit the changelist (p4 submit).

Editing files
and checking in
changes

1. If necessary, sync the desired file revision to your workspace (p4 sync).

2. Open the file for edit in a changelist (p4 edit).

3. Make your changes.

4. Submit the changelist (p4 submit). To discard changes, issue the p4 revert
command.

Deleting files
from the depot

1. Open the file for delete in a changelist (p4 delete). The file is deleted from
your workspace.

2. Submit the changelist (p4 submit). The file is deleted from the depot.

Discarding
changes

Revert the files or the changelist in which the files are open. Reverting has the
following effects on open files:

Add no effect - the file remains in your workspace.

Edit the revision you opened is resynced from the depot, overwriting any
changes you made to the file in your workspace.

Delete the file is resynced to your workspace.

Files are added to, deleted from, or updated in the depot only when you successfully submit the
pending changelist in which the files are open. A changelist can contain a mixture of files open for add,
edit and delete.

Chapter 4. Managing Files and Changelists

38 Helix Versioning Engine User Guide

For details about the syntax that you use to specify files on the command line, refer to “Specifying
filenames on the command line” on page 27. The following sections provide more details about
working with files:

Syncing (retrieving) files
To retrieve files from the depot into your client workspace, issue the p4 sync command. You cannot
sync files that are not in your client view. For details about specifying client views, see “Refining
workspace views” on page 10.

Example 4.1. Copying files from the depot to a client workspace.

The command below retrieves the most recent revisions of all files in the client view from the depot
into the workspace. As files are synced, they are listed in the command output.

C:\bruno_ws> p4 sync
//depot/dev/main/bin/bin.linux24x86/readme.txt#1 - added as c:\bruno_ws\dev\main\bin
\bin.linux24x86\readme.txt
//depot/dev/main/bin/bin.ntx86/glut32.dll#1 - added as c:\bruno_ws\dev\main\bin
\bin.ntx86\glut32.dll
//depot/dev/main/bin/bin.ntx86/jamgraph.exe#2 - added as c:\bruno_ws\dev\main\bin
\bin.ntx86\jamgraph.exe
[...]

The p4 sync command adds, updates, or deletes files in the client workspace to bring the workspace
contents into agreement with the depot. If a file exists within a particular subdirectory in the depot, but
that directory does not exist in the client workspace, the directory is created in the client workspace
when you sync the file. If a file has been deleted from the depot, p4 sync deletes it from the client
workspace.

To sync revisions of files prior to the latest revision in the depot, use revision specifiers. For example,
to sync the first revision of Jamfile, which has multiple revisions, issue the following command:

$ p4 sync //depot/dev/main/jam/Jamfile#1

For more details, refer to “Specifying file revisions” on page 31.

To sync groups of files or entire directories, use wildcards. For example, to sync everything in and
below the jam folder, issue the following command:

$ p4 sync //depot/dev/main/jam/...

For more details, see “Helix wildcards” on page 28.

The Helix service tracks which revisions you have synced. For maximum efficiency, Helix does not
resync an already-synced file revision. To resync files you (perhaps inadvertently) deleted manually,
specify the -f option when you issue the p4 sync command.

Chapter 4. Managing Files and Changelists

Helix Versioning Engine User Guide 39

Adding files
To add files to the depot, create the files in your workspace, then issue the p4 add command. The p4
add command opens the files for add in the default pending changelist. The files are added when you
successfully submit the default pending changelist. You can open multiple files for add using a single
p4 add command by using wildcards. You cannot use the Helix ... wildcard to add files recursively.

For platform-specific details about adding files recursively (meaning files in subdirectories), see
“Adding a Directory Tree” in the Helix knowledge base:

http://answers.perforce.com/articles/KB_Article/Adding-a-Directory-Tree

Example 4.2. Adding files to a changelist.

Bruno has created a couple of text files that he needs to add to the depot. To add all the text files at
once, he uses the * wildcard when he issues the p4 add command.

C:\bruno_ws\dev\main\docs\manuals> p4 add *.txt
//depot/dev/main/docs/manuals/installnotes.txt#1 - opened for add
//depot/dev/main/docs/manuals/requirements.txt#1 - opened for add

Now the files he wants to add to the depot are open in his default changelist. The files are stored in the
depot when the changelist is submitted.

Example 4.3. Submitting a changelist to the depot.

Bruno is ready to add his files to the depot. He types p4 submit and sees the following form in a
standard text editor:

Change: new
Client: bruno_ws
User: bruno
Status: new
Description:
 <enter description here>
Type: public
Files:
 //depot/dev/main/docs/manuals/installnotes.txt # add
 //depot/dev/main/docs/manuals/requirements.txt # add

Bruno changes the contents of the Description: field to describe his file updates. When he’s done, he
saves the form and exits the editor, and the new files are added to the depot.

You must enter a description in the Description: field. You can delete lines from the Files: field. Any
files deleted from this list are moved to the next default changelist, and are listed the next time you
submit the default changelist.

If you are adding a file to a directory that does not exist in the depot, the depot directory is created
when you successfully submit the changelist.

http://answers.perforce.com/articles/KB_Article/Adding-a-Directory-Tree

Chapter 4. Managing Files and Changelists

40 Helix Versioning Engine User Guide

You can restrict a changelist from public view by changing the Type: field from public to restricted.
In general, if a changelist is restricted, only those users with list access to at least one of the files in the
changelist are permitted to see the changelist description.

Add files outside of Helix and then use p4 reconcile -k

In certain situations, you may need to copy a very large number of files into your workspace from
another user’s workspace. Rather than doing this via Helix, you may, for performance reasons, choose
to copy them directly — via a snapshot, for example — from the other user’s workspace into yours.

Once you’ve done this, you will need to:

• Inform Helix that these files now exist on your client.

That is, you want to update your client’s have list to reflect the actual contents of your workspace

• Ensure that your workspace view contains mappings identical to those contained in the workspace
view of the client you copied from

This ensures that Helix doesn’t think these files are new.

To do this, run the p4 reconcile -k command.

Ignoring groups of files when adding
Sometimes development processes result in the creation of extraneous content that should not be
submitted to the depot. Compilers produce object files and executables during development, text
editors and word processors produce backup files, and you may have your own personal conventions
for notes on work in progress.

To ignore files (or groups of files) when adding, create a file with a list of file specifications you wish to
ignore, and set the P4IGNORE environment variable to point to this file.

When you add files, the full local path and parent directories of any file to be added are searched for
P4IGNORE files. If any P4IGNORE files exist, their rules are added to a list, with greater precedence given
to P4IGNORE rules closest to the file being added.

The syntax for P4IGNORE files is not the same as Helix syntax. Instead, it is similar to that used by other
versioning systems: files are specified in local syntax, a # character at the beginning of a line denotes
a comment, a ! character at the beginning of a line excludes the file specification, and the * wildcard
matches substrings. The Helix wildcard of ... is not permitted.

Character Meaning in P4IGNORE files

* Matches anything except slashes. Matches only within a single directory. Case
sensitivity depends on your client platform.

! Exclude the file specification from consideration.

Comment character; this line is ignored.

Chapter 4. Managing Files and Changelists

Helix Versioning Engine User Guide 41

Example 4.4. Ignoring groups of files when adding.

Bruno unit tests his code before submitting it to the depot and does not want to accidentally add any
object files or generated executables when reconciling his workspace.

Bruno first sets P4IGNORE to point to the correct file:

$ export P4IGNORE=.p4ignore

He then creates the following file and stores it as .p4ignore in the root of his workspace:

Ignore .p4ignore files
.p4ignore
Ignore object files, shared libraries, executables
*.dll
*.so
*.exe
*.o
Ignore all text files except readme file
*.txt
!readme.txt

The next time he runs a command (such as p4 add *.*), the rules are applied across the entire
workspace.

To override (or ignore) the P4IGNORE file, use the -I option with the p4 add, p4 reconcile, or p4 status
commands.

Reporting ignored files

The p4 ignores command reports the ignore mappings in effect. Specifically, it displays the ignore
mappings computed from the rules in the P4IGNORE file.

If you add the -i option, it reports whether a particular file or set of files will be ignored.

For more information on p4 ignores, see the p4 ignores page in the P4 Command Reference.

Changing files

To open a file for edit, issue the p4 edit command. When you open a file for edit, Helix enables write
permission for the file in your workspace and adds the file to a changelist. If the file is in the depot
but not in your workspace, you must sync it before you open it for edit. You must open a file for edit
before you attempt to edit the file.

Example 4.5. Opening a file for edit.

Bruno wants to make changes to command.c, so he syncs it and opens the file for edit.

http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html

Chapter 4. Managing Files and Changelists

42 Helix Versioning Engine User Guide

C:\bruno_ws\dev> p4 sync //depot/dev/command.c
//depot/dev/command.c#8 - added as c:\bruno_ws\dev\command.c

C:\bruno_ws\dev> p4 edit //depot/dev/command.c
//depot/dev/command.c#8 - opened for edit

He then edits the file with any text editor. When he’s finished, he submits the file to the depot with p4
submit, as described above.

Discarding changes (reverting)
To remove an open file from a changelist and discard any changes you made, issue the p4 revert
command. When you revert a file, Helix restores the last version you synced to your workspace. If you
revert a file that is open for add, the file is removed from the changelist but is not deleted from your
workspace.

Example 4.6. Reverting a file

Bruno decides not to add his text files after all.

C:\bruno_ws\dev> p4 revert *.txt
//depot/dev/main/docs/manuals/installnotes.txt#none - was add, abandoned
//depot/dev/main/docs/manuals/requirements.txt#none - was add, abandoned

To preview the results of a revert operation without actually reverting files, specify the -n option when
you issue the p4 revert command.

Deleting files
To delete files from the depot, you open them for delete by issuing the p4 delete command, then
submit the changelist in which they are open. When you delete a file from the depot, previous
revisions remain, and a new head revision is added, marked as “deleted.” You can still sync previous
revisions of the file.

When you issue the p4 delete command, the files are deleted from your workspace but not from
the depot. If you revert files that are open for delete, they are restored to your workspace. When you
successfully submit the changelist in which they are open, the files are deleted from the depot.

Example 4.7. Deleting a file from the depot.

Bruno deletes vendor.doc from the depot as follows:

C:\bruno_ws\dev> p4 delete //depot/dev/main/docs/manuals/vendor.doc
//depot/dev/main/docs/manuals/vendor.doc#1 - opened for delete

The file is deleted from the client workspace immediately, but it is not deleted from the depot until he
issues the p4 submit command.

Chapter 4. Managing Files and Changelists

Helix Versioning Engine User Guide 43

Managing changelists
To change files in the depot, you open them in a changelist, make any changes to the files, and then
submit the changelist. A changelist contains a list of files, their revision numbers, and the operations to
be performed on the files. Unsubmitted changelists are referred to as pending changelists.

Submission of changelists is an all-or-nothing operation; that is, either all of the files in the changelist
are updated in the depot, or, if an error occurs, none of them are. This approach guarantees that code
alterations that affect multiple files occur simultaneously.

Helix assigns numbers to changelists and also maintains a default changelist, which is numbered when
you submit it. You can create multiple changelists to organize your work. For example, one changelist
might contain files that are changed to implement a new feature, and another changelist might contain
a bug fix. When you open a file, it is placed in the default changelist unless you specify an existing
changelist number on the command line using the -c option. For example, to edit a file and submit it in
changelist number 4, use p4 edit -c 4 filename. To open a file in the default changelist, omit the -c
option.

You can also shelve changelists in order to temporarily preserve work in progress for your own use,
or for review by others. Shelving enables you to temporarily cache files in the shared service without
formally submitting them to the depot.

The Helix service might renumber a changelist when you submit it, depending on other users'
activities; if your changelist is renumbered, its original number is never reassigned to another
changelist.

The commands that add or remove files from changelists are:

p4 add
p4 delete

p4 edit
p4 integrate

p4 reopen
p4 revert

p4 shelve
p4 unshelve

To submit a numbered changelist, specify the -c option when you issue the p4 submit command.
To submit the default changelist, omit the -c option. For details, refer to the p4 submit command
description in the P4 Command Reference.

To move files from one changelist to another, issue the p4 reopen -c changenum filenames command,
where changenum specifies the number of the target changelist. If you are moving files to the default
changelist, use p4 reopen -c default filenames.

Note Using parallel submits can significantly improve performance. For additional
information see the description of the p4 submit command in the P4 Command
Reference.

Creating numbered changelists
To create a numbered changelist, issue the p4 change command. This command displays the changelist
form. Enter a description and make any desired changes; then save the form and exit the editor.

All files open in the default changelist are moved to the new changelist. When you exit the text editor,
the changelist is assigned a number. If you delete files from this changelist, the files are moved back to
the default changelist.

http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html
http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html
http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html

Chapter 4. Managing Files and Changelists

44 Helix Versioning Engine User Guide

Example 4.8. Working with multiple changelists.

Bruno is fixing two different bugs, and needs to submit each fix in a separate changelist. He syncs the
head revisions of the files for the first fix and opens the for edit in the default changelist:

C:\bruno_ws> p4 sync //depot/dev/main/jam/*.c
[list of files synced...]

C:\bruno_ws> p4 edit //depot/dev/main/jam/*.c
[list of files opened for edit...]

Now he issues the p4 change command and enters a description in the changelist form. After he saves
the file and exits the editor, Helix creates a numbered changelist containing the files.

C:\bruno_ws\dev\main\docs\manuals> p4 change

 [Enter description and save form]

Change 777 created with 33 open file(s).

For the second bug fix, he performs the same steps, p4 sync, p4 edit, and p4 change. Now he has two
numbered changelists, one for each fix.

The numbers assigned to submitted changelists reflect the order in which the changelists were
submitted. When a changelist is submitted, Helix might renumber it, as shown in the following
example:

Example 4.9. Automatic renumbering of changelists

Bruno has finished fixing the bug that he’s been using changelist 777 for. After he created that
changelist, he submitted another changelist, and two other users also submitted changelists. Bruno
submits changelist 777 with p4 submit -c 777, and sees the following message:

Change 777 renamed change 783 and submitted.

Submitting changelists
To submit a pending changelist, issue the p4 submit command. When you issue the p4 submit
command, a form is displayed, listing the files in the changelist. You can remove files from this list.
The files you remove remain open in the default pending changelist until you submit them or revert
them.

To submit specific files that are open in the default changelist, issue the p4 submit filename command.
To specify groups of files, use wildcards. For example, to submit all text files open in the default
changelist, type p4 submit "*".txt. (Use quotation marks as an escape code around the * wildcard to
prevent it from being interpreted by the local command shell).

After you save the changelist form and exit the text editor, the changelist is submitted to the Helix
service, and the files in the depot are updated. After a changelist has been successfully submitted, only

Chapter 4. Managing Files and Changelists

Helix Versioning Engine User Guide 45

a Helix administrator can change it, and the only fields that can be changed are the description and
user name.

If an error occurs when you submit the default changelist, Helix creates a numbered changelist
containing the files you attempted to submit. You must then fix the problems and submit the
numbered changelist using the -c option.

Helix enables write permission for files that you open for edit and disables write permission when you
successfully submit the changelist containing the files. To prevent conflicts with Helix’s management
of your workspace, do not change file write permissions manually.

Before committing a changelist, p4 submit briefly locks all files being submitted. If any file cannot be
locked or submitted, the files are left open in a numbered pending changelist. By default, the files in
a failed submit operation are left locked unless the submit.unlocklocked configurable is set. Files are
unlocked even if they were manually locked prior to submit if submit fails when submit.unlocklocked
is set.

Deleting changelists
To delete a pending changelist, you must first remove all files and jobs associated with it and then
issue the p4 change -d changenum command. Related operations include the following:

• To move files to another changelist, issue the p4 reopen -c changenum command.

• To remove files from the changelist and discard any changes, issue the p4 revert -c changenum
command.

Changelists that have already been submitted can be deleted only by a Helix administrator. See the
Helix Versioning Engine Administrator Guide: Fundamentals for more information.

Renaming and moving files
To rename or move files, you must first open them for add or edit, and then use the p4 move command:

C:\bruno_ws> p4 move source_file target_file

To move groups of files, use matching wildcards in the source_file and target_file specifiers. To move
files, you must have Helix write permission for the specified files. For details about Helix permissions,
see the Helix Versioning Engine Administrator Guide: Fundamentals.

When you rename or move a file using p4 move, the versioning service creates an integration record
that links it to its deleted predecessor, preserving the file’s history. Integration is also used to create
branches and to propagate changes. For details, see “Integrating changes” on page 66.

Shelving work in progress
The Helix shelving feature enables you to temporarily make copies of your files available to other users
without checking the changelist into the depot.

http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html
http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html

Chapter 4. Managing Files and Changelists

46 Helix Versioning Engine User Guide

Shelving is useful for individual developers who are switching between tasks or performing cross-
platform testing before checking in their changes. Shelving also enables teams to easily hand off
changes and to perform code reviews.

Example 4.10. Shelving a changelist.

Earl has made changes to command.c on a UNIX platform, and now wants others to be able to view and
test his changes.

$ p4 edit //depot/dev/command.c
//depot/dev/command.c#9 - opened for edit
...

$ p4 shelve
Change 123 created with 1 open file(s).
Shelving files for change 123.
edit //depot/dev/command.c#9
Change 123 files shelved.

A pending changelist is created, and the shelved version of command.c is stored in the service. The file
command.c remains editable in Earl’s workspace, and Earl can continue to work on the file, or can revert
his changes and work on something else.

Shelved files remain open in the changelist from which they were shelved. (To add a file to an existing
shelved changelist, you must first open that file in that specific changelist.) You can continue to work
on the files in your workspace without affecting the shelved files. Shelved files can be synced to other
workspaces, including workspaces owned by other users. For example:

Example 4.11. Unshelving a changelist for code review

Earl has asked for code review and a cross-platform compatibility check on the version of command.c
that he shelved in changelist 123. Bruno, who is using a Windows machine, types:

C:\bruno_ws\dev> p4 unshelve -s 123 //depot/dev/command.c
//depot/dev/command.c#9 - unshelved, opened for edit

and conducts the test in the Windows environment while Earl continues on with other work.

When you shelve a file, the version on the shelf is unaffected by commands that you perform in your
own workspace, even if you revert the file to work on something else.

Example 4.12. Handing off files to other users.

Earl’s version of command.c works on UNIX, but Bruno’s cross-platform check of command.c has
revealed a bug. Bruno can take over the work from here, so Earl reverts his workspace and works on
something else:

$ p4 revert //depot/dev/command.c
//depot/dev/command.c#9 - was edit, reverted

Chapter 4. Managing Files and Changelists

Helix Versioning Engine User Guide 47

The shelved version of command.c is still available from Earl’s pending changelist 123, and Bruno opens
it in a new changelist, changelist 124.

$ p4 unshelve -s 123 -c 124 //depot/dev/command.c
//depot/dev/command.c#9 - unshelved, opened for edit

When Bruno is finished with the work, he can either re-shelve the file (in his own changelist 124,
not Earl’s changelist 123) for further review, or discard the shelved file and submit the version in his
workspace by using p4 submit.

The p4 submit command has a -e option that enables the submitting of shelved files directly from a
changelist. All files in the shelved change must be up to date and resolved. Other restrictions can apply
in the case of files shelved to stream targets; see the P4 Command Reference for details. (To avoid dealing
with these restrictions, you can always move the shelved files into a new pending changelist before
submitting that changelist.)

Example 4.13. Discarding shelved files before submitting a change.

The Windows cross-platform changes are complete, and changelist 124 is ready to be submitted. Bruno
uses p4 shelve -d to discard the shelved files.

C:\bruno_ws\dev> p4 shelve -d -c 124
Shelve 124 deleted.

