PERFORCE

Helix Versioning Engine
Administrator Guide:
Multi-site Deployment

2016.1
April 2016

Helix Versioning Engine Administrator Guide: Multi-site Deployment
2016.1

April 2016

Copyright © 1999-2016 Perforce Software.

All rights reserved.

Perforce software and documentation is available from http://www.perforce.com/. You can download and use Perforce programs, but you
can not sell or redistribute them. You can download, print, copy, edit, and redistribute the documentation, but you can not sell it, or sell any
documentation derived from it. You can not modify or attempt to reverse engineer the programs.

This product is subject to U.S. export control laws and regulations including, but not limited to, the U.S. Export Administration Regulations,
the International Traffic in Arms Regulation requirements, and all applicable end-use, end-user and destination restrictions. Licensee shall not
permit, directly or indirectly, use of any Perforce technology in or by any U.S. embargoed country or otherwise in violation of any U.S. export
control laws and regulations.

Perforce programs and documents are available from our Web site as is. No warranty or support is provided. Warranties and support, along
with higher capacity servers, are sold by Perforce Software.

Perforce Software assumes no responsibility or liability for any errors or inaccuracies that might appear in this book. By downloading and
using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce Software.
All other brands or product names are trademarks or registered trademarks of their respective companies or organizations.

Any additional software included within Perforce software is listed in License Statements on page 103.

Table of Contents

PIEIACE «.oovvereertt iR vii
About this manualcccoiiiiiiiiiii vii
What's new in this guide for the 2016.1 updatecccooiiiiiiiiiiiiiiii viii

Major Changescccoiiiiiiiiiiiiii viii
Updates and cOrrectionscccoeeiiiiiii viii
Helix documentationccccoooi ix
Syntax CONVENTIONSuuuuiiiiiiiiiiiiii e aaesaaanaaes ix
Please give us feedbackoooiiiiiiiiii X

Chapter1 Introduction t0 FEAErated SEIVICES ..ot rerseessssesesseaes 1

OVEIVIEW ..ttt aae 1

USET SCEMATIOS ...vvvvvnniieiiiiiiiiiie e e e e e e e e e e 2
Availabilityooiiiiiiii 2

RemOte OffiCeSvvvviiiiiiiiiiiiiiiiiiiii i 2

BUild /teSt @QUOMIAtION «.uneeeeeeeii et 3
SCAlADILItYovvviiiiiiiiiiiiiiii 3
Policy-based GOVEIrNanCeuuuiiiiiiiiiiiiiiiiiiiiiiiiii 3

Setting up federated SEIVICESuuiiiiiiiiiiiiiiiiiiiiiiii 3
General guidelinescccoiiii 3
AUhentiCating USETSvvvvviiiieeiiiiiiiiiieee ettt e ettt e e e ettt e e e e e neitaeeeeas 4
CoNNecting SEIVICEScooevvviiiiiiiiiiiii 4
Managing trust between SeIvicescoooiuiiiiiiiiiiiiiiiiii 4
Managing tickets between Servicescoooviiiiiiiiiiiiiiii 5
Managing SSL Key Pairscuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiei 5

Backing up and upgrading SEIVICeScccooiiiiiiiiiiiiiiiii e 5
Backing Up SeIVICEScooovviiiiiiiiiiiiii 5
UpPGrading SEIVICESuuuuuuiiiii s 6
Configuring centralized authorization and changelist serverscccccccoooviiiiiiii. 6
Centralized authorization server (PAAUTH)ooouiiiiiiiiiiiiiiee e 6
Limitations and NOteSuuuiiiiiiiiiiiiiiiiii 8
Centralized changelist server (PACHANGE)coooiiiiiiiiiiiiiiiiiiiiccc e 8

Chapter2 Perforce RepliCationcueveeeveeivereeceeeeeeeeses s sessennns "
What is replication?cocoiiiiiiiiiiiiiiii i 11
System reqUIrementscooooiiiiiiiiiiiiii 11
Replication DaSICSuuuuiuiiiiiiiiiiiiiiiiiiiiiiii 12

The p4 pull commandcccoooiiiiiiiiiiiii 15
Server names and PANAME 16
Server IDs: the p4 server and p4 serverid commandscccoeeiiiiiiiiiiiiiii. 17
SEIVICE USEIS ...ooviiiiiiiiiiiiiiii 17

Tickets and timeouts for SEIVICe USeIScccoovviiiiiiiiiiiiiiiiiii 18

Helix Versioning Engine Administrator Guide: Multi-site Deployment iii

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Permissions for SErviCe USETSooviviiiiiiiiiiiiiiiiiiiiiie e 19

Server options to control metadata and depot accessoeueiiiiiiiiiiiiiiiiiiiiiiiiiie 19
PATARGET ..ottt 19
Server startup commands ..o 20

P4 pull vs. P4 rePliCateuuiiiiiiiiiiiiiiiiii e 20
Enabling SSL SUPPOILuuuiuiiiiiiiiiiiiiiiiiiiiiieieieieieieeeee et aeaeeeeeaes 20
Uses fOr rePliCationuueuuumimmmiiiiiiiiiieiiiie e 21
Replication and protectionsccooooioioiiiiiiiii s 21
How replica types handle requeSstsceooiiiiiiiiiiiiiiiiiiieeee e 22
Configuring a read-0nly repliCacoooiiimiiiiiiiiiii e 23
Master Server SEtUPcooiiiiiiiiiiiii 24
Creating the TePliCacooviiiiiiiiiiii et 26
Starting the TEPLCAcoviuiiiiiiiiiiie e e 28
Testing the TEPIICA ...eeeeuiiiiiiiiiiic et 28
Testing p4 pull ... 28

Testing file TePplicationooiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 28

Verifying the TePLCacooouuiiiiiiiiiiieiiii e 29

USING the TEPLICA ..eeeiiiiiiiiiiiiie et 29
Commands that update metadataccceeeviiiiiiiiiiiiiii e 30

Using the Perforce Broker to redirect commandscceevuiiiierniiiiieniiiieennnnn. 30
Upgrading repliCa SEIVETSuuuuiuiumemeiiiiiiiiiiiiieiiiiieieiee e eeeeenesenenees 31
Configuring a forwarding replicacco 31
Configuring the master SEIVETcooiiiiiiiiiiiiiiiiiii e 31
Configuring the forwarding repliCacooviuiiiiiiiiiiiiiiiiiiie e 32
Configuring a build farm server 32
Configuring the master SEIVETcooiiiiiiiiiiiiiiiiiii e 33
Configuring the build farm replicaccccceeriiiiiiiiiiiiiiiicc e 34
Binding workspaces to the build farm replicaccoccuvieeiniiiiiiiiiiiiiiinieeeieee e 35
Configuring a replica with shared archivescccccccciiiiiiiiii 36
Filtering metadata during replicationcccoooiiiiiiiiiiiiiii 37
Verifying replica INtEGTItYuuuuuiimmimiiiiiiiiiiiiiiii e 40
Configuration ... 40
Warnings, notes, and Hmitations ... 42
Chapter3 COmMit-€dge ArChITECIUIEuovveeveeeeeeeeeeeteete st ses s saes 45
INtrodUCHON ...oooiiiiiiiii 45
Setting up a commit/edge CONfiGUIrationccoivuiiiiiriiiiiiiiiiiiee e 46
Create a service user account for the edge Servercocccceeiiiiiiiiiniiiiiiiniiieeeee 47
Create commit and edge server configurationscccoeoeiiiiiiiiiiiiiiiiiie 47
Create and start the edge Servero.ccccciiiiiiiiiiiii e 49
Shortcuts to configuring the SErVETcoiiiiiiiiiiiiiiiiiiiii e 50
Setting global Client VIEWScoooiiiiiiiiiiiiie s 51
Creating a client from a templateccoooiiiii e 52
Migrating from existing installations ... 52
Replacing existing proxies and replicasooeeeiiiiiiiiiiiiiiiiii 53
Deploying commit and edge servers incrementallyo 53
Hardware, sizing, and Capacityccccccooummmmmmmiiiiiiiiiiiiiieiiiiiiei e 53
Migration SCENATIOSoviiiiuniiiiiiiiiiiiii e 54

v

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Configuring a master server as a cOmmit SEIVerccccccvvviiiiiiiiiiiiiiiiiiieinennnn. 54
Converting a forwarding replica to an edge Serverccccccvvrereiireieiiriiiniiiienens 54
Converting a build server to an edge SeIverccceeeeeiiiiiiiiiiiii 55

Migrating a workspace from a commit server or remote edge server to the local
EAZE SEIVET ... 56
Managing distributed installationscccoooiiiiiiii 56
Moving users to an edge SEIVETcoooiiiiiiiiiiiiiiiiiiiii 57
Promoting shelved changelistsccooviiiiiiiiiiiiiiiiicc e 57
Automatically promoting Shelvescccoociiiiiiiiiiiiiiiii e 58
Explicitly promoting Shelvesccocciiiiiiiiiiiiiiiiicciiic e 58
Promoting shelves when unloading clientscccccceveiiiiiiiiniiiiieiiicceieeee 59
Working with promoted shelvesccccoiiiiiiiiiiiiiii e 59
Locking and unlocking filescooooiiiiiiiiiiiiiiii 59
TTIZZOTS oviiiii i e 59
Determining the location Of trig@ersocccviiiriiiiiiiiiiiieiiiieeeee e 60
Using edge triggers ... 60
Backup and high availability / disaster recovery (HA/DR) planningcccceccuveeeens 61
Other conSIAErationscocuuiiiiiiiiiiiiiiiiic i 62
Validationoooiiiiiiiiiiiiiii e 63
Supported deployment configurationsccccccc 63
Backups ...ooooiiiiii 64
Chapterd THE PEIfOICE BIOKET ...vuveeveeeieceieeccecee et ssese s sasssaens 65
What is the Droker?cccoiiiiiiiiiiiiiiii 65
System reqUIremMentsccoooiiiiiiiiiiiiiiiiii 65
Installing the DIOKETc.oiiiiiiiiiiiiiiii e e 65
Running the DIOKETooiiiiiiiiiiiiii e 66
Enabling SSL SUPPOILuuuiuiiiiiiiiiiiiiiiiiiiiiieieieieie ettt aeaeeeeeaes 66
Broker informationcccccooviiiiiiiiiiiiii 67
Broker and Protectionseuuuuieimiiimiiiiiiiiii e 67
PABroker OPtioNSooooiiiiiiiiiiiii 69
Configuring the DIOKETiiiiiiiiiiiiiiiiic e 70
Format of broker configuration filesccccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeees 70
SPECIfYING NOSES ...eeeiiiiiiiiiiiiie e 70
GlODAl SELHINESvveeieiiiiiiiiiie e 71
Command handler SpecifiCationscuueierriiiieiiiiiiee e 73
Regular eXpreSsion SYNOPSISuuuuuummmmmmmmmiiiiiiiiiiiiiiiiiiiiiiiiiieeee e 75
FAlter PrOGIAIMSeuiiiiiiiiiiiiiiiiiieieiiie ettt 76
Alternate server definitionsccccoiiviiiii 78
Configuring alternate servers to work with central authorization servers 79
Using the broker as a load-balancing roUtercccceoviiiiiiiiiiiieiiiiieeeeiee e 79
Configuring the broker as @ TOULETcooiiiiiiiiiiiiiiiiiiic e 79
Routing policy and Dehaviorccciiiiiiiiiiiiiiiiiciiiic e 80
Chapter5 PEITOICE PTOXY ...vvucrverieesieesreesisssesssess s sessssss s sssssssssssssssssssssssssssssssssssssssnsens 83
System reqUIremMentscccooiiiiiiiiiiiiiiiii 83

Helix Versioning Engine Administrator Guide: Multi-site Deployment v

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Installing PAP ... 83
UNIX e 84
WINAOWS .oviiiiiiiiiii 84

RUNNINgG PAP ...ooooiiiiiiii 84
Running P4P as a Windows Servicecccoo 84

PAP OPLIONS ...t 85

Administering PAP ... 87
No backups required ... 87
SOpPINg PAPoooiiiiiiiiiii 87
Upgrading PAPcoooiiiiiiiii 88
Enabling SSL SUPPOILuuuiiiiiiiiiiiiiiiiiiiiiiiieieieieie ettt aeeeeeaeeeeeaes 88
Defending from man-in-the-middle attacksccccoeviiiiiiiiiiiiiiice 88
Localizing PAPcoooiiiiiiiiiiiiiiii 88
Managing disk space CONSUMPLIONuuuummmimmmimiiiiiiiiiiiiiiiiiiiiiieeeeeee e 88
Determining if your Perforce applications are using the proxycccoccceeerniiiiennnnn 89
P4P and protections ... 89
Determining if specific files are being delivered from the proxycccccccceevviiiiennnnnen. 90
Case-sensitivity issues and the ProXycccccceeriiiiiiiiiiiiiiiiiieec e 91

Maximizing performance improvementccoeeiiiiiiiiiiiiiiiiiiee s 91
Reducing server CPU usage by disabling file compressionccccccevveveviieieneeeeennnns 91
Network topologies versus PAP ..o 91
Preloading the cache directory for optimal initial performancecccccceeeeriinieennnnne. 92
Distributing disk space cONSUMPLIONuuiuiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeee e 93

Perforce Server (p4d) RETEIENCEcvucvvrveerreeeeeieesee sttt sees bbb assaes 95

SYINOPSIS ..eiiiiiiiiiiiiii i e 95

SYIEAX Leviiiiiii e 95

DeSCIIPLION .vvvviiiiiiiiiiiiii e 95

EXAt STAtUS e 95

OPHIONS ittt e 95

USAZE NOES ...ueniiiiiiiiiii e 100

Related Commandscceeoiiiiiiiiiiiiiiiiii i 101

LICENSE STALEMENTS .ovvvvvvvvrerrirnrrittssiss sttt sss st sas s sassens 103

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Preface

This book, Helix Versioning Engine Administrator Guide: Multi-Site Deployment (previously titled
Distributing Perforce), is a guide intended for administrators responsible for installing, configuring,
and maintaining multiple interconnected or replicated Perforce services. Administrators of sites
that require only one instance of the Perforce service will likely find the Helix Versioning Engine
Administrator Guide: Fundamentals sufficient.

This guide assumes familiarity with the material in the Helix Versioning Engine Administrator Guide:

Fundamentals.

About this manual

This manual includes the following chapters:

Chapter

Contents

Chapter 1, “Introduction
to Federated
Services” on page 1

Describes the different types of Perforce servers and explains
how you combine these to solve usability and performance

issues. In addition, this chapter discusses the issues that affect
service federation independently of the particular type of service
used: issues like user authentication and communication among
federated services. Subsequent chapters in this book describe each
type of service in detail.

Chapter 2, “Perforce
Replication” on page 11

Chapter 3, “Commit-edge
Architecture” on page 45

Explains how you work with server replicates to provide warm
standby servers, to reduce load and downtime on the primary
server, to provide support for build farms, or to forward write
requests to a central server.

Describes commit-edge architecture, which addresses the needs
of geographically distributed work groups and offers significant
performance advantages. Explains how you set up a commit-
edge configuration, how you migrate from an existing installation,
how you manage this configuration, how you use commit/edge
triggers, and how you plan for disaster recovery.

Chapter 4, “The Perforce
Broker” on page 65

Explains how yo use the Perforce broker to implement local
policies in your Perforce environment by redirecting server
requests and by mediating between the client and other servers in
your federated environment. Provides information about how you
install, configure, and run the broker.

Chapter 5, “Perforce
Proxy” on page 83

Explains how you use a Perforce proxy to improve performance
in a federated environment. Describes how you install and
configure the proxy and how you use it to maximize performance.

Perforce Server (p4d)
Reference on page 95

Provides reference information about the syntax and options of
the p4d command used to create and configure a Perforce server.

Helix Versioning Engine Administrator Guide: Multi-site Deployment vii

http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html

Preface

What's new in this guide for the 2016.1 update

This section provides a list of changes to this guide for the Perforce Server 2016.1 update release. For a
list of all new functionality and major bug fixes in Perforce Server 2016.1, see the Perforce Server 2016.1

Release Notes.

Major changes

New -c option to p4 server
command provides a short
cut to configuring an edge or
commit server

Updates and corrections

Setting P4AUTH for a replica
Clarification of remote user

Clarification about state file

Staggering checkpoints

Clarification of broker
REDIRECT action

You can specify more than one
value for debug level

See “Shortcuts to configuring the server” on page 50 for more
information.

You must use the p4 configure set command to set P4AUTH for a
replica.

There is no remote type user; there is a special user named remote
that is used to define protections for a remote depot.

Upon restart, the replica reads the state file and picks up where it
left off; do not alter this file or its contents.

When the state file is written, a temporary file is used and moved
into place, which should preserve the existing state file if something
goes wrong when updating it. If the state file should be empty or
missing, the replica server will refetch from the start of its last used
journal position.

For commit servers with no local users, edge servers could take
significantly longer to checkpoint than the commit server. You
might want to use a different checkpoint schedule for edge servers
than commit servers. If you use several edge servers for one commit
server, you should stagger the edge-checkpoints so they do not

all occur at once and bring the system to a stop. Journal rotations
for edge servers could be scheduled at the same time as journal
rotations for commit servers.

This redirects the command to a different (alternate) replica server.
An altserver is required. A message for the user is optional. To
implement this action, the broker makes a new connection to the
alternate server and routes all messages from the client to the
alternate server rather than to the original server. This is unlike
HTTP redirection where the client is requested to make its own
direct connection to an alternate web server

For more information, see “Global settings” on page 71.

viii

Helix Versioning Engine Administrator Guide: Multi-site Deployment

http://www.perforce.com/perforce/r16.1/user/relnotes.txt
http://www.perforce.com/perforce/r16.1/user/relnotes.txt

Preface

Helix documentation

The following table lists and describes key documents for Helix users, developers, and administrators.
For complete information see the following:

http:/ /www.perforce.com /documentation

For specific information about... See this documentation...

Introduction to version control concepts Introducing Helix
and workflows; Helix architecture, and
related products.

Using the command-line interface to Helix Versioning Engine User Guide
perform software version management,

working with Helix streams, jobs,

reporting, scripting, and more.

Basic workflows using the P4V, the cross- P4V User Guide
platform Helix desktop client.

Working with personal and shared Using Helix for Distributed Versioning
servers and understanding the distributed
versioning features of the Helix Versioning

engine.

p4 command line (reference). P4 Command Reference, p4 help

Installing and administering the Helix Helix Versioning Engine Administrator Guide:
versioning engine, including user Fundamentals

management, and security settings.

Installing and configuring Helix servers Helix Versioning Engine Administrator Guide: Multi-site
(proxies, replicas, and edge servers) in a Deployment
distributed environment.

Helix plug-ins and integrations. IDEs: Using IDE Plug-ins

Defect trackers: Defect Tracking Gateway Guide

Others: online help from the Perforce menu or web site

Developing custom Helix applications C/C++ API User Guide
using the Helix C/C++ APIL.

Working with Helix in Ruby, Perl, Python, APIs for Scripting
and PHP.

Syntax conventions

Helix documentation uses the following syntax conventions to describe command line syntax.

Helix Versioning Engine Administrator Guide: Multi-site Deployment ix

http://www.perforce.com/documentation
http://www.perforce.com/perforce/r16.1/manuals/intro/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4guide/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4v/index.html
http://www.perforce.com/perforce/r16.1/manuals/dvcs/index.html
http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4dist/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4dist/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4plugins/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4dtg/index.html
http://www.perforce.com/
http://www.perforce.com/perforce/r16.1/manuals/p4api/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4script/index.html

Preface

Notation Meaning

literal Monospace font indicates a word or other notation that must be used in
the command exactly as shown.

italics Italics indicate a parameter for which you must supply specific
information. For example, for a serverid parameter, you must supply the
id of the server.

[-f] Square brackets indicate that the enclosed elements are optional. Omit the
brackets when you compose the command.

Elements that are not bracketed are required.

Ellipses (...) indicate that the preceding element can be repeated as often
as needed.

element1 | element2 A vertical bar (|) indicates that either element1 or element2 is required.

Please give us feedback

We are interested in receiving opinions on this manual from our users. In particular, we'd like to hear
from users who have never used Perforce before. Does this guide teach the topic well? Please let us
know what you think; we can be reached at manual@perforce.com.

If you need assistance, or wish to provide feedback about any of our products, contact
support@perforce.com.

x Helix Versioning Engine Administrator Guide: Multi-site Deployment

mailto:manual@perforce.com
mailto:support@perforce.com

Chapter 1 Introduction to Federated Services

Perforce federated architecture aims to make simple tasks easy and complex tasks possible; it allows
you to start simply and to grow incrementally in response to the evolving needs of your business.

This chapter describes the different types of Perforce servers and explains how you combine these to
solve usability and performance issues. In addition, this chapter discusses the issues that affect service
federation independently of the particular type of service used, issues like user authentication and
communication among federated services. Subsequent chapters in this book describe each type of
service in detail.

To make best use of the material presented in this book, you should be familiar with the Helix
Versioning Engine Administrator Guide: Fundamentals.

Overview

Helix Versioning Engine Administrator Guide: Fundamentals explains how you create, configure, and
maintain a single Perforce Server. For most situations, a single server that is accessible to all users can
take care of their needs with no problems. However, as business grows and usage expands, you might
find yourself needing to deploy a more powerful server-side infrastructure. You can do so using three
different types of Perforce services:

* Proxy

Where bandwidth to remote sites is limited, you can use a Perforce proxy to improve performance
by mediating between Perforce clients and the versioning service. Proxies cache frequently
transmitted file revisions. By intercepting requests for cached revisions, the proxy reduces demand
on the server and keeps network traffic to a minimum.

The work needed to install and configure a proxy is minimal: the administrator needs to configure a
proxy on the side of the network close to the users, configure the users to access the service through
the proxy, and then configure the proxy to access the Perforce versioning service. You do not need to
backup the proxy cache directory: in case of failure, the proxy can reconstruct the cache based on the
Perforce server metadata. For complete information about using proxies, see Chapter 5, “Perforce
Proxy” on page 83.

e Broker

A Perforce broker mediates between clients and server processes (including proxies) to implement
policies in your federated environment. Such policies might direct specific commands to specific
servers or they might restrict the commands that can be executed. You can use a broker to solve
load-balancing, security, or other issues that can be resolved by sorting requests directed to one or
more Perforce servers.

The work needed to install and configure a broker is minimal: the administrator needs to configure
the broker and configure the users to access the Perforce server through the broker. Broker
configuration involves the use of a configuration file that contains rules for specifying which
commands individual users can execute and how commands are to be redirected to the appropriate
Perforce service. You do not need to backup the broker. In case of failure, you just need to restart it
and make sure that its configuration file has not been corrupted. For complete information about
using the broker, see Chapter 4, “The Perforce Broker” on page 65.

® Replica

Helix Versioning Engine Administrator Guide: Multi-site Deployment 1

http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html

Chapter 1. Introduction to Federated Services

A replica duplicates server data; it is one of the most versatile elements in a federated architecture.
You can use it to provide a warm standby server, to reduce load and downtime on a primary
server, to support build farms, or to forward requests to a central server. This latter use case, of
the forwarding replica, can be implemented using a commit-edge architecture, which improves
performance and addresses the problem of remote access.

The amount of administrative work needed for installing, configuring, and managing replicates
varies with the type of replicate used. For information about the handling of different replicate
types, see Chapter 2, “Perforce Replication” on page 11. For information about commit-edge
deployments, see Chapter 3, “Commit-edge Architecture” on page 45.

In addition to these three types of servers, to simplify administrative work, a federated architecture
might also include servers dedicated to centralized authorization and changelist numbering. For more
information, see “Configuring centralized authorization and changelist servers” on page 6. The

next section explains how you might combine these types to address various user needs.

User scenarios

Which types of servers you use and how you combine them varies with your needs. The following
discussion examines what servers you'd choose to support high availability, geographical distribution,
build automation, scalability, and governance.

Availability

As users become more dependent on a Perforce server, you might want to minimize server downtime.
By deploying additional replicas and brokers, you can set up online checkpoints so that users can
continue work while you make regular backups. This more sophisticated infrastructure also allows
you to perform regular maintenance using p4 verify or p4 dbverify without server downtime. You
can re-route requests targeted for one machine to another during routine system maintenance or
operating system upgrades.

Should your primary server fail, this server infrastructure allows you to fail over to a standby machine
with minimal downtime. If the backup server is deployed to a different machine, this architecture can
also be used for disaster recovery. Replica types best suited for failover and disaster recovery are read-
only replicas and forwarding replicas.

