
Helix Versioning Engine
Administrator Guide:
Fundamentals

2016.1
September 2016

Helix Versioning Engine Administrator Guide: Fundamentals
2016.1

September 2016

Copyright © 1999-2016 Perforce Software.

All rights reserved.

Perforce software and documentation is available from http://www.perforce.com/. You can download and use Perforce programs, but you
can not sell or redistribute them. You can download, print, copy, edit, and redistribute the documentation, but you can not sell it, or sell any
documentation derived from it. You can not modify or attempt to reverse engineer the programs.

This product is subject to U.S. export control laws and regulations including, but not limited to, the U.S. Export Administration Regulations,
the International Traffic in Arms Regulation requirements, and all applicable end-use, end-user and destination restrictions. Licensee shall not
permit, directly or indirectly, use of any Perforce technology in or by any U.S. embargoed country or otherwise in violation of any U.S. export
control laws and regulations.

Perforce programs and documents are available from our Web site as is. No warranty or support is provided. Warranties and support, along
with higher capacity servers, are sold by Perforce Software.

Perforce Software assumes no responsibility or liability for any errors or inaccuracies that might appear in this book. By downloading and
using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce Software.

All other brands or product names are trademarks or registered trademarks of their respective companies or organizations.

Any additional software included within Perforce software is listed in License Statements on page 249.

Helix Versioning Engine Administrator Guide: Fundamentals iii

Table of Contents

Preface .. xiii

About this manual .. xiii
What’s new in this guide for the 2016.1 release ... xiv

Major changes ... xiv
Minor changes ... xv

Helix documentation .. xv
Syntax conventions .. xvi
Please give us feedback .. xvii

Chapter 1 Overview .. 1

Basic architecture ... 1
Basic workflow .. 2
Administrative access ... 3
Naming Perforce objects ... 4

Chapter 2 Installing and Upgrading the Server ... 7

Install architecture .. 7
Planning the installation ... 7

Network .. 7
CPU .. 7
Memory ... 8
Disk space allocation .. 8
Filesystem .. 9

Filesystem performance .. 9
Separate physical drives for server root and journal ... 9

Protections and passwords ... 9
Getting Perforce ... 10
Linux package-based installation ... 10

Installation ... 11
Post-installation configuration ... 13
Updating .. 15

UNIX non-package installation .. 16
Downloading the files and making them executable ... 17
Creating a Perforce server root directory ... 17
Telling Perforce applications which port to connect to .. 18
Communicating port information .. 19
IPv6 support and mixed networks ... 19
Running p4d as an unprivileged user .. 20
Running from inetd on UNIX ... 21
Starting the Perforce service .. 22
Stopping the Perforce service .. 22

Helix Versioning Engine Administrator Guide: Fundamentals

iv Helix Versioning Engine Administrator Guide: Fundamentals

Restarting a running Perforce service .. 22
Windows installation .. 23

Windows services and servers ... 23
Installing the Perforce service on a network drive .. 24
Starting and stopping the Perforce service ... 24
Multiple Perforce services under Windows .. 24
Windows configuration parameter precedence ... 26
Starting and stopping the Perforce server .. 27
Support for long file names .. 27

Installed files .. 28
Upgrading the Perforce service ... 28

Using old Perforce applications after an upgrade ... 29
Licensing and upgrades .. 29
Upgrading p4d ... 29
Upgrading p4d - between 2013.2 and 2013.3 .. 30
Verifying files by signature ... 31

Verifying files during server upgrades ... 31
Release and license information .. 32

Chapter 3 Configuring the Server ... 33

Enabling distributed versioning .. 33
Defining filetypes with p4 typemap .. 33
Implementing site-wide exclusive locking with p4 typemap .. 36
Defining depots .. 36
Managing client requests .. 36

Using P4PORT to control access to the server ... 37
Requiring minimum client revisions .. 37
Rejecting client connection requests ... 37
Disabling user metrics collection prompt ... 39

Case sensitivity and multi-platform development ... 39
Perforce server on UNIX ... 40
Perforce server on Windows ... 40

Setting up and managing Unicode installations .. 40
Overview ... 41
Setting up a server for Unicode ... 41

Configuring a new server for Unicode ... 42
Configuring an existing server for Unicode .. 42
Localizing server error messages ... 43