All files in the shelved changelist are deleted. Bruno can now submit the changelist.

C:\bruno_ws\dev> p4 submit -c 124
Change 124 submitted.

Bruno could have shelved the file in changelist 124, and let Earl unshelve it back into his original
changelist 123 to complete the check-in.

Displaying information about changelists

To display brief information about changelists, use the p4 changes command. To display full
information, use the p4 describe command. The following table describes some useful reporting
commands and options:

Command Description

p4 changes Displays a list of all pending, submitted, and shelved changelists,
one line per changelist, and an abbreviated description.

p4 changes -m count Limits the number of changelists reported on to the last specified
number of changelists.

http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html

Chapter 4. Managing Files and Changelists

48 Helix Versioning Engine User Guide

Command Description

p4 changes -s status Limits the list to those changelists with a particular status; for
example, p4 changes -s submitted lists only already submitted
changelists.

p4 changes -u user Limits the list to those changelists submitted by a particular user.

p4 changes -c workspace Limits the list to those changelists submitted from a particular
client workspace.

p4 describe changenum Displays full information about a single changelist. If the
changelist has already been submitted, the report includes a list of
affected files and the diffs of these files. (You can use the -s option
to exclude the file diffs.)

p4 describe -O changenum If a changelist was renumbered, describe the changelist in terms
of its original change number. (For example, the changelist
renumbered in the example on Example 4.9, “Automatic
renumbering of changelists” on page 44 can be retrieved with
either p4 describe 783 or p4 describe -O 777.)

For more information, see “Changelist reporting” on page 113.

Diffing files
Helix provides the ability to diff (compare) revisions of text files. By diffing files, you can display:

• Changes that you made after opening the file for edit

• Differences between any two revisions

• Differences between file revisions in different branches

To diff a file that is synced to your workspace with a depot revision, issue the p4 diff filename#rev
command. If you omit the revision specifier, the file in your workspace is compared with the revision
you last synced, to display changes you made after syncing it.

To diff two revisions that reside in the depot but not in your workspace, use the p4 diff2 command.
To diff a set of files, specify wildcards in the filename argument when you issue the p4 diff2
command.

The p4 diff command performs the comparison on your workstation, but the p4 diff2 command
instructs the Helix service to perform the diff and to send the results to you.

The following table lists some common uses for diff commands:

To diff Against Use this command

The workspace file The head revision p4 diff file or p4 diff file#head

Chapter 4. Managing Files and Changelists

Helix Versioning Engine User Guide 49

To diff Against Use this command

The workspace file Revision 3 p4 diff file#3

The head revision Revision 134 p4 diff2 file file#134

File revision at
changelist 32

File revision at
changelist 177

p4 diff2 file@32 file@177

The workspace file A file shelved in
pending changelist
123

p4 diff file@=123

All files in release 1 All files in release 2 p4 diff2 //depot/rel1/... //depot/rel2/...

By default, the p4 diff command launches Helix’s internal diff application. To use a different diff
program, set the P4DIFF environment variable to specify the path and executable of the desired
application. To specify arguments for the external diff application, use the -d option. For details, refer
to the P4 Command Reference.

Working offline
The preferred method of working offline (without access to the Helix service) is to use DVCS
(distributed versioning) features. For details, refer to Using Distributed Versioning with Helix.

If you work offline, you must manually reconcile your work with the Helix service when you regain
access to it. The following method for working detached assumes that you work on files in your
workspace or update the workspace with your additions, changes, and deletions before you update the
depot:

To work offline:

1. Work on files without issuing p4 commands. Instead, use operating system commands to change
the permissions on files.

2. After the network connection is re-established, use p4 status or p4 reconcile to find all files in
your workspace that have changed.

3. Submit the resulting changelist(s).

To detect changed files, issue the p4 status or p4 reconcile commands. The commands perform
essentially the same function, but differ in their default behavior and output format.

Command Description

p4 reconcile When called without arguments, p4 reconcile opens the files in a changelist.
To preview an operation, you must either use the -n option with p4 reconcile,
or use the p4 status command.

p4 status When called without arguments, p4 status only previews the results of
the workspace reconciliation. You must use either p4 status -A (or some

http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html
http://www.perforce.com/perforce/r15.2/manuals/dvcs/index.html

Chapter 4. Managing Files and Changelists

50 Helix Versioning Engine User Guide

Command Description

combination of the -e, -a, or -d options) to actually open the files in a
changelist.

Helix Versioning Engine User Guide 51

Chapter 5 Resolving Conflicts
This chapter tells you how to work in a team development environment, where multiple users who are
working on the same files might need to reconcile their changes.

In settings where multiple users are working on the same set of files, conflicts can occur. Helix enables
your team to work on the same files simultaneously and resolve any conflicts that arise. For example,
conflicts occur if two users change the same file (the primary concern in team settings) or you edit a
previous revision of a file rather than the head revision.

When you attempt to submit a file that conflicts with the head revision in the depot, Helix requires
you to resolve the conflict. Merging changes from a development branch to a release branch is another
typical task that requires you to resolve files.

To prevent conflicts, Helix enables you to lock files when they are edited. However, locking can restrict
team development. Your team needs to choose the strategy that maximizes file availability while
minimizing conflicts. For details, refer to “Locking files” on page 59.

You might prefer to resolve files using graphical tools like P4V, the Helix Visual Client, and its
associated visual merge tool P4Merge.

How conflicts occur
File conflicts can occur when two users edit and submit two versions of the same file. Conflicts can
occur in a number of ways, for example:

1. Bruno opens //depot/dev/main/jam/command.c#8 for edit.

2. Gale subsequently opens the same file for edit in her own client workspace.

3. Bruno and Gale both edit //depot/dev/main/jam/command.c#8.

4. Bruno submits a changelist containing //depot/dev/main/jam/command.c, and the submit succeeds.

5. Gale submits a changelist with her version of //depot/dev/main/jam/command.c. Her submit fails.

If Helix accepts Gale’s version into the depot, her changes will overwrite Bruno’s changes. To prevent
Bruno’s changes from being lost, Helix rejects the changelist and schedules the conflicting file to be
resolved. If you know of file conflicts in advance and want to schedule a file for resolution, sync it.
Helix detects the conflicts and schedules the file for resolution.

How to resolve conflicts
To resolve a file conflict, you determine the contents of the files you intend to submit by issuing the
p4 resolve command and choosing the desired method of resolution for each file. After you resolve
conflicts, you submit the changelist containing the files.

Note If you open a file for edit, then sync a subsequently submitted revision from the
depot, Helix requires you to resolve to prevent your own changes from being
overwritten by the depot file.

Chapter 5. Resolving Conflicts

52 Helix Versioning Engine User Guide

By default, Helix uses its diff program to detect conflicts. You can configure a third-party diff program.
For details, see “Diffing files” on page 48.

To resolve conflicts and submit your changes, perform the following steps:

1. Sync the files (for example p4 sync //depot/dev/main/jam/...). Helix detects any conflicts and
schedules the conflicting files for resolve.

2. Issue the p4 resolve command and resolve any conflicts. See “Options for resolving
conflicts” on page 52 for details about resolve options.

3. Test the resulting files (for example, compile code and verify that it runs).

4. Submit the changelist containing the files.

Note If any of the three file revisions participating in the merge are binary instead of text,
a three-way merge is not possible. Instead, p4 resolve performs a two-way merge:
the two conflicting file versions are presented, and you can choose between them or
edit the one in your workspace before submitting the changelist.

Your, theirs, base and merge files
The p4 resolve command uses the following terms during the merge process:

File revision Description

yours The revision of the file in your client workspace, containing changes you made.

theirs The revision in the depot, edited by another user, that yours conflicts with. (Usually
the head revision, but you can schedule a resolve with another revision using p4
sync.)

base The file revision in the depot that yours and theirs were edited from (the closest
common ancestor file).

merge The file generated by Helix from theirs, yours, and base.

result The final file resulting from the resolve process.

Options for resolving conflicts
To specify how a conflict is to be resolved, you issue the p4 resolve command, which displays a
dialog for each file scheduled for resolve. The dialog describes the differences between the file you
changed and the conflicting revision. For example:

C:\bruno_ws> p4 resolve //depot/dev/main/jam/command.c
c:\bruno_ws\dev\main\jam\command.c - merging //depot/dev/main/jam/command.c#9

Diff chunks: 4 yours + 2 theirs + 1 both + 1 conflicting
Accept(a) Edit(e) Diff(d) Merge (m) Skip(s) Help(?) e:

Chapter 5. Resolving Conflicts

Helix Versioning Engine User Guide 53

The differences between each pair of files are summarized by p4 resolve. Groups of lines (chunks) in
the yours, theirs, and base files can differ in various ways. Chunks can be:

• Diffs: different between two of the three files: yours, theirs, or base

• Conflicts: different in all three files

In the preceding example:

• Four chunks are identical in theirs and base but are different in yours.

• Two chunks are identical in yours and base but are different in theirs.

• One chunk was changed identically in yours and theirs.

• One chunk is different in yours, theirs, and base.

Helix’s recommended choice is displayed at the end of the command line. Pressing Enter or choosing
Accept performs the recommended choice.

You can resolve conflicts in three basic ways:

• Accept a file without changing it (see “Accepting yours, theirs, or merge” on page 53)

• Edit the merge file with a text editor (see “Editing the merge file” on page 54)

• Merge changes selectively using a merge program (see “Merging to resolve
conflicts” on page 54)

The preceding options are interactive. You can also specify resolve options on the p4 resolve
command line, if you know which file you want to accept. For details, see “Resolve command-line
options” on page 58. To re-resolve a resolved but unsubmitted file, specify the -f option when you
issue the p4 resolve command. You cannot re-resolve a file after you submit it. The following sections
describe the resolve options in more detail:

Accepting yours, theirs, or merge
To accept a file without changing it, specify one of the following options:

Option Description Remarks

a Accept
recommended
file

• If theirs is identical to base, accept yours.

• If yours is identical to base, accept theirs.

• If yours and theirs are different from base, and there are no conflicts
between yours and theirs; accept merge.

• Otherwise, there are conflicts between yours and theirs, so skip this
file.

ae Accept edit If you edited the merge file (by selecting e from the p4 resolve dialog),
accept the edited version into the client workspace. The version in the
client workspace is overwritten.

Chapter 5. Resolving Conflicts

54 Helix Versioning Engine User Guide

Option Description Remarks

am Accept merge Accept merge into the client workspace as the resolved revision. The
version in the client workspace is overwritten.

at Accept theirs Accept theirs into the client workspace as the resolved revision. The
version in the client workspace is overwritten.

ay Accept yours Accept yours into the client workspace as the resolved revision,
ignoring changes that might have been made in theirs.

Accepting yours, theirs, edit, or merge overwrites changes, and the generated merge file might not be
precisely what you want to submit to the depot. The most precise way to ensure that you submit only
the desired changes is to use a merge program or edit the merge file.

Editing the merge file
To resolve files by editing the merge file, choose the e option. Helix launches your default text editor,
displaying the merge file. In the merge file, diffs and conflicts appear in the following format:

>>>> ORIGINAL file#n
(text from the original version)
==== THEIR file#m
(text from their file)
==== YOURS file
(text from your file)
<<<<

To locate conflicts and differences, look for the difference marker >>>> and edit that portion of the text.
Examine the changes made to theirs to make sure that they are compatible with your changes. Make
sure you remove all conflict markers before saving. After you make the desired changes, save the file.
At the p4 resolve prompt, choose ae.

By default, only the conflicts between the yours and theirs files are marked. To generate difference
markers for all differences, specify the -v option when you issue the p4 resolve command.

Merging to resolve conflicts
A merge program displays the differences between yours, theirs, and the base file, and enables you to
select and edit changes to produce the desired result file. To configure a merge program, set P4MERGE
to the desired program. To use the merge program during a resolve, choose the m option. For details
about using a specific merge program, consult its online help.

After you merge, save your results and exit the merge program. At the p4 resolve prompt, choose am.

Full list of resolve options
The p4 resolve command offers the following options:

Chapter 5. Resolving Conflicts

Helix Versioning Engine User Guide 55

Option Action Remarks

? Help Display help for p4 resolve.

a Accept
automatically

Accept the auto-selected file:

• If theirs is identical to base, accept yours.

• If yours is identical to base, accept theirs.

• If yours and theirs are different from base, and there are no conflicts
between yours and theirs; accept merge.

• Otherwise, there are conflicts between yours and theirs, so skip this
file.

ae Accept edit If you edited the merge file (by selecting e from the p4 resolve dialog),
accept the edited version into the client workspace. The version in the
client workspace is overwritten.

am Accept merge Accept merge into the client workspace as the resolved revision. The
version in the client workspace is overwritten.

at Accept theirs Accept theirs into the client workspace as the resolved revision. The
version in the client workspace is overwritten.

ay Accept yours Accept yours into the client workspace as the resolved revision,
ignoring changes that might have been made in theirs.

d Diff Show diffs between merge and yours.

dm Diff merge Show diffs between merge and base.

dt Diff theirs Show diffs between theirs and base.

dy Diff yours Show diffs between yours and base.

e Edit merged Edit the preliminary merge file generated by Helix.

et Edit theirs Edit the revision in the depot that the client revision conflicts with
(usually the head revision). This edit is read-only.

ey Edit yours Edit the revision of the file currently in the workspace.

m Merge Invoke the command P4MERGE base theirs yours merge. To use this option,
you must set P4MERGE to the name of a third-party program that merges
the first three files and writes the fourth as a result.

s Skip Skip this file and leave it scheduled for resolve.

Note The merge file is generated by the Helix service, but the differences displayed by
dy, dt, dm, and d are generated by your workstation’s diff program. To configure

Chapter 5. Resolving Conflicts

56 Helix Versioning Engine User Guide

another diff program to be launched when you choose a d option during a resolve,
set P4DIFF. For more details, see “Diffing files” on page 48.

Example 5.1. Resolving file conflicts

To resolve conflicts between his work on a Jam README file and Earl’s work on the same file, Bruno
types p4 resolve //depot/dev/main/jam/README and sees the following:

Diff chunks: 0 yours + 0 theirs + 0 both + 1 conflicting
Accept(a) Edit(e) Diff(d) Merge (m) Skip(s) Help(?) e: e

Bruno sees that he and Earl have made a conflicting change to the file. He types e to edit the merge file
and searches for the difference marker >>>>. The following text is displayed:

Jam/MR (formerly "jam - make(1) redux")
/+\
>>>> ORIGINAL README#26
 +\ Copyright 1993, 1997 Christopher Seiwald.
==== THEIRS README#27
 +\ Copyright 1993, 1997, 2004 Christopher Seiwald.
==== YOURS README
 +\ Copyright 1993, 1997, 2005 Christopher Seiwald.
<<<<
 \+/

Bruno and Earl have updated the copyright date differently. Bruno edits the merge file so that the
header is correct, exits from the editor and types am. The edited merge file is written to the client
workspace, and he proceeds to resolve the next file.

When a version of the file is accepted during a resolve, the file in the workspace is overwritten, and the
new client file must still be submitted to the depot. New conflicts can occur if new versions of a file are
submitted after you resolve but before you submit the resolved files. This problem can be prevented by
locking the file before you perform the resolve. For details, see “Locking files” on page 59.

Resolving Branched Files, Deletions, Moves and Filetype Changes
Beyond reconciling changes to the contents of related files after integration, you can also determine
how other kinds of changes are handled. For example:

• You edit header.cc in the mainline while a coworker deletes it in the release branch (or vice versa).
You integrate fixes in the release branch back to main. During resolve, you can decide whether
header.cc is deleted from the mainline or the action in the release branch is ignored, preserving
header.cc in the mainline.

• A developer implements RCS keywords in source files in a development branch, and changes
their Helix filetype from text to text+k. The release manager wants to integrate new features from
the development branch to the mainline, but does not want to enable keyword expansion in the
mainline. During resolve, the release manager can choose to ignore the filetype change.

Chapter 5. Resolving Conflicts

Helix Versioning Engine User Guide 57

• The file header.cc is branched from main to rel. Subsequently, it’s renamed to headerx.cc in main,
and moved in the release branch to the headers subfolder.

Following are simple cases describing how you can resolve non-content changes to related files. After
a source file is branched to a target file, changes are made as describe below, then you integrate the
source to the target. To choose the outcome, you specify the resolve options at (“Accept Theirs”) or ay
(“Accept Yours”) as follows:

• The source is edited and target is deleted: the at option re-adds the source in the target branch. The
ay option causes the file to remain deleted in the target branch.

• The source is deleted and the target is edited: the at option causes the file to be deleted in the target
branch. The ay option retains the edited content in the target branch.

• The target file was moved after being branched: the at option moves the target file to the source
file name and location. The ay option retains the target file name and location.

• The filetype of the source file was changed after it was branched: the at option propagates the
change to the target. The ay option leaves the filetype of the target unchanged. If the differing
filetypes do not conflict, you have the option of combining them.

• Files have been moved or renamed in conflicting ways: you are prompted to choose a path and
filename. Example:

Resolving move to //depot/rel/headerx.cc
Filename resolve:
at: //depot/rel/headerx.cc
ay: //depot/rel/headers/header.cc
am: //depot/rel/headers/headerx.cc

By default, the p4 resolve command resolves all types of change, content and non-content. To
constrain the type of actions that you want to resolve, specify the -A option as follows:

Option What is Resolved

-Aa Resolve attributes set by p4 attribute.

-Ab Integrations where the source is edited and the target is deleted.

-Ac Resolve file content changes as well as actions.

-Ad Integrations where the source is deleted and target is edited.

-Am Renames and moves.

-At Filetype changes.

-AQ Charset changes.

To perform more than one type of resolve, combine the options (for example: -Abd). By default,
resolving is performed file by file, interactively. To specify the same outcome for a particular action

Chapter 5. Resolving Conflicts

58 Helix Versioning Engine User Guide

(for example, propagate all moves), and avoid the prompting, include the desired option on the
command line. For example: p4 resolve -Am -at

Resolve command-line options
The p4 resolve options described below enable you to resolve directly instead of interactively. When
you specify one of these options in the p4 resolve command, files are resolved as described in the
following table:

Option Description

-a Accept the auto-selected file.

-ay Accept yours.

-at Accept theirs. Use this option with caution, because the file revision in your client
workspace is overwritten with the head revision from the depot, and you cannot recover
your changes.

-am Accept the recommended file revision according to the following logic:

• If theirs is identical to base, accept yours.

• If yours is identical to base, accept theirs.

• If yours and theirs are different from base, and there are no conflicts between yours and
theirs, accept merge.

• Otherwise, there are conflicts between yours and theirs, so skip this file, leaving it
unresolved.

-af Accept the recommended file revision, even if conflicts remain. If this option is used, edit
the resulting file in the workspace to remove any difference markers.

-as Accept the recommended file revision according to the following logic:

• If theirs is identical to base, accept yours.

• If yours is identical to base, accept theirs.

• Otherwise skip this file.

Example 5.2. Automatically accepting particular revisions of conflicting files

Bruno has been editing the documentation files in /doc and knows that some of them require
resolving. He types p4 sync doc/*.guide, and all of these files that conflict with files in the depot are
scheduled for resolve.

He then types p4 resolve -am and the merge files for all scheduled resolves are generated, and those
merge files that contain no line set conflicts are written to his client workspace. He’ll still need to
manually resolve any conflicting files, but the amount of work he needs to do is substantially reduced.

Chapter 5. Resolving Conflicts

Helix Versioning Engine User Guide 59

Resolve reporting commands
The following reporting commands are helpful when you are resolving file conflicts:

Command Meaning

p4 diff [filenames] Diffs the file revision in the workspace with the last revision you
synced, to display changes you have made.

p4 diff2 file1 file2 Diffs two depot files. The specified files can be any two file revisions
and different files.