Remote offices

As your organization grows and users are added in remote offices, you need to provide remote users
with optimal performance when they access the Perforce server.

The primary challenge to performance in a geographically distributed environment is network latency
and bandwidth limitations. You can address both issues using Perforce proxies and replicas. These
reduce network traffic by caching file content and metadata in the remote office and by servicing
requests locally whenever possible. Up to 98% of user requests can be handled by the servers in the
remote office.

You can also configure brokers to re-route requests in cases of outage and to assist in managing off-
hour requests that occur with a global workforce.

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 1. Introduction to Federated Services

Build/test automation

With the increasing use of build and test automation, it is important to deploy a server architecture
that addresses the growing workload. Automated build and test tools can impose a massive workload
on the storage and networking subsystems of your Perforce server. This workload includes agile
processes and continuous delivery workflows, reporting tools that run frequent complex queries,
project management tools that need close integration with server data, code search tools, static analysis
tools, and release engineering tools that perform automated branch integrations and merges.

To improve user experience, you need to shift this growing workload to dedicated replica servers
and relieve your master server of those tasks, enabling it to concentrate on servicing interactive user
requests.

Scalability

As your organization grows, you need to grow your infrastructure to meet its needs.

* The use of advanced software engineering tools will benefit from having additional server-side
resources. Deploying Perforce proxies, replicas, and brokers allows you to add additional hardware
resources and enables you to target each class of request to an appropriately-provisioned server,
using your highest-performance infrastructure for your most critical workloads while redirecting
lower-priority work to spare or under-utilized machines.

¢ As the number of users and offices grows you can plan ahead by provisioning additional equipment.
You can deploy Perforce proxies, replicas, and brokers to spread your workload across multiple
machines, offload network and storage usage from your primary data center to alternate data
centers, and support automation workloads by being able to add capacity.

Policy-based governance

As usage grows in size and sophistication, you might want to establish and maintain policies and
procedures that lead to good governance.

For example, you might want to use repository naming conventions to make sure that your repository
remains well organized and easy to navigate. In addition you might find that custom workflows, such
as a change review process or a release delivery process, are best supported by close integration with
your version control infrastructure.

You can use brokers in your federated deployment to filter requests, enforce policy, and re-route
commands to alternate destinations. This provides a powerful infrastructure for enforcing your
organization's policies. Deploying trigger scripts in your servers instances enables additional
integration with other software development and management tools.

Setting up federated services

This section describes some of the issues that administration must address in setting up a federated
environment.

General guidelines

Following these guidelines will simplify the administration and maintenance of federated
environments:

Helix Versioning Engine Administrator Guide: Multi-site Deployment 3

Chapter 1. Introduction to Federated Services

e Every server should be assigned a server ID; it is best if the serverID is the same as the server name.
Use the p4 server command to identify each server in your network.

e Every server should have an assigned (and preferably unique) service user name. This simplifies the
reading of logs and provides authentication and audit trails for inter-server communication. Assign
service users strong passwords. Use the p4 server command to assign a service user name.

e Enable structured logging on all your services. Doing so can greatly simplify debugging and
analysis, and is also required in order to use the p4 journaldbchecksums command to verify the

integrity of a replica.

» Configure each server to reject operations that reduce its disk space below the limits defined by that
service's filesys.*.min configurables.

* Monitor the integrity of your replicas by using the integrity.csv structured server log and the p4
journaldbchecksums command. See “Verifying replica integrity” on page 40 for details.

Authenticating users

Users must have a ticket for each server they access in a federated environment. The best way to
handle this requirement is to set up a single login to the master, which is then valid across all replica
instances. This is particularly useful with failover configurations, when you would otherwise have to
re-login to the new master server.

You can set up single-sign-on authentication using two configurables:
* Set auth.id to the same value for all servers participating in a distributed configuration.
e Enable rpl.forward.login (set to 1) for each replica participating in a distributed configuration.

There might be a slight lag while you wait for each instance to replicate the db.user record from the
target server.

Connecting services

Services working together in a federated environment must be able to authenticate and trust one
another.

* When using SSL to securely link servers, brokers, and proxies together, each link in the chain must
trust the upstream link.

e It is best practice (and mandatory at security level 4) to use ticket-based authentication instead of
password-based authentication. This means that each service user for each server in the chain must
also have a valid login ticket for the upstream link in the chain.

Managing trust between services
The user that owns the server, broker, or proxy process is typically a service user. As the administrator,

you must create a P4TRUST file on behalf of the service user by using the p4 trust command) that
recognizes the fingerprint of the upstream Perforce service.

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 1. Introduction to Federated Services

By default, a user's P4TRUST file resides in their home directory as .p4trust. Ensure that the P4TRUST
variable is correctly set so that when the user (often a script or other automation tool) that actually
invokes the p4d, p4p, or pgbroker executable is able to read filename to which P4TRUST points in the
invoking user's environment.

Further information is available in the Helix Versioning Engine Administrator Guide: Fundamentals.

Managing tickets between services

When linking servers, brokers, and proxies together, each service user must be a valid service user at
the upstream link, and it must be able to authenticate with a valid login ticket. Follow these steps to set
up service authentication:

1. On the upstream server, use p4 user to create a user of type service, and p4 group to assign it to a
group that has a long or unlimited timeout.

Use p4 passwd to assign the service user a strong password.

2. On the downstream server, use p4 login to log in to the master server as the newly-created service
user, and to create a login ticket for the service user that exists on the downstream server.

3. Ensure that the P4TICKET variable is correctly set when the user (often a script or other automation
tool) that actually invokes the downstream service, does so, so that the downstream service can
correctly read the ticket file and authenticate itself as the service user to the upstream service.

Managing SSL key pairs

When configured to accept SSL connections, all server processes (p4d, pap, pabroker), require a valid
certificate and key pair on startup.

The process for creating a key pair is the same as it is for any other server: set P4SSLDIR to a
valid directory with valid permissions, and use the following commands to generate pairs of
privatekey.txt and certificate.txt files, and make a record of the key's fingerprint.

* Server: use p4d -Gc to create the key/ certificate pair and p4d -Gf to display its fingerprint.

* Broker: use pgbroker -Gc to create the key/ certificate pair and p4broker -Gf to display its
fingerprint.

* Proxy: use pdp -Gc to create the key/ certificate pair and p4p -Gf to display its fingerprint.

You can also supply your own private key and certificate. Further information is available in the Helix
Versioning Engine Administrator Guide: Fundamentals.

Backing up and upgrading services

Backing up and upgrading services in a federated environment involve special considerations. This
section describes the issues that you must resolve in this environment.

Backing up services

How you backup federated services depends upon the service type:

Helix Versioning Engine Administrator Guide: Multi-site Deployment 5

http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html

Chapter 1. Introduction to Federated Services

* Server

Follow the backup procedures described in the Helix Versioning Engine Administrator Guide:
Fundamentals. If you are using an edge-commit architecture, both the commit server and the edge

servers must be backed up. Use the instructions given in “Backup and high availability / disaster

recovery (HA/DR) planning” on page 61.

Backup requirements for replicas that are not edge servers vary depending on your site's
requirements.

e Broker: the broker stores no data locally; you must backup its configuration file manually.

* Proxy: the proxy requires no backups and, if files are missing, automatically rebuilds its cache of
data. The proxy contains no logic to detect when diskspace is running low. Periodically monitor
your proxy to ensure it has sufficient diskspace for continued operation.

Upgrading services

Servers, brokers, and proxies must be at the same release level in a federated environment. When
upgrading use a process like the following:

1. Shut down the furthest-upstream service or commit server and permit the system to quiesce.

2. Upgrade downstream services first, starting with the replica that is furthest downstream, working
upstream towards the master or commit server.

3. Keep downstream services stopped until the server immediately upstream has been upgraded.

Configuring centralized authorization and changelist servers

There are cases where rather than using federated services you want to use a collection of servers that
have a shared user base. In this situation, you probably want to use specialized servers to simplify user
authentication and to guarantee unique change list numbers across the organization. The following
subsections explain how you create and use these servers: P4AUTH for centralized authentication and
P4CHANGE to generate unique changelist numbers.

Centralized authorization server (P4AUTH)

If you are running multiple Perforce servers, you can configure them to retrieve protections and
licensing data from a centralized authorization server. By using a centralized server, you are freed from
the necessity of ensuring that all your servers contain the same users and protections entries.

Note When using a centralized authentication server, all outer servers must be at the
same (or newer) release level as the central server.

If a user does not exist on the central authorization server, that user does not appear to exist on the
outer server. If a user exists on both the central authorization server and the outer server, the most
permissive protections of the two lines of the protections table are assigned to the user.

You can use any existing Perforce Server in your organization as your central authorization server.
The license file for the central authorization server must be valid, as it governs the number of licensed

6 Helix Versioning Engine Administrator Guide: Multi-site Deployment

http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html

Chapter 1. Introduction to Federated Services

users that are permitted to exist on outer servers. To configure a Perforce Server to use a central
authorization server, set P4AUTH before starting the server, or specify it on the command line when you
start the server.

If your server is making use of a centralized authorization server, the following line will appear in the
output of p4 info:

Authorization Server: [protocol:]host:port

Where [protocol: Jhost:port refers to the protocol, host, and port number of the central authorization
server. See “Specifying hosts” on page 70.

In the following example, an outer server (named server2) is configured to use a central authorization
server (named central). The outer server listens for user requests on port 1999 and relies on the central
server's data for user, group, protection, review, and licensing information. It also joins the protection
table from the server at central:1666 to its own protections table.

For example:

$ pad -In server2 -a central:1666 -p 1999

‘ Note I On Windows, configure the outer server with p4 set -S as follows:

C:\> p4 set -S "Outer Server" P4NAME=server2
C:\> p4 set -S "Outer Server" P4AUTH=central:1666
C:\> p4 set -S "Outer Server" P4PORT=1999

When you configure a central authorization server, outer servers forward the following commands to
the central server for processing;:

Command Forwardedto Notes
auth server?

p4 group Yes Local group data is derived from the central server.
p4 groups Yes Local group data is derived from the central server.
p4 license Yes License limits are derived from the central server. License updates

are forwarded to the central server.

p4 passwd Yes Password settings are stored on, and must meet the security level
requirements of, the central server.

p4 review No Service user (or remote) must have access to the central server.

p4 reviews No Service user (or remote) must have access to the central server.

Helix Versioning Engine Administrator Guide: Multi-site Deployment 7

Chapter 1. Introduction to Federated Services

Command Forwardedto Notes
auth server?

p4 user Yes Local user data is derived from the central server.

p4 users Yes Local user data is derived from the central server.

p4 protect No The local server's protections table is displayed if the user is
authorized (as defined by the combined protection tables) to edit
it.

p4 protects Yes Protections are derived from the central server's protection table

as appended to the outer server's protection table.

p4 login Yes Command is forwarded to the central server for ticket generation.
p4 logout Yes Command is forwarded to the central server for ticket
invalidation.
Limitations and notes

o All servers that use P4AUTH must have the same Unicode setting as the central authorization server.

e Setting P4AUTH by means of a p4 configure set P4AUTH=[protocol:]server:port command requires
a restart of the outer server.

If you need to set P4AUTH for a replica, use the following syntax:
p4 configure set ServerName#P4AUTH=[protocol:]server:port
e If you have set P4AUTH, no warning will be given if you delete a user who has an open file or client.

e To ensure that p4 review and p4 reviews work correctly, you must enable remote depot access for
the service user (or, if no service user is specified, for a user named remote) on the central server.

Note: There is no remote type user; there is a special user named remote that is used to define
protections for a remote depot.

* To ensure that the authentication server correctly distinguishes forwarded commands from
commands issued by trusted, directly-connected users, you must define any IP-based protection
entries in the Perforce service by prepending the string "proxy-" to the [protocol:host definition.

e Protections for non-forwarded commands are enforced by the outer server and use the plain client
IP address, even if the protections are derived from lines in the central server's protections table.

Centralized changelist server (P4CHANGE)

By default, Perforce servers do not coordinate the numbering of changelists. Each Perforce Server
numbers its changelists independently. If you are running multiple servers, you can configure your
servers to refer to a centralized changelist server from which to obtain changelist numbers. Doing so
ensures that changelist numbers are unique across your organization, regardless of the server to which
they are submitted.

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 1. Introduction to Federated Services

‘ Note I When using a centralized changelist server, all outer servers must be at the same (or
I newer) release level as the central server.

To configure a Perforce Server to use a central changelist server, set PACHANGE before starting the
second server, or specify it on the p4d command line with the -g option:

$ pad -In server2 -g central:1666 -p 1999

‘ Note I On Windows, configure the outer server with p4 set -S as follows:

C:\> p4 set -S "Outer Server" P4NAME=server2
C:\> p4 set -S "Outer Server" P4CHANGE=central:1666
C:\> p4 set -S "Outer Server" P4PORT=1999

In this example, the outer server (named server2) is configured to use a central changelist server
(named central). Whenever a user of the outer server must assign a changelist number (that is, when a
user creates a pending changelist or submits one), the central server's next available changelist number
is used instead.

There is no limit on the number of servers that can refer to a central changelist server. This
configuration has no effect on the output of the p4 changes command; p4 changes lists only
changelists from the currently connected server, regardless of whether it generates its own changelist
numbers or relies on a central server.

If your server is making use of a centralized changelist server, the following line will appear in the
output of p4 info:

Changelist Server: [protocol:]host:port

Where [protocol:]host:port refers to the protocol, host, and port number of the central changelist
server.

Verifying shelved files

The verification of shelved files lets you know whether your shelved archives have been lost or
damaged.

If a shelf is local to a specific edge server, you must issue the p4 verify -S command on the edge
server where the shelf was created. If the shelf was promoted, run the p4 verify -S on the commit
server.

You may also run the p4 verify -S t command on a replica to request re-transfer of a shelved archive
that is missing or bad. Re-transferring a shelved archive from the master only works for shelved
archives that are present on the master; that is, for a shelf that was originally created on the master or
that was promoted if it was created on an edge server.

Helix Versioning Engine Administrator Guide: Multi-site Deployment 9

10

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 2 Perforce Replication

What is replication?

Replication is the duplication of server data from one Perforce Server to another Perforce Server,
ideally in real time. You can use replication to:

¢ Provide warm standby servers

A replica server can function as an up-to-date warm standby system, to be used if the master server
fails. Such a replica server requires that both server metadata and versioned files are replicated.

* Reduce load and downtime on a primary server

Long-running queries and reports, builds, and checkpoints can be run against a replica server,
reducing lock contention. For checkpoints and some reporting tasks, only metadata needs to be
replicated. For reporting and builds, replica servers need access to both metadata and versioned
files.

¢ Provide support for build farms

A replica with a local (non-replicated) storage for client workspaces (and their respective have lists)
is capable of running as a build farm.

* Forward write requests to a central server

A forwarding replica holds a readable cache of both versioned files and metadata, and forwards
commands that write metadata or file content towards a central server.

Combined with a centralized authorization server (see “Centralized authorization server

(P4AUTH)” on page 6), Perforce administrators can configure the Perforce Broker (see Chapter 4, “The
Perforce Broker” on page 65) to redirect commands to replica servers to balance load efficiently

across an arbitrary number of replica servers.

‘ Note I Most replica configurations are intended for reading of data. If you require
read / write access to a remote server, use either a forwarding replica, a
distributed Perforce service, or the Perforce Proxy. See “Configuring a forwarding
replica” on page 31, Chapter 3, “Commit-edge Architecture” on page 45
and Chapter 5, “Perforce Proxy” on page 83 for details.

System requirements

® As a general rule, All replica servers must be at the same release level or at a release later as the master
server. Any functionality that requires an upgrade for the master requires an upgrade for the replica,
and vice versa.

e All replica servers must have the same Unicode setting as the master server.

¢ All replica servers must be hosted on a filesystem with the same case-sensitivity behavior as the
master server's filesystem.

Helix Versioning Engine Administrator Guide: Multi-site Deployment 11

Chapter 2. Perforce Replication

* p4 pull (when replicating metadata) does not read compressed journals. The master server must not
compress journals until the replica server has fetched all journal records from older journals. Only
one metadata-updating p4 pull thread may be active at one time.

e The replica server does not need a duplicate license file.

* The master and replica servers must have the same time zone setting.

Note On Windows, the time zone setting is system-wide.

On UNIX, the time zone setting is controlled by the TZ environment variable at
the time the replica server is started.

Replication basics

Replication of Perforce servers depends upon several commands and configurables:

Command or Feature Typical use case

p4 pull A command that can replicate both metadata and versioned files, and
report diagnostic information about pending content transfers.

A replica server can run multiple p4 pull commands against the same
master server. To replicate both metadata and file contents, you must run
two p4 pull threads simultaneously: one (and only one) p4 pull (without
the -u option) thread to replicate the master server's metadata, and one (or
more) p4 pull -u threads to replicate updates to the server's versioned
files.

p4 configure A configuration mechanism that supports multiple servers.

Because p4 configure stores its data on the master server, all replica
servers automatically pick up any changes you make.

p4 server A configuration mechanism that defines a server in terms of its offered
services. In order to be effective, the ServerID: field in the p4 server form
must correspond with the server's server.id file as defined by the p4
serverid command.

p4 serverid A command to set or display the unique identifier for a Perforce Server.
On startup, a server takes its ID from the contents of a server.id file in
its root directory and examines the corresponding spec defined by the p4
server command.

p4 verify -t Causes the replica to schedule a transfer of the contents of any damaged or
missing revisions.

The command reports BAD! or MISSING! files with (transfer scheduled) at
the end of the line.

12 Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 2. Perforce Replication

Command or Feature

Typical use case

For the transfer to work on a replica with 1br.replication=cache, the
replica should have one or more p4 pull -u threads configured (perhaps
also using the --batch=N flag.)

Server names

P4ANAME
pad -In name

Perforce Servers can be identified and configured by name.

When you use p4 configure on your master server, you can specify
different sets of configurables for each named server. Each named
server, upon startup, refers to its own set of configurables, and ignores
configurables set for other servers.

Service users

pad -u svcuser

A new type of user intended for authentication of server-to-server
communications. Service users have extremely limited access to the depot
and do not consume Perforce licenses.

To make logs easier to read, create one service user on your master server
for each replica or proxy in your network of Perforce Servers.

Metadata access

pad -M readonly
db.replication

Replica servers can be configured to automatically reject user commands
that attempt to modify metadata (db.* files).

In -M readonly mode, the Perforce Server denies any command that
attempts to write to server metadata. In this mode, a command such as
p4 sync (which updates the server's have list) is rejected, but p4 sync -
p (which populates a client workspace without updating the server's have
list) is accepted.

Metadata filtering

Replica servers can be configured to filter in (or out) data on client
workspaces and file revisions.

You can use the -P serverId option with the p4d command to create a
filtered checkpoint based on a serverld.

You can use the -T tableexcludelist option with p4 pull to explicitly
filter out updates to entire database tables.

Using the ClientDataFilter:, RevisionDataFilter:, and
ArchiveDataFilter: fields of the p4 server form can provide you with
far more fine-grained control over what data is replicated. Use the -P
serverid option with p4 pull, and specify the Name: of the server whose
p4 server spec holds the desired set of filter patterns.

Depot file access

pad -D readonly
pad -D shared
pad -D ondemand
pad -D cache
pad -D none

Replica servers can be configured to automatically reject user commands
that attempt to modify archived depot files (the "library").

e In -D readonly mode, the Perforce Server accepts commands that read
depot files, but denies commands that write to them. In this mode,
p4 describe can display the diffs associated with a changelist, but p4
submit is rejected.

Helix Versioning Engine Administrator Guide: Multi-site Deployment

13

Chapter 2. Perforce Replication

Command or Feature

Typical use case

lbr.replication

* In -D ondemand mode, or -D shared mode (the two are synonymous)
the Perforce server accepts commands that read metadata, but does not
transfer new files nor remove purged files from the master. (p4 pull
-u and p4 verify -t, which would otherwise transfer archive files,
are disabled.) If a file is not present in the archives, commands that
reference that file will fail.

This mode must be used when a replica directly shares the same
physical archives as the target, whether by running on the same machine
or via network sharing. This mode can also be used when an external
archive synchronization technique, such as rsync is used for archives.

e In -D cache mode, the Perforce Server permits commands that reference
file content, but does not automatically transfer new files. Files that are
purged from the target are removed from the replica when the purge
operation is replicated. If a file is not present in the archives, the replica
will retrieve it from the target server.

* In -D none mode, the Perforce Server denies any command that accesses
the versioned files that make up the depot. In this mode, a command
such as p4 describe changenum is rejected because the diffs displayed
with a changelist require access to the versioned files, but p4 describe -
s changenum (which describes a changelist without referring to the depot
files in order to generate a set of diffs) is accepted.

These options can also be set using 1br.replication.* configurables,
described in the "Configurables" appendix of the P4 Command Reference.

Target server

PATARGET

Startup commands

As with the Perforce Proxy, you can use P4TARGET to specify the master
server or another replica server to which a replica server points when
retrieving its data.

You can set PATARGET explicitly, or you can use p4 configure to set a
PATARGET for each named replica server.

A replica server with P4TARGET set must have both the -M and -D options,
or their equivalent db.replication and 1br.replication configurables,
correctly specified.

Use the startup.n (where n is an integer) configurable to automatically
spawn multiple p4 pull processes on startup.

startup.1

State file Replica servers track the most recent journal position in a small text file
that holds a byte offset. When you stop either the master server or a replica

statefile

server, the most recent journal position is recorded on the replica in the
state file.

Upon restart, the replica reads the state file and picks up where it left
off; do not alter this file or its contents. (When the state file is written, a

14

Helix Versioning Engine Administrator Guide: Multi-site Deployment

http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

Chapter 2. Perforce Replication

Command or Feature Typical use case

temporary file is used and moved into place, which should preserve the
existing state file if something goes wrong when updating it. If the state
file should be empty or missing, the replica server will refetch from the

start of its last used journal position.)

By default, the state file is named state and it resides in the replica
server's root directory. You can specify a different file name by setting the
statefile configurable.

P4Broker The Perforce Broker can be used for load balancing, command redirection,
and more. See Chapter 4, “The Perforce Broker” on page 65 for details.

‘ Warning I Replication requires uncompressed journals. Starting the master using the pad -
jc -z command breaks replication; use the -Z flag instead to prevent journals from
being compressed.

The p4 pull command

Perforce's p4 pull command provides the most general solution for replication. Use p4 pull to
configure a replica server that:

e replicates versioned files (the , v files that contain the deltas that are produced when new versions
are submitted) unidirectionally from a master server.

e replicates server metadata (the information contained in the db. * files) unidirectionally from a
master server.

e uses the startup.n configurable to automatically spawn as many p4 pull processes as required.

A common configuration for a warm standby server is one in which one (and only one) p4 pull
process is spawned to replicate the master server's metadata, and multiple p4 pull -u processes
are spawned to run in parallel, and continually update the replica's copy of the master server's
versioned files.

 The startup.n configurables are processed sequentially. Processing stops at the first gap in the
numerical sequence; any commands after a gap are ignored.

Although you can run p4 pull from the command line for testing and debugging purposes, it's most
useful when controlled by the startup.n configurables, and in conjunction with named servers, service
users, and centrally-managed configurations.

The --batch option to the p4 pull specifies the number of files a pull thread should process in a single
request. The default value of 1 is usually adequate. For high-latency configurations, a larger value
might improve archive transfer speed for large numbers of small files. (Use of this option requires that
both master and replica be at version 2015.2 or higher.)

Setting the rpl.compress configurable allows you to compress journal record data that is transmitted
using p4 pull.

Helix Versioning Engine Administrator Guide: Multi-site Deployment

15

Chapter 2. Perforce Replication

‘ Note I If you are running a replica with monitoring enabled and you have not configured
the monitor table to be disk-resident, you can run the following command to get
more precise information about what pull threads are doing. (Remember to set
monitor.lsof).

$ pa monitor show -sB -la -L

Command output would look like this:

31701 B uservice-edge3 00:07:24 pull sleeping 1000 ms
[server.locks/replica/49,d/pull(W)]

Server names and P4ANAME

To set a Perforce server name, set the PANAME environment variable or specify the -In command

line option to p4d when you start the server. Assigning names to servers is essential for configuring
replication. Assigning server names permits most of the server configuration data to be stored

in Perforce itself, as an alternative to using startup options or environment values to specify
configuration details. In replicated environments, named servers are a necessity, because p4 configure
settings are replicated from the master server along with other Perforce metadata.