Configuring clients for Unicode .. 44
Unicode character sets and Byte Order Markers (BOMs) 45
Controlling translation of server output ... 46
Using other Perforce client applications ... 46

Troubleshooting user workstations in Unicode installations .. 47
Configuring logging ... 47

Logging errors .. 48
Logging file access .. 48

Configuring P4V settings .. 48
Configuring performance-related properties ... 48

Helix Versioning Engine Administrator Guide: Fundamentals

Helix Versioning Engine Administrator Guide: Fundamentals v

Configuring feature-related properties ... 49
Configuring Swarm connections .. 50
Enabling .docx diffs .. 51

Windows configuration parameter precedence ... 51

Chapter 4 Working with Depots ... 53

Overview ... 53
Naming depots ... 53
Listing depots .. 53
Deleting depots .. 53
Moving depots in a production environment ... 54

Standard depots ... 54
Stream depots .. 55
Spec depot ... 55

Creating the spec depot .. 56
Populating the spec depot with current forms .. 56
Controlling which specs are versioned ... 57
Large sites and old filesystems .. 57

Archive depots ... 57
Unload depot ... 58
Remote depots and distributed development ... 58

How remote depots work ... 58
Restrictions on remote depots ... 59

Using remote depots for code drops .. 59
Defining remote depots .. 60
Restricting access to remote depots .. 61
Example security configuration ... 61
Receiving a code drop .. 63

Chapter 5 Securing the Server .. 65

Securing the server: workflow ... 65
Using SSL to encrypt connections to a Perforce server .. 66

Server and client setup ... 66
Key and certificate management .. 66
Key and certificate generation ... 67
Secondary cipher suite .. 68
Using SSL in a mixed environment ... 69

Using firewalls ... 69
Authentication options ... 69

Overview ... 69
Server security levels .. 70
Defining authentication for users ... 71

Authenticating using passwords and tickets .. 72
Password-based authentication .. 73
Password strength requirements ... 73
Managing and resetting user passwords .. 74

Helix Versioning Engine Administrator Guide: Fundamentals

vi Helix Versioning Engine Administrator Guide: Fundamentals

Ticket-based authentication ... 74
Login process for the user ... 75
Login process for the server .. 75
Logging out of Perforce .. 76
Determining ticket status .. 76
Invalidating a user’s ticket .. 77

LDAP Authentication ... 77
Authenticating against Active Directory and LDAP servers ... 77
Creating an LDAP configuration ... 78
Defining LDAP-related configurables .. 80
Authorization using LDAP groups .. 81
Testing and enabling LDAP configurations .. 82
Getting information about LDAP servers ... 83
Using LDAP with single sign-on triggers ... 83

Authorizing access ... 83
When should protections be set? ... 84
Setting protections with p4 protect .. 84

The permission lines' five fields .. 84
Access levels .. 85
Default protections ... 87
Which users should receive which permissions? ... 87
Interpreting multiple permission lines ... 88
Exclusionary protections ... 88
Displaying protections for a user, group, or path. ... 89

Granting access to groups of users .. 89
Creating and editing groups ... 90
Groups and protections .. 90
Synchronizing Perforce groups with LDAP groups ... 91

Synchronizing with Active Directory ... 92
Synchronizing with OpenLDAP .. 93

Deleting groups .. 93
How protections are implemented ... 94
Access Levels Required by Perforce Commands ... 95

Chapter 6 Backup and Recovery ... 103

Backup and recovery concepts ... 103
Checkpoint files .. 104

Creating a checkpoint ... 104
Journal files .. 106

Checkpoint and journal history .. 107
Verifying journal integrity ... 107
Automating maintenance work after journal rotation .. 108
Disabling journaling .. 108

Versioned files .. 108
Versioned file formats ... 108
Backing up after checkpointing .. 108

Backup procedures ... 109
Recovery procedures ... 111

Helix Versioning Engine Administrator Guide: Fundamentals

Helix Versioning Engine Administrator Guide: Fundamentals vii

Database corruption, versioned files unaffected .. 111
To recover the database .. 112
Check your system ... 113
Your system state ... 113

Both database and versioned files lost or damaged ... 113
To recover the database .. 114
To recover your versioned files .. 114
Check your system ... 115
Your system state ... 115

Ensuring system integrity after any restoration ... 115

Chapter 7 Monitoring the Server .. 117

Monitoring disk space usage ... 117
Specifying values for filesys configurables .. 118
Determining available disk space ... 118