When you diff depot files, Helix service uses its own diff program, not
the diff program configured by setting P4DIFF.

p4 sync -n [filenames\] Previews the specified sync, listing which files have conflicts and need
to be resolved.

p4 resolved Reports files that have been resolved but not yet submitted.

Locking files
After you open a file, you can lock it to prevent other users from submitting it before you do. The
benefit of locking a file is that conflicts are prevented, but when you lock a file, you might prevent
other team members from proceeding with their work on that file.

Preventing multiple resolves by locking files
Without file locking, there is no guarantee that the resolve process ever ends. The following scenario
demonstrates the problem:

1. Bruno opens file for edit.

2. Gale opens the same file in her client for edit.

3. Bruno and Gale both edit their client workspace versions of the file.

4. Bruno submits a changelist containing that file, and his submit succeeds.

5. Gale submits a changelist with her version of the file; her submit fails because of file conflicts with
the new depot’s file.

6. Gale starts a resolve.

7. Bruno edits and submits a new version of the same file.

8. Gale finishes the resolve and attempts to submit; the submit fails and must now be merged with
Bruno’s latest file.

…and so on.

Chapter 5. Resolving Conflicts

60 Helix Versioning Engine User Guide

To prevent such problems, you can lock files, as follows.

1. Before scheduling a resolve, lock the file.

2. Sync the file (to schedule a resolve).

3. Resolve the file.

4. Submit the file.

5. Helix automatically unlocks the file after successful changelist submission.

To list open locked files on UNIX, issue the following command:

$ p4 opened | grep "*locked*"

Preventing multiple checkouts
To ensure that only one user at a time can work on the file, use the +l (exclusive-open) file type
modifier. For example:

$ p4 reopen -t binary+l file

Although exclusive locking prevents concurrent development, for some file types (binary files),
merging and resolving are not meaningful, so you can prevent conflicts by preventing multiple users
from working on the file simultaneously.

Your Helix administrator can use the p4 typemap command to ensure that all files of a specified type
(for instance, //depot/.../*.gif for all .gif files) can only be opened by one user at a time. See the P4
Command Reference.

The difference between p4 lock and +l is that p4 lock allows anyone to open a file for edit, but only
the person who locked the file can submit it. By contrast, a file of type +l prevents more than one user
from opening the file.

http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html
http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html

Helix Versioning Engine User Guide 61

Chapter 6 Codelines and Branching
This chapter describes the tasks required to maintain groups of files in your depot. The following
specific issues are addressed:

• Depot directory structure and how to best organize your repository

• Moving files and file changes among codeline and project directories

• Identifying specific sets of files using either labels or changelists

To make codeline management easier, you should use streams, a Helix feature that encapsulates
numerous best practices and automations. The Chapter 7, “Streams” on page 71 chapter explains
them in detail.

This chapter focuses on maintaining a software code base, but many of the tasks are relevant to
managing other groups of files, such as a web site. For advice about best practices, see the white papers
on the Perforce web site.

Basic terminology
To enable you to understand the following sections, here are definitions of some relevant terms as they
are used in Helix.

Term Definition

branch (noun) A set of related files created by copying files, as opposed to adding files. A group
of related files is often referred to as a codeline.

(verb) To create a branch.

integrate To create new files from existing files, preserving their ancestry (branching), or to
propagate changes from one set of files to another (merging).

merge The process of combining the contents of two conflicting file revisions into a single file,
typically using a merge tool like P4Merge.

resolve The process you use to reconcile the differences between two revisions of a file. You can
choose to resolve conflicts by selecting a file to be submitted or by merging the contents
of conflicting files.

Organizing the depot
You can think of a depot as a top-level directory. Consider the following factors as you decide how to
organize your depot:

• Type of content: create depots or mainline directories according to the nature of your projects and
their relationships (for example, applications with multiple components developed on separate
schedules).

Chapter 6. Codelines and Branching

62 Helix Versioning Engine User Guide

• Release requirements: within a project, create branches for each release and integrate changes
between branches to control the introduction of features and bug fixes.

• Build management: use labels and changelists to control the file revisions that are built; use client
specifications and views to ensure clean build areas.

A basic and logical way to organize the depot is to create one subdirectory (codeline) for each project.
For example, if your company is working on Jam, you might devote one codeline to the release
presently in development, another to already-released software, and perhaps one to your corporate
web site. Your developers can modify their client views to map the files in their project, excluding
other projects that are not of interest. For example, if Earl maintains the web site, his client view might
look like this:

//depot/www/dev/... //earl-web-catalpa/www/development/...
//depot/www/review/... //earl-web-catalpa/www/review/...
//depot/www/live/... //earl-web-catalpa/www/live/...

And Gale, who’s working on Jam, sets up her client view as:

//depot/dev/main/jam/... //gale-jam-oak/jam/...

You can organize according to projects or according to the purpose of a codeline. For example, to
organize the depot according to projects, you can use a structure like the following:

//depot/project1/main/
//depot/project1/release 1.0/
//depot/project1/release 1.1/

Or, to organize the depot according to the purpose of each codeline, you can use a structure like the
following:

//depot/main/project1/
//depot/main/project2/
//depot/release1.0/project1/
//depot/release1.0/project2/
//depot/release2.0/project1/
//depot/release2.0/project2/

Another approach is to create one depot for each project. Choose a structure that makes branching and
integrating as simple as possible, so that the history of your activities makes sense to you.

Populating Codelines
If you are creating a codeline that has no history, use the p4 add command to add files to it, then use p4
copy to create branches. For example, to create the mainline structure shown in the previous section,
perform the following steps:

Chapter 6. Codelines and Branching

Helix Versioning Engine User Guide 63

1. Create a local folder your workspace for the mainline files; for example:

$ mkdir c:\p4clients\myworkspace\depot\main\

2. Copy the files for Project1 and Project2 to the newly created folder.

3. Add the files to the depot:

$ p4 add //depot/main/project1/...
$ p4 add //depot/main/project2/...
$ p4 submit

4. Create release branches:

$ p4 copy //depot/main/project1/... //depot/release1.0/project1/...
$ p4 copy //depot/main/project2/... //depot/release1.0/project2/...
$ p4 submit

Now you can use the p4 copy, p4 merge and p4 integrate commands to propagate changes between
main and release branches. (You can also seed a codeline from another codeline using the p4
integrate command, if there is a historical relationship between the source and target that you need to
preserve.)

A shortcut: p4 populate
If a target codeline is completely empty (no files present, not even deleted files), Helix offers a
command that automates the process of copying the files from an existing source codeline submitting
the associated changelist.

For example, instead of populating a release1.0 branch with the following two commands:

$ p4 copy //depot/main/project1/... //depot/release1.0/project1/...
$ p4 submit

you can use the p4 populate command to populate the branch:

$ p4 populate //depot/main/project1/... //depot/release1.0/project1/...

Branching Codelines
Branching is a method of maintaining the relationship between sets of related files. Branches can
evolve separately from their ancestors and descendants, and you can propagate (integrate) changes
from one branch to another as desired. Helix’s Inter-File BranchingTM mechanism preserves the
relationship between files and their ancestors while consuming minimal resources.

Chapter 6. Codelines and Branching

64 Helix Versioning Engine User Guide

To create a branch, use the p4 integrate command. The p4 integrate command is also used to
propagate changes between existing sets of files. For details about integrating changes, refer to
“Integrating changes” on page 66.

When to branch
Create a branch when two sets of files have different submission policies or need to evolve separately.
For example:

• Problem : the development group wants to submit code to the depot whenever their code changes,
regardless of whether it compiles, but the release engineers don’t want code to be submitted until it’s
been debugged, verified, and approved.

Solution: create a release branch by branching the development codeline. When the development
codeline is ready, it is integrated into the release codeline. Patches and bug fixes are made in the
release code and integrated back into the development code.

• Problem: a company is writing a driver for a new multi-platform printer. The UNIX device driver is
done and they are beginning work on an OS X driver, using the UNIX code as their starting point.

Solution: create an OS X branch from the existing UNIX code. These two codelines can evolve
separately. If bugs are found in one codeline, fixes can be integrated to the other.

One basic strategy is to develop code in //depot/main/ and create branches for releases (for example,
//depot/rel1.1/). Make release-specific bug fixes in the release branches and, if required, integrate
them back into the //depot/main/ codeline.

Creating branches
To create a branch, use the p4 integrate command. When you create a branch, Helix records the
relationships between the branched files and their ancestors.

You can create branches using file specifications or branch specifications. For simple branches, use file
specifications. For branches that are based on complex sets of files or to ensure that you have a record
of the way you defined the branch, use branch specifications. Branch specifications can also be used in
subsequent integrations. Branch specifications also can serve as a record of codeline policy.

Using branch specifications

To map a set of files from source to target, you can create a branch mapping and use it as an argument
when you issue the p4 integrate command. To create a branch mapping, issue the p4 branch
branchname command and specify the desired mapping in the View: field, with source files on the
left and target files on the right. Make sure that the target files and directories are in your client view.
Creating or altering a branch mapping has no effect on any files in the depot or client workspace. The
branch mapping merely maps source files to target files.

To use the branch mapping to create a branch, issue the p4 integrate -b branchname command; then
use p4 submit to submit the target files to the depot.

Branch specifications can contain multiple mappings and exclusionary mappings, just as client views
can. For example, the following branch mapping branches the Jam 1.0 source code, excluding test
scripts, from the main codeline:

Chapter 6. Codelines and Branching

Helix Versioning Engine User Guide 65

Branch: jamgraph-1.0-dev2release

View:
 //depot/dev/main/jamgraph/... //depot/release/jamgraph/1.0/...
 -//depot/dev/main/jamgraph/test/... //depot/release/jamgraph/1.0/test/...
 //depot/dev/main/bin/glut32.dll //depot/release/jamgraph/1.0/bin/glut32.dll

To create a branch using the preceding branch mapping, issue the following command:

$ p4 integrate -b jamgraph-1.0-dev2release

and use p4 submit to submit the changes.

To delete a branch mapping, issue the p4 branch -d branchname command. Deleting a branch
mapping has no effect on existing files or branches.

As with workspace views, if a filename or path in a branch view contains spaces, make sure to quote
the path:

//depot/dev/main/jamgraph/... "//depot/release/Jamgraph 1.0/..."

Using file specifications

To branch using file specifications, issue the p4 integrate command, specifying the source files and
target files. The target files must be in the client view. If the source files are not in your client view,
specify them using depot syntax.

To create a branch using file specifications, perform the following steps:

1. Determine where you want the branch to reside in the depot and the client workspace. Add the
corresponding mapping specification to your client view.

2. Issue the p4 integrate source_files target_files command.

3. Submit the changelist containing the branched files. The branch containing the target files is created
in the depot.

Example 6.1. Creating a branch using a file specification

Version 2.2 of Jam has just been released, and work on version 3.0 is starting. Version 2.2 must be
branched to //depot/release/jam/2.2/... for maintenance.

Bruno uses p4 client to add the following mapping to his client view:

//depot/release/jam/2.2/... //bruno_ws/release/jam/2.2/...

He issues the following command to create the branch:

Chapter 6. Codelines and Branching

66 Helix Versioning Engine User Guide

$ p4 integrate //depot/dev/main/jam/... //bruno_ws/release/jam/2.2/...

Finally, he issues the p4 submit command, which adds the newly branched files to the depot.

Integrating changes
After you create branches, you might need to propagate changes between them. For example, if you
fix a bug in a release branch, you probably want to incorporate the fix back into your main codeline.
To propagate selected changes between branched files, you use the p4 integrate, p4 merge, or p4 copy
commands, as follows:

1. Issue the p4 integrate command to schedule the files for resolve. (In many cases, you can also use
p4 merge or p4 copy.)

2. Issue the p4 resolve command to propagate changes from the source files to the target files.

To propagate individual changes, edit the merge file or use a merge program. The changes are
made to the target files in the client workspace.

3. Submit the changelist containing the resolved files.

Example 6.2. Propagating changes between branched files

Bruno has fixed a bug in the release 2.2 branch of the Jam project and needs to integrate it back to the
main codeline. From his home directory, Bruno types:

$ p4 integrate //depot/release/jam/2.2/src/Jambase //depot/dev/main/jam/Jambase

and sees the following message:

//depot/dev/main/jam/Jambase#134 - integrate from //depot/release/jam/2.2/src/Jambase#9

The file has been scheduled for resolve. He types p4 resolve, and the standard merge dialog appears
on his screen.

//depot/dev/main/jam/Jambase - merging depot/release/jam/2.2/src/Jambase#9
Diff chunks: 0 yours + 1 theirs + 0 both + 0 conflicting
Accept(a) Edit(e) Diff(d) Merge (m) Skip(s) Help(?) [at]:

He resolves the conflict. When he’s done, the result file overwrites the file in his workspace. The
changelist containing the file must be submitted to the depot.

To run the p4 integrate, p4 merge, or p4 copy commands, you must have Helix write permission on
the target files, and read access on the source files. (See the Helix Versioning Engine Administrator Guide:
Fundamentals for information on Helix permissions.)

http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html
http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html

Chapter 6. Codelines and Branching

Helix Versioning Engine User Guide 67

By default, a file that has been newly created in a client workspace by p4 integrate cannot be edited
before being submitted. To edit a newly integrated file before submission, resolve it, then issue the p4
edit command.

If the range of revisions being integrated includes deleted revisions (for example, a file was deleted
from the depot, then re-added), you can specify how deleted revisions are integrated using the -Di
option. For details, refer to the P4 Command Reference.

Integrating using branch specifications

To integrate changes from one set of files and directories to another, you can use a branch mapping
when you issue the p4 integrate command. The basic syntax of the integrate command when using a
branch mapping is:

p4 integrate -b branchname [tofiles]

Target files must be mapped in both the branch view and the client view. The source files need not be
in the client view. If you omit the tofiles argument, all the files in the branch are affected.

To reverse the direction of integration using a branch mapping, specify the -r option. This option
enables you to integrate in either direction between two branches without requiring you to create a
branch mapping for each direction.

Example 6.3. Integrating changes to a single file in a branch

A feature has been added in the main Jam codeline and Bruno wants to propagate the feature to
release 1.0. He types:

$ p4 integrate -b jamgraph-1.0-dev2release *.c

and sees:

//depot/release/jam/1.0/src/command.c#10 - integrate from //depot/dev/main/jam/command.c#97

The file has been scheduled for resolve. He types p4 resolve, and the standard merge dialog appears
on his screen.

//depot/release/jam/1.0/src/command.c - merging //depot/dev/main/jam/command.c#97
Diff chunks: 0 yours + 1 theirs + 0 both + 0 conflicting
Accept(a) Edit(e) Diff(d) Merge (m) Skip(s) Help(?) [at]:

He resolves the conflict. When he’s done, the result file overwrites the file in his branched client
workspace; the file must then be submitted to the depot.

http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html

Chapter 6. Codelines and Branching

68 Helix Versioning Engine User Guide

Integrating between unrelated files
If the target file was not branched from the source, there is no base (common ancestor) revision, and
Helix uses the first (most recently added) revision of the source file as its base revision. This operation
is referred to as a baseless merge.

Integrating specific file revisions
By default, the integrate command integrates all the revisions following the last-integrated source
revision into the target. To avoid having to manually delete unwanted revisions from the merge file
while editing, you can specify a range of revisions to be integrated. If you are using p4 integrate, the
base file is the closest common ancestor. If you are using p4 merge, the base file is the revision with the
most edits in common.

Example 6.4. Integrating specific file revisions

Bruno has made two bug fixes to //depot/dev/main/jam/scan.c in the main codeline, and Earl wants
to integrate the change into the release 1.0 branch. Although scan.c has gone through several revisions
since the fixes were submitted, Earl knows that the bug fixes he wants were made to the 30th revision
of scan.c. He types:

$ p4 integrate -b jamgraph-1.0-dev2release depot/release/jam/1.0/scan.c#30,30

The target file (//depot/release/jam/1.0/scan.c) is given as an argument, but the file revisions are
applied to the source. When Earl runs p4 resolve, only the 30th revision of Bruno’s file is scheduled
for resolve. That is, Earl sees only the changes that Bruno made to scan.c at revision 30.

Reintegrating and reresolving files
After a revision of a source file has been integrated into a target, that revision is skipped in subsequent
integrations to the same target. To force the integration of already-integrated files, specify the -f option
when you issue the p4 integrate command.

A target that has been resolved but not submitted can be resolved again by specifying the -f option to
p4 resolve. When you re-resolve a file, yours is the new client file, the result of the original resolve.

Integration reporting
The reporting commands below provide useful information about the status of files being branched
and integrated. Note the use of the preview option (-n) for reporting purposes.

To display this information Use this command

Preview of the results of an integration p4 integrate -n [filepatterns]

Files that are scheduled for resolve p4 resolve -n [filepatterns]

Chapter 6. Codelines and Branching

Helix Versioning Engine User Guide 69

To display this information Use this command

Files that have been resolved but not yet submitted. p4 resolved

List of branch specifications p4 branches

The integration history of the specified files. p4 integrated filepatterns

The revision histories of the specified files, including the
integration histories of files from which the specified files
were branched.

p4 filelog -i [filepatterns]

70 Helix Versioning Engine User Guide

Helix Versioning Engine User Guide 71

Chapter 7 Streams
This chapter describes concepts and procedures related to streams.

Introduction
Note Be sure to read the “Basic Concepts” chapter of Introducing Helix before reading this

chapter.

Streams are like branches, with additional intelligence built in. They provide clues of where and
how to do branching and merging. They guide merging and branching actions that support both
stability and innovation by encouraging the "`merge down, copy up'" best practice. In addition, using
streams eliminates a lot of the work needed to define branches, to create workspaces, and to manage
integrations.

Custom branching gives you finer grained control but you lose the convenience of built-in control over
the flow of change and automatic workspace updating.

When you create a stream, you specify its type, information about the files it is associated with,
its relationship to other streams, and how files are to be treated for branching and merging. The
system uses the information you provide to encourage merging best practices and to track parallel
development.

The stream type tells the system how stable the stream is relative to other streams. The stream’s path
info tells the system a number of things; including which files to populate the workspace with, which
files child streams are allowed to branch, and, if necessary, which changelist to lock the files at. Parent
labeling specifies how the stream relates to other streams in the system, helping to determine how
change flows through the system.

Streams are ideal for implementing the mainline branching model, in which less stable streams
merge changes to keep up to date with their parents, then copy work to the parent when the work
is stable enough to promote. In addition, streams enable the system to generate views for associated
workspaces, eliminating the need for you to update views manually to reflect changes to your stream
structure.

Stream workflow
This section walks you through the initial workflow for using streams.

1. Create a stream depot.

A stream depot contains one or more streams. Typically, a tech lead or administrator
creates the stream depot. The syntax to create a stream depot is described in “Create a
stream depot” on page 73. Stream depots are discussed in further detail in “Stream
depots” on page 92.

2. Create a mainline stream.

A mainline stream resides at the center of your stream hierarchy. Typically, the mainline is a fairly
stable receiving trunk, accepting development work from child streams and propagating the results
to release streams where the work can be can be stabilized and built for release without impeding

http://www.perforce.com/perforce/r15.2/manuals/intro/index.html

Chapter 7. Streams

72 Helix Versioning Engine User Guide

ongoing development. Typically, a tech lead or administrator creates a mainline stream. The syntax
to create a mainline stream is described in “Create a mainline stream” on page 73.

When you create a stream, the server creates the stream’s corresponding stream specification
(spec), which defines the stream’s characteristics. The stream spec is examined in detail in “The
stream specification” on page 78. You fine-tune the stream spec at the time you create a
workspace, when the server prompts you to edit the stream spec. You can also update the stream’s
characteristics as needed, as described in “Updating streams” on page 81.