For example, if you start your master server as follows:

$ pad -r /pa/master -In master -p master:11111

And your replica server as follows:

$ pad -r /pa/replica -In Replical -p replica:22222

You can use p4 configure on the master to control settings on both the master and the replica, because
configuration settings are part of a Perforce server's metadata and are replicated accordingly.

For example, if you issue following commands on the master server:

$ p4 -p master:11111 configure set master#monitor=2
$ p4 -p master:11111 configure set Replicai#monitor=1

After the configuration data has been replicated, the two servers have different server monitoring
levels. That is, if you run p4 monitor show against master:11111, you see both active and idle
processes, because for the server named master, the monitor configurable is set to 2. If you run p4
monitor show against replica:22222, only active processes are shown, because for the Replica1 server,
monitor is 1.

16

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 2. Perforce Replication

Because the master (and each replica) is likely to have its own journal and checkpoint, it is good
practice to use the journalPrefix configurable (for each named server) to ensure that their prefixes are
unique:

$ pa configure set master#journalPrefix=/master_checkpoints/master
$ pa configure set Replicai#journalPrefix=/replica_checkpoints/replica

For more information, see:

http:/ /answers.perforce.com/ articles / KB_Article/Master-and-Replica-Journal-Setup

Server IDs: the p4 server and p4 serverid commands

You can further define a set of services offered by a Perforce server by using the p4 server and p4
serverid commands. Configuring the following servers require the use of a server spec:

e Commit server: central server in a distributed installation

Edge server: node in a distributed installation

Build server: replica that supports build farm integration

Depot master: commit server with automated failover

Depot standby: standby replica of the depot master

Standby server: read-only replica that uses p4 journalcopy
¢ Forwarding standby: forwarding replica that uses p4 journalcopy

The p4 serverid command creates (or updates) a small text file named server.id. The server.id file
always resides in a server's root directory.

The p4 server command can be used to maintain a list of all servers known to your installation. It

can also be used to create a unique server ID that can be passed to the p4 serverid command, and to
define the services offered by any server that, upon startup, reads that server ID from a server.id file.
The p4 server command can also be used to set a server's name (P4ANAME).

Service users

There are three types of Perforce users: standard users, operator users, and service users. A standard
user is a traditional user of Perforce, an operator user is intended for human or automated system
administrators, and a service user is used for server-to-server authentication, as part of the replication
process.

Service users are useful for remote depots in single-server environments, but are required for multi-
server and distributed environments.

Create a service user for each master, replica, or proxy server that you control. Doing so greatly
simplifies the task of interpreting your server logs. Service users can also help you improve security,

Helix Versioning Engine Administrator Guide: Multi-site Deployment 17

http://answers.perforce.com/articles/KB_Article/Master-and-Replica-Journal-Setup

Chapter 2. Perforce Replication

by requiring that your edge servers and other replicas have valid login tickets before they can
communicate with the master or commit server. Service users do not consume Perforce licenses.

A service user can run only the following commands:
e p4 dbschema
* p4 export

* p4 login

p4 logout

* p4 passwd

* p4 info

® p4 user

To create a service user, run the command:
p4 user -f servicel

The standard user form is displayed. Enter a new line to set the new user's Type: to be service; for
example:

User: servicel

Email: services@example.com

FullName: Service User for Replica Server 1
Type: service

By default, the output of p4 users omits service users. To include service users, run p4 users -a.
Tickets and timeouts for service users

A newly-created service user that is not a member of any groups is subject to the default ticket timeout
of 12 hours. To avoid issues that arise when a service user's ticket ceases to be valid, create a group for
your service users that features an extremely long timeout, or to unlimited. On the master server, issue
the following command:

p4 group service_users

Add service1 to the list of Users: in the group, and set the Timeout: and PasswordTimeout: values to a
large value or to unlimited.

Group: service_users
Timeout: unlimited
PasswordTimeout: wunlimited
Subgroups:
Owners:
Users:

servicel

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 2. Perforce Replication

Important I Service users must have a ticket created with the p4 login for replication to work.

Permissions for service users

On the master server, use p4 protect to grant the service user super permission. Service users are
tightly restricted in the commands they can run, so granting them super permission is safe.

Server options to control metadata and depot access

When you start a replica that points to a master server with P4TARGET, you must specify both the -M
(metadata access) and a -D (depot access) options, or set the configurables db.replication (access to
metadata) and 1br.replication (access the depot's library of versioned files) to control which Perforce
commands are permitted or rejected by the replica server.

PATARGET

Set PATARGET to the the fully-qualified domain name or IP address of the master server from which a
replica server is to retrieve its data. You can set PATARGET explicitly, specify it on the p4d command line
with the -t protocol:host:port option, or you can use p4 configure to set a PATARGET for each named
replica server. See the table below for the available protocol options.

If you specify a target, p4d examines its configuration for startup.n commands: if no valid p4 pull
commands are found, p4d runs and waits for the user to manually start a p4 pull command. If
you omit a target, p4d assumes the existence of an external metadata replication source such as p4
replicate. See “p4 pull vs. p4 replicate” on page 20 for details.

Protocol Behavior

<not set> Use tcp4: behavior, but if the address is numeric and contains two or more colons,
assume tcp6:. If the net.rfc3484 configurable is set, allow the OS to determine
which transport is used.

tcp: Use tcp4: behavior, but if the address is numeric and contains two or more colons,
assume tcp6:. If the net.rfc3484 configurable is set, allow the OS to determine
which transport is used.

tcps: Listen on/connect to an IPv4 address/port only.

tcp6: Listen on/connect to an IPv6 address/ port only.

tcp46: Attempt to listen on/connect to an IPv4 address/ port. If this fails, try IPv6.

tcp64: Attempt to listen on/connect to an IPv6 address/ port. If this fails, try [Pv4.

ssl: Use ssl4: behavior, but if the address is numeric and contains two or more colons,

assume ss16:. If the net.rfc3484 configurable is set, allow the OS to determine
which transport is used.

ssl4: Listen on/connect to an IPv4 address/ port only, using SSL encryption.

Helix Versioning Engine Administrator Guide: Multi-site Deployment 19

Chapter 2. Perforce Replication

Protocol Behavior
ssl6: Listen on/connect to an IPv6 address/ port only, using SSL encryption.
ss146: Attempt to listen on/connect to an IPv4 address/ port. If this fails, try IPv6. After

connecting, require SSL encryption.

ss164: Attempt to listen on/connect to an IPv6 address/ port. If this fails, try IPv4. After
connecting, require SSL encryption.

PATARGET can be the hosts' hostname or its IP address; both IPv4 and IPv6 addresses are supported. For
the listen setting, you can use the * wildcard to refer to all IP addresses, but only when you are not
using CIDR notation.

If you use the * wildcard with an IPv6 address, you must enclose the entire IPv6 address in square
brackets. For example, [2001:db8:1:2:*] is equivalent to [2001:db8:1:2::]/64. Best practice is to use
CIDR notation, surround IPv6 addresses with square brackets, and to avoid the * wildcard.

Server startup commands

You can configure a Perforce Server to automatically run commands at startup using the p4 configure
as follows:

p4 configure set "servernametistaxrtup.n=command"

Where n represents the order in which the commands are executed: the command specified for
startup.1 runs first, then the command for startup.2, and so on. The only valid startup command is
p4 pull.

p4 pull vs. p4 replicate

Perforce also supports a more limited form of replication based on the p4 replicate command. This
command does not replicate file content, but supports filtering of metadata on a per-table basis.

For more information about p4 replicate, see "Perforce Metadata Replication" in the Perforce
Knowledge Base:

http:/ /answers.perforce.com/articles/KB_Article/Perforce-Metadata-Replication

Enabling SSL support

To encrypt the connection between a replica server and its end users, the replica must have its own
valid private key and certificate pair in the directory specified by its PASSLDIR environment variable.
Certificate and key generation and management for replica servers works the same as it does for the
(master) server. See “Enabling SSL support” on page 20. The users' Perforce applications must be
configured to trust the fingerprint of the replica server.

To encrypt the connection between a replica server and its master, the replica must be configured so
as to trust the fingerprint of the master server. That is, the user that runs the replica p4d (typically a

20

Helix Versioning Engine Administrator Guide: Multi-site Deployment

http://answers.perforce.com/articles/KB_Article/Perforce-Metadata-Replication

Chapter 2. Perforce Replication

service user) must create a PATRUST file (using p4 trust) that recognizes the fingerprint of the master
Perforce Server.

The P4TRUST variable specifies the path to the SSL trust file. You must set this environment variable in
the following cases:

e for a replica that needs to connect to an SSL-enabled master server, or

e for an edge server that needs to connect to an SSL-enabled commit server.

Uses for replication

Here are some situations in which replica servers can be useful.

e For a failover or warm standby server, replicate both server metadata and versioned files by running
two p4 pull commands in parallel. Each replica server requires one or more p4 pull -u instances to
replicate versioned files, and a single p4 pull to replicate the metadata.

If you are using p4 pull for both metadata and p4 pull -u for versioned files, start your replica
server with p4d -t protocol:host:port -Mreadonly -Dreadonly. Commands that require read-only
access to server metadata and to depot files will succeed. Commands that attempt to write to server
metadata and/or depot files will fail gracefully.

For a detailed example of this configuration, see “Configuring a read-only replica” on page 23.

e To configure an offline checkpointing or reporting server, only the master server's metadata needs to
be replicated; versioned files do not need to be replicated.

To use p4 pull for metadata-only replication, start the server with p4d -t protocol:host:port -
Mreadonly -Dnone. You must specify a target. Do not configure the server to spawn any p4 pull -u
commands that would replicate the depot files.

In either scenario, commands that require read-only access to server metadata will succeed and
commands that attempt to write to server metadata or attempt to access depot files will be blocked
by the replica server.

Replication and protections

To apply the IP address of a replica user's workstation against the protections table, prepend the string
proxy- to the workstation's IP address.

For instance, consider an organization with a remote development site with workstations on a subnet
of 192.168.10.0/24. The organization also has a central office where local development takes place;
the central office exists on the 10.0.0.0/8 subnet. A Perforce service resides in the 10.0.0.0/8 subnet,
and a replica resides in the 192.168.10.0/24 subnet. Users at the remote site belong to the group
remotedev, and occasionally visit the central office. Each subnet also has a corresponding set of IPv6
addresses.

To ensure that members of the remotedev group use the replica while working at the remote site, but
do not use the replica when visiting the local site, add the following lines to your protections table:

Helix Versioning Engine Administrator Guide: Multi-site Deployment 21

Chapter 2. Perforce Replication

list group remotedev 192.168.10.0/24 -/...
list group remotedev [2001:db8:16:81::]/48 -//...
write group remotedev proxy-192.168.10.0/24 Mooc
write group remotedev proxy-[2001:db8:16:81::1/48 //...
list group remotedev proxy-10.0.0.0/8 -//...
list group remotedev proxy-[2001:db8:1008::1/32 -//...
write group remotedev 10.0.0.0/8 /...
write group remotedev proxy-[2001:db8:1008::1/32 //...

The first line denies list access to all users in the remotedev group if they attempt to access Perforce
without using the replica from their workstations in the 192.168.10.0/24 subnet. The second line
denies access in identical fashion when access is attempted from the IPV6 [2001:db8:16:81::]/48
subnet.

The third line grants write access to all users in the remotedev group if they are using the replica
and are working from the 192.168.10.0/24 subnet. Users of workstations at the remote site must
use the replica. (The replica itself does not have to be in this subnet, for example, it could be at
192.168.20.0.) The fourth line grants access in identical fashion when access is attempted from the
IPV6 [2001:db8:16:81::]/48 subnet.

Similarly, the fifth and sixth lines deny list access to remotedev users when they attempt to use the
replica from workstations on the central office's subnets (10.0.0.0/8 and [2001:db8:1008: :]/32). The
seventh and eighth lines grant write access to remotedev users who access the Perforce server directly
from workstations on the central office's subnets. When visiting the local site, users from the remotedev
group must access the Perforce server directly.

When the Perforce service evaluates protections table entries, the dm.proxy.protects configurable is
also evaluated.

dm.proxy.protects defaults to 1, which causes the proxy- prefix to be prepended to all client host
addresses that connect via an intermediary (proxy, broker, replica, or edge server), indicating that the
connection is not direct.

Setting dm.proxy.protects to 0 removes the proxy- prefix and allows you to write a single set of
protection entries that apply both to directly-connected clients as well as to those that connect via an
intermediary. This is more convenient but less secure if it matters that a connection is made using an
intermediary. If you use this setting, all intermediaries must be at release 2012.1 or higher.

How replica types handle requests

One way of explaining the differences between replica types is to describe how each type handles user
requests; whether the server processes them locally, whether it forwards them, or whether it returns an
error. The following table describes these differences.

¢ Read only commands include p4 files, p4 filelog, p4 fstat, p4 user -o

o Work-in-progress commands include p4 sync, p4 edit, p4 add, p4 delete, p4 integrate, p4 resolve,
p4 revert, p4 diff, pa shelve, p4 unshelve, p4 submit, p4 reconcile.

o Global update commands include p4 user, p4 group, p4 branch, p4 label, p4 depot, p4 stream, p4
protect, p4 triggers, p4 typemap, p4 server, p4 configure, p4 counter.

22

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 2. Perforce Replication

Replica type Read-only p4 sync, p4 client Work-in-progress Global update
commands commands commands

Depot standby, Yes, local Error Error Error

standby, replica

Forwarding Yes, local Forward Forward Forward

standby,

forwarding

replica

Build server Yes, local Yes, local Error Error

Edge server, Yes, local Yes, local Yes, local Forward

workspace server

Standard server, Yes, local Yes, local Yes, local Yes, local
depot master,
commit server

Configuring a read-only replica

To support warm standby servers, a replica server requires an up-to-date copy of both the master
server's metadata and its versioned files.

Note Replication is asynchronous, and a replicated server is not recommended as the
sole means of backup or disaster recovery. Maintaining a separate set of database
checkpoints and depot backups (whether on tape, remote storage, or other means)
is advised. Disaster recovery and failover strategies are complex and site-specific.
Perforce Consultants are available to assist organizations in the planning and
deployment of disaster recovery and failover strategies. For details, see:

http: / /www.perforce.com/services/ consulting_overview

The following extended example configures a replica as a warm standby server for an existing Perforce
Server with some data in it. For this example, assume that:

* Your master server is named Master and is running on a host called master, using port 11111, and its
server root directory is /p4/master

* Your replica server will be named Replical and will be configured to run on a host machine named
replica, using port 22222, and its root directory will be /p4/replica.

o The service user name is service.

* | Note You cannot define PANAME using the p4 configure command, because a server
must know its own name to use values set by p4 configure.

You cannot define P4RO0T using the p4 configure command, to avoid the risk of
specifying an incorrect server root.

Helix Versioning Engine Administrator Guide: Multi-site Deployment 23

http://www.perforce.com/services/consulting_overview

Chapter 2. Perforce Replication

Master server setup

To define the behavior of the replica, you enter configuration information into the master server's
db.config file using the p4 configure set command. Configure the master server first; its settings will
be replicated to the replica later.

To configure the master, log in to Perforce as a superuser and perform the following steps:

1. To set the server named Replical to use master:11111 as the master server to pull metadata and
versioned files, issue the command:

$ p4 -p master:11111 configure set Replicai1#P4TARGET=master:11111

Perforce displays the following response:

For server Replical, configuration variable 'P4TARGET' set to 'master:11111'

Note To avoid confusion when working with multiple servers that appear identical
in many ways, use the -u option to specify the superuser account and -p to
explicitly specify the master Perforce server's host and port.

These options have been omitted from this example for simplicity. In a
production environment, specify the host and port on the command line.

2. Set the Replica1 server to save the replica server's log file using a specified file name. Keeping the
log names unique prevents problems when collecting data for debugging or performance tracking
purposes.

$ p4 configure set Replica1iP4L0G=replicailog.txt

3. Set the Replical server configurable to 1, which is equivalent to specifying the -vserver=1 server
startup option:

$ p4 configure set Replical#server=1

4. To enable process monitoring, set Replical's monitor configurable to 1:

$ p4 configure set Replicaiiimonitor=1

5. To handle the Replica1 replication process, configure the following three startup.n commands.
(When passing multiple items separated by spaces, you must wrap the entire set value in double
quotes.)

The first startup process sets p4 pull to poll once every second for journal data only:

24

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 2. Perforce Replication

$ p4 configure set "Replicalitstartup.i=pull -i 1"

The next two settings configure the server to spawn two p4 pull threads at startup, each of which
polls once per second for archive data transfers.

$ p4 configure set "Replicailitstartup.2=pull -u -i 1"
$ p4a configure set "Replicaiitstartup.3=pull -u -i 1"

Each p4 pull -u command creates a separate thread for replicating archive data. Heavily-loaded
servers might require more threads, if archive data transfer begins to lag behind the replication of
metadata. To determine if you need more p4 pull -u processes, read the contents of the rdb.1br
table, which records the archive data transferred from the master Perforce server to the replica.

To display the contents of this table when a replica is running, run:

$ p4 -p replica:22222 pull -1

Likewise, if you only need to know how many file transfers are active or pending, use p4 -p
replica:22222 pull -1 -s

If p4 pull -1 -sindicates a large number of pending transfers, consider adding more p4 pull -u
startup.n commands to address the problem.

If a specific file transfer is failing repeatedly (perhaps due to unrecoverable errors on the master),
you can cancel the pending transfer with p4 pull -d -f file -r rev, where file and rev refer to
the file and revision number.

6. Set the db.replication (metadata access) and 1br.replication (depot file access) configurables to
readonly:

$ p4 configure set Replicail#idb.replication=readonly
$ p4 configure set Replicali#lbr.replication=readonly

Because this replica server is intended as a warm standby (failover) server, both the master server's
metadata and its library of versioned depot files are being replicated. When the replica is running,
users of the replica will be able to run commands that access both metadata and the server's library
of depot files.

7. Create the service user:

$ p4 user -f service

The user specification for the service user opens in your default editor. Add the following line to
the user specification:

Helix Versioning Engine Administrator Guide: Multi-site Deployment 25

Chapter 2. Perforce Replication

10.

Type: service

Save the user specification and exit your default editor.

By default, the service user is granted the same 12-hour login timeout as standard users. To prevent
the service user's ticket from timing out, create a group with a long timeout on the master server. In
this example, the Timeout: field is set to two billion seconds, approximately 63 years:

$ pa4 group service_group

Users: service
Timeout: 2000000000

For more details, see”Tickets and timeouts for service users” on page 18.

Set the service user protections to super in your protections table. (See “Permissions for service
users” on page 19.) It is good practice to set the security level of all your Perforce Servers to

at least 1 (preferably to 3, so as to require a strong password for the service user, and ideally to 4,
to ensure that only authenticated service users may attempt to perform replica or remote depot
transactions.)

$ p4a configure set security=4
$ p4 passwd

Set the Replicai configurable for the serviceUser to service.
$ p4 configure set Replicai#fserviceUser=service

This step configures the replica server to authenticate itself to the master server as the service user;
this is equivalent to starting p4d with the -u service option.

If the user running the replica server does not have a home directory, or if the directory where the
default .p4tickets file is typically stored is not writable by the replica's Perforce server process,
set the replica P4TICKETS value to point to a writable ticket file in the replica's Perforce server root
directory:

$ p4 configure set "Replical#P4TICKETS=/p4/replica/.p4tickets"

Creating the replica

To configure and start a replica server, perform the following steps:

1.

Boot-strap the replica server by checkpointing the master server, and restoring that checkpoint to
the replica:

26

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 2. Perforce Replication

$ p4 admin checkpoint

(For a new setup, we can assume the checkpoint file is named checkpoint.1)

2. Move the checkpoint to the replica server's P4ROOT directory and replay the checkpoint:

$ pad -r /pa/replica -jr $P4ROOT/checkpoint.1

3. Copy the versioned files from the master server to the replica.

Versioned files include both text (in RCS format, ending with ",v") and binary files (directories of
individual binary files, each directory ending with ",d"). Ensure that you copy the text files in a
manner that correctly translates line endings for the replica host's filesystem.

If your depots are specified using absolute paths on the master, use the same paths on the replica.
(Or use relative paths in the Map: field for each depot, so that versioned files are stored relative to
the server's root.)

4. To create a valid ticket file, use p4 login to connect to the master server and obtain a ticket on
behalf of the replica server's service user. On the machine that will host the replica server, run:

$ p4 -u service -p master:11111 login

Then move the ticket to the location that holds the PATICKETS file for the replica server's service
user.

At this point, your replica server is configured to contact the master server and start replication.
Specifically:

* A service user (service) in a group (service_group) with a long ticket timeout
¢ A valid ticket for the replica server's service user (from p4 login)

¢ A replicated copy of the master server's db.config, holding the following preconfigured settings
applicable to any server with a P4NAME of Replicai, specifically:

e A specified service user (named service), which is equivalent to specifying -u service on the
command line

e A target server of master:11111, which is equivalent to specifying -t master:11111 on the
command line

e Both db.replication and lbr.replication set to readonly, which is equivalent to specifying -M
readonly -D readonly on the command line

e A series of p4 pull commands configured to run when the master server starts

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 2. Perforce Replication

Starting the replica

To name your server Replicail, set PANAME or specify the -In option and start the replica as follows:

$ pad -r /pa/replica -In Replical -p replica:22222 -d

When the replica starts, all of the master server's configuration information is read from the replica's
copy of the db.config table (which you copied earlier). The replica then spawns three p4 pull threads:
one to poll the master server for metadata, and two to poll the master server for versioned files.

‘ Note I The p4 info command displays information about replicas and service fields for
I untagged output as well as tagged output.

Testing the replica

Testing p4 pull

To confirm that the p4 pull commands (specified in Replical's startup.n configurations) are running,
issue the following command:

$ p4 -u super -p replica:22222 monitor show -a
18835 R service00:04:46 pull -i 1

18836 R service00:04:46 pull -u -i 1

18837 R service00:04:46 pull -u -i 1

18926 R super 00:00:00 monitor show -a

If you need to stop replication for any reason, use the p4 monitor terminate command:

$ p4 -u super -p replica:22222 monitor terminate 18837
** process '18837' marked for termination **

To restart replication, either restart the Perforce server process, or manually restart the replication
command:

$ p4 -u super -p replica:22222 pull -u -i 1

If the p4 pull and/or p4 pull -u processes are terminated, read-only commands will continue to
work for replica users as long as the replica server's p4d is running.

Testing file replication

Create a new file under your workspace view:

$ echo "hello world" > myfile

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 2. Perforce Replication

Mark the file for add:

$ p4 -p master:11111 add myfile

And submit the file:

$ p4 -p master:11111 submit -d “"testing replication”

Wait a few seconds for the pull commands on the replica to run, then check the replica for the
replicated file:

$ pa -p replica:22222 print //depot/myfile
//depot/myfile#1 - add change 1 (text)
hello world

If a file transfer is interrupted for any reason, and a versioned file is not present when requested by a
user, the replica server silently retrieves the file from the master.

Note Replica servers in -M readonly -D readonly mode will retrieve versioned files from
master servers even if started without a p4 pull -u command to replicate versioned
files to the replica. Such servers act as "on-demand" replicas, as do servers running
in -M readonly -D ondemand mode or with their 1br.replication configurable set
to ondemand.

Administrators: be aware that creating an on-demand replica of this sort can still
affect server performance or resource consumption, for example, if a user enters a
command such as "p4 print //..." which reads every file in the depot.

Verifying the replica

When you copied the versioned files from the master server to the replica server, you relied on the
operating system to transfer the files. To determine whether data was corrupted in the process, run p4
verify on the replica server:

$ pa verify //...

Any errors that are present on the replica but not on the master indicate corruption of the data in
transit or while being written to disk during the original copy operation. (Run p4 verify on a regular
basis, because a failover server's storage is just as vulnerable to corruption as a production server.)

Using the replica

You can perform all normal operations against your master server (p4 -p master:11111 command).
To reduce the load on the master server, direct reporting (read-only) commands to the replica (p4 -p

Helix Versioning Engine Administrator Guide: Multi-site Deployment

29

Chapter 2. Perforce Replication

replica:22222 command). Because the replica is running in -M readonly -D readonly mode, commands
that read both metadata and depot file contents are available, and reporting commands (such as

p4 annotate, p4 changes, p4 filelog, p4 diff2, p4 jobs, and others) work normally. However,
commands that update the server's metadata or depot files are blocked.