Monitoring processes .. 119
Enabling process monitoring ... 119
Enabling idle processes monitoring .. 119
Listing running processes .. 120

Setting server trace and tracking flags .. 121
Command tracing ... 121
Performance tracking .. 122

Showing information about locked files ... 122
Auditing user file access ... 123
Logging and structured log files .. 123

Logging commands .. 124
Enabling structured logging .. 124
Structured logfile rotation ... 125

Chapter 8 Managing the Server and Its Resources .. 127

Forcing operations with the -f flag ... 127
Managing the sharing of code ... 128
Managing distributed development ... 129

Distributed development using Fetch and Push .. 129
Configuring the remote specifications .. 130

Code drops without connectivity ... 131
Managing users .. 132

User types .. 132
Creating standard users .. 132
Service users ... 132

Tickets and timeouts for service users .. 133
Permissions for service users ... 133

Operator users .. 134
Preventing automatic creation of users ... 134
Adding new licensed users ... 135
Renaming users .. 135

Helix Versioning Engine Administrator Guide: Fundamentals

viii Helix Versioning Engine Administrator Guide: Fundamentals

Deleting obsolete users ... 136
Reverting files left open by obsolete users .. 136

Deleting changelists and editing changelist descriptions .. 136
Managing shelves ... 137
Backing up a workspace ... 137
Managing disk space .. 137

Diskspace Requirements .. 138
Saving disk space ... 138
Reclaiming disk space by archiving files .. 139
Reclaiming disk space by obliterating files ... 140

Managing processes .. 141
Pausing, resuming, and terminating processes .. 141
Clearing entries in the process table ... 142

Managing the database tables .. 142
Scripted client deployment on Windows .. 142
Troubleshooting Windows installations .. 143

Resolving Windows-related instabilities ... 143
Resolving issues with P4EDITOR or P4DIFF ... 143

Chapter 9 Tuning Perforce for Performance .. 145

Tuning for performance .. 145
Operating systems .. 145
Disk subsystem ... 145
File systems .. 146
CPU ... 146
Memory ... 147
Network ... 148
Journal and archive location .. 148
Use patterns ... 149
Using read-only clients in automated builds ... 149
Using parallel processing for submits and syncs ... 149

Improving concurrency with lockless reads .. 150
Commands implementing lockless reads .. 151
Overriding the default locking behavior ... 153
Observing the effect of lockless reads ... 153
Side-track servers must have the same db.peeking level .. 154

Diagnosing slow response times .. 154
Hostname vs. IP address ... 154
Windows wildcards .. 155
DNS lookups and the hosts file ... 155
Location of the p4 executable .. 155
Working over unreliable networks ... 155

Preventing server swamp .. 156
Using tight views .. 157
Assigning protections .. 158
Limiting database queries .. 158

MaxResults, MaxScanRows and MaxLockTime for users in multiple groups 160
Limiting simultaneous connections .. 160

Helix Versioning Engine Administrator Guide: Fundamentals

Helix Versioning Engine Administrator Guide: Fundamentals ix

Unloading infrequently-used metadata .. 161
Create the unload depot .. 161
Unload old client workspaces, labels, and task streams 161
Accessing unloaded data ... 162
Reloading workspaces and labels ... 162

Scripting efficiently ... 162
Iterating through files ... 162
Using list input files .. 163
Using branch views .. 163
Limiting label references ... 164
Using a temporary client workspace .. 164

Using compression efficiently .. 165
Other server configurables .. 165

Checkpoints for database tree rebalancing .. 165

Chapter 10 Customizing Perforce: Job Specifications .. 167

The default Perforce job template .. 167
The job template’s fields ... 168

The Fields: field .. 169
The Values: fields ... 170
The Presets: field .. 171

Using Presets: to change default fix status .. 171
The Comments: field ... 172

Caveats, warnings, and recommendations .. 172
Example: a custom template .. 173
Working with third-party defect tracking systems .. 174

P4DTG, The Perforce Defect Tracking Gateway .. 174
Building your own integration .. 175

Chapter 11 Using triggers to customize behavior .. 177

Creating triggers ... 177
Sample trigger .. 178
Trigger definition .. 179
Execution environment ... 181
Trigger basics ... 183

Communication between a trigger and the server ... 183
Exceptions .. 185
Compatibility with old triggers .. 185