3. Create a workspace and bind it to the stream.

To do any work in a stream you need a workspace. The syntax to create a workspace and bind it
to a stream is discussed in “Create a workspace” on page 73. For background information on
workspaces, see “Stream workspaces” on page 89.

4. Populate the mainline stream.

This step adds files to the mainline stream created earlier. Typically, a tech lead or administrator
populates a mainline stream. Once you’ve populated a mainline stream, you can use standard
server commands to modify and submit files. For details on how to populate a mainline stream, see
“Populate a mainline stream” on page 74.

5. Populate child streams.

This step adds stream(s) that are children of the mainline stream. Typically, an individual
contributor, such as a developer, creates and populates child streams. Once you’ve populated a
child stream, you can use standard server commands to modify and submit files. For details on
how to populate child streams, see “Populate child streams” on page 76.

6. Make changes to files in one or more streams.

These changes will be propagated in the next step.

7. Propagate changes between streams.

This step merges or copies files between different streams. For example, you may merge changes
from a mainline stream into a child development stream. Typically, an individual contributor, such
as a developer, propagates changes between streams. For details on how to propagate changes
between streams, see “Propagate changes” on page 76.

Stream procedures
This section provides instructions on how to perform common stream-related procedures. For
conceptual information on streams, see “Key streams concepts” on page 77.

As summarized in “Stream workflow” on page 71, to work with streams, you perform the
following steps:

1. Create a stream depot.

2. Create a mainline stream.

3. Create a workspace and bind it to the stream

Chapter 7. Streams

Helix Versioning Engine User Guide 73

4. Populate the mainline stream.

5. Populate child streams.

6. Make changes to files in one or more streams

7. Propagate changes between streams.

Create a stream depot
To create a depot, you must have super privilege. To create a stream depot:

1. Issue the p4 depot depotname command. The depot specification form is displayed.

2. Set the Type: field to stream.

3. Adjust other settings as desired and save the specification.

Note that you cannot modify the type of a depot after you create it.

Create a mainline stream
To create a mainline stream:

1. Issue the p4 stream, command, specifying the depot followed by the stream name.

For example:

$ p4 stream -t mainline //projectX/main

The stream specification form is displayed.

2. Change options in the spec to assign the stream the desired characteristics and save the spec.

3. To verify that your mainline stream has been created, issue the p4 streams command.

For example:

$ p4 streams //projectX/...

Create a workspace
Before you can work in a stream, you must create a workspace associated with the stream. When you
associate a workspace with a stream, Helix generates the workspace view based on the structure of
the stream. You never need to edit the workspace view (and, in fact, cannot manually alter it). If the
structure of the stream changes, Helix updates the views of workspaces associated with the stream on
an as-needed basis.

Tip When assigning names to stream-associated workspaces, adopt a naming
convention such as user_depot_streamname. For example, bruno_projectX. If you
regularly switch between client workspaces associated with different types of

Chapter 7. Streams

74 Helix Versioning Engine User Guide

streams, you may also find it useful to append the stream type, to your workspace
name, for example, bruno_projectX_main and bruno_projectX_dev.

To create a workspace for a stream:

1. Issue the p4 client command, using the -S option to specify the name of the associated stream.

For example:

$ p4 client -S //projectX/main bruno_projectX

The workspace specification form is displayed. (Note the Stream: field, which is present only for
stream-associated workspaces.)

2. Configure the workspace root directory and any other desired settings, and save the
specification.

You do not need to change the View: because this field is maintained by the server.

3. Verify that your workspace has been created using p4 clients.

For example:

$ p4 clients -S //projectX/main

Now you can populate the mainline with files, as described in the next step.

Populate a mainline stream
There are two ways to populate a mainline stream:

• Add files from the local filesystem

• Branch files from another depot

If you need to preserve file history, branch the source files to the mainline stream. If you have no
requirement for preserving file history, simply add them. The sections that follow describe each
approach.

Add files

If you do not need to preserve the historic connection between the source files and the files in the new
mainline stream, simply add them. To add files to the mainline stream:

1. Create the workspace root directory if it does not exist.

For example:

C:\bruno_ws> cd C:\Users\bruno\p4clients
C:\Users\bruno\p4clients> mkdir bruno_projectX_main

Chapter 7. Streams

Helix Versioning Engine User Guide 75

2. Copy the files and folders to the workspace root directory.

3. Change into the client workspace root directory, and use the p4 reconcile command to detect
files not under Helix control and open them for add.

C:\Users\bruno\p4clients> cd bruno_projectX_main
C:\Users\bruno\p4clients\bruno_projectX_main> p4 add ...

To verify that the files are set up to be added correctly, issue the p4 opened command. To populate the
stream, submit the changelist in which the files are open.

Branch from other depots

You can branch files from other stream depots, classic depots, or remote depots into a stream. If you
populate the mainline by branching, Helix preserves the connection between the revision history of the
source and target files. Your workspace must be set to one associated with the target stream (example:
p4 set P4CLIENT=bruno_projectX_main).

To populate the mainline by branching, issue the p4 copy command, specifying source and target.
Example:

$ p4 copy -v //mysourcedepot/mainline/... //ProjectX/main/...

In this example the -v option performs the copy on the server without syncing the newly-created files
to the workspace. This can be a significant time-saver if there are many files being copied; you can then
sync only the files you intend to work with from the new location.

p4d displays a series of “import from” messages listing the source and target files, and opens the file(s)
in a pending changelist. To preview the results of the operation without opening files, specify the -n
option. To undo an erroneous copy operation, issue the p4 revert command; for example:

$ p4 revert //ProjectX/main/...

Helix displays the stream specification with the type set to development. Save the specification and
exit the editor to create the stream. To populate the stream with the files from the mainline, issue the
following commands:

1. To verify that the files are set up to be added correctly, issue the p4 opened command.

2. To populate the stream, p4 submit the changelist in which the files are open.

If you are populating an empty stream, you can simplify this process by using p4 populate. For
example:

$ p4 populate //mysourcedepot/mainline/... //ProjectX/main/...

does the same thing as p4 copy -v followed by a p4 submit. If you are unsure of the results of p4
populate, use p4 populate -n, which previews the result of the command.

Chapter 7. Streams

76 Helix Versioning Engine User Guide

Populate child streams
After populating the mainline, you can branch files for development and for release. For example, to
create a development stream that is a clone of its mainline parent, issue the following command:

$ p4 stream -t development -P //projectX/main //projectX/dev

Helix displays the stream specification with the type set to development. Save the specification. To
populate the stream with the files from the mainline, issue the following commands:

$ p4 populate -d "From main" -S //projectX/dev -r
$ p4 sync

Propagate changes
Streams enable you to isolate stable code from work in progress, and to work concurrently on various
projects without impediment. Best practice is to periodically update less stable streams from streams
that are more stable (by merging), then promote changes to the more stable stream (by copying).
Merging and copying are streamlined forms of integration. In general, propagate change as follows:

• For copying and branching, use p4 copy or p4 populate.

• For merging, use p4 merge.

• For edge cases not addressed by p4 merge or p4 copy, use p4 integrate.

The preceding guidelines apply both to streams and to classic depots.

Comparing changes between streams

Using the p4 interchanges command, you can compare changes between streams to look for
outstanding merges. Suppose you have a mainline stream //stream/main and its child, a development
stream, //stream/dev. The following command tells you which changes exist in //stream/dev but not
in its parent stream:

$ p4 interchanges -S //stream/dev

The following command tells you which changes exist in the parent of //stream/dev but not in //
stream/dev:

$ p4 interchanges -S -r //stream/dev

Merging changes from a more stable stream

To update a stream with changes from a more stable stream, issue the p4 merge -S source-stream
command, resolve as required, and submit the resulting changelist. By default, you cannot copy

Chapter 7. Streams

Helix Versioning Engine User Guide 77

changes to a more stable stream until you have merged any incoming changes from the intended
target. This practice ensures that you do not inadvertently overwrite any of the contents of the more
stable stream.

Assuming changes have been checked into the mainline after you started working in the development
stream (and assuming your workspace is set to a development stream), you can incorporate the
changes into the development stream by issuing the following commands:

$ p4 merge
$ p4 resolve
$ p4 submit -d "Merged latest changes"

Copying changes to a more stable stream

After merging, your stream is up to date with its more stable parent or child. Assuming you’ve
finalized the changes you want to make in the development stream, you can now promote
its new content with no danger of overwriting work in the target stream. The copy operation
simply propagates a duplicate of the source to the target, with no resolve required. For example,
(and assuming your workspace is set to a mainline parent stream) to promote changes from the
development stream to its parent mainline, issue the following commands:

$ p4 copy --from //projectX/dev
$ p4 submit -d "Check my new feature in"

Propagating change across the stream hierarchy

You might need to propagate a specific change between two streams that do not have a natural parent-
child relationship, for example, to obtain an in-progress feature or bug fix from a peer development
stream. To merge from or copy to such a stream, you can re-parent your stream by editing its
specification and setting the Parent field to the desired source or target. This practice is not considered
optimal but might be necessary. Alternatively, you can use the -P option with the p4 merge command
to do a one-off integration between streams.

Key streams concepts
This section provides further information on key streams concepts, including:

• The stream specification

• Updating streams

• Stream types

• Stream paths

• Stream workspaces

• Stream depots

Chapter 7. Streams

78 Helix Versioning Engine User Guide

The stream specification

A stream spec names a path in a stream depot to be treated as a stream. A spec defines the stream’s
location, its type, its parent stream, the files in its view, and other configurable behaviors. It is created
when you create a stream with the p4 stream command. You can update the spec’s entries — as
described in “Updating streams” on page 81 — to change the stream’s characteristics.

The following is a sample stream spec:

Chapter 7. Streams

Helix Versioning Engine User Guide 79

$ p4 stream -o //stream/child_of_main
A Perforce Stream Specification.
#
Use *'p4 help stream'* to see more about stream specifications and command.

Stream: //stream/child_of_main

Update: 2015/02/06 10:57:04

Access: 2015/02/06 10:57:04

Owner: jschaffer

Name: //stream/child_of_main (created by switch command)

Parent: //stream/main

Type: development

Options: allsubmit unlocked toparent fromparent mergeany

Description:
 Our primary development stream for the project.

Paths:
 share ...
 import boost/... //3rd_party/boost/1.53.0/artifacts/original/...
 import boost/lib/linux26x86_64/... //3rd_party/boost/1.53.0/artifacts/original/lib/
linuxx86_64/gcc44libc212/...
 import boost/lib/linux26x86/... //3rd_party/boost/1.53.0/artifacts/original/lib/linuxx86/
gcc44libc212/...
 import protobuf/... //3rd_party/protobuf/2.4.1/artifacts/patch-1/...
 import gtest/... //3rd_party/gtest/1.7.0/artifacts/original/...
 import icu/... //3rd_party/icu/53.1/artifacts/original/...
 import p4-bin/lib.ntx64/vs11/p4api_vs2012_dyn.zip //builds/p15.1/p4-bin/bin.ntx64/
p4api_vs2012_dyn.zip
 import p4/... //depot/p15.1/p4/...
 exclude p4/Jamrules
 exclude p4/lbr/...
 exclude p4/server/...

Remapped:
 p4/doc/... p4/relnotes/...

Ignored:
 .../~tmp.txt

The following table describes the stream spec in more detail:

Entry Meaning

Stream The Stream field is unique and specifies the depot path where the stream
files live. All streams in a single stream depot must have the same number of
forward slashes in their name; your administrator specifies this number in the

Chapter 7. Streams

80 Helix Versioning Engine User Guide

Entry Meaning

StreamDepth field of the stream depot spec. If you try to create a stream with a
different number of forward slashes than those specified in the StreamDepth field,
you’ll get an error message like the following:

Error in stream specification. Stream streamname does not reflect depot
depth-field streamdepth.

Check with your administrator to determine the permitted stream depth.

Update The date the stream specification was last changed.

Access The date the specification was originally created.

Owner The user or group who has specific and unique permissions to access to this
stream.

Name An alternate name of the stream, for use in display outputs. Defaults to the
streamname portion of the stream path.

Parent The parent of this stream. Can be none if the stream type is mainline, otherwise
must be set to an existing stream identifier, of the form //depotname/streamname.

Type Type of stream provides clues for commands run between stream and parent. The
five types include mainline, release, development (default), virtual and task.

Description A short description of the stream (optional).

Options Stream Options: allsubmit/ownersubmit [un]locked [no]toparent
[no]fromparent mergedown/mergeany

Paths Identify paths in the stream and how they are to be generated in resulting
workspace views of this stream. Path types are share/isolate/import/import
+/exclude, which are discussed further in “Stream paths” on page 85.
p4d uses the Paths entry to generate a workspace view. See “Stream
workspaces” on page 89.

Note Files don’t actually have to be branched to appear in a stream.
Instead, they can be imported from the parent stream or from
other streams in the system.

Remapped Remap a stream path in the resulting workspace view.

Ignored Ignore a stream path in the resulting workspace view. Note that Perforce
recommends that you use p4 ignore in lieu of this entry, to accomplish the same
thing.

Chapter 7. Streams

Helix Versioning Engine User Guide 81

More on options

The following table summarizes the meaning of each of the options available in the stream spec:

Option Meaning

allsubmit All users can submit changes to the stream.

ownersubmit Only the stream owner can submit changes to the stream.

locked The stream spec cannot be deleted and only the stream owner can modify it.

unlocked All users can edit or delete the stream spec.

toparent Merges from the stream to its parent are expected.

notoparent Merges from the stream to the parent are not expected.

fromparent Merges to the stream from the parent are expected.

nofromparent Merges to the stream from the parent are not expected.

mergedown Enforces the best practice of merge down, copy up.

mergeany Allows you to merge the stream’s content both up and down.

Updating streams
As part of maintaining your version control application, you will likely update streams over time, by
changing any of the fields listed above, to do such things as:

• modify the paths the stream consumes when the stream proves to be too narrow or too wide, in
order to:

• change the version of an included library by modifying the target of an import path

• change the scope of a path to widen or narrow the scope included

• Change restrictions on who can submit to the stream

To do this, you modify stream specifications directly via the p4 stream command, automatically and
immediately updating all workspace views derived from that stream.

Making changes to a stream spec and associated files atomically

Alternatively, you can isolate edits to the stream spec to the editing client prior to making them
available to other clients as part of an atomic changelist submission. This works just as edits to files do:
they are made locally on a single client and then submitted to make them available to other clients.

This functionality has a couple of important benefits:

• You can stage a stream spec in your workspace and test it before submitting it.

Chapter 7. Streams

82 Helix Versioning Engine User Guide

• You can submit the spec atomically in a changelist along with a set of files. Since the stream
structure dictates the workspace view, this means that when users sync, they obtain the new view
and the new files together.

You open and submit changes to the stream spec using the following three commands:

• p4 stream edit puts the client’s current stream spec into the opened state, isolating any edits
made to fields that affect view generation. While the spec is open, those fields are marked with the
comment #open to indicate that they are open and isolated to your client. Changes made to these
fields affect your workspace view normally, but other clients are not affected.

• p4 stream resolve resolves changes that have been submitted to the stream spec by other users
since you opened it. You may not submit changes to the stream spec until newer changes have been
resolved.

• p4 stream revert reverts any pending changes made to the open spec, returning your client to the
latest submitted version of the stream.

For details on all three of these commands, see the p4 stream page in the P4 Command Reference.

By default, the open stream spec is included along with files that are shelved or submitted in a
changelist. Conversely, when unshelving a change that contains an open stream spec, the current
stream is opened and the shelved version becomes the opened version. If the stream is already open
when attempting to unshelve, a warning is generated and the unshelve operation aborts. The stream
may be omitted from any of these operations by using the -Af flag to specify that only files should be
acted upon.

See the p4 submit, p4 shelve, and p4 unshelve commands in the P4 Command Reference for details.

Stream types
You assign stream types according to the stream’s expected usage, stability and flow of change:

• Development streams are used for code that changes frequently; they they enable you to experiment
without destabilizing the mainline stream.

• Mainline streams contain code that changes somewhat frequently, but is more stable than code in
development streams.

• Release streams contain the most stable code, as this is the code closest to being released. Release
streams enable you to finalize existing features while working on new features in the mainline.

There is also a virtual stream type and a task stream type. See “Task streams” on page 83 and
“Virtual streams” on page 84, respectively.

On a scale of stability, a development stream is considered less stable than its mainline stream parent,
while a release stream is considered more stable than its mainline stream parent. Change is expected to
flow down by merging, and up by copying. This “merge down, copy up” practice assures that merging
is done only when necessary, and always in the more forgiving of the two streams involved.

Merging means incorporating another stream’s changes into your stream, and can require you to
resolve conflicts. Copy propagates a duplicate of the source stream to the target. The following

http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html
http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html

Chapter 7. Streams

Helix Versioning Engine User Guide 83

diagram shows a basic stream hierarchy: changes are merged down (to streams of lesser stability) and
copied up (to streams of greater stability):

The following table summarizes these qualities of stream types:

Stream Type Stability Merge Copy

mainline Stable per your policy (for
example, all code builds)

from child (from release,
or to development)

to child (to release, or
from development)

virtual N/A; used to filter
streams

N/A N/A

development Unstable from parent to parent

task Unstable from parent to parent

release Highly stable to parent from parent

Task streams

Task streams are lightweight short-lived streams used for bug fixing or new features that only modify
a small subset of the stream data. Since branched (copied) files are tracked in a set of shadow tables
that are later removed, repository metadata is kept to a minimum when using this type of stream and
server performance is optimized.

They are branches that work just like development streams, but task streams remain semi-private until
branched back to the parent stream. Designed as lightweight branches, they are most effective when
anticipated work in the branch will only affect a small number of files relative to the number of files in
the branch.

Task streams are intended to be deleted or unloaded after use. Because you cannot re-use task stream
names even after the stream has been deleted, most sites adopt a naming convention that is likely to be
unique for each task, such as user-date-jobnumber.

Working within task streams is just like working in a development stream:

Chapter 7. Streams

84 Helix Versioning Engine User Guide

1. Create the task stream (in this example, as a child of a development stream).

$ p4 stream -t task -P //projectX/dev //Tasks/mybug123

2. Populate the stream.

$ p4 populate -d "Fix bug 123" -S //Tasks/mybug123 -r

3. Make changes to files in the stream and submit the changes.

4. Merge down any required changes from the parent stream, resolving as necessary.

$ p4 merge

5. Copy up the changes you made into the parent stream.

$ p4 copy --from //Tasks/mybug123

6. Delete or unload the task stream.

$ p4 stream -d //Tasks/mybug123

Alternatively, use:

$ p4 unload -s //Tasks/mybug123

to unload it. Use unload if you think you might to work on the task stream again.

Only workspaces associated with the task stream can see all the files in the stream; the stream appears
as a sparse branch to other workspaces, which see only those files and revisions that you changed
within the task stream. Most other metadata for the task stream remains private.

Task streams can quickly accumulate in a depot until they are deleted or unloaded; to keep a project
depot uncluttered by task streams, your Helix administrator or project lead may choose to establish
certain streams depots as dedicated holding areas for task streams. In this case, create your stream in
the task streams depot as a child of a parent in the project depot.

Task streams are unique in that they can live in different depots from their children or parents.
However, the best practice is to have them reside in the same depot as their children or parents.

Virtual streams

Virtual streams can be used to create alternative views of real streams. Virtual streams differ from
other stream types in that a virtual stream is not a separate set of files, but instead a filtered view of its
parent stream. A virtual stream can have child streams, and its child streams inherit its views.