Commands that update metadata

Some scenarios are relatively straightforward: consider a command such as p4 sync. A plain p4 sync
fails, because whenever you sync your workspace, the Perforce Server must update its metadata (the
"have" list, which is stored in the db.have table). Instead, use p4 sync -p to populate a workspace
without updating the have list:

$ pa -p replica:22222 sync -p //depot/project/...@1234

This operation succeeds because it does not update the server's metadata.

Some commands affect metadata in more subtle ways. For example, many Perforce commands update
the last-update time that is associated with a specification (for example, a user or client specification).
Attempting to use such commands on replica servers produces errors unless you use the -0 option. For
example, p4 client (which updates the Update: and Access: fields of the client specification) fails:

$ p4 -p replica:22222 client replica_client
Replica does not support this command.

However, p4 client -o works:

$ p4 -p replica:22222 client -o replica_client
(client spec is output to STDOUT)

If a command is blocked due to an implicit attempt to write to the server's metadata, consider
workarounds such as those described above. (Some commands, like p4 submit, always fail, because
they attempt to write to the replica server's depot files; these commands are blocked by the -D
readonly option.)

Using the Perforce Broker to redirect commands

You can use the Perforce Broker with a replica server to redirect read-only commands to replica
servers. This approach enables all your users to connect to the same protocol:host:port setting (the
broker). In this configuration, the broker is configured to transparently redirect key commands to
whichever Perforce Server is appropriate to the task at hand.

For an example of such a configuration, see "Using P4Broker With Replica Servers" in the Perforce
Knowledge Base:

http:/ /answers.perforce.com/articles /KB_Article /Using-P4Broker-With-Replica-Servers

For more information about the Perforce Broker, see Chapter 4, “The Perforce Broker” on page 65.

30

Helix Versioning Engine Administrator Guide: Multi-site Deployment

http://answers.perforce.com/articles/KB_Article/Using-P4Broker-With-Replica-Servers

Chapter 2. Perforce Replication

Upgrading replica servers

It is best practice to upgrade any server instance replicating from a master server first. If replicas are
chained together, start at the replica that is furthest downstream from the master, and work upstream
towards the master server. Keep downstream replicas stopped until the server immediately upstream
is upgraded.

Note There has been a significant change in release 2013.3 that affects how metadata is
stored in db. * files; despite this change, the database schema and the format of the
checkpoint and the journal files between 2013.2 and 2013.3, remains unchanged.

Consequently, in this one case (of upgrades between 2013.2 and 2013.3), it is
sufficient to stop the replica until the master is upgraded, but the replica (and any
replicas downstream of it) must be upgraded to at least 2013.2 before a 2013.3 master
is restarted.

When upgrading between 2013.2 (or lower) and 2013.3 (or higher), it is recommended to wait for all
archive transfers to end before shutting down the replica and commencing the upgrade. You must
manually delete the rdb.1br file in the replica server's root before restarting the replica.

For more information, see "Upgrading Replica Servers" in the Perforce Knowledge Base:

http:/ /answers.perforce.com/articles /KB_Article/ Upgrading-Replica-Servers/

Configuring a forwarding replica

A forwarding replica offers a blend of the functionality of the Perforce Proxy with the improved
performance of a replica. The following considerations are relevant:

The Perforce Proxy is easier to configure and maintain, but caches only file content; it holds no
metadata. A forwarding replica caches both file content and metadata, and can therefore process
many commands without requesting additional data from the master server. This behavior enables a
forwarding replica to offload more tasks from the master server and provides improved performance.
The trade-off is that a forwarding replica requires a higher level of machine provisioning and
administrative considerations compared to a proxy.

A read-only replica rejects commands that update metadata; a forwarding replica does not reject such
commands, but forwards them to the master server for processing, and then waits for the metadata
update to be processed by the master server and returned to the forwarding replica. Although users
connected to the forwarding replica cannot write to the replica's metadata, they nevertheless receive a
consistent view of the database.

If you are auditing server activity, each of your forwarding replica servers must have its own P4AUDIT
log configured.

Configuring the master server

The following example assumes an environment with a regular server named master, and a
forwarding replica server named fwd-replica on a host named forward.

Helix Versioning Engine Administrator Guide: Multi-site Deployment 31

http://answers.perforce.com/articles/KB_Article/Upgrading-Replica-Servers/

Chapter 2. Perforce Replication

1. Start by configuring a read-only replica for warm standby; see “Configuring a read-only
replica” on page 23 for details. (Instead of Replical, use the name fwd-replica.)

2. On the master server, configure the forwarding replica as follows:

$ pa server fwd-1667

The following form is displayed:

ServerID: fwd-1667

Name: fwd-replica

Type: server

Services: forwarding-replica
Address: tcp:forward:1667
Description:

Forwarding replica pointing to master:1666

Configuring the forwarding replica

1. On the replica machine, assign the replica server a serverID:

$ pa serverid fwd-1667

When the replica server with the serverID: of fwd-1667 (which was previously assigned the Name:
of fwd-replica) pulls its configuration from the master server, it will behave as a forwarding
replica.

2. On the replica machine, restart the replica server:

$ p4 admin restart

Configuring a build farm server

Continuous integration and other similar development processes can impose a significant workload
on your Perforce infrastructure. Automated build processes frequently access the Perforce server

to monitor recent changes and retrieve updated source files; their client workspace definitions and
associated have lists also occupy storage and memory on the server. With a build farm server, you can
offload the workload of the automated build processes to a separate machine, and ensure that your
main Perforce server's resources are available to your users for their normal day-to-day tasks.

Note Build farm servers were implemented in Perforce server release 2012.1. With the
implementation of edge servers in 2013.2, we now recommend that you use an edge
server instead of a build farm server. As discussed in Chapter 3, “Commit-edge
Architecture” on page 45, edge servers offer all the functionality of build farm

32

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 2. Perforce Replication

servers and yet offload more work from the main server and improve performance,
with the additional flexibility of being able to run write commands as part of the
build process.

A Perforce Server intended for use as a build farm must, by definition:
* Permit the creation and configuration of client workspaces
¢ Permit those workspaces to be synced

One issue with implementing a build farm rather than a read-only replica is that under Perforce,
both of those operations involve writes to metadata: in order to use a client workspace in a build
environment, the workspace must contain some information (even if nothing more than the client
workspace root) specific to the build environment, and in order for a build tool to efficiently sync a
client workspace, a build server must be able to keep some record of which files have already been
synced.

To address these issues, build farm replicas host their own local copies of certain metadata: in addition
to the Perforce commands supported in a read-only replica environment, build farm replicas support

the p4 client and p4 sync commands when applied to workspaces that are bound to that replica.

If you are auditing server activity, each of your build farm replica servers must have its own P4AUDIT
log configured.

Configuring the master server

The following example assumes an environment with a regular server named master, and a build farm
replica server named buildfarmi on a host named builder.

1. Start by configuring a read-only replica for warm standby; see “Configuring a read-only
replica” on page 23 for details. (That is, create a read-only replica named buildfarmi.)

2. On the master server, configure the master server as follows:

$ p4 server master-1666

The following form is displayed:

Helix Versioning Engine Administrator Guide: Multi-site Deployment 33

Chapter 2. Perforce Replication

A Perforce Server Specification.

#

ServerID: The server identifier.

Type: The server type: server/broker/proxy.

Name: The PANAME used by this server (optional).

Address: The P4PORT used by this server (optional).

Description: A short description of the server (optional).

Services: Services provided by this server, one of:

standard: standard Perforce server

replica: read-only replica server

broker: p4broker process

proxy: pdp caching proxy

commit-server: central server in a distributed installation
edge-server: node in a distributed installation

forwarding-replica: replica which forwards update commands
build-server: replica which supports build automation
P4AUTH: server which provides central authentication

PACHANGE: server which provides central change numbers
#

Use 'p4 help server' to see more about server ids and services.
ServerID: master-1666

Name: master-1666

Type: server

Services: standard

Address: tcp:master:1666

Description:

Master server - regular development work

1. Create the master server's server.id file. On the master server, run the following command:

$ p4 -p master:1666 serverid master-1666

2. Restart the master server.

On startup, the master server reads its server ID of master-1666 from its server.id file. It takes on
the PANAME of master and uses the configurables that apply to a PANAME setting of master.

Configuring the build farm replica

1. On the master server, configure the build farm replica server as follows:

$ p4 server builder-1667

The following form is displayed:

34 Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 2. Perforce Replication

ServerID: builder-1667
Name: builder-1667
Type: server

Services: build-server
Address: tcp:builder:1667
Description:

Build farm - bind workspaces to builder-1667
and use a port of tcp:builder:1667

2. Create the build farm replica server's server.id file. On the replica server (not the master server),
run the following command

$ p4 -p builder:1667 serverid builder-1667

3. Restart the replica server.
On startup, the replica build farm server reads its server ID of builder-1667 from its server.id file.

Because the server registry is automatically replicated from the master server to all replica servers,
the restarted build farm server takes on the P4ANAME of buildfarmi and uses the configurables that
apply to a P4ANAME setting of buildfarmi.

In this example, the build farm server also acknowledges the build-server setting in the Services:
field of its p4 server form.

Binding workspaces to the build farm replica

At this point, there should be two servers in operation: a master server named master, with a server ID
of master-1666, and a build-serverreplica named buildfarmi, with a server ID of builder-1667.

1. Bind client workspaces to the build farm server.

Because this server is configured to offer the build-server service, it maintains its own local
copy of the list of client workspaces (db.domain and db.view.rp) and their respective have lists
(db.have.rp).

On the replica server, create a client workspace with p4 client:

$ p4 -c buildooo1 -p builder:1667 client buildoooi

When creating a new workspace on the build farm replica, you must ensure that your current
client workspace has a ServerID that matches that required by builder:1667. Because workspace
buildo001 does not yet exist, you must manually specify buildo001 as the current client workspace
with the -c clientname option and simultaneously supply build0001 as the argument to the p4
client command. For more information, see:

http:/ /answers.perforce.com/articles/ KB_Article /Build-Farm-Client-Creation-Error

Helix Versioning Engine Administrator Guide: Multi-site Deployment 35

http://answers.perforce.com/articles/KB_Article/Build-Farm-Client-Creation-Error

Chapter 2. Perforce Replication

When the p4 client form appears, set the ServerID: field to builder-1667.
2. Sync the bound workspace

Because the client workspace buildo001 is bound to builder-1667, users on the master server are
unaffected, but users on the build farm server are not only able to edit its specification, they are
able to syncit:

$ export P4PORT=builder:1667
$ export P4CLIENT=buildooo1
$ pa sync

The replica's have list is updated, and does not propagate back to the master. Users of the master
server are unaffected.

In a real-world scenario, your organization's build engineers would re-configure your site's build
system to use the new server by resetting their P4PORT to point directly at the build farm server.
Even in an environment in which continuous integration and automated build tools create a client
workspace (and sync it) for every change submitted to the master server, performance on the master
would be unaffected.

In a real-world scenario, performance on the master would likely improve for all users, as the number
of read and write operations on the master server's database would be substantially reduced.

If there are database tables that you know your build farm replica does not require, consider
using the -F and -T filter options to p4 pull. Also consider specifying the ArchiveDataFilter:,
RevisionDataFilter: and ClientDataFilter: fields of the replica's p4 server form.

If your automation load should exceed the capacity of a single machine, you can configure additional
build farm servers. There is no limit to the number of build farm servers that you may operate in your
installation.

Configuring a replica with shared archives

Normally, a Perforce replica service retrieves its metadata and file archives on the user-defined pull
interval, for example p4 pull -i 1. When the 1br.replication configurable is set to ondemand or
shared (the two are synonymous), metadata is retrieved on the pull interval and archive files are
retrieved only when requested by a client; new files are not automatically transferred, nor are purged
files removed.

When a replica server is configured to directly share the same physical archive files as the master
server, whether the replica and master are running on the same machine or via network shared
storage, the replica simply accesses the archives directly without requiring the master to send the
archives files to the replica. This can form part of a High Availability configuration.

Warning When archive files are directly shared between a replica and master server, the
replica must have 1br.replication set to ondemand or shared, or archive corruption
may occur.

36

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 2. Perforce Replication

To configure a replica to share archive files with a master, perform the following steps:
1. Ensure that the clocks for the master and replica servers are synchronized.

Nothing needs to be done if the master and replica servers are hosted on the same operating
system.

Synchronizing clocks is a system administration task that typically involves using a Network Time
Protocol client to synchronize an operating system's clock with a time server on the Internet, or a
time server you maintain for your own network.

See http:/ /support.ntp.org/bin/view / Support/InstallingNTP for details.

2. If you have not already done so, configure the replica server as a forwarding replica.

See “Configuring a read-only replica” on page 23.
3. Setlbr.replication.

For example: p4 configure set REP13-1#lbr.replication=ondemand
4. Restart the replica, specifying the share archive location for the replica's root.
Once these steps have been completed, the following conditions are in effect:

e archive file content is only retrieved when requested, and those requests are made against the
shared archives.

* no entries are written to the rdb.1br librarian file during replication.

e commands that would schedule the transfer of file content, such as p4 pull -uand p4 verify -t are
rejected:

$ p4 pull -u

This command is not used with an ondemand replica server.
$ p4 verify -t //depot/...

This command is not used with an ondemand replica server.

e if startup configurables, such as startup.N=pull -u, are defined, the replica server attempts to run
such commands. Since the attempt to retrieve archive content is rejected, the replica's server log will
contain the corresponding error:

Perforce server error:
2014/01/23 13:02:31 pid 6952 service-od@21131 background 'pull -u -i 10'
This command is not used with an ondemand replica server.

Filtering metadata during replication

As part of an HA /DR solution, one typically wants to ensure that all the metadata and all the
versioned files are replicated. In most other use cases, particularly build farms and /or forwarding
replicas, this leads to a great deal of redundant data being transferred.

Helix Versioning Engine Administrator Guide: Multi-site Deployment 37

http://support.ntp.org/bin/view/Support/InstallingNTP

Chapter 2. Perforce Replication

It is often advantageous to configure your replica servers to filter in (or out) data on client workspaces

and file revisions. For example, developers working on one project at a remote site do not typically

need to know the state of every client workspace at other offices where other projects are being

developed, and build farms don't require access to the endless stream of changes to office documents
and spreadsheets associated with a typical large enterprise.

The simplest way to filter metadata is by using the -T tableexcludelist option with p4 pull

command. If you know, for example, that a build farm has no need to refer to any of your users' have

lists or the state of their client workspaces, you can filter out db.have and db.working entirely with p4

pull -T db.have,db.working.

Excluding entire database tables is a coarse-grained method of managing the amount of data passed
between servers, requires some knowledge of which tables are most likely to be referred to during
Perforce command operations, and furthermore, offers no means of control over which versioned files

are replicated.

You can gain much more fine-grained control over what data is replicated by using the

ClientDataFilter:, RevisionDataFilter:, and ArchiveDataFilter: fields of the p4 server form.
These options enable you to replicate (or exclude from replication) those portions of your server's
metadata and versioned files that are of interest at the replica site.

Example 2.1. Filtering out client workspace data and files.

If workspaces for users in each of three sites are named with site[123]-ws-username, a replica
intended to act as partial backup for users at site1 could be configured as follows:

ServerID: site1-1668

Name: site1-1668

Type: server

Services: replica

Address: tcp:siteibak:1668
Description:

Replicate all client workspace data, except the states of
workspaces of users at sites 2 and 3.
Automatically replicate .c files in anticipation of user
requests. Do not replicate .mp4 video files, which tend
to be large and impose high bandwidth costs.
ClientDataFilter:
-//site2-ws-*
-//site3-ws-*
RevisionDataFilter:
ArchiveDataFilter:
/l....c
-//....mp4

When you start the replica, your p4 pull metadata thread must specify the ServerID associated with
the server spec that holds the filters:

$ p4 configure set "sitel-1668#startup.1=pull -i 30 -P site1-1668"

38

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 2. Perforce Replication

In this configuration, only those portions of db.have that are associated with sitel are replicated; all
metadata concerning workspaces associated with site2 and site3 is ignored.

All file-related metadata is replicated. All files in the depot are replicated, except for those ending in
.mp4. Files ending in .c are transferred automatically to the replica when submitted.

To further illustrate the concept, consider a build farm replica scenario. The ongoing work of the
organization (whether it be code, business documents, or the latest video commercial) can be stored
anywhere in the depot, but this build farm is dedicated to building releasable products, and has no
need to have the rest of the organization's output at its immediate disposal:

Example 2.2. Replicating metadata and file contents for a subset of a depot.

Releasable code is placed into //depot/releases/... and automated builds are based on these
changes. Changes to other portions of the depot, as well as the states of individual workers' client
workspaces, are filtered out.

ServerID: builder-1669
Name: builder-1669
Type: server
Services: build-server
Address: tcp:built:1669
Description:

Exclude all client workspace data

Replicate only revisions in release branches
ClientDataFilter:

S
RevisionDataFilter:

S

//depot/releases/...
ArchiveDataFilter:

S

//depot/releases/...

To seed the replica you can use a command like the following to create a filtered checkpoint:

$ pad -r /pa/master -P builder-1669 -jd myCheckpoint

The filters specified for builder-1669 are used in creating the checkpoint. You can then continue to
update the replica using the p4 pull command.

When you start the replica, your p4 pull metadata thread must specify the ServerID associated with
the server spec that holds the filters:

$ p4 configure set "builder-1669#startup.1=pull -i 30 -P builder-1669"

The p4 pull thread that pulls metadata for replication filters out all client workspace data (including
the have lists) of all users.

Helix Versioning Engine Administrator Guide: Multi-site Deployment

39

Chapter 2. Perforce Replication

The p4 pull -u thread(s) ignore all changes on the master except those that affect revisions in the //
depot/releases/... branch, which are the only ones of interest to a build farm. The only metadata that
is available is that which concerns released code. All released code is automatically transferred to the
build farm before any requests are made, so that when the build farm performs a p4 sync, the sync is
performed locally.

Verifying replica integrity

Tools to ensure data integrity in multi-server installations are accessed through the p4
journaldbchecksums command, and their behavior is controlled by three configurables:
rpl.checksum.auto, rpl.checksum.change, and rpl.checksum.table.

When you run p4 journaldbchecksums against a specific database table (or the set of tables associated
with one of the levels predefined by the rpl.checksum.auto configurable), the upstream server writes a
journal note containing table checksum information. Downstream replicas, upon receiving this journal
note, then proceed to verify these checksums and record their results in the structured log for integrity-
related events.

These checks are also performed whenever the journal is rotated. In addition, newly defined triggers
allow you to take some custom action when journals are rotated. For more information, see the section
"Triggering on journal rotation" in Helix Versioning Engine Administrator Guide: Fundamentals.

Administrators who have one or more replica servers deployed should enable structured logging for
integrity events, set the rpl.checksum.* configurables for their replica servers, and regularly monitor
the logs for integrity events.

Configuration

Structured server logging must be enabled on every server, with at least one log recording events of
type integrity, for example:

$ p4 configure set serverlog.file.8=integrity.csv

After you have enabled structured server logging, set the rpl.checksum.auto, rpl.checksum.change,
and rpl.checksum.table configurables to the desired levels of integrity checking. Best practice for
most sites is a balance between performance and log size:

p4 configure set rpl.checksum.auto=1 (or 2 for additional verification that is unlikely to vary
between an upstream server and its replicas.)

p4 configure set rpl.checksum.change=2 (this setting checks the integrity of every changelist, but
only writes to the log if there is an error.)

p4 configure set rpl.checksum.table=1 (this setting instructs replicas to verify table integrity on
scan or unload operations, but only writes to the log if there is an error.)

Valid settings for rpl.checksum.auto are:

40

Helix Versioning Engine Administrator Guide: Multi-site Deployment

http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html

Chapter 2. Perforce Replication

rpl.checksum.auto Database tables checked with every journal rotation

0 No checksums are performed.

1 Verify only the most important system and revision tables:
db.config, db.user, db.group, db.depot, db.stream, db.trigger,
db.protect, db.integed, db.integtx, db.archmap, db.rev, db.revcx,
db.revdx, db.revhx, and db.revtx.

2 Verify all database tables from level 1, plus:
db.counters, db.nameval, db.server, db.svrview, db.traits, db.change,
and db.desc.

3 Verify all metadata, including metadata that is likely to differ, especially

when comparing an upstream server with a build-farm or edge-server
replica.

Valid settings for rpl.checksum.change are:

rpl.checksum.change Verification performed with each changelist

0 Perform no verification.

1 Write a journal note when a p4 submit, p4 fetch, p4 populate, p4 push,
or p4 unzip command completes. The value of the rpl.checksum.change
configurable will determine the level of verification performed for the
command.

2 Replica verifies changelist summary, and writes to integrity.csv if the
changelist does not match.

3 Replica verifies changelist summary, and writes to integrity log even when

the changelist does match.

Valid settings for rpl.checksum.table are:

rpl.checksum.table Level of table verification performed

0 Table-level checksumming only.

1 When a table is unloaded or scanned, journal notes are written. These
notes are processed by the replica and are logged to integrity.csv if the
check fails.

2 When a table is unloaded or scanned, journal notes are written, and the

results of journal note processing are logged even if the results match.

For more information, see p4 help journaldbchecksums.

Helix Versioning Engine Administrator Guide: Multi-site Deployment

41

Chapter 2. Perforce Replication

Warnings, notes, and limitations

The following warnings, notes, and limitations apply to all configurations unless otherwise noted.

On master servers, do not reconfigure these replica settings while the replica is running;:
* P4ATARGET

e dm.domain.accessupdate

e dm.user.accessupdate

Be careful not to inadvertently write to the replica's database. This might happen by using an -r
option without specifying the full path (and mistakingly specifying the current path), by removing
db files in P4ROOT, and so on. For example, when using the p4d -r . -jc command, make sure you
are not currently in the root directory of the replica or standby in which p4 journalcopy is writing
journal files.

Large numbers of "Perforce password (P4PASSWD) invalid or unset"errors in the replica log
indicate that the service user has not been logged in or that the P4TICKETS file is not writable.

In the case of a read-only directory or PATICKETS file, p4 login appears to succeed, but p4 login -
s generates the "invalid or unset" error. Ensure that the P4TICKETS file exists and is writable by the
replica server.

Client workspaces on the master and replica servers cannot overlap. Users must be certain that their
P4PORT, PACLIENT, and other settings are configured to ensure that files from the replica server are
not synced to client workspaces used with the master server, and vice versa.

Replica servers maintain a separate table of users for each replica; by default, the p4 users command
shows only users who have used that particular replica server. (To see the master server's list of
users, use p4 users -c).

The advantage of having a separate user table (stored on the replica in db.user.rp) is that after
having logged in for the first time, users can continue to use the replica without having to repeatedly
contact the master server.

All server IDs must be unique. The examples in the section “Configuring a build farm

server” on page 32 illustrate the use of manually-assigned names that are easy to remember, but

in very large environments, there may be more servers in a build farm than is practical to administer
or remember. Use the command p4 server -gto create a new server specification with a numeric
Server ID. Such a Server ID is guaranteed to be unique.

Whether manually-named or automatically-generated, it is the responsibility of the system
administrator to ensure that the Server ID associated with a server's p4 server form corresponds
exactly with the server.id file created (and/or read) by the p4 serverid command.

Users of P4V and forwarding replicas are urged to upgrade to P4V 2012.1 or higher. Perforce
applications older than 2012.1 that attempt to use a forwarding replica can, under certain
circumstances, require the user to log in twice to obtain two tickets: one for the first read (from
the forwarding replica), and a separate ticket for the first write attempt (forwarded to the master)
requires a separate ticket. This confusing behavior is resolved if P4V 2012.1 or higher is used.

42

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 2. Perforce Replication

e Although replicas can be chained together as of Release 2013.1, (that is, a replica's PATARGET can be
another replica, as well as from a central server), it is the administrator's responsibility to ensure
that no loops are inadvertently created in this process. Certain multi-level replication scenarios
are permissible, but pointless; for example, a forwarding replica of a read-only replica offers no
advantage because the read-only replica will merely reject all writes forwarded to it. Please contact
Perforce technical support for guidance if you are considering a multi-level replica installation.

e The rpl.compress configurable controls whether compression is used on the master-replica
connection(s). This configurable defaults to 0. Enabling compression can provide notable
performance improvements, particularly when the master and replica servers are separated by
significant geographic distances.