Chapter 7. Streams

Helix Versioning Engine User Guide 85

Stream paths
Stream paths control the files and paths that compose a stream and define how those files are
propagated. Except for the mainline, each stream inherits its structure from its parent stream. To
modify the structure of the child, you specify the paths as follows:

Type Sync? Submit? Integrate to/from
Parent?

Remarks

share Y Y Y (Default) For files that are edited and propagated
between parent and child streams. All files in a
shared path are branched and, in general, shared
paths are the least restricted.

isolate Y Y N For files that must not be propagated outside the
stream but can be edited within it, such as binary
build results.

import Y N N For files that must be physically present in
the stream but are never changed. Example:
third-party libraries. Import paths can reference
a specific changelist (or a label that aliases a
changelist) to limit the imported files to the
revisions at that change or lower. Use the syntax
@changelist#, as in: //depot/lib3.0/…@455678.

import+ Y Y N Functions like an import path, in that it can
reference an explicitly-defined depot path, but
unlike a standard import path, you can submit
changes to the files in an import+ path.

exclude N N N Files in the parent stream that must never be part
of the child stream.

In the following example, files in the src path are not submittable (and are imported from the parent
stream’s view), files in the lib path are not submittable (and are imported from an explicitly-specified
location in the depot), and files in the db path can be edited and submitted in the stream, but can never
be copied to the parent:

Paths:
 share ...
 import src/...
 import lib/... //depot/lib3.0/...
 isolate db/...

The paths are used to generate the mappings for workspaces that are associated with the stream. If the
stream structure changes, the workspace views are updated automatically and in fact cannot be altered
manually. If the stream is locked, only the stream owner (or stream owners, if the Owner: field of the
stream is set to a group) can edit the stream specification.

Chapter 7. Streams

86 Helix Versioning Engine User Guide

Stream specification can also remap file locations (so that a file in specified depot location is synced to
a different location in the workspace) and screen out files according to file type. For example, to ensure
that object files and executables are not part of the stream, add the following entries to the stream
specification:

Ignored:
 .o
 .exe

Stream paths and inheritance between parents and children

Child streams inherit folder paths and behavioral rules from their parents. When we talk about
inheritance between parents and children, it helps to think in the following terms:

• Permissiveness: what actions (submit, sync, etcetera) are permitted on a path?

Path types are inherited from parent streams, and you cannot override the effects of the path
types assigned by parent streams. In other words, child streams are always as permissive or less
permissive than their parents, but never more permissive. For example, if a parent stream defines a
path as isolate, its child streams cannot redefine the path as share to enable integrations.

• Inclusiveness: what paths are included in the stream?

Since children cannot, by definition, be more inclusive than their parents, you cannot include a
folder path in a child that is not also included in its parent. This means, for example, that you cannot
add an isolate path to a child if the folders in that path are not also included in the parent.

In the example in the table below, the incorrectly defined Dev stream, which is a child of Main,
contains an isolate path that does not work, because it includes folders that are not included in the
parent. In order to isolate the config/ folder in the Dev stream, that folder has to be included as a
share or isolate path in Main:

Incorrect Correct

Stream: //Acme/Main
Parent: none
Paths: share apps/...
Paths: share tests/...

Stream: //Acme/Dev
Parent: //Acme/Main
Paths: share apps/...
 share tests/...
 isolate config/...

Stream: //Acme/Main
Parent: none
Paths: share apps/...
 share tests/...
 share config/...

Stream: //Acme/Dev
Parent: //Acme/Main
Paths: share apps/...
 share tests/...
 isolate config/...

Example 7.1. Simple share

Let’s start with a simple case: two streams, //Ace/main and its child //Ace/dev.

Chapter 7. Streams

Helix Versioning Engine User Guide 87

Stream: //Ace/main
Parent: none
Paths: share ...

Stream: //Ace/dev
Parent: //Ace/main
Paths: share ...

In this case, the entire stream path is shared. When you switch your workspace to the //Ace/main
stream, the workspace view looks like this:

//Ace/main/... //your_ws/...

The workspace view maps the root of the //Ace/main stream to your workspace. When you you switch
your workspace to the //Ace/dev stream, the workspace view is this:

//Ace/dev/... //your_ws/...

And the branch view for //Ace/dev/ looks like this:

//Ace/dev/... //Ace/main/...

In other words, the entire dev stream can be synced to workspaces, and the entire stream can be
branched, merged, and copied.

Example 7.2. Share and import

Let’s look at an example where software components are housed in three separate depots: //Acme, //
Red, and //Tango.

The Acme mainline is configured like this:

Stream: //Acme/Main
Parent: none
Paths: share apps/...
 share tests/...
 import stuff/... //Red/R6.1/stuff/...
 import tools/... //Tango/tools/...

If you switch your workspace to the //Acme/Main stream, this would be your workspace view:

//Acme/Main/apps/... //your_ws/apps/...
//Acme/Main/tests/... //your_ws/tests/...
//Red/R6.1/stuff/... //your_ws/stuff/...
//Tango/tools/... //your_ws/tools/...

Chapter 7. Streams

88 Helix Versioning Engine User Guide

The stream’s Paths field lists folders relative to the root of the stream. Those are the folders you get
in your workspace, beneath your workspace root. The shared folders are mapped to the //Acme/Main
path, and the imported paths are mapped to their locations in the //Red and //Tango depots.

Example 7.3. Share, isolate, exclude, and import

Let’s say that your team doesn’t want to do actual development in the mainline. In this example,
XProd feature team has a development stream of their own, defined like this:

Stream: //Acme/XProd
Parent: //Acme/Main
Paths: import ...
 isolate apps/bin/...
 share apps/xp/...
 exclude tests/...

Switching your workspace to the //Acme/XProd stream gives you this view:

//Acme/Main/apps/... //your_ws/apps/...
//Acme/XProd/apps/bin/... //your_ws/apps/bin/...
//Acme/XProd/apps/xp/... //your_ws/apps/xp/...
//Red/R6.1/stuff/... //your_ws/stuff/...
//Tango/tools/... //your_ws/tools/...
-//Acme/XProd/tests/... //your_ws/tests/...

Here we see workspace view inheritance at work. The contents of imported paths are mapped into
your workspace. The shared and isolated paths are mapped to the child stream; these contain the files
the XProd team is working on and will be submitting changes to. And the excluded path (marked with
a minus sign in the view) doesn’t appear in the workspace at all.

Because the //Acme/XProd stream has a parent, it has a branch mapping that can be used by the copy
and merge commands. That branch view consists of the following, with just one path shared by the
child and parent.

Note You must use the Perforce Command Line Client to view stream branch views.

-//Acme/XProd/apps/... //Acme/Main/apps/...
-//Acme/XProd/apps/bin/... //Acme/Main/apps/bin/...
//Acme/XProd/apps/xp/... //Acme/Main/apps/xp/...
-//Acme/XProd/stuff/... //Acme/Main/stuff/...
-//Acme/XProd/tests/... //Acme/Main/tests/...
-//Acme/XProd/tools/... //Acme/Main/tools/...

When you work in an //Acme/XProd workspace, it feels as if you’re working in a full branch of //Acme/
Main, but the actual branch is quite small.

Example 7.4. Child that shares all of the above parent

Let’s suppose that Lisa, for example, creates a child stream from //Acme/XProd. Her stream spec looks
like this:

Chapter 7. Streams

Helix Versioning Engine User Guide 89

Stream: //Acme/LisaDev
Parent: //Acme/XProd
Paths: share ...

Lisa’s stream has the default view template. Given that Lisa’s entire stream path is set to share, you
might expect that her entire workspace will be mapped to her stream. But it is not, because inherited
behaviors always take precedence; sharing applies only to paths that are shared in the parent as well.
A workspace for Lisa’s stream, with its default view template, has this client view:

//Acme/Main/apps/... //your_ws/apps/...
-//Acme/LisaDev/tests/... //your_ws/tests/...
//Acme/LisaDev/apps/bin/... //your_ws/apps/bin/...
//Acme/LisaDev/apps/xp/... //your_ws/apps/xp/...
//Red/R6.1/stuff/... //your_ws/stuff/...
//Tango/tools/... //your_ws/tools/...

A workspace in Lisa’s stream is the same as a workspace in the XProd stream, with one exception:
the paths available for submit are rooted in //Acme/LisaDev. This makes sense; if you work in Lisa’s
stream, you expect to submit changes to her stream. By contrast, the branch view that maps the //
Acme/Dev stream to its parent maps only the path that is designated as shared in both streams:

-//Acme/Main/apps/... //XProd/apps/...
-//Acme/LisaDev/tests/... //XProd/tests/...
-//Acme/LisaDev/apps/bin/... //XProd/apps/bin/...
//Acme/LisaDev/apps/xp/... //your_ws/apps/xp/...
-//Red/R6.1/stuff/... //XProd/stuff/...
-//Tango/tools/... //XProd/tools/...

The default template allows Lisa to branch her own versions of the paths her team is working on, and
have a workspace with the identical view of non-branched files that she would have in the parent
stream.

Stream workspaces
To submit files to a stream, you must use a workspace that is bound to that stream; such a workspace
is known as a stream workspace. A stream workspace is bound to a stream by way of the Stream: field in
the workspace spec. The paths listed in the stream spec determine which files appear in a workspace
view.

With stream workspaces you don’t have to manually set up a workspace view; instead the system
automatically generates the workspace view from the Paths: section of the stream spec. Thus, if
you switch a workspace from one stream to another, or if you modify a stream’s view template, all
workspaces bound to the stream update accordingly.

In order to submit changes to files in a stream, you must use a workspace bound to or associated
with that stream. Opening a file outside of your stream-generated view for edit with p4 edit gives a
warning that the file cannot be submitted.

For example, suppose your stream spec contains the following two entries under Paths::

Chapter 7. Streams

90 Helix Versioning Engine User Guide

Paths:
import ...

isolate apps/bin/...

share apps/xp/...

exclude tests/...

Switching your workspace to this stream gives you this workspace view:

//Acme/Main/apps/... //your_ws/apps/...

//Acme/XProd/apps/bin/... //your_ws/apps/bin/...

//Acme/XProd/apps/xp/... //your_ws/apps/xp/...

//Red/R6.1/stuff/... //your_ws/stuff/...

//Tango/tools/... //your_ws/tools/...

-//Acme/XProd/tests/... //your_ws/tests/...

See “Stream paths” on page 85 for more information on the relationship between paths listed in
the stream spec and workspace (also known as client) views.

By default, p4 stream edits the stream associated with your current workspace. It throws an error if
you’re not using a stream workspace.

Managing stream workspaces

This section discusses various approaches to managing your stream workspaces.

Using one workspace for multiple streams

When working with multiple streams, you have two choices:

• Switch one workspace between multiple streams; the workspace is appropriately populated
whenever you switch from one stream to another. While this requires some extra processing, it is the
right choice when you don’t need to work on different streams at the same time and you don’t want
to have multiple streams on disk at the same time.

• Establish a distinct workspace for each stream. This is the right choice if you want to move quickly
between different streams or if you want to have multiple streams on disk at the same time.

Note that distinct workspaces must have distinct workspace roots — that is, distinct local folders.

To change the stream associated with a workspace, issue the following command:

$ p4 switch streamname

Chapter 7. Streams

Helix Versioning Engine User Guide 91

To get a workspace view and a set of files as of a specific changelist, issue the following command:

$ p4 switch stream@change

Narrowing the scope of workspaces with virtual streams

For large projects, even consistently-organized streams may not sufficiently restrict workspace views.
In large organizations, there are often many groups who are concerned with only a small subset of a
project’s files. In classic Helix, these users would manually restrict their workspace’s view to include
only the desired subset. Streams offers an alternative; use a virtual stream as a filter:

For example, if ongoing development work is occurring in an //Ace/dev stream:

Stream: //Ace/dev
Parent: //Ace/main
Type: development
Paths:
 share ...

Then a user who is working only with the documentation for the product (rather than all of the assets
associated with the project) could create a virtual stream that includes only those files under //Ace/
dev/docs/..., as follows:

Stream: //Ace/devdocs
Parent: //Ace/dev
Type: virtual
Paths:
 share docs/...

The user can then can switch his or her workspace to the devdocs virtual stream with the following
command:

$ p4 switch //Ace/devdocs

When using the devdocs workspace, the user’s workspace view is automatically updated to include
only the material in //Ace/dev/docs/... and any changes he or she makes in //Ace/devdocs are
automatically made directly in the original //Ace/dev codeline without the need to manually run p4
copy or p4 merge.

Viewing a stream as of a specific changelist

The StreamAtChange option in the workspace specification lets you use the version of the stream
specified as of a particular changelist to generate a workspace view. This is helpful when you want to
see what the stream view was at a particular point in time, especially if your stream spec changes a lot
(for example, if you frequently change what you’re importing or what you’re deciding to share). When
you use the StreamAtChange option, you cannot submit changes to the files in the stream, since your
workspace view is not up to date.

Chapter 7. Streams

92 Helix Versioning Engine User Guide

To set a stream workspace to use the version of the stream specified as of a particular changelist, do the
following:

1. Open the stream’s workspace specification form for editing.

$ p4 client

2. Use one of the following alternatives:

a. Edit the form to set StreamAtChange: to the changelist you want to view the stream as of. Or,

b. Issue this command:

$ p4 client -S //Ace/main@12546

For more information, see the P4 Command Reference.

Alternatively, you can issue the following command to sync a stream using the stream’s view as of a
specific changelist:

$ p4 switch [-r -v] stream@change

This command both sets the StreamAtChange value and syncs to the same change.

Stream depots
Streams are rooted in stream depots. A mainline and all of the streams related to it are rooted in the
same stream depot. A server can host multiple stream depots. Although a stream depot can have
multiple mainlines, one mainline per stream depot is recommended. Stream depots exist as separate
namespaces from classic depots so that users don’t mix stream and non-stream content.

http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html

Helix Versioning Engine User Guide 93

Chapter 8 Labels
A Helix label is a set of tagged file revisions. For example, you might want to tag the file revisions that
compose a particular release with the label release2.0.1. In general, you can use labels to:

• Keep track of all the file revisions contained in a particular release of software.

• Distribute a particular set of file revisions to other users (for example, a standard configuration).

• Populate a clean build workspace.

• Specify a set of file revisions to be branched for development purposes.

• Sync the revisions as a group to a client workspace.

Labels and changelist numbers both refer to particular sets of file revisions but differ as follows:

• A label can refer to any set of file revisions. A changelist number refers to the contents of all the files
in the depot at the time the changelist was submitted. If you need to refer to a group of file revisions
from different points in time, use a label. If there is a point in time at which the files are consistent
for your purposes, use a changelist number.

• You can change the contents of a label. You cannot change the contents of a submitted changelist.

• You can assign your own names to labels. Changelist numbers are assigned by Helix.

Changelists are suitable for many applications that traditionally use labels. Unlike labels, changelists
represent the state of a set of files at a specific time. Before you assume that a label is required, consider
whether simply referring to a changelist number might fulfill your requirements.

Tagging files with a label
To tag a set of file revisions (in addition to any revisions that have already been tagged), use p4 tag,
specifying a label name and the desired file revisions.

For example, to tag the head revisions of files that reside under //depot/release/jam/2.1/src/ with
the label jam-2.1.0, issue the following command:

$ p4 tag -l jam-2.1.0 //depot/release/jam/2.1/src/...

To tag revisions other than the head revision, specify a changelist number in the file pattern:

$ p4 tag -l jam-2.1.0 //depot/release/jam/2.1/src/...@1234

Only one revision of a given file can be tagged with a given label, but the same file revision can be
tagged by multiple labels.

Untagging files
You can untag revisions with:

Chapter 8. Labels

94 Helix Versioning Engine User Guide

$ p4 tag -d -l labelname filepattern

This command removes the association between the specified label and the file revisions tagged
by it. For example, if you have tagged all revisions under //depot/release/jam/2.1/src/... with
jam-2.1.0, you can untag only the header files with:

$ p4 tag -d -l jam-2.1.0 //depot/release/jam/2.1/src/*.h

Previewing tagging results
You can preview the results of p4 tag with p4 tag -n. This command lists the revisions that would be
tagged, untagged, or re-tagged without actually performing the operation.

Listing files tagged by a label
To list the revisions tagged with labelname, use p4 files, specifying the label name as follows:

$ p4 files @labelname

All revisions tagged with labelname are listed, with their file type, change action, and changelist
number. (This command is equivalent to p4 files //...@labelname).

Listing labels that have been applied to files
To list all labels that have been applied to files, use the command:

p4 labels filepattern

Using a label to specify file revisions
You can use a label name anywhere you can refer to files by revision (#1, #head), changelist number
(@7381), or date (@2011/07/01).

If you omit file arguments when you issue the p4 sync @labelname command, all files in the client
workspace view that are tagged by the label are synced to the revision specified in the label. All files
in the workspace that do not have revisions tagged by the label are deleted from the workspace.
Open files or files not under Helix control are unaffected. This command is equivalent to p4
sync //...@labelname.

If you specify file arguments when you issue the p4 sync command (p4 sync files@labelname), files
that are in your workspace and tagged by the label are synced to the tagged revision.

Chapter 8. Labels

Helix Versioning Engine User Guide 95

Example 8.1. Retrieving files tagged by a label into a client workspace

To retrieve the files tagged by Earl’s jam-2.1.0 label into his client workspace, Bruno issues the
following command:

$ p4 sync @ jam-2.1.0

and sees:

//depot/dev/main/jam/Build.com#5 - updating c:\bruno_ws\dev\main\jam\Build.com
//depot/dev/main/jam/command.c#5 - updating c:\bruno_ws\dev\main\jam\command.c
//depot/dev/main/jam/command.h#3 - added as c:\bruno_ws\dev\main\jam\command.h
//depot/dev/main/jam/compile.c#12 - updating c:\bruno_ws\dev\main\jam\compile.c
//depot/dev/main/jam/compile.h#2 - updating c:\bruno_ws\dev\main\jam\compile.h
...

Deleting labels
To delete a label, use the following command:

$ p4 label -d labelname

Deleting a label has no effect on the tagged file revisions (though, of course, the revisions are no longer
tagged).

Creating a label for future use
To create a label without tagging any file revisions, issue the p4 label labelname command. This
command displays a form in which you describe and specify the label. After you have created a label,
you can use p4 tag or p4 labelsync to apply the label to file revisions.

Label names cannot be the same as client workspace, branch, or depot names.

For example, to create jam-2.1.0, issue the following command:

$ p4 label jam-2.1.0

The following form is displayed:

Chapter 8. Labels

96 Helix Versioning Engine User Guide

Label: jam-2.1.0
Update: 2011/03/07 13:07:39
Access: 2011/03/07 13:13:35
Owner: earl
Description:
 Created by earl.
Options: unlocked noautoreload
View:
 //depot/...

Enter a description for the label and save the form. (You do not need to change the View: field.)

After you create the label, you are able to use the p4 tag and p4 labelsync commands to apply the
label to file revisions.

Restricting files that can be tagged
The View: field in the p4 label form limits the files that can be tagged with a label. The default label
view includes the entire depot (//depot/...). To prevent yourself from inadvertently tagging every
file in your depot, set the label’s View: field to the files and directories to be taggable, using depot
syntax.

Example 8.2. Using a label view to control which files can be tagged

Earl wants to tag the revisions of source code in the release 2.1 branch, which he knows can be
successfully compiled. He types p4 label jam-2.1.0 and uses the label’s View: field to restrict the
scope of the label as follows:

Label: jam-2.1.0
Update: 2011/03/07 13:07:39
Access: 2011/03/07 13:13:35
Owner: earl
Description:
 Created by earl.
Options: unlocked noautoreload
View:
 //depot/release/jam/2.1/src/...

This label can tag only files in the release 2.1 source code directory.

Using static labels to archive workspace configurations
You can use static labels to archive the state of your client workspace (meaning the currently synced
file revisions) by issuing the p4 labelsync command. The label you specify must have the same view
as your client workspace.