Enable compression with: p4 configure set fwd-replica#rpl.compress=1

Helix Versioning Engine Administrator Guide: Multi-site Deployment 43

44

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter3 Commit-edge Architecture

Introduction

Commit-edge architecture is a specific replication configuration. It is a good solution for
geographically distributed work groups, and it offers significant performance advantages. At a
minimum it is made up of the following kinds of servers:

o A commit server that stores the canonical archives and permanent metadata. In working terms, it is
similar to a Perforce master server, but might not contain all workspace information.

* An edge server that contains a replicated copy of the commit server data and a unique, local
copy of some workspace and work-in-progress information. It can process read-only operations
and operations like p4 edit that only write to the local data. In working terms, it is similar to a
forwarding replica, but contains local workspace data and can handle more operations with no
reliance on the commit server. You can connect multiple edge servers to a commit server.

Since an edge server can handle most routine operations locally, the edge-commit architecture offloads
a significant amount of processing work from the commit server and reduces data transmission
between commit and edge servers. This greatly improves performance.

From a user's perspective, most typical operations until the point of submit are handled by an edge
server. As with a forwarding replica, read operations, such as obtaining a list of files or viewing file
history, are local. In addition, with an edge server, syncing, checking out, merging, resolving, and
reverting files are also local operations.

‘ Note I You may not issue the p4 unsubmit and p4 resubmit commands to an edge server.
I You may only issue these commands to a commit server.

Commit-edge architecture builds upon Perforce replication technology. You should read Chapter 2,
“Perforce Replication” on page 11 before attempting to deploy a commit-edge configuration.

An edge server can be used instead of a build farm server, and this usage is referred to as a build edge
server. If the only users of an edge server are build processes, then your backup (disaster recovery)
strategy may be simplified as you do not need to backup the local edge server-specific workspace and
related information. See “Migrating from existing installations” on page 52.

The next figure illustrates one possible commit-edge configuration: a commit server, communicating
with two edge-servers, each of which handles multiple workspaces.

Helix Versioning Engine Administrator Guide: Multi-site Deployment 45

Chapter 3. Commit-edge Architecture

commit

local workspaces local workspaces

replicated
from commit

replicated
from commit

Setting up a commit/edge configuration

This section explains how you set up a commit/edge configuration. It assumes that you have an
existing server that you want to convert to a commit server and that you are familiar with Perforce
server management and operation. For the sake of this example, we'll assume that the existing server is
in Chicago, and that we need to set up an edge server at a remote site in Tokyo.

¢ Commit serverP4PORT=chicago.perforce.com:1666
P4RO0T=/chicago/p4root

¢ Edge serverP4PORT=tokyo.perforce.com:1666
P4RO0OT=/tokyo/p4root

The setup process, which is described in detail in the following sections includes the following major
steps:

1. On the commit server: Create a service user account for each edge server you plan to create.
2. On the commit server: Create commit and edge server configurations.
3. Create and start the edge server.

You must have super privileges to perform these steps.

46

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 3. Commit-edge Architecture

Create a service user account for the edge server

To support secure communication between the commit server and the edge server, a user account of
type service must be created. In the example below, we use a unique service user name for the tokyo
edge server, but one could also use a generic service user name and use it for multiple edge servers.

1. Create the service user account.

$ p4 user -f svc_tokyo_edge

In the user spec, set the user Type: field to service.

2. Add the service user to a group with an unlimited timeout. This prevents the service user login
from the edge server from timing out.

$ p4 group no_timeout

In the group spec, set the Users: field to svc_tokyo_edge and the Timeout: field to unlimited.

3. Assign a password to the service user by providing a value at the prompt.

$ p4 passwd svc_tokyo_edge

4. Assign the svc_tokyo_edge service user super protections in the protect spec.

$ p4 protect
super user svc_tokyo edge * //...

Create commit and edge server configurations

The following steps are needed to configure the commit and edge servers.

Note It is best to set the PANAME and ServerID to the same value: this makes it easy to
isolate configuration variables on each server in a distributed environment.

1. Create the commit server specification:

$ pa server chicago_commit

In the server spec, set the Services: field to commit-server and the Name: field to chicago_commit.

2. Create the edge server specification:

Helix Versioning Engine Administrator Guide: Multi-site Deployment 47

Chapter 3. Commit-edge Architecture

$ p4a server tokyo_edge

In the server spec, set the Services: field to edge-server and the Name: field to tokyo_edge.

Set the server ID of the commit server:

$ p4 serverid chicago_commit

. This step, which sets the journalPrefix value on the commit and edge server to control the name
and location of server checkpoints and rotated journals, is not required, but it is a best practice.
During the replication process, the edge server might need to locate the rotated journal on the
commit server; having journalPrefix defined on the commit server allows the edge server to easily
identify the name and location of rotated journals:

$ p4 configure set chicago_commit#journalPrefix=/chicago/backup/pad_backup
$ p4 configure set tokyo_edgeitjournalPrefix=/tokyo/backup/pad_backup

Set P4TARGET for the edge server to identify the commit server:

$ p4 configure set tokyo_edge#P4TARGET=chicago.perforce.com:1666

Set the service user in the edge server configuration:

$ p4 configure set tokyo_edgeiiserviceUser=svc_tokyo_edge

Set the location for the edge server's log files:

$ p4a configure set tokyo_edgei#P4L0G=/tokyo/logs/tokyo_edge.log

Set P4TICKETS location for the service user in the edge and commit server configuration:

$ p4 configure set chicago_commit#P4TICKETS=/chicago/p4root/.patickets
$ p4a configure set tokyo_edge#P4TICKETS=/tokyo/p4root/.patickets

Configure the edge server database and archive nodes:

$ p4 configure set tokyo_edgeitdb.replication=readonly
$ p4 configure set tokyo_edgeitlbr.replication=readonly

. Define startup commands for the edge server to periodically pull metadata and archive data.

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 3. Commit-edge Architecture

$ p4 configure set tokyo_edgetistartup.1="pull -i 1" \\get metadata every second
$ p4a configure set tokyo_edge#tstartup.2="pull -u -i 1" \\get versioned data every second
$ p4 configure set tokyo_edge#istartup.3="pull -u -i 1" \\get versioned data every second

Create and start the edge server

Now that the commit server configuration is complete, we can seed the edge server from a commit
server checkpoint and complete a few more steps to create it.

1.

Take a checkpoint of the commit server, but filter out the database content not needed by an edge
server. (The -z flag creates a zipped checkpoint.)

$ pad -r /chicago/p4root -K "db.have,db.working,db.resolve,db.locks,
db.revsh,db.workingx,db.resolvex" -z -jd edge.ckp

Recover the zipped checkpoint into the edge server P4ROOT directory.

$ pad -r /tokyo/paroot -z -jr edge.ckp.gz

Set the server ID for the newly seeded edge server:

$ pad -r /tokyo/p4root -xD tokyo_edge

Create the service user login ticket in the location specified in the edge configuration:

$ p4 -E PATICKETS=/chicago/paroot/.p4tickets -u svc_tokyo_edge
-p chicago.perforce.com:1666 login

Copy the versioned files from the commit server to the edge server. Files and directories can be
moved using rsyng, tar, ftp, a network copy, or any other method that preserves the files as they
were on the original server.

For additional information on copying files, see:

* http:/ /answers.perforce.com/articles/ KB /2558

* “Creating the replica” on page 26

Start the edge server using syntax appropriate for your platform.

For example:

$ pad -r /tokyo/paroot -d

Helix Versioning Engine Administrator Guide: Multi-site Deployment

49

http://answers.perforce.com/articles/KB/2558

Chapter 3. Commit-edge Architecture

Consult the following sources for detailed instructions for UNIX and Windows, which appear in
the "Installing and Upgrading the Server" chapter of the Helix Versioning Engine Administrator Guide:
Fundamentals.

7. Check the status of replication by running the following command against the edge server.

$ p4 pull -1j

8. Create the service user login ticket from the commit to the edge server. On the commit server:

$ p4 -E P4TICKETS=/chicago/paroot/.patickets -u svc_tokyo_edge
-p tokyo.perforce.com:1666 login

Shortcuts to configuring the server

You can also configure an edge or commit server using the -c option to the p4 server command.
When you specify this option, the DistributedConfig field of the server spec is mostly filled in for the
commands that need to be run to configure the server. The workflow is as follows:

1. Open a server spec using syntax like the following

$ p4 -c server [-c edge-server|commit-server] serverId

For example,

$ p4 server -c edge-server mynewedge

2. Complete the DistributedConfig field by specifying the commands you want executed to configure
the server. When invoked with the -c option, the field looks like the code shown below.

Specified values are read-only and set appropriately for the type of server you specified in the p4
server command; they cannot be changed. Values marked <unset> must be set; values marked
#optional can be set if desired.

db.replication=readonly
lbr.replication=readonly
startup.1=pull -i 1
startup.2=pull -u -i 1
startup.3=pull -u -i 1
PATARGET=<unset>
serviceUser=<unset>
monitor=1 # optional
journalPrefix=<unset> # optional
P4TICKETS=<unset> #optional
P4LOG=<unset> # optional

50

Helix Versioning Engine Administrator Guide: Multi-site Deployment

http://www.perforce.com/perforce/r16.1/manuals/p4sag/chapter.install.html#install.unix.start
http://www.perforce.com/perforce/r16.1/manuals/p4sag/chapter.install.html#install.windows.start_stop
http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html

Chapter 3. Commit-edge Architecture

3. After you have saved changes, you can execute a command like the following to see the settings for
the DistributedConfig field:

$ p4 server -o -1 mynewedge

DistributedConfig:
db.replication=readonly
lbr.replication=readonly
startup.1=pull -i 1
startup.2=pull -u -i 1
startup.3=pull -u -i 1
P4TARGET=1ocalhost:20161
serviceUser=service

Setting global client views

The server.global.client.views configurable determines whether the view maps of a non-stream
client on an edge server or workspace server are made global when the client is modified. This
configurable can be set globally or individually for each server, thus allowing client maps to be global
on most edge servers while keeping them local on those edge servers that don't need or want them to
be global.

The value of server.global.client.views on an edge server determines whether it forwards view
maps to a commit server.

You should make client view maps on a replica global if up-to-date information is needed by another
server running a command that needs a client view map; for example, if that client is to be used as a
template on another server.

e If server.global.client.views=1 on an edge server, then when a client is modified on that edge
server, its view map is made global.

¢ The default value of 0 on the edge server means that client view maps on that edge server are not
made global when a client is modified.

Setting this configurable does not immediately make client view maps global; that happens only when
a client is modified afterwards. Clearing this configurable does not delete the view maps of any clients,
but it does prevent subsequent changes to a client's view map from being propagated to other servers.
If a client with global view maps is deleted, its view maps are also deleted globally regardless of the
value of server.global.client.views; this is to prevent orphaned view maps.

In summary, view maps of a client are made global only under these conditions:
e The client is bound to an edge server or workspace server.

* The edge server has server.global.client.views=1.

e The client is a non-stream client.

o The client is modified.

Helix Versioning Engine Administrator Guide: Multi-site Deployment 51

Chapter 3. Commit-edge Architecture

If you are working with an existing client, you can "modify" it by adding a few words to the
description. For example, you can add a statement that this client's view maps are now global.

Note Clients bound directly to a commit server have their view maps replicated
everywhere independently of the setting of server.global.client.views.

For complicated reasons, it is best to choose one setting for this configurable, and
not change it.

Creating a client from a template

You might want to create a client from a template when you want to create a client that is similar to

an existing client (especially the view map). For example, you want to create a client that maps the
mainline server code so that you can build it yourself. This might require multiple view map entries, so
you want to base your client on one that already has those view maps defined.

Clients created on a commit server can be used as templates by clients created on the commit server or
on any edge server.

A client bound to an edge server can be used as a template for clients on that same edge server. To use
it as a template on a different edge server or on the commit server, its view map should be global (that
is, copied to the commit server).

A client's view map is made global when the client is modified and server.global.client.views=1 on
both the edge server to which it is bound and on the commit server. You can create a client for an edge
server or commit server based on an existing client template (bound to a different edge server) using a
command like the following:

$ p4 client -t clientBoundToOtherEdge clientBoundToMyEdge

The newly created client will have its View map copied from the View map of the template client,
with the client name on the right-hand side entries changed from the template client name
(clientBoundToOtherEdge) to the new client name (clientBoundToMyEdge).

Migrating from existing installations

The following sections explain how you migrate to an edge-commit architecture from an existing
replicated architecture.

* “Replacing existing proxies and replicas” on page 53 explains what sort of existing replicates can
be profitably replaced with edge servers.

* “Deploying commit and edge servers incrementally” on page 53 describes an incremental
approach to migration.

e “Hardware, sizing, and capacity” on page 53 discusses how provisioning needs shift as you
migrate to the edge-commit architecture.

52

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 3. Commit-edge Architecture

e “Migration scenarios” on page 54 provides instructions for different migration scenarios.

Replacing existing proxies and replicas

If you currently use Perforce proxies, evaluate whether these should be replaced with edge servers. If a
proxy is delivering acceptable performance then it can be left in place indefinitely. You can use proxies
in front of edge servers if necessary. Deploying commit and edge servers is notably more complex than
deploying a master server and proxy servers. Consider your environment carefully.

Of the three types of replicas available, forwarding replicas are the best candidates to be replaced with
edge servers. An edge server provides a better solution than a forwarding replica for many use cases.

Build replicas can be replaced if necessary. If your build processes need to issue write commands other
than p4 sync, an edge server is a good option. But if your build replicas are serving adequately, then
you can continue to use them indefinitely.

Read-only replicas, typically used for disaster recovery, can remain in place. You can use read-only
replicas as part of a backup plan for edge servers.

Deploying commit and edge servers incrementally

You can deploy commit and edge servers incrementally. For example, an existing master server can
be reconfigured to act as a commit server, and serve in hybrid mode. The commit server continues
to service all existing users, workspaces, proxies, and replicas with no change in behavior. The only
immediate difference is that the commit server can now support edge servers.

Once a commit server is available, you can proceed to configure one or more edge servers. Deploying
a single edge server for a pilot team is a good way to become familiar with edge server behavior and
configuration.

Additional edge servers can be deployed periodically, giving you time to adjust any affected processes
and educate users about any changes to their workflow.

Initially, running a commit server and edge server on the same machine can help achieve a full split of
operations, which can make subsequent edge server deployments easier.

Hardware, sizing, and capacity

For an initial deployment of a distributed Perforce service, where the commit server acts in a hybrid
mode, the commit server uses your current master server hardware. Over time, you might see the
performance load on the commit server drop as you add more edge servers. You can reevaluate
commit server hardware sizing after the first year of operation.

An edge server handles a significant amount of work for users connected to that edge server. A
sensible strategy is to repurpose an existing forwarding replica and monitor the performance load on
that hardware. Repurposing a forwarding replica involves the following:

¢ Reconfiguring the forwarding replica as an edge server.

* Creating new workspaces on the edge server or transferring existing workspaces to the edge server.

7

Existing workspaces can be transferred using p4 unload and p4 reload commands. See “Migrating a

Helix Versioning Engine Administrator Guide: Multi-site Deployment 53

Chapter 3. Commit-edge Architecture

workspace from a commit server or remote edge server to the local edge server” on page 56 for
details.

As you deploy more edge servers, you have the option to deploy fewer edge servers on more powerful
hardware, or a to deploy more edge servers, each using less powerful hardware, to service a smaller
number of users.

You can also take advantage of replication filtering to reduce the volume of metadata and archive
content on an edge server.

Note An edge server maintains a unique copy of local workspace metadata, which is not
shared with other edge servers or with the commit server.

Filtering edge server content can reduce the demands for storage and performance capacity.
As you transition to commit-edge architecture and the commit server is only handling requests from

edge servers, you may find that an edge server requires more hardware resources than the commit
server.

Migration scenarios

This section provides instructions for several migration scenarios. If you do not find the material you
need in this section, we recommend you contact Perforce support for assistance support@perforce.com.

Configuring a master server as a commit server

Scenario: You have a master server. You want to convert your master to a commit server, allowing it to
work with edge servers as well as to continue to support clients.

1. Choose a ServerID for your master server, if it does not have one already, and use p4 serverid to
save it.

2. Define a server spec for your master server or edit the existing one if it already has one, and set
Services: commit-server.

Converting a forwarding replica to an edge server

Scenario: You currently have a master server and a forwarding replica. You want to convert your
master server to a commit server and convert your forwarding replica to an edge server.

Depending on how your current master server and forwarding replica are set up, you may not have to
do all of these steps.

1. Have all the users of the forwarding replica either submit, shelve, or revert all of their current work,
and have them delete their current workspaces.

2. Stop your forwarding replica.

3. Choose a ServerlD for your master server, if it does not have one already, and use p4 serverid to
save it.

54

Helix Versioning Engine Administrator Guide: Multi-site Deployment

mailto:support@perforce.com

Chapter 3. Commit-edge Architecture

4. Define a server spec for your master server, or edit the existing one if it already has one, and set
Services: commit-server.

5. Use p4 server to update the server spec for your forwarding replica, and set Services: edge-
server.

6. Update the replica server with your central server data by doing one of the following:
e Use a checkpoint:

a. Take a checkpoint of your central server, filtering out the db.have, db.working, db.resolve,
db.locks, db.revsh, db.workingx, db.resolvex tables.

$ pad -K "db.have,db.working,db.resolve,db.locks,db.revsh,db.workingx,db.resolvex"
-jd my_filtered_checkpoint_file

See the "Perforce Server Reference" appendix in the Helix Versioning Engine Administrator
Guide: Fundamentals, for options that can be used to produce a filtered journal dump file,
specifically the -k and -K options.

b. Restore that checkpoint onto your replica.

c. itis good practice, but it is not required that you remove the replica's state file.
¢ Use replication:

a. Start your replica on a separate port (so local users don't try to use it yet).

b. Wait for it to pull the updates from the master.

c. Stop the replica and remove the db.have, db.working, db.resolve, db.locks, db.revsh,
db.workingx, db.resolvex tables.

7. Start the replica; it is now an edge server.
8. Have the users of the old forwarding replica start to use the new edge server:
a. Create their new client workspaces and sync them.

You are now up and running with your new edge server.
Converting a build server to an edge server

Scenario: You currently have a master server and a build server. You want to convert your master
server to a commit server and convert your build server to an edge server.

Build servers have locally-bound clients already, and it seems very attractive to be able to continue to

use those clients after the conversion from a build-server to an edge server. There is one small detail:

* On a build server, locally-bound clients store their have and view data in db.have.rp and db.view.rp.

* On an edge server, locally-bound clients store their have and view data in db.have and db.view.

Helix Versioning Engine Administrator Guide: Multi-site Deployment

55

http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html

Chapter 3. Commit-edge Architecture

Therefore the process for converting a build server to an edge server is pretty simple:
1. Define a ServerID and server spec for the master, setting Services: commit-server.

2. Edit the server spec for the build-server and change Services: build-server to Services: edge-
server.

3. Shut down the build-server and do the following:

$ rm db.have db.view db.locks db.working db.resolve db.revsh db.workingx db.resolvex
$ mv db.have.rp db.have
$ mv db.view.rp db.view

4. Start the server; it is now an edge server and all of its locally-bound clients can continue to be used!

Migrating a workspace from a commit server or remote edge server to the local edge server

Scenario: You have a workspace on a commit or remote edge server that you want to move to the local
edge server.

1. Current work may be unsubmitted and / or shelved.

2. Execute the following command against the local edge server, where the workspace is being
migrated to. protocol:host:port refers to the commit or remote edge server the workspace is being
migrated from.

p4 reload -c workspace -p protocol:host:port

Managing distributed installations

Commit-edge architecture raises certain issues that you must be aware of and learn to manage. This
section describes these issues.

¢ Each edge server maintains a unique set of workspace and work-in-progress data that must be
backed up separately from the commit server. See “Backup and high availability / disaster recovery
(HA /DR) planning” on page 61 for more information.

¢ Exclusive locks are global: establishing an exclusive lock requires communication with the commit
server, which might incur network latency.

e Parallel submits from an edge server to a commit server use standard pull threads to transfer the
files. The administrator must ensure that pull threads can be run on the commit server by doing the
following:

* Make sure that the service user used by the commit server is logged into the edge server.

* Make sure the ExternalAddress field of the edge server's server spec is set to the address that will
be used by the commit server's pull threads to connect to the edge server.

If the commit and edge servers communicate on a network separate from the network used by
clients to communicate with the edge server, the ExternalAddress field must specify the network

56

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 3. Commit-edge Architecture

that is used for connections from the commit server. Furthermore, the edge server must listen on
the two (or more) networks.

See the p4 help submit command for more information.

e Shelving changes in a distributed environment typically occurs on an edge server. Shelving
can occur on a commit server only while using a client workspace bound to the commit server.
Normally, changelists shelved on an edge server are not shared between edge servers.

You can promote changelists shelved on an edge server to the commit server, making them available
to other edge servers. See “Promoting shelved changelists” on page 57 for details.

e Auto-creation of users is not possible on edge servers.

* You must use a command like the following to delete a client that is bound to an edge server: It is
not sufficient to simply use the -d and -f options.

$ p4 client -d -f --serverid=thatserver thatclient

This prevents your inadvertently deleting a client from an edge server. Likewise, you must specify
the server id and the changelist number when trying to delete a changelist whose client is bound to
an edge server.

$ p4 change -d -f --serverid=thatserver 6321

Moving users to an edge server

As you create new edge servers, you assign some users and groups to use that edge server.
 Users need the P4PORT setting for the edge server.

e Users need to create a new workspace on the edge server or to transfer an existing workspace to the
new edge server. Transferring existing workspaces can be automated.

If you use authentication triggers or single sign-on, install the relevant triggers on all edge servers and
verify the authentication process.

Promoting shelved changelists

Changelists shelved on an edge server, which would normally be inaccessible from other edge servers,
can be automatically or explicitly promoted to the commit server. Promoted shelved changelists are
available to any edge server.

e In a shared archive configuration, where the commit server and edge servers have access to the same
storage device for the archive content, shelves are automatically promoted to the commit server. For
more information, see “Automatically promoting shelves” on page 58.

* You must explicitly promote a shelf when the commit and edge servers do not share the archive. For
more information, see “Explicitly promoting shelves” on page 58.

Helix Versioning Engine Administrator Guide: Multi-site Deployment 57

Chapter 3. Commit-edge Architecture

You can view a shelf's promotion status using the -ztag output of the p4 describe, p4 changes, or p4
change -o commands.

See “Working with promoted shelves” on page 59 for more information on the limitations of
working on promoted shelves.

Automatically promoting shelves

When the edge server and commit server are configured to access the same archive contents, shelf
promotion occurs automatically, and promoting shelved fields with p4 shelve -p is not required.

To configure the edge server and commit server to access the same archive contents, you should set
server.depot.root to the same path for both the commit and edge server, and you should set the
1br.replication configurable to shared for the edge server. For example:

$ pa configure set commit#server.depot.root=/p4/depot/root
$ pa configure set edgettserver.depot.root=/p4a/depot/root
$ p4 configure set edge#lbr.replication=shared

Explicitly promoting shelves

You have two ways of explicitly promoting shelves:
e Set the dm.shelve.promote configurable: dm.shelve.promote=1.

This makes edge servers always promote shelved files to the commit server, which means that file
content is transferred and stored both on the commit server and the edge server. (Generally, it is

a bad idea to enable automatic promotion because it causes a lot of unnecessary file transfers for
shelved files that are not meant to be shared.)

e Use the -p option with the p4 shelve command.
See the example below for more information on this option.
For example, given two edge servers, edgel and edge2, the process works as follows:

1. Shelve and promote a changelist from edge1.

edge1$ p4 shelve -p -c 89

2. The shelved changelist is now available to edge2.

edge2$ p4 describe -S 89

3. Promotion is only required once.

Subsequent p4 shelve commands automatically update the shelved changelist on the commit
server, using server lock protection. For example, make changes on edge1 and refresh the shelved
changelist:

58

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 3. Commit-edge Architecture

edge1$ p4 shelve -r -c 89

The updates can now be seen on edge2:

edge2$ p4 describe -S 89

Promoting shelves when unloading clients

Use the new -p option for the p4 unload command to promote any non-promoted shelves belonging to
the specified client that is being unloaded. The shelf is promoted to the commit server where it can be
accessed by other edge servers.

Working with promoted shelves

The following limitations apply when working with promoted shelves:
* Once a shelf is promoted, it stays promoted.

There is no mechanism to unpromote a shelved changelist; instead, delete the shelved files from the
changelist.

* You may unshelve a promoted shelf into open files and branches on a server from where the shelf
did not originate.