For example, to record the configuration of your current client workspace using the existing ws_config
label, use the following command:

Chapter 8. Labels

Helix Versioning Engine User Guide 97

$ p4 labelsync -l ws_config

All file revisions that are synced to your current workspace and visible through both the client
workspace view and the label view (if any) are tagged with the ws_config label. Files that were
previously tagged with ws_config, then subsequently removed from your workspace (p4 sync #none),
are untagged.

To sync the files tagged by the ws_config label (thereby recreating the workspace configuration), issue
the following command:

$ p4 sync @ws_config

Note You can control how static labels are stored using the autoreload or noautoreload
options:

• autoreload stores the labels in the unload depot. This storage option can improve
performance on sites that make heavy use of labels.

• noautoreload stores the labels in the db.label table.

These storage options do not affect automatic labels.

Using automatic labels as aliases for changelists or other revisions
You can use automatic labels to specify files at certain revisions without having to issue the p4
labelsync command.

To create an automatic label, fill in the Revision: field of the p4 label form with a revision specifier.
When you sync a workspace to an automatic label, the contents of the Revision: field are applied to
every file in the View: field.

Example 8.3. Using an automatic label as an alias for a changelist number.

Earl is running a nightly build process, and has successfully built a product as of changelist 1234.
Rather than having to remember the specific changelist for every night’s build, he types p4 label
nightly20111201 and uses the label’s Revision: field to automatically tag all files as of changelist 1234
with the nightly20111201 label:

Label: nightly20111201
Owner: earl
Description:
 Nightly build process.
Options: unlocked noautoreload
View:
 //depot/...
Revision:
 @1234

Chapter 8. Labels

98 Helix Versioning Engine User Guide

The advantage to this approach is that it is highly amenable to scripting, takes up very little space
in the label table, and provides a way to easily refer to a nightly build without remembering which
changelist number was associated with the night’s build process.

Example 8.4. Referring specifically to the set of files submitted in a single changelist.

A bug was fixed by means of changelist 1238, and requires a patch label that refers to only those files
associated with the fix. Earl types p4 label patch20111201 and uses the label’s Revision: field to
automatically tag only those files submitted in changelist 1238 with the patch20111201 label:

Label: patch20111201
Owner: earl
Description:
 Patch to 2011/12/01 nightly build.
Options: unlocked noautoreload
View:
 //depot/...
Revision:
 @1238,1238

This automatic label refers only to those files submitted in changelist 1238.

Example 8.5. Referring to the first revision of every file over multiple changelists.

You can use revision specifiers other than changelist specifiers; in this example, Earl is referring to the
first revision (#1) of every file in a branch. Depending on how the branch was populated, these files
could have been created through multiple changelists over a long period of time:

Label: first2.2
Owner: earl
Description:
 The first revision in the 2.2 branch
Options: unlocked noautoreload
View:
 //depot/release/jam/2.2/src/...
Revision:
 "#1"

Because Helix forms use the # character as a comment indicator, Earl has placed quotation marks
around the # to ensure that it is parsed as a revision specifier.

Preventing inadvertent tagging and untagging of files
To tag the files that are in your client workspace and label view (if set) and untag all other files, issue
the p4 labelsync command with no arguments. To prevent the inadvertent tagging and untagging
of files, issue the p4 label labelname command and lock the label by setting the Options: field of the
label form to locked. To prevent other users from unlocking the label, set the Owner: field. For details
about Helix privileges, refer to the Helix Versioning Engine Administrator Guide: Fundamentals.

http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html

Chapter 8. Labels

Helix Versioning Engine User Guide 99

Using labels on edge servers
You can user the Helix Versioning Engine in a distributed, multi-site environment using central and
edge servers. With a distributed Helix service architecture, users typically connect to an edge server
and execute commands just as they would with a classic Helix service. For more information, refer to
Helix Versioning Engine Administrator Guide: Multi-site Deployment.

When connected to an edge server, the commands p4 label, p4 labelsync, and p4 tag operate on
labels local to the edge server. Global labels can be manipulated by using the -g option. For details,
refer to the P4 Command Reference.

Note Using the -g option with p4 labelsync only works with a global client. To
manipulate a global label, use p4 tag.

http://www.perforce.com/perforce/r15.2/manuals/p4dist/index.html
http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html

100 Helix Versioning Engine User Guide

Helix Versioning Engine User Guide 101

Chapter 9 Working with Jobs
A job is a numbered (or named) work request managed by Helix. Helix jobs enable you to track the
status of bugs and enhancement requests and associate them with changelists that implement fixes and
enhancements. You can search for jobs based on the contents of fields, the date the job was entered or
last modified, and many other criteria.

Your Helix administrator can customize the job specification for your site’s requirements. For details
on modifying the job specification, see the Helix Versioning Engine Administrator Guide: Fundamentals.

To integrate Helix with your in-house defect tracking system, or to develop an integration with a
third-party defect tracking system, use P4DTG, the Perforce Defect Tracking Gateway. P4DTG is an
integrated platform that includes both a graphical configuration editor and a replication engine. For
more information, see:

http://www.perforce.com/product/components/defect_tracking_gateway

Creating, editing, and deleting a job
To create a job using Helix’s default job-naming scheme, issue the p4 job command. To assign a name
to a new job (or edit an existing job), issue the p4 job jobname command.

Example 9.1. Creating a job

Gale discovers a problem with Jam, so she creates a job by issuing the p4 job command and describes
it as follows:

Job: job000006

Status: open

User: gale

Date: 2011/11/14 17:12:21

Description:
 MAXLINE can't account for expanded cmd buffer size.

The following table describes the fields in the default job specification:

Field Name Description Default

Job The name of the job (white space is not allowed). By
default, Helix assigns job names using a numbering
scheme (jobnnnnnn).

Last job number + 1

Status • open: job has not yet been fixed.

• closed: job has been completed.

open

http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html
http://www.perforce.com/product/components/defect_tracking_gateway

Chapter 9. Working with Jobs

102 Helix Versioning Engine User Guide

Field Name Description Default

• suspended: job is not currently being worked on.

User The user to whom the job is assigned, usually the person
assigned to fix this particular problem.

Helix user name of the
job creator.

Date The date the job was last modified. Updated by Helix
when you save the job.

Description Describes the work being requested, for example a bug
description or request for enhancement.

None. You must enter
a description.

To edit existing jobs, specify the job name when you issue the p4 job command: p4 job jobname. Enter
your changes in the job form, save the form and exit.

To delete a job, issue the p4 job -d jobname command.

Searching jobs
To search Helix jobs, issue the p4 jobs -e jobview command, where jobview specifies search
expressions described in the sections that below. For more details, issue the p4 help jobview
command.

Searching job text

You can use the expression 'word1 word2 ... wordN' to find jobs that contain all of word1 through
wordN in any field (excluding date fields). Use single quotes on UNIX and double quotes on Windows.

When searching jobs, note the following restrictions:

• When you specify multiple words separated by whitespace, Helix searches for jobs that contain all
the words specified. To find jobs that contain any of the terms, separate the terms with the pipe (|)
character.

• Field names and text comparisons in expressions are not case-sensitive.

• Only alphanumeric text and punctuation can appear in an expression. To match the following
characters, which are used by Helix as logical operators, precede them with a backslash: =^&|()<>.

• You cannot search for phrases, only individual words.

Example 9.2. Searching jobs for specific words

Bruno wants to find all jobs that contain the words filter, file, and mailbox. He types:

$ p4 jobs -e 'filter file mailbox'

Chapter 9. Working with Jobs

Helix Versioning Engine User Guide 103

Example 9.3. Finding jobs that contain any of a set of words in any field

Bruno wants to find jobs that contain any of the words filter, file or mailbox. He types:

$ p4 jobs -e 'filter|file|mailbox'

You can use the * wildcard to match one or more characters. For example, the expression
fieldname=string* matches string, strings, stringbuffer, and so on.

To search for words that contain wildcards, precede the wildcard with a backslash in the command.
For instance, to search for *string (perhaps in reference to char *string), issue the following
command:

$ p4 jobs -e '*string'

Searching specific fields
To search based on the values in a specific field, specify field=value.

Example 9.4. Finding jobs that contain words in specific fields

Bruno wants to find all open jobs related to filtering. He types:

$ p4 jobs -e 'Status=open User=bruno filter.c'

This command finds all jobs with a Status: of open, a User: of bruno, and the word filter.c in any
non-date field.

To find fields that do not contain a specified expression, precede it with ^, which is the NOT operator.
The NOT operator ^ can be used only directly after an AND expression (space or &). For example, p4
jobs -e '^user=bruno' is not valid. To get around this restriction, use the * wildcard to add a search
term before the ^ term; for example: p4 jobs -e 'job=* ^user=bruno' returns all jobs not owned by
Bruno.

Example 9.5. Excluding jobs that contain specified values in a field

Bruno wants to find all open jobs he does not own that involve filtering. He types:

$ p4 jobs -e 'status=open ^user=bruno filter'

This command displays all open jobs that Bruno does not own that contain the word filter.

Using comparison operators
The following comparison operators are available: =, >, <, >=, <=, and ^ for Boolean NOT.

Chapter 9. Working with Jobs

104 Helix Versioning Engine User Guide

The behavior of these operators depends upon the type of the field in the expression. The following
table describes the field types and how they can be searched:

Field Type Description Notes

word A single word The equality operator (=) matches the
value in the word field exactly.

The relational operators perform
comparisons in ASCII order.

text A block of text entered on the lines
beneath the field name.

The equality operator (=) matches the
job if the value is found anywhere in the
specified field.

The relational operators are of limited
use here, because they’ll match the job if
any word in the specified field matches
the provided value. For example, if a job
has a text field ShortDescription: that
contains only the phrase gui bug, and the
expression is 'ShortDesc<filter', the
job will match the expression, because
bug<filter.

line A single line of text entered on the same
line as the field name.

Same as text

select One of a set of values. For example, job
status can be open, suspended, or closed.

The equality operator (=) matches a job
if the value in the field is the specified
word. Relational operators perform
comparisons in ASCII order.

date A date and optionally a time. For
example, 2011/07/15:13:21:40.

Dates are matched chronologically. If a
time is not specified, the operators =, <=,
and >= match the whole day.

bulk Like text, but not indexed for searching. These fields are not searchable with p4
jobs -e.

If you’re not sure of a field’s type, issue the p4 jobspec -o command, which displays your job
specification. The field called Fields: lists the job fields' names and data types.

Searching date fields
To search date fields, specify the date using the format yyyy/mm/dd or yyyy/mm/dd:hh:mm:ss. If you
omit time, the equality operator (=) matches the entire day.

Example 9.6. Using dates within expressions

Bruno wants to view all jobs modified on July 13, 2011. He enters:

Chapter 9. Working with Jobs

Helix Versioning Engine User Guide 105

$ p4 jobs -e 'ModifiedDate=2011/07/13'

Fixing jobs
To fix a job, you link it to a changelist and submit the changelist. Helix automatically changes the value
of a job’s status field to closed when the changelist is submitted.

Jobs can be linked to changelists in one of three ways:

• By setting the JobView: field in the p4 user form to an expression that matches the job.

• With the p4 fix command.

• By editing the p4 submit form.

You can modify job status directly by editing the job, but if you close a job manually, there’s no
association with the changelist that fixed the job. If you have altered your site’s job specification by
deleting the Status: field, jobs can still be linked to changelists, but status cannot be changed when
the changelist is submitted. (In most cases, this is not a desired form of operation.) See the chapter on
editing job specifications in the Helix Versioning Engine Administrator Guide: Fundamentals for more
details.

To remove jobs from a changelist, issue the p4 fix -d command.

Linking automatically
You can modify your Helix user specification to automatically attach open jobs to any changelists you
create. To set up automatic inclusion, issue the p4 user command and set the JobView: field value to a
valid expression that locates the jobs you want attached.

Example 9.7. Automatically linking jobs to changelists

Bruno wants to see all open jobs that he owns in all changelists he creates. He types p4 user and adds
the JobView: field:

User: bruno
Update: 2011/06/02 13:11:57
Access: 2011/06/03 20:11:07
JobView: user=bruno&status=open

All of Bruno’s open jobs now are automatically attached to his default changelist. When he submits
changelists, he must be sure to delete jobs that aren’t fixed by the changelist he is submitting.

Linking manually
To link a job to a changelist manually, issue the p4 fix -c changenum jobname command. If the
changelist has already been submitted, the value of the job’s Status: field is changed to closed.
Otherwise, the status is not changed.

http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html

Chapter 9. Working with Jobs

106 Helix Versioning Engine User Guide

Example 9.8. Manually linking jobs to changelists

You can use p4 fix to link a changelist to a job owned by another user.

Sarah has just submitted a job called options-bug to Bruno, but the bug has already been fixed in
Bruno’s previously submitted changelist 18. Bruno links the job to the changelist by typing:

$ p4 fix -c 18 options-bug

Because changelist 18 has already been submitted, the job’s status is changed to closed.

Linking jobs to changelists
To link jobs to changelists when submitting or editing the changelist, enter the job names in the Jobs:
field of the changelist specification. When you submit the changelist, the job is (by default) closed.

To unlink a job from a pending changelist, edit the changelist and delete its name from the Jobs: field.
To unlink a job from a submitted changelist, issue the p4 fix -d -c changenum jobname command.

Helix Versioning Engine User Guide 107

Chapter 10 Scripting and Reporting
This chapter provides details about using p4 commands in scripts and for reporting purposes. For a
full description of any particular command, consult the P4 Command Reference, or issue the p4 help
command.

Common options used in scripting and reporting
The command-line options described below enable you to specify settings on the command line and in
scripts. For full details, refer to the description of global options in the P4 Command Reference.

Option Description

-b batchsize Specify a batch size (number of arguments) to use when processing a
command from -x argfile. By default, 128 arguments are read at a
time.

-c client_workspace Specifies the client workspace name.

-G Causes all output (and batch input for form commands with -i) to be
formatted as marshaled Python dictionary objects.

-p protocol:host:port Specifies the host and port number of the Helix service, as well as the
protocol used to connect.

-P password Specifies the user password if any. If you prefer your script to log in
before running commands (instead of specifying the password every
time a command is issued), use the p4 login command. For example:

$ echo 'mypassword' | p4 login

-s Prepends a descriptive field (for example, text:, info:, error:, exit:)
to each line of output produced by a Helix command.

-u user Specifies the Helix user name.

-x argfile Reads arguments, one per line, from the specified file. If argfile is a
single hyphen (-), then standard input is read.

Scripting with Helix forms
If your scripts issue p4 commands that require the user to fill in a form, such as the p4 client and p4
submit commands, use the -o option to write the form to standard output and the -i option to read the
edited form from standard input.

For example, to create a job using a script on UNIX:

1. Write a blank job specification into a text file.

http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html
http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html

Chapter 10. Scripting and Reporting

108 Helix Versioning Engine User Guide

$ p4 job -o > temp1

2. Make the necessary changes to the job.

For example:

$ sed 's/<enter description here>/Crashes on exit./' temp1 > temp2

3. Save the job.

$ p4 job -i < temp2

To accomplish the preceding without a temporary file, issue the following command:

$ p4 job -o | sed 's/<enter description here>/Crashes on exit./' | p4 job -i

The commands that display forms are:

• p4 branch

• p4 change

• p4 client

• p4 job

• p4 label

• p4 submit (use p4 change -o to create changelist, or p4 submit -d "A changelist description" to
supply a description to the default changelist during changelist submission.)

• p4 stream

• p4 user

File reporting
The sections below describe commands that provide information about file status and location. The
following table lists a few basic and highly-useful reporting commands:

To display this information Use this command

File status, including file type, latest revision number, and other
information

p4 files

Chapter 10. Scripting and Reporting

Helix Versioning Engine User Guide 109

To display this information Use this command

File revisions from most recent to earliest p4 filelog

Currently opened files p4 opened

Preview of p4 sync results p4 sync -n

Summarize a p4 sync preview, estimate network traffic p4 sync -N

Currently synced files p4 have

The contents of specified files p4 print

The mapping of files' depot locations to the corresponding workspace
locations.

p4 where

A list of files and full details about the files p4 fstat

Displaying file status
To display information about single revisions of files, issue the p4 files command. This command
displays the locations of the files in the depot, the actions (add, edit, delete, and so on) performed
on those files at the specified revisions, the changelists in which the specified file revisions were
submitted, and the files' types. The following example shows typical output of the p4 files command:

//depot/README#5 - edit change 6 (text)

The p4 files command requires one or more filespec arguments. Regardless of whether you use local,
client, or depot syntax to specify the filespec arguments, the p4 file command displays results using
depot syntax. If you omit the revision number, information for the head revision is displayed. The
output of p4 files includes deleted revisions.

The following table lists some common uses of the p4 files command:

To display the status of Use this command

All files in the depot, regardless of your client workspace
view

For depots containing numerous files, you can maximize
performance by avoiding commands that refer to the
entire depot (//depot/...) when not required. For best
performance, specify only the directories and files of
interest.

p4 files //depot/...

The files currently synced to the specified client
workspace.

p4 files @workspacename

Chapter 10. Scripting and Reporting

110 Helix Versioning Engine User Guide

To display the status of Use this command

The files mapped by your client workspace view. p4 files //workspacename/...

Specified files in the current working directory p4 files filespec

A specified file revision p4 files filespec#rev

Specified files at the time a changelist was submitted,
regardless of whether the files were submitted in the
changelist

p4 files filespec@changenum

Files tagged with a specified label p4 files filespec@labelname

Displaying file revision history
To display the revision history of a file, issue the p4 filelog filespec command. The following
example shows how p4 filelog displays revision history:

$ p4 filelog //depot/dev/main/jam/jam.c
//depot/dev/main/jam/jam.c
... #35 change 627 edit on 2011/11/13 by earl@earl-dev-yew (text)
'Handle platform variants better'
... #34 change 598 edit on 2011/10/24 by raj@raj-althea (text)
'Reverse previous attempt at fix'
... ... branch into //depot/release/jam/2.2/src/jam.c#1
... #33 change 581 edit on 2011/10/03 by gale@gale-jam-oak (text)
'Version strings & release notes'

To display the entire description of each changelist, specify the -l option.

Listing open files
To list the files that are currently opened in a client workspace, issue the p4 opened filespec
command. The following line is an example of the output displayed by the p4 opened command:

//depot/dev/main/jam/fileos2.c- edit default change (text)

The following table lists some common uses of the p4 opened command:

To list Use this command

Opened files in the current workspace p4 opened

Opened files in all client workspaces p4 opened -asp4 opened -a

Files in a numbered pending changelist p4 opened -c changelist

Chapter 10. Scripting and Reporting

Helix Versioning Engine User Guide 111

To list Use this command

Files in the default changelist p4 opened -c default

Whether a specific file is opened by you p4 opened filespec

Whether a specific file is opened by anyone p4 opened -a filespec

Displaying file locations

To display information about the locations of files, use the p4 where, p4 have, and p4 sync -n
commands:

• To display the location of a file in depot, client, and local syntax, issue the p4 where command.

• To list the location and revisions of files that you last synced to your client workspace, issue the p4
have command.

• To see where files will be synced in your workspace, preview the sync by issuing the p4 sync -n
command.

You can use these commands with or without filespec arguments.

The following table lists some useful location reporting commands:

To display Use this command

The revision number of a file that you synced to your
workspace

p4 have filespec

How a particular file in the depot maps to your
workspace

p4 where //depot/filespec

Displaying file contents

To display the contents of a file in the depot, issue the p4 print filespec command. This command
prints the contents of the file to standard output or to a specified output file, with a one-line banner
that describes the file. To suppress the banner, specify the -q option. By default, the head revision is
displayed, but you can specify a file revision.

To display the contents of files Use this command

At the head revision p4 print filespec

Without the banner p4 print -q filespec

At a specified changelist number p4 print filespec@changenum

Chapter 10. Scripting and Reporting

112 Helix Versioning Engine User Guide

Displaying annotations (details about changes to file contents)
To find out which file revisions or changelists affected lines in a text file, issue the p4 annotate
command.

By default, p4 annotate displays the file line by line, with each line preceded by a revision number
indicating the revision that made the change. To display changelist numbers instead of revision
numbers, specify the -c option.

Example 10.1. Using p4 annotate to display changes to a file.

A file is added (file.txt#1) to the depot, containing the following lines:

This is a text file.
The second line has not been changed.
The third line has not been changed.

The third line is deleted and the second line edited so that file.txt#2 reads:

This is a text file.
The second line is new.

The output of p4 annotate and p4 annotate -c look like this:

$ p4 annotate file.txt
//depot/files/file.txt#3 - edit change 153 (text)
1: This is a text file.
2: The second line is new.

$ p4 annotate -c file.txt
//depot/files/file.txt#3 - edit change 153 (text)
151: This is a text file.
152: The second line is new.

The first line of file.txt has been present since revision 1, which was submitted in changelist 151. The
second line has been present since revision 2, which was submitted in changelist 152.

To show all lines (including deleted lines) in the file, use p4 annotate -a as follows:

$ p4 annotate -a file.txt
//depot/files/file.txt#3 - edit change 12345 (text)
1-3: This is a text file.
1-1: The second line has not been changed.
1-1: The third line has not been changed.
2-3: The second line is new.

The first line of output shows that the first line of the file has been present for revisions 1 through 3.
The next two lines of output show lines of file.txt present only in revision 1. The last line of output
shows that the line added in revision 2 is still present in revision 3.

Chapter 10. Scripting and Reporting

Helix Versioning Engine User Guide 113

You can combine the -a and -c options to display all lines in the file and the changelist numbers
(rather than the revision numbers) at which the lines existed.

Monitoring changes to files

The following table lists commands that display information about the status of files, changelists, and
users:

To list Use this command

The users who review specified files p4 reviews filespec

The users who review files in a specified changelist p4 reviews -c changenum

A specified user’s email address p4 users username

Changelist reporting
The p4 changes command lists changelists that meet search criteria, and the p4 describe command
lists the files and jobs associated with a specified changelist. These commands are described below.

Listing changelists

To list changelists, issue the p4 changes command. By default, p4 changes displays one line for every
public changelist known to the system, as well as for any restricted changelists to which you have
access. The following table lists command-line options that you can use to filter the list.

To list changelists Use this command

With the first 31 characters of the changelist descriptions p4 changes

With full descriptions p4 changes -l

The last n changelists p4 changes -m n

With a specified status p4 changes -s pending
p4 changes -s submitted
p4 changes -s shelved

From a specified user p4 changes -u user

From a specified workspace p4 changes -c workspace

That affect specified files p4 changes filespec

That affect specified files, including changelists that affect
files that were later integrated with the named files

p4 changes -i filespec

Chapter 10. Scripting and Reporting

114 Helix Versioning Engine User Guide

To list changelists Use this command

That affect specified files, including only those changelists
between revisions m and n of these files

p4 changes filespec#m,#n

That affect specified files at each revision between the
revisions specified in labels label1 and label2

p4 changes filespec@label1,@label2

Submitted between two dates p4 changes @date1,@date2

Submitted on or after a specified date p4 changes @date1,@now

Listing files and jobs affected by changelists

To list files and jobs affected by a specified changelist, along with the diffs of the changes, issue the p4
describe command. To suppress display of the diffs (for shorter output), specify the -s option. The
following table lists some useful changelist reporting commands:

To list Use this command

Files in a pending changelist p4 opened -c changenum

Files submitted and jobs fixed by a particular changelist,
including diffs

p4 describe changenum

Files submitted and jobs fixed by a particular changelist,
suppressing diffs

p4 describe -s changenum

Files and jobs affected by a particular changelist, passing
the context diff option to the underlying diff program

p4 describe -dc changenum

The state of particular files at a particular changelist,
regardless of whether these files were affected by the
changelist

p4 files filespec@changenum

For more commands that report on jobs, see “Job reporting” on page 115.

Label reporting
To display information about labels, issue the p4 labels command. The following table lists some
useful label reporting commands:

To list Use this command

All labels, with creation date and owner p4 labels

All labels containing a specific file revision (or range) p4 labels file#revrange

Chapter 10. Scripting and Reporting

Helix Versioning Engine User Guide 115

To list Use this command

Files tagged with a specified label p4 files @labelname

A preview of the results of syncing to a label p4 sync -n @labelname

Branch and integration reporting
The following table lists commonly used commands for branch and integration reporting:

To list Use this command

All branch specifications p4 branches

Files in a specified branch p4 files filespec

The revisions of a specified file p4 filelog filespec

The revisions of a specified file, recursively including
revisions of the files from which it was branched

p4 filelog -i filespec

A preview of the results of a resolve p4 resolve [args] -n [filespec]

Files that have been resolved but not yet submitted p4 resolved [filespec]

Integrated, submitted files that match the filespec
arguments

p4 integrated filespec

A preview of the results of an integration p4 integrate [args] -n [filespec]

Job reporting

Listing jobs
To list jobs, issue the p4 jobs command. The following table lists common job reporting commands:

To list Use this command

All jobs p4 jobs

All jobs, including full descriptions p4 jobs -l

Jobs that meet search criteria (see “Searching
jobs” on page 102 for details)

p4 jobs -e jobview

Jobs that were fixed by changelists that contain specific
files

p4 jobs filespec

Chapter 10. Scripting and Reporting

116 Helix Versioning Engine User Guide

To list Use this command

Jobs that were fixed by changelists that contain specific
files, including changelists that contain files that were
later integrated into the specified files

p4 jobs -i filespec

Listing jobs fixed by changelists
Any jobs that have been linked to a changelist with p4 change, p4 submit, or p4 fix are referred to as
fixed (regardless of whether their status is closed). To list jobs that were fixed by changelists, issue the
p4 fixes command.

The following table lists useful commands for reporting fixes:

To list Use this command

all changelists linked to jobs p4 fixes

all changelists linked to a specified job p4 fixes -j jobname

all jobs linked to a specified changelist p4 fixes -c changenum

all fixes associated with specified files p4 fixes filespec

all fixes associated with specified files, including
changelists that contain files that were later integrated
with the specified files

p4 fixes -i filespec

System configuration reporting
The commands described in this section display Helix users, client workspaces, and depots.

Displaying users
The p4 users command displays the user name, an email address, the user’s “real” name, and the date
that Helix was last accessed by that user, in the following format:

bruno <bruno@bruno_ws> (bruno) accessed 2011/03/07
dai <dai@dai_ws> (Dai Sato) accessed 2011/03/04
earl <earl@earl_ws> (Earl Ashby) accessed 2011/03/07
gale <gale@gale_ws> (Gale Beal) accessed 2011/06/03
hera <hera@hera_ws> (Hera Otis) accessed 2011/10/03
ines <ines@ines_ws> (Ines Rios) accessed 2011/02/02
jack <jack@submariner> (jack) accessed 2011/03/02
mei <mei@mei_ws> (Mei Chang) accessed 2011/11/14
ona <ona@ona_ws> (Ona Birch) accessed 2011/10/23
quinn <quinn@quinn_ws> (Quinn Cass) accessed 2011/01/27
raj <raj@ran_ws> (Raj Bai) accessed 2011/07/28
vera <vera@vera_ws> (Vera Cullen) accessed 2011/01/15

Chapter 10. Scripting and Reporting

Helix Versioning Engine User Guide 117

Displaying workspaces

To display information about client workspaces, issue the p4 clients command, which displays
the client workspace name, the date the workspace was last updated, the workspace root, and the
description of the workspace, in the following format:

Client bruno_ws 2011/03/07 root c:\bruno_ws ''
Client earl-dev-beech 2011/10/26 root /home/earl ''
Client earl-dev-guava 2011/09/08 root /usr/earl/development ''
Client earl-dev-yew 2011/11/19 root /tmp ''
Client earl-win-buckeye 2011/03/21 root c:\src ''
Client earl-qnx-elm 2011/01/17 root /src ''
Client earl-tupelo 2011/01/05 root /usr/earl ''

Listing depots

To list depots, issue the p4 depots command. This command lists the depot’s name, its creation date,
its type (local, remote, archive, spec, or stream), its host name or IP address (if remote), the mapping
to the local depot, and the system administrator’s description of the depot.

For details about defining multiple depots on a single Helix installation, see the Helix Versioning Engine
Administrator Guide: Fundamentals.

Sample script
The following sample script parses the output of the p4 fstat command to report files that are opened
where the head revision is not in the client workspace (a potential problem):

http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html
http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html

Chapter 10. Scripting and Reporting

118 Helix Versioning Engine User Guide

Example 10.2. Sample shell script showing parsing of p4 fstat command output.

#!/bin/sh
Usage: opened-not-head.sh files
Displays files that are open when the head revision is not
on the client workspace

echo=echo
exit=exit
p4=p4
sed=sed

if [$# -ne 1]
then
 $echo "Usage: $0 files"
 $exit 1
fi

$p4 fstat -Ro $1 | while read line
do
 name=`$echo $line | $sed 's/^[\.]\+\([^]\+\) .*$/\1/'`
 value=`$echo $line | $sed 's/^[\.]\+[^]\+ \(.*\)$/\1/'`

 if ["$name" = "depotFile"]
 then
 depotFile=$value

 elif ["$name" = "headRev"]
 then
 headRev=$value

 elif ["$name" = "haveRev"]
 then
 haveRev=$value

 if [$headRev != $haveRev]
 then
 $echo $depotFile
 fi
 fi
done

Helix Versioning Engine User Guide 119

Appendix Glossary

Term Definition

access level A permission assigned to a user to control which Helix commands the user can
execute. See protections.

admin access An access level that gives the user permission to run Helix commands that
override metadata but do not affect the state of the service.

apple file type Helix file type assigned to files that are stored using AppleSingle format,
permitting the data fork and resource fork to be stored as a single file.

atomic change
transaction

Grouping operations affecting a number of files in a single transaction. If all
operations in the transaction succeed, all the files are updated. If any operation
in the transaction fails, none of the files are updated.

base The file revision on which two newer, conflicting file revisions are based.

binary file type Helix file type assigned to a non-text file. By default, the contents of each
revision are stored in full, and the file is stored in compressed format.

branch (noun) A codeline created by copying another codeline, as opposed to a codeline
that was created by adding original files. branch is often used as a synonym for
branch view.

(verb) To create a codeline branch with p4 integrate.

branch form The Helix form you use to modify a branch.

branch mapping Specifies how a branch is to be created by defining the location of the original
codeline and the branch. The branch mapping is used by the integration
process to create and update branches. Client workspaces, labels, and branch
specifications cannot share the same name.

branch view A specification of the branching relationship between two codelines in the
depot. Each branch view has a unique name and defines how files are mapped
from the originating codeline to the target codeline. See branch.

changelist An atomic change transaction in Helix. The changes specified in the changelist
are not stored in the depot until the changelist is submitted to the depot.

changelist form The Helix form you use to modify a changelist.

changelist
number

The unique numeric identifier of a changelist.

change review The process of sending email to users who have registered their interest in
changes made to specified files in the depot.

checkpoint A copy of the underlying metadata at a particular moment in time. See metadata.

client form The Helix form you use to define a client workspace.

Glossary

120 Helix Versioning Engine User Guide

Term Definition

client name A name that uniquely identifies the current client workspace.

client root The root directory of a client workspace. If two or more client workspaces are
located on one machine, they cannot share a root directory.

client side The right-hand side of a mapping within a client view, specifying where the
corresponding depot files are located in the client workspace.

client workspace
view

A set of mappings that specifies the correspondence between file locations in
the depot and the client workspace.

client workspace Directories on your workstation where you work on file revisions that are
managed by Helix. By default this name is set to the name of the machine
on which your client workspace is located; to override the default name, set
the P4CLIENT environment variable. Client workspaces, labels, and branch
specifications cannot share the same name.

codeline A set of files that evolve collectively. One codeline can be branched from
another, allowing each set of files to evolve separately.

conflict One type of conflict occurs when two users open a file for edit. One user
submits the file, after which the other user can’t submit because of a conflict.
The cause of this type of conflict is two users opening the same file.

The other type of conflict is when users try to merge one file into another. This
type of conflict occurs when the comparison of two files to a common base
yields different results, indicating that the files have been changed in different
ways. In this case, the merge can’t be done automatically and must be done by
hand. The type of conflict is caused by non-matching diffs.

See file conflict.

counter A numeric variable used by Helix to track changelist numbers in conjunction
with the review feature.

default changelist The changelist used by Helix commands, unless a numbered changelist is
specified. A default pending changelist is created automatically when a file is
opened for edit.

default depot The depot name that is assumed when no name is specified. The default depot
name is depot.

deleted file In Helix, a file with its head revision marked as deleted. Older revisions of the
file are still available.

delta The differences between two files.

depot A file repository hosted on the Helix service. It contains all versions of all
files ever submitted to the depot. There can be multiple depots on a single
installation.

Glossary

Helix Versioning Engine User Guide 121

Term Definition

depot root The root directory for a depot.

depot side The left side of any client view mapping, specifying the location of files in a
depot.

depot syntax Helix syntax for specifying the location of files in the depot.

detached A workstation that cannot connect to the Helix service.

diff (noun) A set of lines that don’t match when two files are compared. A conflict is
a pair of unequal diffs between each of two files and a common third file.

(verb) To compare the contents of files or file revisions.

donor file The file from which changes are taken when propagating changes from one file
to another.

exclusionary
mapping

A view mapping that excludes specific files.

exclusionary
access

A permission that denies access to the specified files.

file conflict In a three-way file merge, a situation in which two revisions of a file differ from
each other and from their base file.

Also: an attempt to submit a file that is not an edit of the head revision of the
file in the depot; typically occurs when another user opens the file for edit after
you have opened the file for edit.

file pattern Helix command line syntax that enables you to specify files using wildcards.

file repository The master copy of all files; shared by all users. In Helix, this is called the depot.

file revision A specific version of a file within the depot. Each revision is assigned a number,
in sequence. Any revision can be accessed in the depot by its revision number,
for example: testfile#3.

file tree All the subdirectories and files under a given root directory.

file type An attribute that determines how Helix stores and diffs a particular file.
Examples of file types are text and binary.

fix A job that has been linked to a changelist.

form Screens displayed by certain Helix commands. For example, you use the Helix
change form to enter comments about a particular changelist and to verify the
affected files.

Glossary

122 Helix Versioning Engine User Guide

Term Definition

full-file storage The method by which Helix stores revisions of binary files in the depot: every
file revision is stored in full. Contrast this with reverse delta storage, which Helix
uses for text files.

get An obsolete Helix term: replaced by sync.

group A list of Helix users.

have list The list of file revisions currently in the client workspace.

head revision The most recent revision of a file within the depot. Because file revisions are
numbered sequentially, this revision is the highest-numbered revision of that
file.

integrate To compare two sets of files (for example, two codeline branches) and:

• Determine which changes in one set apply to the other.

• Determine if the changes have already been propagated.

• Propagate any outstanding changes.

Inter-File
Branching

Helix’s branching mechanism.

job A user-defined unit of work tracked by Helix. The job template determines
what information is tracked. The template can be modified by the Helix system
administrator.

job specification A specification containing the fields and valid values stored for a Helix job.

job view A syntax used for searching Helix jobs.

journal A file containing a record of every change made to the Helix service’s metadata
since the time of the last checkpoint.

journaling The process of recording changes made to the Helix service’s metadata.

label A named list of user-specified file revisions.

label view The view that specifies which filenames in the depot can be stored in a
particular label.

lazy copy A method used by Helix to make internal copies of files without duplicating file
content in the depot. Lazy copies minimize the consumption of disk space by
storing references to the original file instead of copies of the file.

license file Ensures that the number of Helix users on your site does not exceed the number
for which you have paid.

Glossary

Helix Versioning Engine User Guide 123

Term Definition

list access A protection level that enables you to run reporting commands but prevents
access to the contents of files.

local depot Any depot located on the currently-specified Helix service.

local syntax The operating-system-specific syntax for specifying a filename.

lock A Helix file lock prevents other clients from submitting the locked file. Files
are unlocked with the p4 unlock command or submitting the changelist that
contains the locked file.

log Error output from the Helix service. By default, error output is written to
standard error. To specify a log file, set the P4LOG environment variable or use
the p4d -L flag when starting the service.

mapping A single line in a view, consisting of a left side and a right side that specify the
correspondences between files in the depot and files in a client, label, or branch.
The left side specifies the depot files, and the right side specifies the client files.

(See also client workspace view, branch view, label view).

MD5 checksum The method used by Helix to verify the integrity of archived files.

merge The process of combining the contents of two conflicting file revisions into a
single file.

merge file A file generated by Helix from two conflicting file revisions.

metadata The data stored by the Helix service that describes the files in the depot, the
current state of client workspaces, protections, users, labels, and branches.
Metadata includes all the data stored in the service except for the actual
contents of the files.

modification time The time a file was last changed.

nonexistent
revision

A completely empty revision of any file. Syncing to a nonexistent revision of a
file removes it from your workspace. An empty file revision created by deleting
a file and the #none revision specifier are examples of nonexistent file revisions.

numbered
changelist

A pending changelist to which Helix has assigned a number.

open file A file that you are changing in your client workspace.

owner The Helix user who created a particular client, branch, or label.

p4 The Helix Command Line program, and the command you issue to execute
Helix commands from the operating system command line.

p4d The program that runs the Helix service; p4d manages depot files and metadata.

Glossary

124 Helix Versioning Engine User Guide

Term Definition

P4Diff A Helix application that displays the differences between two files. P4Diff is the
default application used to compare files during the file resolution process.

pending
changelist

A changelist that has not been submitted.

Helix service The Helix depot and metadata; also, the program that manages the depot and
metadata.

protections The permissions stored in the Helix service’s protections table.

RCS format Revision Control System format. Used for storing revisions of text files. RCS
format uses reverse delta encoding for file storage. Helix uses RCS format to
store text files. See also reverse delta storage.

read access A protection level that enables you to read the contents of files managed by
Helix.

remote depot A depot located on on a host other than that hosting the currently-specified
Helix service.

reresolve The process of resolving a file after the file is resolved and before it is
submitted.

resolve The process you use to reconcile the differences between two revisions of a file.

resource fork One fork of a Mac file. (These files are composed of a resource fork and a data
fork.) You can store resource forks in Helix depots as part of an AppleSingle file
by using Helix’s apple file type.

reverse delta
storage

The method that Helix uses to store revisions of text files. Helix stores the
changes between each revision and its previous revision, plus the full text of the
head revision.

revert To discard the changes you have made to a file in the client workspace.

review access A special protections level that includes read and list accesses and grants
permission to run the p4 review command.

review daemon Any daemon process that uses the p4 review command. See also change review.

revision number A number indicating which revision of the file is being referred to.

revision range A range of revision numbers for a specified file, specified as the low and high
end of the range. For example, myfile#5,7 specifies revisions 5 through 7 of
myfile.

revision
specification

A suffix to a filename that specifies a particular revision of that file. Revision
specifiers can be revision numbers, change numbers, label names, date/time
specifications, or client names.