* You cannot unshelve a remote promoted shelf into already-open local files.
* You cannot unload an edge server workspace if you have promoted shelves.
* You can run p4 submit -e on a promoted shelf only on the server that owns the change.

* You can move a promoted shelf from one edge server to another using the p4 unshelve command.

Locking and unlocking files

You can use the -g flag of the p4 lock command to lock the files locally and globally. The -g option
must be used with the -c changelist option. This lock is removed by the p4 unlock -gcommand or
by any submit command for the specified changelist.

Use the -x option to the p4 unlock command to unlock files that have the +1 filetype (exclusive open)
but have become orphaned. This is typically only necessary in the event of an extended network
outage between an edge server and the commit server.

Triggers

This section explains how you manage existing triggers in a commit-edge configuration and how you
use edge type triggers.

Helix Versioning Engine Administrator Guide: Multi-site Deployment 59

Chapter 3. Commit-edge Architecture

Determining the location of triggers

In a distributed Perforce service, triggers might run either on the commit server, or on the edge server,
or perhaps on both. For more information on triggers, see the Helix Versioning Engine Administrator
Guide: Fundamentals.

Make sure that all relevant trigger scripts and programs are deployed appropriately. Edge servers can
affect non-edge type triggers in the following ways:

e If you enforce policy with triggers, you should evaluate whether a change list or shelve trigger
should execute on the commit server or on the edge server.

* Edge servers are responsible for running form triggers on workspaces and some types of labels.

Trigger scripts can determine whether they are running on a commit or edge server using the trigger
variables described in the following table. When a trigger is executed on the commit server, %peerip%
matches %clientip%.

Trigger Variable Description
%peerip% The IP address of the proxy, broker, replica, or edge server.
%clientip% The IP address of the machine whose user invoked the command, regardless

of whether connected through a proxy, broker, replica, or edge server.

%submitserverid’ For a change-submit, change-content, or change-commit trigger in a
distributed installation, the server.id of the edge server where the submit
was run. See p4 serverid in the P4 Command Reference for details.

Using edge triggers

In addition, edge servers support two trigger types that are specific to edge-commit architecture: edge-
submit and edge-content. They are described in the following table.

Trigger Type Description

edge-submit Executes a pre-submit trigger on the edge server after changelist has been
created, but prior to file transfer from the client to the edge server. The files are
not necessarily locked at this point.

edge-content Executes a mid-submit trigger on the edge server after file transfer from the
client to the edge server, but prior to file transfer from the edge server to the
commit server. At this point, the changelist is shelved.

Triggers on the edge server are executed one after another when invoked via p4 submit -e. For p4
submit, edge-submit triggers run immediately before the changelist is shelved, and edge-content
triggers run immediately after the changelist is shelved. As edge-submit triggers run prior to file
transfer to the edge server, these triggers cannot access file content.

60

Helix Versioning Engine Administrator Guide: Multi-site Deployment

http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html
http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

Chapter 3. Commit-edge Architecture

The following edge-submit trigger is an MS-DOS batch file that rejects a changelist if the submitter has
not had his change reviewed and approved. This trigger fires only on changelist submission attempts
that affect at least one file in the //depot/qa branch.

@echo off

rem REMINDERS

rem - If necessary, set Perforce environment vars or use config file
rem - Set PATH or use full paths (C:\PROGRA~1\Perforce\p4.exe)

rem - Use short pathnames for paths with spaces, or quotes

rem - For troubleshooting, log output to file, for instance:

rem - C:\PROGRA~1\Perforce\p4 info >> trigger.log

if not x%1==x goto doit

echo Usage is %0[changett]

:doit

p4 describe -s %1|findstr "Review Approved...\n\n\t" > nul

if errorlevel 1 echo Your code has not been reviewed for changelist %1
p4 describe -s %1|findstr "Review Approved...\n\n\t" > nul

To use the trigger, add the following line to your triggers table:

sampleEdge edge-submit //depot/qa/... "reviewcheck.bat %changelist%"

Backup and high availability / disaster recovery (HA/DR) planning

A commit server can use the same backup and HA /DR strategy as a master server. Edge servers
contain unique information and should have a backup and an HA /DR plan. Whether an edge server
outage is as urgent as a master server outage depends on your requirements. Therefore, an edge server
may have an HA /DR plan with a less ambitious Recovery Point Objective (RPO) and Recovery Time
Objective (RTO) than the commit server.

If a commit server must be rebuilt from backups, each edge server must be rolled back to a backup
prior to the commit server's backup. Alternatively, if your commit server has no local users, the
commit server can be rebuilt from a fully-replicated edge server (in this scenario, the edge server is a
superset of the commit server).

Backing up and recovering an edge server is similar to backing up and restoring an offline replica
server. Specifically, you need to do the following:

1. On the edge server, schedule a checkpoint to be taken the next time journal rotation is detected on
the commit server. For example:

$ pa -p myedgehost:myedgeport admin checkpoint

The p4 pull command performs the checkpoint at the next rotation of the journal on the commit
server. A stateCKP file is written to the P4ROOT directory of the edge server, recording the
scheduling of the checkpoint.

2. Rotate the journal on the commit server:

Helix Versioning Engine Administrator Guide: Multi-site Deployment 61

Chapter 3. Commit-edge Architecture

$ p4 -p mycommithost:mycommitport admin journal

As long as the edge server's replication state file is included in the backup, the edge server can be
restored and resume service. If the edge server was offline for a long period of time, it may need some
time to catch up on the activity on the commit server.

As part of a failover plan for a commit server, make sure that the edge servers are redirected to use the
new commit server.

Note For commit servers with no local users, edge servers could take significantly longer
to checkpoint than the commit server. You might want to use a different checkpoint
schedule for edge servers than commit servers. If you use several edge servers
for one commit server, you should stagger the edge-checkpoints so they do not
all occur at once and bring the system to a stop. Journal rotations for edge servers
could be scheduled at the same time as journal rotations for commit servers.

Other considerations

As you deploy edge servers, give consideration to the following areas.
¢ Labels

In a distributed Perforce service, labels can be local to an edge server, or global.
¢ Exclusive Opens

Exclusive opens (+1 filetype modifier) are global: establishing an exclusive open requires
communication with the commit server, which may incur network latency.

¢ Integrations with third party tools

If you integrate third party tools, such as defect trackers, with Perforce, evaluate whether those tools
should continue to connect to the master/commit server or could use an edge server instead. If the
tools only access global data, then they can connect at any point. If they reference information local
to an edge server, like workspace data, then they must connect to specific edge servers.

Build processes can usefully be connected to a dedicated edge server, providing full Perforce
functionality while isolating build workspace metadata. Using an edge server in this way is similar
to using a build farm replica, but with the additional flexibility of being able to run write commands
as part of the build process.

¢ Files with propagating attributes

In distributed environments, the following commands are not supported for files with propagating
attributes: p4 copy, p4 delete, p4 edit, p4 integrate, p4 reconcile, p4 resolve, p4 shelve, p4
submit, and p4 unshelve. Integration of files with propagating attributes from an edge server is not
supported; depending on the integration action, target, and source, either the p4 integrate or the p4
resolve command will fail.

62

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 3. Commit-edge Architecture

If your site makes use of this feature, direct these commands to the commit server, not the edge
server. Perforce-supplied software does not presently set propagating attributes on files and is not
known to be affected by this limitation.

* Logging and auditing

Edge servers maintain their own set of server and audit logs. Consider using structured logs for
edge servers, as they auto-rotate and clean up with journal rotations. Incorporate each edge server's
logs into your overall monitoring and auditing system.

In particular, consider the use of the rpl.checksum.* configurables to automatically verify database
tables for consistency during journal rotation, changelist submission, and table scans and unloads.
Regularly monitor the integrity.csv structured log for integrity events.

¢ Unload depot

The unload depot may have different contents on each edge server. Clients and labels bound to an
edge server are unloaded into the unload depot on that edge server, and are not displayed by the p4
clients -Uand p4 labels -Ucommands on other edge servers.

Be sure to include the unload depot as part of your edge server backups. Since the commit server
does not verify that the unload depot is empty on every edge server, you must specify p4 depot -d
-f in order to delete the unload depot from the commit server.

¢ Future upgrades

Commit and edge servers should be upgraded at the same time.
¢ Time zones

Commit and edge servers must use the same time zone.
¢ Perforce Swarm

The initial release of Swarm can usefully be connected to a commit server acting in hybrid mode
or to an edge server for the users of that edge server. Full Swarm compatibility with multiple edge
servers will be handled in a follow-on Swarm release. For more detailed information about using
Swarm with edge servers, please contact Perforce Support support@perforce.com.

Validation

As you deploy commit and edge servers, you can focus your testing and validation efforts in the
following areas.

Supported deployment configurations

¢ Hybrid mode: commit server also acting as a regular master server
* Read-only replicas attached to commit and edge servers

e Proxy server attached to an edge server

Helix Versioning Engine Administrator Guide: Multi-site Deployment 63

mailto:support@perforce.com

Chapter 3. Commit-edge Architecture

Backups

Exercise a complete backup plan on the commit and edge servers. Note that journal rotations are not
permitted directly on an edge server. Journal rotations can occur on edge servers as a consequence of

OCCUI‘I’iI’lg on a master server.

64

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 4 The Perforce Broker

What is the broker?

The Perforce Broker (P4Broker) enables you to implement local policies in your Perforce environment
by allowing you to restrict the commands that can be executed, or redirect specific commands to
alternate (replica or edge) Perforce servers.

The Perforce Broker is a server process that mediates between Perforce client applications and Perforce
servers, including proxy servers. For example, Perforce client applications can connect to a proxy
server that connects to the broker, which then connects to a Perforce server. Or, Perforce client
applications can connect to a broker configured to redirect reporting-related commands to a read-
only replica server, while passing other commands through to a master server. You can use a broker to
solve load-balancing, security, or other issues that can be resolved by sorting requests directed to one
or more Perforce servers.

The work needed to install and configure a broker is minimal: the administrator needs to configure the
broker and configure the users to access the Perforce server through the broker. Broker configuration
involves the use of a configuration file that contains rules for specifying which commands individual
users can execute and how commands are to be redirected to the appropriate Perforce service. You

do not need to backup the broker. In case of failure, you just need to restart it and make sure that its
configuration file has not been corrupted. .

From the perspective of the end user, the broker is transparent: users connect to a Perforce Broker just
as they would connect to any other Perforce Server.

System requirements

To use the Perforce Broker, you must have:
* A Perforce server at release 2007.2 or higher (2012.1 or higher to use SSL).
e Perforce applications at release 2007.2 or higher (2012.1 or higher to use SSL).

The Perforce Broker is designed to run on a host that lies close to the Perforce Server (p4d), preferably
on the same machine.

Installing the broker

To install P4Broker, do the following;:
1. Download the p4broker executable from the Perforce website,

2. Copy it to a suitable directory on the host (such as /usr/local/bin), and ensure that the binary is
executable:

$ chmod +x p4broker

Helix Versioning Engine Administrator Guide: Multi-site Deployment 65

Chapter 4. The Perforce Broker

Running the broker

After you have created your configuration file (see “Configuring the broker” on page 70), start the
Perforce Broker from the command line by issuing the following command:

$ pabroker -c config_file

Alternatively, you can set PABROKEROPTIONS before launching the broker and use it to specify the broker
configuration file (or other options) to use.

For example, on Unix:

$ export P4BROKEROPTIONS="-c /usr/perforce/broker.conf"
$ pabroker -d

and on Windows:

C:\> p4 set -s P4BROKEROPTIONS="-c c:\p4broker\broker.conf"
C:\> pabroker

The Perforce Broker reads the specified broker configuration file, and on Unix platforms the -d option
causes the Perforce Broker to detach itself from the controlling terminal and run in the background.

To configure the Perforce Broker to start automatically, create a startup script that sets
P4BROKEROPTIONS and runs the appropriate pgbroker command.

On Windows systems, you can also set PABROKEROPTIONS and run the broker as a service. This involves
the following steps:

C:\> cd C:\pgbroker\

C:\p4broker\> copy p4broker.exe p4brokers.exe

C:\p4broker\> copy "C:\Program Files\Perforce\Server\svcinst.exe" svcinst.exe
C:\pabroker\> svcinst create -n P4Broker -e "C:\pgbroker\pgbrokers.exe" -a
C:\p4broker\> p4 set -S P4Broker P4BROKEROPTIONS="-c C:\p4broker\p4broker.conf"
C:\pabroker\> svcinst start -n P4Broker

svcinst.exe is a standard Windows program. P4Broker is the name given to the Windows service. For
more information, see "Installing P4Broker on Windows and Unix systems" in the Perforce Knowledge
Base:

http:/ /answers.perforce.com /articles / KB_Article / Installing-P4Broker-on-Windows-and-Unix-
systems

Enabling SSL support

To encrypt the connection between a Perforce Broker and its end users, your broker must have a
valid private key and certificate pair in the directory specified by its P4SSLDIR environment variable.

66

Helix Versioning Engine Administrator Guide: Multi-site Deployment

http://answers.perforce.com/articles/KB_Article/Installing-P4Broker-on-Windows-and-Unix-systems
http://answers.perforce.com/articles/KB_Article/Installing-P4Broker-on-Windows-and-Unix-systems

Chapter 4. The Perforce Broker

Certificate and key generation and management for the broker works the same as it does for the
Perforce Server. See “Enabling SSL support” on page 20. The users' Perforce applications must be
configured to trust the fingerprint of the broker.

To encrypt the connection between a Perforce Broker and a Perforce Server, your broker must be
configured so as to trust the fingerprint of the Perforce Server. That is, the user that runs p4broker
(typically a service user) must create a PATRUST file (using p4 trust) that recognizes the fingerprint of
the Perforce Server, and must set PATRUST, specifying the path to that file (P4TRUST cannot be specified
in the broker configuration file).

For complete information about enabling SSL for the broker, see http:/ /answers.perforce.com/
articles /KB /2596.

Broker information

You can issue the p4 info to determine whether you are connected to a broker or not. When connected
to a broker, the Broker address and Broker version appear in the output:

$ pa info

User name: bruno

Client name: bruno-ws

Client host: bruno.host

Client root: /Users/bruno/Workspaces/depot

Current directory: /Users/bruno/Workspaces/depot/main/jam
Peer address: 192.168.1.40:55138

Client address: 192.168.1.114

Server address: perforce:1667

Server root: /perforce/server/root

Server date: 2014/03/13 15:46:52 -0700 PDT

Server uptime: 92:26:02

Server version: P4D/LINUX26X86 64/2014.1/773873 (2014/01/21)
ServerID: master-1666

Broker address: perforce:1666

Broker version: P4BROKER/LINUX26X86_64/2014.1/782990
Server license: 10000 users (support ends 2016/01/01)
Server license-ip: 192.168.1.40

Case Handling: sensitive

When connected to a broker, you can use the p4 broker command to see a concise report of the
broker's info:

$ p4 broker

Current directory: /Users/bruno/Workspaces/depot/main/jam
Client address: 192.168.1.114:65463

Broker address: perforce:1666

Broker version: P4BROKER/LINUX26X86 64/2014.1/782990

Broker and protections

To apply the IP address of a broker user's workstation against the protections table, prepend the string
proxy- to the workstation's IP address.

Helix Versioning Engine Administrator Guide: Multi-site Deployment 67

http://answers.perforce.com/articles/KB/2596
http://answers.perforce.com/articles/KB/2596

Chapter 4. The Perforce Broker

For instance, consider an organization with a remote development site with workstations on a subnet
of 192.168.10.0/24. The organization also has a central office where local development takes place; the
central office exists on the 10.0.0.0/8 subnet. A Perforce service resides in the 10.0.0.0/8 subnet, and
a broker resides in the 192.168.10.0/24 subnet. Users at the remote site belong to the group remotedev,
and occasionally visit the central office. Each subnet also has a corresponding set of IPv6 addresses.

To ensure that members of the remotedev group use the broker while working at the remote site, but
do not use the broker when visiting the local site, add the following lines to your protections table:

list group remotedev 192.168.10.0/24 -//...
list group remotedev [2001:db8:16:81::]/48 -//...
write group remotedev proxy-192.168.10.0/24 /...
write group remotedev proxy-[2001:db8:16:81::1/48 //...
list group remotedev proxy-10.0.0.0/8 -//...
list group remotedev proxy-[2001:db8:1008::]/32 -//...
write group remotedev 10.0.0.0/8 /...
write group remotedev [2001:db8:1008::]/32 /...

The first line denies list access to all users in the remotedev group if they attempt to access Perforce
without using the broker from their workstations in the 192.168.10.0/24 subnet. The second line
denies access in identical fashion when access is attempted from the IPV6 [2001:db8:16:81::]/48
subnet.

The third line grants write access to all users in the remotedev group if they are using the broker
and are working from the 192.168.10.0/24 subnet. Users of workstations at the remote site must
use the broker. (The broker itself does not have to be in this subnet, for example, it could be at
192.168.20.0.) The fourth line denies access in identical fashion when access is attempted from the
IPV6 [2001:db8:16:81::]/48 subnet.

Similarly, the fifth and sixth lines deny list access to remotedev users when they attempt to use the
broker from workstations on the central office's subnets (10.0.0.0/8 and [2001:db8:1008::]/32). The
seventh and eighth lines grant write access to remotedev users who access the Perforce server directly
from workstations on the central office's subnets. When visiting the local site, users from the remotedev
group must access the Perforce server directly.

When the Perforce service evaluates protections table entries, the dm.proxy.protects configurable is
also evaluated.

dm.proxy.protects defaults to 1, which causes the proxy- prefix to be prepended to all client host
addresses that connect via an intermediary (proxy, broker, broker, or edge server), indicating that the
connection is not direct.

Setting dm.proxy.protects to 0 removes the proxy- prefix and allows you to write a single set of
protection entries that apply both to directly-connected clients as well as to those that connect via an
intermediary. This is more convenient but less secure if it matters that a connection is made using an
intermediary. If you use this setting, all intermediaries must be at release 2012.1 or higher.

68

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 4. The Perforce Broker

P4Broker options

Option Meaning

-c file Specify a configuration file. Overrides P4BROKEROPTIONS setting.
-C Output a sample configuration file, and then exit.

-d Run as a daemon (in the background).

-f Run as a single-threaded (non-forking) process.

-h Print help message, and then exit.

-q Run quietly (no startup messages).

-V Print broker version, and then exit.

-v subsystem=1evel

-Gc

Set server trace options. Overrides the value of the P4DEBUG setting, but
does not override the debug-1level setting in the p4broker. conf file.
Default is null.

The server command trace options and their meanings are as follows.

Trace option Meaning

server=0 Disable broker command logging.
server=1 Logs broker commands to the server log file.
server=2 In addition to data logged at level 1, logs broker

command completion and basic information on CPU
time used. Time elapsed is reported in seconds. On
UNIX, CPU usage (system and user time) is reported in
milliseconds, as per getrusage().

server=3 In addition to data logged at level 2, adds usage
information for compute phases of p4 sync and p4 flush
(p4 sync -k) commands.

For command tracing, output appears in the specified log file, showing the
date, time, username, IP address, and command for each request processed
by the server.

Generate SSL credentials files for the broker: create a private key
(privatekey.txt) and certificate file (certificate.txt) in P4SSLDIR, and
then exit.

Requires that P4SSLDIR be set to a directory that is owned by the user
invoking the command, and that is readable only by that user. If
config.txt is present in P4SSLDIR, generate a self-signed certificate with
specified characteristics.

Helix Versioning Engine Administrator Guide: Multi-site Deployment 69

Chapter 4. The Perforce Broker

Option Meaning

-Gf Display the fingerprint of the broker's public key, and exit.

Administrators can communicate this fingerprint to end users, who
can then use the p4 trust command to determine whether or not the
fingerprint (of the server to which they happen to be connecting) is
accurate.

Configuring the broker

P4Broker is controlled by a broker configuration file. The broker configuration file is a text file that
contains rules for:

e Specifying which commands that individual users can use.

¢ Defining commands that are to be redirected to specified replica server.

To generate a sample broker configuration file, issue the following command:
$ pabroker -C > pgbroker.conf

You can edit the newly-created p4broker. conf file to specify your requirements.

Format of broker configuration files

A broker configuration file contains three sections:
e Global settings: settings that apply to all broker operations

e Alternate server definitions: the addresses and names of replica servers to which commands can be
redirected in specified circumstances

e Command handler specifications: specify how individual commands should be handled; in the
absence of a command handler for any given command, the Perforce Broker permits the execution of
the command

Specifying hosts

The broker configuration requires specification of the target setting, which identifies the Perforce
service to which commands are to be sent, the 1isten address, which identifies the address where the
broker listens for commands from Perforce client applications, and the optional altserver alternate
server address, which identifies a replica, proxy, or other broker connected to the Perforce service.

The host specification uses the format protocol :host:port, where protocol is the communications
protocol (beginning with ssl:for SSL, or tcp: for plaintext), host is the name or IP address of the
machine to connect to, and port is the number of the port on the host.

Protocol Behavior

<not set> If the net.rfc3484 configurable is set, allow the OS to determine which transport is
used. This is applicable only if a host name (either FQDN or unqualified) is used.

70 Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 4. The Perforce Broker

Protocol

Behavior

tep:

If an IPv4 literal address (e.g. 127.0.0.1) is used, the transport is always tcp4, and
if an IPv6 literal address (e.g. ::1) is used, then the transport is always tcpé.

Use tcp4: behavior, but if the address is numeric and contains two or more colons,
assume tcp6:. If the net.rfc3484 configurable is set, allow the OS to determine
which transport is used.

tcp4:

tcpb6:

Listen on/connect to an IPv4 address/port only.

Listen on/connect to an IPv6 address/port only.

tcpa6:

Attempt to listen on/connect to an IPv4 address/ port. If this fails, try IPv6.

tcp64:

Attempt to listen on/connect to an IPv6 address/ port. If this fails, try IPv4.

ssl:

Use ssl4: behavior, but if the address is numeric and contains two or more colons,
assume ss16:. If the net.rfc3484 configurable is set, allow the OS to determine
which transport is used.

ssla:

Listen on/connect to an IPv4 address/port only, using SSL encryption.

ssl6:

Listen on/connect to an IPv6 address/port only, using SSL encryption.

ss146:

Attempt to listen on/connect to an IPv4 address/ port. If this fails, try IPv6. After
connecting, require SSL encryption.

ssl64:

Attempt to listen on/connect to an IPv6 address/ port. If this fails, try IPv4. After
connecting, require SSL encryption.

The host field can be the hosts' hostname or its IP address; both IPv4 and IPv6 addresses are
supported. For the listen setting, you can use the * wildcard to refer to all IP addresses, but only
when you are not using CIDR notation.

If you use the * wildcard with an IPv6 address, you must enclose the entire IPv6 address in square
brackets. For example, [2001:db8:1:2:*] is equivalent to [2001:db8:1:2::]/64. Best practice is to use
CIDR notation, surround IPv6 addresses with square brackets, and to avoid the * wildcard.

Global settings

The following settings apply to all operations you specify for the broker.

Setting

Meaning Example

target

The default Perforce Server (P4D) target = [protocol:]host:port;
to which commands are sent unless

overridden by other settings in the

configuration file.

Helix Versioning Engine Administrator Guide: Multi-site Deployment 71

Chapter 4. The Perforce Broker

Setting

Meaning

Example

listen

directory

The address on which the Perforce
Broker listens for commands from
Perforce client applications.

The home directory for the Perforce
Broker. Other paths specified in the
broker configuration file must be
relative to this location.

listen = [protocol:][host:]port;

directory = path;

logfile

Path to the Perforce Broker logfile.

logfile = path;

debug-level

Level of debugging output to log.
Overrides the value specified by the -v
option and P4DEBUG.

You can specify more than one value;
see example.

debug-level = server=1;

debug-level = server=1, time=1,
rpl=3;

admin-name

admin-email

The name of your Perforce
Administrator. This is displayed in
certain error messages.

An email address where users can
contact their Perforce Administrator.
This address is displayed to users when
broker configuration problems occur.

admin-name = "P4 Admin";

admin-email = admin@example.com;

admin-phone

The telephone number of the Perforce
Administrator.

admin-phone = nnnnnnn;

redirection

The redirection mode to use: selective
or pedantic.

In selective mode, redirection is
permitted within a session until one
command has been executed against the
default (target) server. From then on,

all commands within that session run
against the default server and are not
redirected.

In pedantic mode, all requests for
redirection are honored.

The default mode is selective.

redirection = selective;

service-user

An optional user account by which
the broker authenticates itself when
communicating with a target server.

service-user = svcbroker;

72

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 4. The Perforce Broker

Setting Meaning

Example

The broker configuration does not
include a setting for specifying a
password as this is considered insecure.
Use the p4 login -u service-user -p
command to generate a ticket. Store the
displayed ticket value in a file, and then

set the ticket-file setting to the path of

that file.

To provide continuous operation of the
broker, the service-user user should be
included in a group that has its Timeout
setting set to unlimited. The default
ticket timeout is 12 hours.

ticket-file An optional alternate location for

P4TICKETS files.
compress Compress connection between broker
and server. Over a slow link such as
a WAN, compression can increase
performance. If the broker and the
server are near to each other (and
especially if they reside on the same
physical machine), then bandwidth is
not an issue, and compression should be
disabled to spare CPU cycles.

ticket-file = /home/
pabroker/.p4tickets;

compress = false;

altserver An optional alternate server to help
reduce the load on the target server.
The name assigned to the alternate

server is used in command handler
specifications. See “Alternate server

definitions” on page 78.

Multiple altserver settings may appear
in the broker configuration file, one for
each alternate server.

Command handler specifications

altserver name
{ target=[protocol:]host:port };

Each altserver setting must appear on one
line.

Command handlers enable you to specify how the broker responds to different commands issued by
different users from within different environments. When users run commands, the Perforce Broker
searches for matching command handlers and uses the first match found. If no command handler
matches the user's command, the command is forwarded to the target Perforce Server for normal

processing.

The general syntax of a command handler specification is outlined in the sample broker.conf:

Helix Versioning Engine Administrator Guide: Multi-site Deployment

73

Chapter 4. The Perforce Broker

{

flags
args

user
workspace
prog
version

command: commandpattern

Conditions for the command to meet (optional)
Note that with the exception of 'flags', these are regex patterns.

= required-flags;

= required-arguments;

= required-user;

= required-client-workspace;

= required-client-program;

= required-version-of-client-program,

What to do with matching commands (required)
action = pass | reject | redirect | filter | respond ;

How to go about it

destination = altserver; # Required for action = redirect
execute = /path/to/filter/program; # Required for action = filter
message = rejection-message; # Required for action = reject

}

The commandpattern parameter can be a regular expression and can include the ".*" wildcard. For
example, a commandpattern of "user.*" matches both the "p4 user"” and "p4 users" commands. See
“Regular expression synopsis” on page 75

The following table describes the parameters in detail.

Parameter Meaning

options A list of options that must be present on the command line of the command being
handled.
This feature enables you to specify different handling for the same p4 command,
depending on which options the user specifies. Note that only single character
options may be specified here. Multi-character options, and options that take
arguments should be handled by a filter program.

args A list of arguments that must be present on the command line of the command
being handled.

user The name of the user who issued the command.

workspace The Perforce client workspace setting in effect when the command was issued.

prog The Perforce client application through which the user issued the command. This
feature enables you to handle commands on a per-application basis.

version The version of the Perforce application through which the user issued the
command.

action Defines how the Perforce Broker handles the specified commands. Valid values are:

pass, reject, redirect, filter, or respond.

74

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 4. The Perforce Broker

Parameter Meaning

destination For redirected commands, the name of the replica to which the commands are
redirected. The destination must be the name of a previously-defined alternate
(replica) server listed in the altserver setting.

You can implement load-balancing by setting the destination to the keyword
random. Commands are randomly redirected to any alternate (replica) server that
you have already defined.

You can also set destination to the address:port of the server where you want
commands redirected.

execute The path to a filter program to be executed. For details about filter programs, see
“Filter programs” on page 76.

message A message to be sent to the user, typically before the command is executed; this
may be used with any of the above actions.

For example, the following command handler prevents user joe from invoking p4 submit from the
buildonly client workspace.

command: submit
{ .

user = joe;

workspace = buildonly;

action = reject;

message = "Submit failed: Please do not submit from this workspace."
}

Regular expression synopsis

A regular expression, or regex, is a sequence of characters that forms a search pattern, for use in pattern
matching with strings. The following is a short synopsis of the regex facility available in command
handler specifications.

A regular expression is formed from zero or more branches. Branches are separated by |. The regex
matches any string that matches at least one of the branches.

A branch is formed from zero or more pieces, concatenated together. A branch matches when all of its
pieces match in sequence, that is, a match for the first piece, followed by a match for the second piece,
etc.

A piece is an atom possibly followed by a quantifier: *, +, or ?. An atom followed by * matches a
sequence of 0 or more instances of the atom. An atom followed by + matches a sequence of 1 or more

instances of the atom. An atom followed by ? matches a sequence of 0 or 1 instances of the atom.

An atom is:

Helix Versioning Engine Administrator Guide: Multi-site Deployment 75

Chapter 4. The Perforce Broker

a subordinate regular expression in parentheses - matches that subordinate regular expression
e arange (see below),
e . - matches any single character,

e " - matches the beginning of the string,

$ - matches the end of the string,

a \ followed by a single character - matches that character,
e or a single character with no other significance - matches that character.

A range is a sequence of characters enclosed in square brackets ([]), and normally matches any single
character from the sequence. If the sequence begins with #, it matches any single character that is not
in the sequence. If two characters in the sequence are separated by -, this is shorthand for the full list
of ASCII characters between them (e.g. [0-9] matches any decimal digit, [a-z] matches any lowercase
alphabetical character). To include a literal] in the sequence, make it the first character (following a
possible *). To include a literal -, make it the first or last character.

Filter programs

When the action for a command handler is filter, the Perforce Broker executes the program or script
specified by the execute parameter and performs the action returned by the program. Filter programs
enable you to enforce policies beyond the capabilities provided by the broker configuration file.

The Perforce Broker invokes the filter program by passing command details to the program's standard
input in the following format:

Command detail Definition

command: user command

brokerListenPort: port on which the broker is listening

brokerTargetPort: port on which the target server is listening

clientProg: client application program

clientVersion: version of client application program

clientProtocol: level of client protocol

apiProtocol: level of api protocol

maxLockTime: maximum lock time (in ms) to lock tables before aborting
maxScanRows : maximum number of rows of data scanned by a command
maxResults: maximum number of rows of result data to be returned

76

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 4. The Perforce Broker

Command detail Definition

workspace: name of client workspace

user: name of requesting user

clientIp: IP address of client

proxyIp: IP address of proxy (if any)

cwd: Client's working directory

argCount: number of arguments to command
Argo: first argument (if any)

Argl: second argument (if any)

clientHost: Hostname of the client

brokerlLevel: The internal version level of the broker.
proxylevel: The internal version level of the proxy (if any).

Non-printable characters in command arguments are sent to filter programs as a percent sign followed
by a pair of hex characters representing the ASCII code for the non-printable character in question. For
example, the tab character is encoded as %09.

Your filter program must read this data from stdin before performing any additional processing,
regardless of whether the script requires the data. If the filter script does not read the data from stdin,
"broken pipe" errors can occur, and the broker rejects the user's command.

Your filter program must respond to the Broker on standard output (stdout) with data in one of the
four following formats:

action: PASS
message: a message for the user (optional)

action: REJECT
message: a message for the user (required)

action: REDIRECT
altserver: (an alternate server name)
message: a message for the user (optional)

action: RESPOND
message: a message for the user (required)

Helix Versioning Engine Administrator Guide: Multi-site Deployment 77

Chapter 4. The Perforce Broker

action: CONTINUE

Note ! The values for the action are case-sensitive.

The action keyword is always required and tells the Broker how to respond to the user's request. The
available actions are:

Action Definition

PASS Run the user's command unchanged. A message for the user is optional.

REJECT Reject the user's command; return an error message. A message for the user is required.

REDIRECT Redirect the command to a different (alternate) replica server. An altserver is
required. See “Configuring alternate servers to work with central authorization
servers” on page 79 for details. A message for the user is optional.
To implement this action, the broker makes a new connection to the alternate server
and routes all messages from the client to the alternate server rather than to the original
server. This is unlike HTTP redirection where the client is requested to make its own
direct connection to an alternate web server.

RESPOND Do not run the command; return an informational message. A message for the user is
required.

CONTINUE ~ Defer to the next command handler matching a given command.

For additional information on using multiple handlers, see http://
answers.perforce.com/articles /KB /11309.

If the filter program returns any response other than something complying with the four message
formats above, the user's command is rejected. If errors occur during the execution of your filter script
code cause the broker to reject the user's command, the broker returns an error message.

Alternate server definitions

The Perforce Broker can direct user requests to an alternate server to reduce the load on the target
server. These alternate servers must be replicas (or brokers, or proxies) connected to the intended

target server.

To set up and configure a replica server, see Chapter 2, “Perforce Replication” on page 11. The broker
works with both metadata-only replicas and with replicas that have access to both metadata and
versioned files.

There is no limit to the number of alternate replica servers you can define in a broker configuration file.

The syntax for specifying an alternate server is as follows:

altserver name { target= [protocol:]host:port }

78

Helix Versioning Engine Administrator Guide: Multi-site Deployment

http://answers.perforce.com/articles/KB/11309
http://answers.perforce.com/articles/KB/11309

Chapter 4. The Perforce Broker

The name assigned to the alternate server is used in command handler specifications. See “Command
handler specifications” on page 73.

Configuring alternate servers to work with central authorization servers

Alternate servers require users to authenticate themselves when they run commands. For this
reason, the Perforce Broker must be used in conjunction with a central authorization server (P4AUTH)
and Perforce Servers at version 2007.2 or later. For more information about setting up a central
authorization server, see “Configuring centralized authorization and changelist servers” on page 6.

When used with a central authorization server, a single p4 login request can create a ticket that is
valid for the user across all servers in the Perforce Broker's configuration, enabling the user to log in
once. The Perforce Broker assumes that a ticket granted by the target server is valid across all alternate
servers.

If the target server in the broker configuration file is a central authorization server, the value

assigned to the target parameter must precisely match the setting of P4AUTH on the alternate server
machine(s). Similarly, if an alternate sever defined in the broker configuration file is used as the central
authorization server, the value assigned to the target parameter for the alternate server must match
the setting of P4AUTH on the other server machine(s).

Using the broker as a load-balancing router

Previous sections described how you can use the broker to direct specific commands to specific
servers. You can also configure the broker to act as a load-balancing router. When you configure a
broker to act as a router, Perforce builds a db.routing table that is processed by the router to determine
which server an incoming command should be routed to. (The db.routing table provides a mapping of
clients and users to their respective servers. To reset the db.routing table, remove the db.routing file.)

This section explains how you configure the broker to act as a router, and it describes routing policy
and behavior.

Configuring the broker as a router

To configure the broker as a router, add the router statement to the top level of the broker
configuration. The target server of the broker-router should be a commit or master server.

target = commitserv.example.com:1666;
listen = 1667;

directory = /p4/broker;

logfile = broker.log;

debug-level = server=1;

admin-name = "Perforce Admins";

admin-phone = 999/911;
admin-email = perforce-admins@example.com;
router;

You must then include altserver statements to specify the edge servers of the commit server (or the
workspace servers of the depot master) that is the target server of the broker-router.

Helix Versioning Engine Administrator Guide: Multi-site Deployment 79

Chapter 4. The Perforce Broker

altserver: edgeservi

{
}

target = edgeservel.example.com:1669;

If you are using the broker to route messages for a commit-edge architecture, you must list all existing
edge serves as altservers.

Routing policy and behavior

When a command arrives at the broker, the broker looks in its db.routing table to determine where the
command should be routed. The routing logic attempts to bind a user to a server where they already
have clients. You can modify the routing choice on the p4 command line using the following argument
to override routing for that command.

-Zroute=serverID

Routing logic uses a default destination server, chosen at random, if a client and user have no binding
to an existing edge server. That is, requests are routed to an existing altserver that is randomly chosen
unless a specific destination is given.

* To route requests to the commit server, use the destination form as follows:

target = commitserv.example.com:1666;
listen = 1667;

directory = /p4/broker;

logfile = broker.log;

debug-level = server=1;

admin-name = "Perforce Admins";

admin-phone = 999/911;
admin-email = perforce-admins@example.com;

router;
destination target;

* To cause new users to be bound to a new edge server rather than being assigned to existing edge
servers, use a destination form like the following;:

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 4. The Perforce Broker

target = commitserv.example.com:1666;
listen = 1667;

directory = /p4/broker;

logfile = broker.log;

debug-level = server=1;

admin-name = "Perforce Admins";

admin-phone = 999/911;
admin-email = perforce-admins@example.com;

router;
destination = "myNewEdge";

e To force a command to be routed to the commit server, use an action = redirect rule with a
destination target statement; for example:

command: regex pattern

{

action=redirect;
destination target;

‘ Note I You need to remove the db.routing file when you move clients to a different
I workspace or edge server.

Helix Versioning Engine Administrator Guide: Multi-site Deployment

81

82

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 5

Perforce Proxy

Perforce is built to handle distributed development in a wide range of network topologies. Where
bandwidth to remote sites is limited, P4P, the Perforce Proxy, improves performance by mediating
between Perforce applications and the versioning service to cache frequently transmitted file revisions.
By intercepting requests for cached file revisions, P4P reduces demand on the Perforce service and the
network over which it runs.

To improve performance obtained by multiple Perforce users accessing a shared Perforce repository
across a WAN, configure P4P on the side of the network close to the users and configure the users to
access the service through P4P; then configure P4P to access the master Perforce service. (On a LAN,
you can also obtain performance improvements by setting up proxies to divert workload from the
master server's CPU and disks.)

The following diagram illustrates a typical PAP configuration.

| .
| Ul Y |
| =

ﬁ\lj central outpost
A

.@’7

P4PORT=central:1666

P4PORT=outpost:1666

/src/pdroot/. .. /var/proxyroot/...

In this configuration, file revisions requested by users at a remote development site are fetched first
from a central Perforce server (p4d running on central) and transferred over a relatively slow WAN.
Subsequent requests for that same revision, however, are delivered from the Perforce Proxy, (p4p
running on outpost), over the remote development site's LAN, reducing both network traffic across
the WAN and CPU load on the central server.

System requirements

To use Perforce Proxy, you must have:
* A Perforce Server at Release 2002.2 or higher (2012.1 or higher to use SSL)

e Sufficient disk space on the proxy host to store a cache of file revisions

Installing P4P

In addition to the basic steps described next you might also want to do the following;:

Helix Versioning Engine Administrator Guide: Multi-site Deployment 83

Chapter 5. Perforce Proxy

¢ Enable SSL support. See “Enabling SSL support” on page 88 for more information.

¢ Defend against man-in-the-middle attacks. See “Defending from man-in-the-middle
attacks” on page 88 for more information.

UNIX

To install P4P on UNIX or Linux, do the following:

1. Download the p4p executable to the machine on which you want to run the proxy.
2. Select a directory on this machine (P4PCACHE) in which to cache file revisions.
3. Select a port (P4PORT) on which p4p will listen for requests from Perforce applications.

4. Select the target Perforce server (P4TARGET) for which this proxy will cache.

Windows

Install P4P from the Windows installer's custom /administrator installation dialog.

Running P4P

To run P4P, invoke the p4p executable, configuring it with environment variables or command-line
options. Options you specify on the command line override environment variable settings.

For example, the following command line starts a proxy that communicates with a central Perforce
server located on a host named central, listening on port 1666.

$ pap -p tcp64:[::]:1999 -t central:1666 -r /var/proxyroot

To use the proxy, Perforce applications connect to P4P on port 1999 on the machine where the proxy
runs. The proxy listens on both the IPv6 and IPv4 transports. P4P file revisions are stored under a
directory named /var/proxyroot.

The Perforce proxy supports connectivity over IPv6 networks as well as IPv4. See the Helix Versioning
Engine Administrator Guide: Fundamentals for more information.

Running P4P as a Windows service

To run P4P as a Windows service, either install P4P from the Windows installer, or specify the -s
option when you invoke p4p.exe, or rename the P4P executable to p4ps.exe.

To pass parameters to the P4Proxy service, set the PAPOPTIONS registry variable using the p4 set
command. For example, if you normally run the Proxy with the command:

C:\> pap -p 1999 -t ssl:mainserver:1666

you can set the P4POPTIONS variable for a Windows service named Perforce Proxy by setting the
service parameters as follows:

84

Helix Versioning Engine Administrator Guide: Multi-site Deployment

http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html

Chapter 5. Perforce Proxy

C:\> p4 set -S "Perforce Proxy" P4POPTIONS="-p 1999 -t ssl:mainserver:1666"

When the "Perforce Proxy" service starts, P4P listens for plaintext connections on port 1999 and
communicates with the Perforce Server via SSL at ss1:mainserver:1666.

P4P options

The following command-line options specific to the proxy are supported.

Proxy options:

Option Meaning

-d Run as daemon - fork first, then run (UNIX only).

-f Do not fork - run as a single-threaded server (UNIX only).

-i Run for inetd (socket on stdin/stdout - UNIX only).

-q Run quietly; suppress startup messages.

-C Do not compress data stream between the Perforce server to P4P. (This option

reduces CPU load on the central server at the expense of slightly higher
bandwidth consumption.)

-s Run as a Windows service (Windows only).

Running p4p.exe -s is equivalent to invoking p4ps.exe.

-S Disable cache fault coordination.

The proxy maintains a table of concurrent sync operations, called pdb.1br, to
avoid multiple transfers of the same file. This mechanism prevents unnecessary
network traffic, but can impart some delay to operations until the file transfer is
complete.

When -S is used, cache fault coordination is disabled, allowing multiple
transfers of files to occur. The proxy then decides whether to transfer a file
based solely on its checksum. This may increase the burden on the network,
while potentially providing speedier completion for sync operations.

General options:

Option Meaning
-hor -? Display a help message.
-V Display the version of the Perforce Proxy.

Helix Versioning Engine Administrator Guide: Multi-site Deployment 85

Chapter 5. Perforce Proxy

Option Meaning

-1 root Specify the directory where revisions are cached. Default is PAPCACHE, or the
directory from which p4p is started if PAPCACHE is not set.

-L logfile Specify the location of the log file. Default is P4LOG, or the directory from which
pap is started if P4LOG is not set.

-p port Specify the port on which P4P will listen for requests from Perforce
applications. Default is P4PORT, or 1666 if P4PORT is not set.

-t port Specify the port of the target Perforce server (that is, the Perforce server for
which P4P acts as a proxy). Default is PATARGET or perforce:1666 if PATARGET is
not set.

-e size Cache only those files that are larger than size bytes. Default is P4PFSIZE, or

zero (cache all files) if P4PFSIZE is not set.

-u serviceuser

-v level

For proxy servers, authenticate as the specified serviceuser when
communicating with the central server. The service user must have a valid
ticket before the proxy will work.

Specifies server trace level. Debug messages are stored in the proxy server's
log file. Debug messages from p4p are not passed through to p4d, and debug
messages from p4d are not passed through to instances of p4p. Default is
P4DEBUG, or none if P4DEBUG is not set.

Certificate-handling options:

Option

Meaning

-Gc

Generate SSL credentials files for the proxy: create a private key
(privatekey.txt) and certificate file (certificate.txt) in P4SSLDIR, and then
exit.

Requires that P4SSLDIR be set to a directory that is owned by the user invoking
the command, and that is readable only by that user. If config.txt is present in
P4SSLDIR, generate a self-signed certificate with specified characteristics.

Display the fingerprint of the proxy's public key, and exit.

Administrators can communicate this fingerprint to end users, who can then
use the p4 trust command to determine whether or not the fingerprint (of the
server to which they happen to be connecting) is accurate.

Proxy monitoring options:

Option

Meaning

-1

List pending archive transfers

86

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 5. Perforce Proxy

Meaning

List pending archive transfers, summarized

-v 1br.stat.interval=n

-v proxy.monitor.level=n

Set the file status interval, in seconds. If not set, defaults to 10
seconds.

0: (default) Monitoring disabled
1: Proxy monitors file transfers only
2: Proxy monitors all operations

3: Proxy monitors all traffic for all operations

-v proxy.monitor.interval=n

Proxy monitoring interval, in seconds. If not set, defaults to 10
seconds.

-ml
-m2
-m3

Proxy archive cache options:

Option

Show currently-active connections and their status.

Requires proxy.monitor.level set equal to or greater than 1.
The optional argument specifies the level of detail: -m1, -m2,
or -m3 show increasing levels of detail corresponding to the
proxy.monitor.level setting.

Meaning

-v lbr.proxy.case=n

Administering P4P

1: (default) Proxy folds case; all files with the same name are
assumed to be the same file, regardless of case.

2: Proxy folds case if, and only if, the upstream server is case-
insensitive (that is, if the upstream server is on Windows)

3: Proxy never folds case.

The following sections describe the tasks involved in administering a proxy.

No backups required

You never need to back up the P4P cache directory.

If necessary, P4P reconstructs the cache based on Perforce server metadata.

Stopping P4P

P4P is effectively stateless; to stop PAP under UNIX, kill the p4p process with SIGTERM or SIGKILL.
Under Windows, click End Process in the Task Manager.

Helix Versioning Engine Administrator Guide: Multi-site Deployment

87

Chapter 5. Perforce Proxy

Upgrading P4P

After you have replaced the p4p executable with the upgraded version, you must also remove the
pdb.1br and pdb.monitor files (if they exist) from the proxy root before you restart the upgraded

pI'OXY.
Enabling SSL support

To encrypt the connection between a Perforce Proxy and its end users, your proxy must have a
valid private key and certificate pair in the directory specified by its P4SSLDIR environment variable.
Certificate and key generation and management for the proxy works the same as it does for the
Perforce Server. See “Enabling SSL support” on page 20. The users' Perforce applications must be
configured to trust the fingerprint of the proxy.

To encrypt the connection between a Perforce Proxy and its upstream Perforce service, your proxy
installation must be configured to trust the fingerprint of the upstream Perforce service. That is, the
user that runs p4p (typically a service user) must create a P4TRUST file (using p4 trust) that recognizes
the fingerprint of the upstream Perforce service.

For complete information about enabling SSL for the proxy, see http:/ /answers.perforce.com/articles/

KB /2596.

Defending from man-in-the-middle attacks

You can use the net.mimcheck configurable to enable checks for possible interception or modification
of data. These settings are pertinent for proxy administration:

* A value of 3 checks connections from clients, proxies, and brokers for TCP forwarding.

* A value of 5 requires that proxies, brokers, and all Perforce intermediate servers have valid logged-
in service users associated with them. This allows administrators to prevent unauthorized proxies
and services from being used.

You must restart the server after changing the value of this configurable. For more information about
this configurable, see the "Configurables" appendix in Helix Command Reference.

Localizing P4P

If your Perforce server has localized error messages (see "Localizing server error messages" in Helix
Versioning Engine Administrator Guide: Fundamentals), you can localize your proxy's error message
output by shutting down the proxy, copying the server's db.message file into the proxy root, and
restarting the proxy.

Managing disk space consumption

P4P caches file revisions in its cache directory. These revisions accumulate until you delete them. P4P
does not delete its cached files or otherwise manage its consumption of disk space.

Warning! If you do not delete cached files, you will eventually run out of disk space. To |
recover disk space, remove files under the proxy's root. |

88

Helix Versioning Engine Administrator Guide: Multi-site Deployment

http://answers.perforce.com/articles/KB/2596
http://answers.perforce.com/articles/KB/2596
http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html

Chapter 5. Perforce Proxy

I You do not need to stop the proxy to delete its cached files or the pdb. 1br file.

If you delete files from the cache without stopping the proxy, you must also delete the pdb.1br file at
the proxy's root directory. (The proxy uses the pdb.1br file to keep track of which files are scheduled
for transfer, so that if multiple users simultaneously request the same file, only one copy of the file is
transferred.)

Determining if your Perforce applications are using the proxy

If your Perforce application is using the proxy, the proxy's version information appears in the output
of p4 info.

For example, if a Perforce service is hosted at ss1:central:1666 and you direct your Perforce
application to a Perforce Proxy hosted at outpost:1999, the output of p4 info resembles the following:

$ export P4PORT=tcp:outpost:1999

$ p4 info

User name: p4adm

Client name: admin-temp

Client host: remotesite22

Client root: /home/p4adm/tmp

Current directory: /home/p4adm/tmp

Client address: 192.168.0.123

Server address: central:1666

Server root: /usr/depot/p4d

Server date: 2012/03/28 15:03:05 -0700 PDT

Server uptime: 752:41:23

Server version: P4D/FREEBSD4/2012.1/406375 (2012/01/25)
Server encryption: encrypted

Proxy version: P4P/SOLARIS26/2012.1/406884 (2012/01/25)
Server license: P4 Admin <p4adm> 20 users (expires 2013/01/01)
Server license-ip: 10.0.0.2

Case handling: sensitive

P4P and protections

To apply the IP address of a Perforce Proxy user's workstation against the protections table, prepend
the string proxy- to the workstation's IP address.