Glossary

Helix Versioning Engine User Guide 125

Term Definition

service In Helix, the shared versioning service that responds to requests from Helix
applications. The Helix service (p4d) maintains depot files and metadata
describing the files and also tracks the state of client workspaces.

server root The directory in which p4d stores its metadata and all the shared files. To
specify the server root, set the P4ROOT environment variable.

shelving The process of temporarily storing files in the Helix service without checking in
a changelist.

status For a changelist, a value that indicates whether the changelist is new, pending,
or submitted. For a job, a value that indicates whether the job is open, closed, or
suspended. You can customize job statuses.

submit To send a pending changelist and changed files to the Helix service for
processing.

subscribe To register to receive email whenever changelists that affect particular files are
submitted.

super access An access level that gives the user permission to run every Helix command,
including commands that set protections, install triggers, or shut down the
service for maintenance.

symlink file type A Helix file type assigned to symbolic links. On platforms that do not support
symbolic links, symlink files appear as small text files.

sync To copy a file revision (or set of file revisions) from the depot to a client
workspace.

target file The file that receives the changes from the donor file when you are integrating
changes between a branched codeline and the original codeline.

text file type Helix file type assigned to a file that contains only ASCII text. See also binary file
type.

theirs The revision in the depot with which the client file is merged when you resolve
a file conflict. When you are working with branched files, theirs is the donor file.

three-way merge The process of combining three file revisions. During a three-way merge, you
can identify where conflicting changes have occurred and specify how you
want to resolve the conflicts.

tip revision In Helix, the head revision. Tip revision is a term used by some other versioning
systems.

trigger A script automatically invoked by the Helix service when changelists are
submitted.

Glossary

126 Helix Versioning Engine User Guide

Term Definition

two-way merge The process of combining two file revisions. In a two-way merge, you can see
differences between the files but cannot see conflicts.

typemap A Helix table in which you assign Helix file types to files.

user The identifier that Helix uses to determine who is performing an operation.

view A description of the relationship between two sets of files. See client workspace
view, label view, branch view.

wildcard A special character used to match other characters in strings. Helix wildcards
are:

• * matches anything except a slash

• ... matches anything including slashes

• %%0 through %%9 used for parameter substitution in views

workspace See client workspace.

write access A protection level that enables you to run commands that alter the contents of
files in the depot. write access includes read and list accesses.

yours The edited version of a file in the client workspace when you resolve a file.
Also, the target file when you integrate a branched file.

Helix Versioning Engine User Guide 127

Appendix Helix File Types
Helix supports a set of file types that enable it to determine how files are stored by the Helix service
and whether the file can be diffed. When you add a file, Helix attempts to determine the type of the
file automatically: Helix first determines whether the file is a regular file or a symbolic link, and then
examines the first part of the file to determine whether it’s text or binary. If any non-text characters
are found, the file is assumed to be binary; otherwise, the file is assumed to be text. (Files in Unicode
environments are detected differently; see “Helix file type detection and Unicode” on page 132.)

To determine the type of a file under Helix control, issue the p4 opened or p4 files command. To
change the Helix file type, specify the -tfiletype option. For details about changing file type, refer to
the descriptions of p4 add, p4 edit, and p4 reopen in the P4 Command Reference.

Helix file types
Helix supports the following file types:

Keyword Description Comments Stored as

apple Mac file AppleSingle storage of Mac data fork,
resource fork, file type and file creator.

For full details, please see the Mac client
release notes.

full file,
compressed,
AppleSingle
format

binary Non-text file Synced as binary files in the workspace.
Stored compressed within the depot.

full file,
compressed

resource Mac resource fork (Obsolete) This type is supported for
backward compatibility, but the apple file
type is recommended.

full file,
compressed

symlink Symbolic link Helix applications on UNIX, OS X, recent
versions of Windows treat these files as
symbolic links. On other platforms, these
files appear as (small) text files.

delta

text Text file Synced as text in the workspace. Line-ending
translations are performed automatically.

delta

unicode Unicode file Helix services operating in Unicode mode
support the unicode file type. These files
are translated into the local character set
specified by P4CHARSET.

Helix services not in Unicode mode do not
support the unicode file type.

For details, see the Internationalization Notes.

delta, UTF-8

utf8 Unicode file Whether the service is in Unicode mode or
not, files that are detected as UTF8 will be

delta, UTF-8

http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html
http://www.perforce.com/perforce/r15.2/user/i18nnotes.txt

Helix File Types

128 Helix Versioning Engine User Guide

Keyword Description Comments Stored as

stored as UTF8 and synced as UTF8 without
being translated by the P4CHARSET setting.

For details, see the Internationalization Notes.

utf16 Unicode file Whether the service is in Unicode mode
or not, files are transferred as UTF-8, and
translated to UTF-16 (with byte order mark,
in the byte order appropriate for the user’s
machine) in the client workspace.

For details, see the Internationalization Notes.

delta, UTF-8

File type modifiers
You can apply file type modifiers to the base types of specific files to preserve timestamps, expand RCS
keywords, specify how files are stored in the service, and more. For details about applying modifiers to
file types, see “Specifying how files are stored in Helix” on page 130.

The following table lists the file type modifiers:

Modifier Description Comments

+C Helix stores the full compressed version
of each file revision

Default storage mechanism for binary
files and newly-added text, unicode, or
utf16 files larger than 10MB.

+D Helix stores deltas in RCS format Default storage mechanism for text files.

+F Helix stores full file per revision For large ASCII files that aren’t treated
as text, such as PostScript files, where
storing the deltas is not useful or
efficient.

+k RCS (Revision Control System) keyword
expansion

Supported keywords are as follows:

Id

$Header$

$Date$ Date of submission

$DateUTC$ Date of submission in
UTC time zone

$DateTime$ Date and time of
submission

http://www.perforce.com/perforce/r15.2/user/i18nnotes.txt
http://www.perforce.com/perforce/r15.2/user/i18nnotes.txt

Helix File Types

Helix Versioning Engine User Guide 129

Modifier Description Comments

$DateTimeUTC$ Date and time of
submission in UTC
time zone.

$DateTimeTZ$ Date and time of
submission in the
server’s time zone,
but including the
actual time zone in
the result.

$Change$

$File$

$Revision$

$Author$

RCS keywords are case-sensitive. A colon
after the keyword (for example, $Id:$) is
optional.

+ko Limited keyword expansion Expands only the Id and $Header
$ keywords. Primarily for backwards
compatibility with versions of Helix
prior to 2000.1, and corresponds to the
+k (ktext) modifier in earlier versions of
Helix.

+l Exclusive open (locking) If set, only one user at a time can open a
file for editing.

Useful for binary file types (such as
graphics) where merging of changes from
multiple authors is not possible.

+m Preserve original modification time The file’s timestamp on the local file
system is preserved upon submission
and restored upon sync. Useful for third-
party DLLs in Windows environments,
because the operating system relies on
the file’s timestamp. By default, the
modification time is set to the time you
synced the file.

+S Only the head revision is stored Older revisions are purged from the
depot upon submission of new revisions.
Useful for executable or .obj files.

Helix File Types

130 Helix Versioning Engine User Guide

Modifier Description Comments

+Sn Only the most recent n revisions are
stored, where n is a number from 1 to 10,
or 16, 32, 64, 128, 256, or 512.

Older revisions are purged from the
depot upon submission of more than
n new revisions, or if you change an
existing +Sn file’s n to a number less than
its current value. For details, see the P4
Command Reference.

+w File is always writable on client Not recommended, because Helix
manages the read-write settings on files
under its control.

+x Execute bit set on client Used for executable files.

+X Archive trigger required The Helix service runs an archive trigger
to access the file. See the Helix Versioning
Engine Administrator Guide: Fundamentals
for details.

Specifying how files are stored in Helix
File revisions of binary files are normally stored in full within the depot, but only changes made to text
files since the previous revision are normally stored. This approach is called delta storage, and Helix
uses RCS format to store its deltas. The file’s type determines whether full file or delta storage is used.

Some file types are compressed to gzip format when stored in the depot. The compression occurs
when you submit the file, and decompression happens when you sync (copy the file from the depot to
your workspace). The client workspace always contains the file as it was submitted.

Warning To avoid inadvertent file truncation, do not store binary files as text. If you store a
binary file as text from a Windows machine and the file contains the Windows end-
of-file character ^Z, only the part of the file up to the ^Z is stored in the depot.

Assigning File Types for Unicode Files
The Helix service can be run in Unicode mode to activate support for filenames and Helix metadata
that contain Unicode characters, or in non-Unicode mode, where filenames and metadata must be
ASCII, but textual files containing Unicode content are still supported.

If you need to manage textual files that contain Unicode characters, but do not need Unicode
characters in Helix metadata, you do not need to run Helix in Unicode mode. Assign the Helix utf16
file type to textual files that contain Unicode characters.

Your system administrator will be able to tell you which mode the service is using.

In either mode, Helix supports a set of file types that enable it to determine how a file is stored and
whether the file can be diffed. The following sections describe the considerations for managing textual
files in Unicode environments:

http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html
http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html
http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html
http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html

Helix File Types

Helix Versioning Engine User Guide 131

To assign file type when adding a file to the depot, specify the -t option. For example:

$ p4 add -t utf16 newfile.txt

To change the file type of files in the depot, open the file for edit, specifying the -t option. For
example:

$ p4 edit -t utf16 myfile.txt

Choosing the file type
When assigning file types to textual files that contain Unicode, consider the following:

• Do you need to edit and diff the files?

Many IDEs create configuration files that you never edit manually or diff. To ensure they are never
translated, assign such files the binary file type.

• Is your site managing files that use different character sets?

If so, consider storing them using a utf16 file type, to ensure they are not translated but still can be
diffed.

Unicode mode services translate the contents of Unicode files into the character set specified by
P4CHARSET. The following table provides more details about how Unicode-mode services manage the
various types of text files:

Text file type Stored by Helix as
(Unicode mode)

Validated? Translated per
P4CHARSET?

Translated per
client platform

text Extended ASCII No No No

unicode UTF-8 Yes (as UTF-16
and P4CHARSET)

Yes No

utf16 UTF-8 Yes (as UTF-16) No No

Non-Unicode-mode services do not translate or verify the contents of unicode files. Instead, the UTF-8
data is converted to UTF-16 using the byte order appropriate to the client platform. To ensure that such
files are not corrupted when you edit them, save them as UTF-8 or UTF-16 from within your editing
software.

Text file type Stored by Helix as
(Unicode mode)

Validated? Translated per
P4CHARSET?

Translated per
client platform

text Extended ASCII No No No

Helix File Types

132 Helix Versioning Engine User Guide

Text file type Stored by Helix as
(Unicode mode)

Validated? Translated per
P4CHARSET?

Translated per
client platform

unicode UTF-8 Yes (as UTF-16
and P4CHARSET)

No No

utf16 UTF-8 Yes (as UTF-16) No Yes

Helix file type detection and Unicode

In both Unicode mode and non-Unicode mode, if you do not assign a file type when you add a file
to the depot, Helix (by default) attempts to detect file type by scanning the first 65536 characters of
the file. If non-printable characters are detected, the file is assigned the binary file type. (In Unicode
mode, a further check is performed: if there are no non-printable characters, and there are high-ASCII
characters that are translatable using the character set specified by P4CHARSET, the file is assigned the
unicode file type.)

Finally (for services running in Unicode mode or non-Unicode mode), if a UTF-16 BOM is present, the
file is assigned the utf16 file type. Otherwise, the file is assigned the text file type. (In Unicode mode,
a further check is performed: files with high-ASCII characters that are undefined in the character set
specified by P4CHARSET are assigned the binary file type.)

In most cases, there is no need to override Helix’s default file type detection. If you must override
Helix’s default file type detection, you can assign Helix file types according to a file’s extension,
by issuing the p4 typemap command. For more about using the typemap feature, refer to the Helix
Versioning Engine Administrator Guide: Fundamentals, and the P4 Command Reference.

Overriding file types
Some file formats (for example, Adobe PDF files, and Rich Text Format files) are actually binary files,
but they can be mistakenly detected by Helix as being text. To prevent this problem, your system
administrator can use the p4 typemap command to specify how such file types are stored. You can
always override the file type specified in the typemap table by specifying the -t filetype option.

Preserving timestamps
Normally, Helix updates the timestamp when a file is synced. The modification time (+m) modifier is
intended for developers who need to preserve a file’s original timestamp. This modifier enables you to
ensure that the timestamp of a file synced to your client workspace is the time on your machine when
the file was submitted.

Windows uses timestamps on third-party DLLs for versioning information (both within the
development environment and also by the operating system), and the +m modifier enables you to
preserve the original timestamps to prevent spurious version mismatches. The +m modifier overrides
the client workspace [no]modtime setting (for the files to which it is applied). For details about this
setting, refer to “File type modifiers” on page 128.

http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html
http://www.perforce.com/perforce/r15.2/manuals/p4sag/index.html
http://www.perforce.com/perforce/r15.2/manuals/cmdref/index.html

Helix File Types

Helix Versioning Engine User Guide 133

Expanding RCS keywords
RCS (Revision Control System), an early version control system, defined keywords that you can embed
in your source files. These keywords are updated whenever a file is committed to the repository. Helix
supports some RCS keywords.

To activate RCS keyword expansion for a file, use the +k modifier. RCS keywords are expanded as
follows.

Keyword Expands To Example

$Author$ Helix user submitting the file $Author: bruno $

$Change$ Helix changelist number under which file
was submitted

$Change: 439 $

$Date$ Date of last submission in format
YYYY/MM/DD

$Date: 2011/08/18 $

$DateTime$ Date and time of last submission in
format YYYY/MM/DD hh:mm:ss

Date and time are as of the local time on
the Helix service at time of submission.

$DateTime: 2011/08/18 23:17:02 $

$File$ Filename only, in depot syntax (without
revision number)

$File: //depot/path/file.txt $

$Header$ Synonymous with Id $Header: //depot/path/file.txt#3 $

Id Filename and revision number in depot
syntax

$Id: //depot/path/file.txt#3 $

$Revision$ Helix revision number $Revision: #3 $

To display a file without expanding its keywords, use p4 print -k filename.

134 Helix Versioning Engine User Guide

Helix Versioning Engine User Guide 135

Appendix License Statements
Perforce software includes software developed by the University of California, Berkeley and its
contributors. This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/).

http://www.openssl.org/

136 Helix Versioning Engine User Guide

	Helix Versioning Engine User Guide
	Table of Contents
	Preface
	Getting started with Helix
	What’s new in this guide for 2015.2
	Helix documentation
	Syntax conventions
	Please give us feedback

	Chapter 1. Installing P4
	Installing P4 on UNIX and OS X
	Installing P4 on Windows
	Verifying the installation

	Chapter 2. Configuring P4
	Configuration overview
	What is a client workspace?
	How Helix manages the workspace

	Configuring Helix settings
	Using the command line
	Using config files
	Using environment variables
	Using the Windows registry or OS X system settings

	Defining client workspaces
	Verifying connections
	Connecting over IPv6 networks

	Refining workspace views
	Specifying mappings
	Using wildcards in workspace views
	Mapping part of the depot
	Mapping files to different locations in the workspace
	Mapping files to different filenames
	Rearranging parts of filenames
	Excluding files and directories
	Restricting access by changelist
	Avoiding mapping conflicts
	Mapping different depot locations to the same workspace location
	Dealing with spaces in filenames and directories
	Mapping Windows workspaces across multiple drives
	Using the same workspace from different machines
	Automatically pruning empty directories from a workspace

	Changing the location of your workspace
	Configuring workspace options
	Configuring submit options
	Configuring line-ending settings
	Deleting client workspace specifications
	Security
	SSL-encrypted connections
	Connecting to services that require plaintext connections

	Passwords
	Setting passwords
	Using your password

	Connection time limits
	Logging in and logging out
	Working on multiple machines

	Working with Unicode
	Setting P4CHARSET on Windows
	Setting P4CHARSET on UNIX

	Chapter 3. Issuing P4 Commands
	Command-line syntax
	Specifying filenames on the command line
	Helix wildcards
	Restrictions on filenames and identifiers
	Spaces in filenames, pathnames, and identifiers
	Length limitations
	Reserved characters
	Filenames containing extended (non-ASCII) characters

	Specifying file revisions
	Date and time specifications
	Revision ranges

	Reporting commands

	Using Helix forms

	Chapter 4. Managing Files and Changelists
	Managing files
	Syncing (retrieving) files
	Adding files
	Add files outside of Helix and then use p4 reconcile -k

	Ignoring groups of files when adding
	Reporting ignored files

	Changing files
	Discarding changes (reverting)
	Deleting files

	Managing changelists
	Creating numbered changelists
	Submitting changelists
	Deleting changelists
	Renaming and moving files
	Shelving work in progress
	Displaying information about changelists

	Diffing files
	Working offline

	Chapter 5. Resolving Conflicts
	How conflicts occur
	How to resolve conflicts
	Your, theirs, base and merge files
	Options for resolving conflicts
	Accepting yours, theirs, or merge
	Editing the merge file
	Merging to resolve conflicts
	Full list of resolve options
	Resolving Branched Files, Deletions, Moves and Filetype Changes
	Resolve command-line options
	Resolve reporting commands

	Locking files
	Preventing multiple resolves by locking files
	Preventing multiple checkouts

	Chapter 6. Codelines and Branching
	Basic terminology
	Organizing the depot
	Populating Codelines
	A shortcut: p4 populate

	Branching Codelines
	When to branch
	Creating branches
	Using branch specifications
	Using file specifications

	Integrating changes
	Integrating using branch specifications
	Integrating between unrelated files
	Integrating specific file revisions
	Reintegrating and reresolving files
	Integration reporting

	Chapter 7. Streams
	Introduction
	Stream workflow
	Stream procedures
	Create a stream depot
	Create a mainline stream
	Create a workspace
	Populate a mainline stream
	Add files
	Branch from other depots

	Populate child streams
	Propagate changes
	Comparing changes between streams
	Merging changes from a more stable stream
	Copying changes to a more stable stream
	Propagating change across the stream hierarchy

	Key streams concepts
	The stream specification
	More on options

	Updating streams
	Making changes to a stream spec and associated files atomically

	Stream types
	Task streams
	Virtual streams

	Stream paths
	Stream paths and inheritance between parents and children

	Stream workspaces
	Managing stream workspaces
	Viewing a stream as of a specific changelist

	Stream depots

	Chapter 8. Labels
	Tagging files with a label
	Untagging files
	Previewing tagging results
	Listing files tagged by a label
	Listing labels that have been applied to files
	Using a label to specify file revisions
	Deleting labels
	Creating a label for future use
	Restricting files that can be tagged
	Using static labels to archive workspace configurations
	Using automatic labels as aliases for changelists or other revisions
	Preventing inadvertent tagging and untagging of files
	Using labels on edge servers

	Chapter 9. Working with Jobs
	Creating, editing, and deleting a job
	Searching jobs
	Searching job text
	Searching specific fields
	Using comparison operators
	Searching date fields

	Fixing jobs
	Linking automatically
	Linking manually
	Linking jobs to changelists

	Chapter 10. Scripting and Reporting
	Common options used in scripting and reporting
	Scripting with Helix forms
	File reporting
	Displaying file status
	Displaying file revision history
	Listing open files
	Displaying file locations
	Displaying file contents
	Displaying annotations (details about changes to file contents)
	Monitoring changes to files

	Changelist reporting
	Listing changelists
	Listing files and jobs affected by changelists

	Label reporting
	Branch and integration reporting
	Job reporting
	Listing jobs
	Listing jobs fixed by changelists

	System configuration reporting
	Displaying users
	Displaying workspaces
	Listing depots

	Sample script

	Glossary
	Helix File Types
	Helix file types
	File type modifiers
	Specifying how files are stored in Helix
	Assigning File Types for Unicode Files
	Choosing the file type
	Helix file type detection and Unicode

	Overriding file types
	Preserving timestamps
	Expanding RCS keywords

	License Statements