For instance, consider an organization with a remote development site with workstations on a subnet
of 192.168.10.0/24. The organization also has a central office where local development takes place; the
central office exists on the 10.0.0.0/8 subnet. A Perforce service resides in the 10.0.0.0/8 subnet, and
a Perforce Proxy resides in the 192.168.10.0/24 subnet. Users at the remote site belong to the group
remotedev, and occasionally visit the central office. Each subnet also has a corresponding set of IPv6
addresses.

To ensure that members of the remotedev group use the proxy while working at the remote site, but do
not use the proxy when visiting the local site, add the following lines to your protections table:

Helix Versioning Engine Administrator Guide: Multi-site Deployment 89

Chapter 5. Perforce Proxy

list group remotedev 192.168.10.0/24 -//...
list group remotedev [2001:db8:16:81::]/48 -//...
write group remotedev proxy-192.168.10.0/24 /...
write group remotedev proxy-[2001:db8:16:81::1/48 //...
list group remotedev proxy-10.0.0.0/8 -//...
list group remotedev proxy-[2001:db8:1008::]/32 -//...
write group remotedev 10.0.0.0/8 /...
write group remotedev proxy-[2001:db8:1008::]/32 /...

The first line denies list access to all users in the remotedev group if they attempt to access Perforce
without using the proxy from their workstations in the 192.168.10.0/24 subnet. The second line
denies access in identical fashion when access is attempted from the IPV6 [2001:db8:16:81::]/48
subnet.

The third line grants write access to all users in the remotedev group if they are using a Perforce Proxy
server and are working from the 192.168.10.0/24 subnet. Users of workstations at the remote site
must use the proxy. (The proxy server itself does not have to be in this subnet, for example, it could be
at 192.168.20.0.) The fourth line denies access in identical fashion when access is attempted from the
IPV6 [2001:db8:16:81::]/48 subnet.

Similarly, the fifth and sixth lines deny list access to remotedev users when they attempt to use the
proxy from workstations on the central office's subnets (10.0.0.0/8 and [2001:db8:1008: :]/32). The
seventh and eighth lines grant write access to remotedev users who access the Perforce server directly
from workstations on the central office's subnets. When visiting the local site, users from the remotedev
group must access the Perforce server directly.

When the Perforce service evaluates protections table entries, the dm.proxy.protects configurable is
also evaluated.

dm.proxy.protects defaults to 1, which causes the proxy- prefix to be prepended to all client host
addresses that connect via an intermediary (proxy, broker, replica, or edge server), indicating that the
connection is not direct.

Setting dm.proxy.protects to 0 removes the proxy- prefix and allows you to write a single set of
protection entries that apply both to directly-connected clients as well as to those that connect via an
intermediary. This is more convenient but less secure if it matters that a connection is made using an
intermediary. If you use this setting, all intermediaries must be at release 2012.1 or higher.

Determining if specific files are being delivered from the proxy

Use the -Zproxyverbose option with p4 to display messages indicating whether file revisions are
coming from the proxy (p4p) or the central server (p4d). For example:

$ p4 -Zproxyverbose sync noncached.txt

//depot/main/noncached.txt - refreshing /home/p4adm/tmp/noncached.txt
$ p4 -Zproxyverbose sync cached.txt

//depot/main/cached.txt - refreshing /home/p4adm/tmp/cached.txt

File /home/p4adm/tmp/cached.txt delivered from proxy server

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 5. Perforce Proxy

Case-sensitivity issues and the proxy

If you are running the proxy on a case-sensitive platform such as UNIX, and your users are submitting
files from case-insensitive platforms (such as Windows), the default behavior of the proxy is to fold
case; that is, FILE.TXT can overwrite File.txt or file.txt.

In the case of text files and source code, the performance impact of this behavior is negligible. If,

however, you are dealing with large binaries such as .IS0 images or .VOB video objects, there can be
performance issues associated with this behavior.)

Ibr.proxy.case Behavior

1br.proxy.case=1 (default) Proxy folds case; all files with the same name are
assumed to be the same file, regardless of case.

lbr.proxy.case=2 Proxy folds case if, and only if, the upstream
server is case-insensitive (that is, if the upstream
server is on Windows)

lbr.proxy.case=3 Proxy never folds case.

After any change to 1br.proxy.case, you must clear the cache before restarting the proxy.

Maximizing performance improvement

Reducing server C(PU usage by disabling file compression

By default, P4P compresses communication between itself and the Perforce versioning service,
imposing additional overhead on the service. To disable compression, specify the -c option when you
invoke p4p. This option is particularly effective if you have excess network and disk capacity and are
storing large numbers of binary file revisions in the depot, because the proxy (rather than the upstream
versioning service) decompresses the binary files from its cache before sending them to Perforce users.

Network topologies versus P4P

If network bandwidth on the same subnet as the Perforce service is nearly saturated, deploying proxy
servers on the same subnet will not likely result in a performance improvement. Instead, deploy the
proxies on the other side of a router so that the traffic from end users to the proxy is isolated to a
subnet separate from the subnet containing the Perforce service.

For example:

Helix Versioning Engine Administrator Guide: Multi-site Deployment 91

Chapter 5. Perforce Proxy

192.168.21.0/24
p4d - (development subnet) ’

>
-

K

4’
‘7

192.168.2.100/24 192.168.30.0/24
(— "= il
server room) _ (sales subnet) L

<
<
)
A
- e
Deploying an additional proxy on a subnet when network bandwidth on the subnet is nearly saturated

will not likely result in a performance improvement. Instead, split the subnet into multiple subnets and
deploy a proxy in each resulting subnet.

(router)

192.168.22.0/24
(artists’ subnet)

In the illustrated configuration, a server room houses a company's Perforce service (p4d), a network
storage device (NAS), and a database server (RDBMS). The server room's network segment is
saturated by heavy loads placed on it by a sales force constantly querying a database for live updates,
and by developers and graphic artists frequently accessing large files versioned by Perforce.

Deploying two instances of the Perforce proxy (one on the developers' subnet, and one on the graphic
artists' subnet) enables all three groups to benefit from improved performance due to decreased use on
the server room's network segment.

Preloading the cache directory for optimal initial performance

P4P stores file revisions only when one of its users submits a new revision to the depot or requests an
existing revision from the depot. That is, file revisions are not prefetched. Performance gains from P4P
occur only after file revisions are cached.

After starting P4P, you can effectively prefetch the cache directory by creating a dedicated client
workspace and syncing it to the head revision. All other users who subsequently connect to the proxy
immediately obtain the performance improvements provided by P4P. For example, a development site
located in Asia with a P4P server targeting a Perforce server in North America can preload its cache
directory by using an automated job that runs a p4 sync against the entire Perforce depot after most
work at the North American site has been completed, but before its own developers arrive for work.

By default, p4 sync writes files to the client workspace. If you have a dedicated client workspace that
you use to prefetch files for the proxy, however, this step is redundant. If this machine has slower I/O
performance than the machine running the Perforce Proxy, it can also be time-consuming.

92

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Chapter 5. Perforce Proxy

To preload the proxy's cache without the redundant step of also writing the files to the client
workspace, use the -Zproxyload option when syncing. For example:

$ export P4CLIENT=prefetch

$ pa sync //depot/main/written.txt

//depot/main/written.txt - refreshing /home/prefetch/main/written.txt
$ pa -Zproxyload sync //depot/main/nonwritten.txt
//depot/main/nonwritten.txt - file(s) up-to-date.

Both files are now cached, but nonwritten.txt is never written to the the prefetch client workspace.
When prefetching the entire depot, the time savings can be considerable.

Distributing disk space consumption

P4P stores revisions as if there were only one depot tree. If this approach stores too much file data onto
one filesystem, you can use symbolic links to spread the revisions across multiple filesystems.

For instance, if the PAP cache root is /disk1/proxy, and the Perforce server it supports has two depots
named //depot and //released, you can split data across disks, storing //depot on disk1 and //
released on disk2 as follows:

$ mkdir /disk2/proxy/released
$ cd /disk1/proxy
$ 1n -s /disk2/proxy/released released

The symbolic link means that when P4P attempts to cache files in the //released depot to /disk1/
proxy/released, the files are stored on /disk2/proxy/released.

Helix Versioning Engine Administrator Guide: Multi-site Deployment 93

94

Helix Versioning Engine Administrator Guide: Multi-site Deployment

wendic — parforce Server (p4d) Reference

Synopsis
Start the Perforce service or perform checkpoint/journaling (system administration) tasks.

Syntax

pad [options]

pad.exe [options]

p4s.exe [options]

pad -j? [-z | -Z] [args ...]

Description

The first three forms of the command invoke the background process that manages the Perforce
versioning service. The fourth form of the command is used for system administration tasks involving
checkpointing and journaling.

On UNIX and Mac OS X, the executable is p4d.

On Windows, the executable is p4d.exe (running as a server) or p4s.exe (running as a service).

Exit Status

After successful startup, p4d does not normally exit. It merely outputs the following startup message:
Perforce server starting...

and runs in the background.
On failed startup, p4d returns a nonzero error code.

Also, if invoked with any of the -j checkpointing or journaling options, p4d exits with a nonzero error
code if any error occurs.

Options

Server options Meaning

-d Run as a daemon (in the background)

-f Run as a single-threaded (non-forking) process
-i Run from inetd on UNIX

-q Run quietly (no startup messages)

Helix Versioning Engine Administrator Guide: Multi-site Deployment 95

Perforce Server (p4d) Reference

Server options

Meaning

--pid-file[=file]

Write the PID of the server to a file named server.pid in the directory
specified by P4ROOT, or write the PID to the file specified by file. This
makes it easier to identify a server instance among many.

The file parameter can be a complete path specification. The file does
not have to reside in P4RO0T.

-xi

Irreversibly reconfigure the Perforce server (and its metadata) to
operate in Unicode mode. Do not use this option unless you know you
require Unicode mode. See the Release Notes and Internationalization
Notes for details.

-Xu

Run database upgrades and exit.

This will no longer run automatically if there are fewer than 1000
changelists. Upgrades must be run manually unless the server is
a DVCS personal server; in this case, any upgrade steps are run
automatically.

-XV

Run low-level database validation and quit.

-xvU

Run fast verification; do not lock database tables, and verify only that
the unlock count for each table is zero.

-xD [serverID]

General options

Display (or set) the server's serverID (stored in the server.id file) and
exit.

Meaning

-h, -? Print help message.
-V Print version number.
-A auditlog Specify an audit log file. Overrides P4AUDIT setting. Default is null.

-Id description

A server description for use with p4 server. Overrides PADESCRIPTION
setting.

-In name A server name for use with p4 configure. Overrides PANAME setting.

-J journal Specify a journal file. Overrides P4JOURNAL setting. Default is journal.
(Use -1 off to disable journaling.)

-L log Specify a log file. Overrides P4LOG setting. Default is STDERR.

-p port Specify a port to listen to. Overrides P4PORT. Default 1666.

-r root Specify the server root directory. Overrides P4ROOT. Default is current

working directory.

96

Helix Versioning Engine Administrator Guide: Multi-site Deployment

http://www.perforce.com/perforce/r16.1/user/relnotes.txt
http://www.perforce.com/perforce/r16.1/user/i18nnotes.txt
http://www.perforce.com/perforce/r16.1/user/i18nnotes.txt

Perforce Server (p4d) Reference

General options

Meaning

-v subsystem=1evel

Set trace options. Overrides value P4DEBUG setting. Default is null.

-1

--pid-file[=name]

Checkpointing options

Force the service to operate in case-insensitive mode on a normally
case-sensitive platform.

Write the server's PID to the specified file.

Default name for the file is server.pid

Meaning

-c command

Lock database tables, run command, unlock the tables, and exit.

-je [prefix]

Journal-create; checkpoint and .md5 file, and save/truncate journal.

-jd file

-33 [prefix]

Journal-checkpoint; create checkpoint and .md5 file without saving/
truncating journal.

Journal-only; save and truncate journal without checkpointing.

-jr file

Journal-restore; restore metadata from a checkpoint and/or journal
file.

If you specify the -r $P4RO0T option on the command line, the -r
option must precede the -jr option.

-jv file

Verify the integrity of the checkpoint or journal specified by file as
follows:

e Can the checkpoint or journal be read from start to finish?
e If it's zipped can it be successfully unzipped?

e If it has an MD?5 file with its MD5, does it match?

* Does it have the expected header and trailer?

This command does not replay the journal.

Use the -z option with the -jv option to verify the integrity of
compressed journals or compressed checkpoints.

Compress (in gzip format) checkpoints and journals.

When you use this option with the -jd option, Perforce automatically
adds the .gz extension to the checkpoint file. So, the command:

pad -jd -z myCheckpoint

creates two files: myCheckpoint.gz and myCheckpoint.mds.

Helix Versioning Engine Administrator Guide: Multi-site Deployment 97

Perforce Server (p4d) Reference

Checkpointing options

Meaning

-Z

Journal restore options

Compress (in gzip format) checkpoint, but leave journal uncompressed
for use by replica servers. That is, it applies to -jc, not -jd.

Meaning

-jrc file

Journal-restore with integrity-checking. Because this option locks the
database, this option is intended only for use by replica servers started
with the p4 replicate command.

-b bunch -jr file

Read bunch lines of journal records, sorting and removing duplicates
before updating the database. The default is 5000, but can be set to 1 to
force serial processing. This combination of options is intended for use
with by replica servers started with the p4 replicate command.

-f-jr file

Ignore failures to delete records; this meaning of -f applies only when
-jr is present. This combination of options is intended for use with by
replica servers started with the p4 replicate command. By default,
journal restoration halts if record deletion fails.

As with all journal-restore commands, if you specify the -r $P4R0OT
option on the command line, the -r option must precede the -jr
option.

-m-jr file

-s -jr file

Replication and multi-
server options

Schedule new revisions for replica network transfer. Required only in

environments that use p4 pull -u for archived files, but p4 replicate
for metadata. Not required in replicated environments based solely on
p4 pull.

Record restored journal records into regular journal, so that the
records can be propagated from the server's journal to any replicas
downstream of the server. This combination of options is intended for
use in conjunction with Perforce technical support.

Meaning

-a host:port

-g host:port

In multi-server environments, specify an authentication server for
licensing and protections data. Overrides P4AUTH setting. Default is
null.

In multi-server environments, specify a changelist server from which
to obtain changelist numbers. Overrides P4CHANGE setting. Default is
null.

-t host:port

For replicas, specify the target (master) server from which to pull data.
Overrides P4TARGET setting. Default is null.

98

Helix Versioning Engine Administrator Guide: Multi-site Deployment

Perforce Server (p4d) Reference

Replication and multi-
server options

Meaning

-u serviceuser

For replicas, authenticate as the specified serviceuser when
communicating with the master. The service user must have a valid
ticket before replica operations will succeed.

Journal dump/restore filtering Meaning

-jd file db.table

Dump db.table by creating a checkpoint file that
contains only the data stored in db. table.

This command can also be used with non-journaled

tables.
-k db.table1,db.table2,... -jd file Dump a set of named tables to a single dump file.
-K db.table1i,db.table2,... -jd file Dump all tables except the named tables to the dump
file.

-P serverid -jd file

Specify filter patterns for pad -jd by specifying a
serverid from which to read filters (see p4 help
server, or use the older syntax described in p4 help
export.)

This option is useful for seeding a filtered replica.

-k db.table1,db.table2,.

-K db.table1i,db.table2,.

Certificate Handling

.. -jr file Restore from file, including only journal records for

the tables named in the list specified by the -k option.

.. -jr file Restore from file, excluding all journal records for the

tables named in the list specified by the -K option.

Meaning

-Gc

-Gf

Generate SSL credentials files for the server: create a private key and
certificate file in P4SSLDIR, and then exit.

Requires that P4SSLDIR be set to a directory that is owned by the user
invoking the command, and that is readable only by that user. If
config.txt is present in P4SSLDIR, generate a self-signed certificate
with specified characteristics.

Display the fingerprint of the server's public key, and exit.

Administrators can communicate this fingerprint to end users, who
can then use the p4 trust command to determine whether or not the
fingerprint (of the server to which they happen to be connecting) is
accurate.

Helix Versioning Engine Administrator Guide: Multi-site Deployment 99

Perforce Server (p4d) Reference

Configuration options Meaning

-cshow Display the contents of db.config without starting the service. (That is,
run p4 configure show allservers, but without a running service.)

-cset server#fvar=val Set a Perforce configurable without starting the service, optionally
specifying the server for which the configurable is to apply. For
example,

pad -r . "-cset replica#P4JOURNAL=off"

pad -r . "-cset replica#P4JOURNAL=off replicatserver=3"

It is best to include the entire variable=value expression in quotation
marks.

-cunset server#var Unset the specified configurable.

Usage Notes

¢ On all systems, journaling is enabled by default. If P4JOURNAL is unset when p4d starts, the default
location for the journal is $P4R0OOT. If you want to manually disable journaling, you must explicitly
set P4JOURNAL to off.

e Take checkpoints and truncate the journal often, preferably as part of your nightly backup process.

¢ Checkpointing and journaling preserve only your Perforce metadata (data about your stored files).
The stored files themselves (the files containing your source code) reside under PAROOT and must be
also be backed up as part of your regular backup procedure.

e If your users use triggers, don't use the -f (non-forking mode) option; the Perforce service needs to
be able to spawn copies of itself ("fork") in order to run trigger scripts.

¢ After a hardware failure, the options required for restoring your metadata from your checkpoint and
journal files can vary, depending on whether data was corrupted.

¢ Because restorations from backups involving loss of files under P4ROOT often require the journal
file, we strongly recommend that the journal file reside on a separate filesystem from P4ROOT. This
way, in the event of corruption of the filesystem containing P4RO0T, the journal is likely to remain
accessible.

¢ The database upgrade option (-xu) can require considerable disk space. See the Release Notes for
details when upgrading.

100 Helix Versioning Engine Administrator Guide: Multi-site Deployment

http://www.perforce.com/perforce/r16.1/user/relnotes.txt

Perforce Server (p4d) Reference

Related Commands

To start the service, listening to port 1999, with
journaling enabled and written to journalfile.

pad -d -p 1999 -] /opt/pad/journalfile

To checkpoint a server with a non-default
journal file, the -] option (or the environment
variable P4JOURNAL) must match the journal file
specified when the server was started.

Checkpoint with:
pad -1 /pad/jfile -jc
or

P4JOURNAL=/p4d/jfile ; export P4JOURNAL;

pad -jc
To create a compressed checkpoint from a server p4d -r $P4R00T -z -jc
with files in directory P4ROOT
To create a compressed checkpoint with a user- p4d -r $P4RO0OT -z -jc ckp
specified prefix of "ckp" from a server with files
in directory P4ROOT
To restore metadata from a checkpoint named p4d -r $P4ROOT -jr checkpoint.3

checkpoint.3 for a server with root directory
P4ROOT

(The -1 option must precede the -jr option.)

To restore metadata from a compressed
checkpoint named checkpoint.3.gz for a server
with root directory P4AROOT

p4d -r $P4ROOT -z -jr checkpoint.3.gz

(The -1 option must precede the -jr option.)

Helix Versioning Engine Administrator Guide: Multi-site Deployment

101

102 Helix Versioning Engine Administrator Guide: Multi-site Deployment

Appendix License Statements

Perforce software includes software developed by the University of California, Berkeley and its
contributors. This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/).

Perforce software includes software from the Apache ZooKeeper project, developed by the Apache
Software Foundation and its contributors. (http://zookeeper.apache.org/)

Perforce software includes software developed by the OpenLDAP Foundation (http://
www.openldap.org/).

Perforce software includes software developed Computing Services at Carnegie Mellon University:
Cyrus SASL (http://www.cmu.edu/computing/).

Helix Versioning Engine Administrator Guide: Multi-site Deployment 103

104 Helix Versioning Engine Administrator Guide: Multi-site Deployment

	Helix Versioning Engine Administrator Guide: Multi-site Deployment
	Table of Contents
	Preface
	About this manual
	What's new in this guide for the 2016.1 update
	Major changes
	Updates and corrections

	Helix documentation
	Syntax conventions
	Please give us feedback

	Chapter 1. Introduction to Federated Services
	Overview
	User scenarios
	Availability
	Remote offices
	Build/test automation
	Scalability
	Policy-based governance

	Setting up federated services
	General guidelines
	Authenticating users
	Connecting services
	Managing trust between services
	Managing tickets between services
	Managing SSL key pairs

	Backing up and upgrading services
	Backing up services
	Upgrading services

	Configuring centralized authorization and changelist servers
	Centralized authorization server (P4AUTH)
	Limitations and notes

	Centralized changelist server (P4CHANGE)

	Verifying shelved files

	Chapter 2. Perforce Replication
	What is replication?
	System requirements
	Replication basics
	The p4 pull command
	Server names and P4NAME
	Server IDs: the p4 server and p4 serverid commands
	Service users
	Tickets and timeouts for service users
	Permissions for service users

	Server options to control metadata and depot access
	P4TARGET
	Server startup commands
	p4 pull vs. p4 replicate
	Enabling SSL support
	Uses for replication
	Replication and protections

	How replica types handle requests
	Configuring a read-only replica
	Master server setup
	Creating the replica
	Starting the replica
	Testing the replica
	Testing p4 pull
	Testing file replication
	Verifying the replica

	Using the replica
	Commands that update metadata
	Using the Perforce Broker to redirect commands

	Upgrading replica servers

	Configuring a forwarding replica
	Configuring the master server
	Configuring the forwarding replica

	Configuring a build farm server
	Configuring the master server
	Configuring the build farm replica
	Binding workspaces to the build farm replica

	Configuring a replica with shared archives
	Filtering metadata during replication
	Verifying replica integrity
	Configuration

	Warnings, notes, and limitations

	Chapter 3. Commit-edge Architecture
	Introduction
	Setting up a commit/edge configuration
	Create a service user account for the edge server
	Create commit and edge server configurations
	Create and start the edge server

	Shortcuts to configuring the server
	Setting global client views
	Creating a client from a template
	Migrating from existing installations
	Replacing existing proxies and replicas
	Deploying commit and edge servers incrementally
	Hardware, sizing, and capacity
	Migration scenarios
	Configuring a master server as a commit server
	Converting a forwarding replica to an edge server
	Converting a build server to an edge server
	Migrating a workspace from a commit server or remote edge server to the local edge server

	Managing distributed installations
	Moving users to an edge server
	Promoting shelved changelists
	Automatically promoting shelves
	Explicitly promoting shelves
	Promoting shelves when unloading clients
	Working with promoted shelves

	Locking and unlocking files
	Triggers
	Determining the location of triggers
	Using edge triggers

	Backup and high availability / disaster recovery (HA/DR) planning
	Other considerations

	Validation
	Supported deployment configurations
	Backups

	Chapter 4. The Perforce Broker
	What is the broker?
	System requirements
	Installing the broker
	Running the broker
	Enabling SSL support
	Broker information
	Broker and protections

	P4Broker options
	Configuring the broker
	Format of broker configuration files
	Specifying hosts
	Global settings
	Command handler specifications
	Regular expression synopsis
	Filter programs

	Alternate server definitions
	Configuring alternate servers to work with central authorization servers

	Using the broker as a load-balancing router
	Configuring the broker as a router
	Routing policy and behavior

	Chapter 5. Perforce Proxy
	System requirements
	Installing P4P
	UNIX
	Windows

	Running P4P
	Running P4P as a Windows service

	P4P options
	Administering P4P
	No backups required
	Stopping P4P
	Upgrading P4P
	Enabling SSL support
	Defending from man-in-the-middle attacks
	Localizing P4P
	Managing disk space consumption
	Determining if your Perforce applications are using the proxy
	P4P and protections
	Determining if specific files are being delivered from the proxy
	Case-sensitivity issues and the proxy

	Maximizing performance improvement
	Reducing server CPU usage by disabling file compression
	Network topologies versus P4P
	Preloading the cache directory for optimal initial performance
	Distributing disk space consumption

	Perforce Server (p4d) Reference
	Synopsis
	Syntax
	Description
	Exit Status
	Options
	Usage Notes
	Related Commands

	License Statements