Storing triggers in the depot .. 186
Using multiple triggers ... 187
Writing triggers to support multiple Perforce servers .. 188
Triggers and distributed architecture ... 188

Triggering on submits ... 189
Change-submit triggers ... 191
Change-content triggers .. 191
Change-commit triggers .. 193

Helix Versioning Engine Administrator Guide: Fundamentals

x Helix Versioning Engine Administrator Guide: Fundamentals

Triggering on pushes and fetches .. 194
Push-submit triggers ... 196
Push-content triggers .. 197
Push-commit triggers .. 198

Triggering before or after commands ... 200
Parsing the input dictionary .. 201
Additional triggers for push and fetch commands .. 202

Triggering on journal rotation ... 202
Triggering on shelving events ... 203

Shelve-submit triggers ... 204
Shelve-commit triggers .. 205
Shelve-delete triggers .. 205

Triggering on fixes .. 206
Fix-add and fix-delete triggers ... 206

Triggering on forms .. 207
Form-save triggers .. 208
Form-out triggers .. 209
Form-in triggers .. 210
Form-delete triggers .. 211
Form-commit triggers ... 212

Triggering to use external authentication ... 213
Auth-check and service-check triggers ... 215
Single signon and auth-check-sso triggers .. 216
Triggering for external authentication .. 218

Triggering to affect archiving .. 219
Trigger script variables ... 221

Perforce Server (p4d) Reference .. 229

Synopsis ... 229
Syntax .. 229
Description ... 229
Exit Status .. 229
Options .. 229
Usage Notes ... 234
Related Commands ... 235

Moving a Perforce server to a new machine ... 237

Moving between machines of the same byte order .. 237
Moving between different byte orders that use the same text format 238
Moving between Windows and UNIX ... 238
Changing the IP address of your server ... 239
Changing the hostname of your server .. 239

Perforce Server Control (p4dctl) .. 241

Helix Versioning Engine Administrator Guide: Fundamentals

Helix Versioning Engine Administrator Guide: Fundamentals xi

Installation ... 241
Configuration file format ... 241

Environment block .. 242
Server block .. 242
Service types and required settings .. 244
Configuration file examples ... 245
Using multiple configuration files .. 246

p4dctl commands .. 247

License Statements ... 249

xii Helix Versioning Engine Administrator Guide: Fundamentals

Helix Versioning Engine Administrator Guide: Fundamentals xiii

Preface
This guide (previously titled Perforce Server Administrator Guide: Fundamentals) describes the
installation, configuration, and management of the Helix versioning engine (Perforce server). This
guide covers tasks typically performed by a system administrator (for instance, installing and
configuring the software and ensuring uptime and data integrity), as well as tasks performed by a
Perforce administrator, such as setting up Perforce users, configuring Perforce depot access controls,
resetting Perforce user passwords, and so on.

This guide focuses on the installation, configuration, and management of a single Perforce server. For
information on the installation, configuration, and management of multiple distributed servers as well
as of proxies and brokers, see Helix Versioning Engine Administrator Guide: Multi-site Deployment

Because Perforce requires no special system permissions, a Perforce administrator does not typically
require root-level access. Depending on your site’s needs, your Perforce administrator need not be
your system administrator.

Both the UNIX and Windows versions of the Perforce service are administered from the command
line. To familiarize yourself with the Perforce Command-Line Client, see the P4 Command Reference.

About this manual
This manual includes the following chapters:

Chapter Contents

Chapter 1,
“Overview” on page 1

Discusses the basic client-server architecture for connected
and disconnected clients. Describes the basic administration
workflows for installing, configuring, and managing the Perforce
server.

Chapter 2, “Installing
and Upgrading the
Server” on page 7

Describes how to install the Perforce service or upgrade an
existing installation

Chapter 3, “Configuring the
Server” on page 33

Explains basic configuration options for enabling DVCS, accepting
client requests, case sensitivity, logging, and P4V settings.

Chapter 4, “Working with
Depots” on page 53

Explains how you work with each type of depot to organize and
archive your work.

Chapter 5, “Securing the
Server” on page 65

Explains how you encrypt client-server communication and how
you authenticate and authorize users.

Chapter 6, “Backup and
Recovery” on page 103

Explains how you back up and recover versioned data and
Perforce meta data.

Chapter 7, “Monitoring the
Server” on page 117

Describes how you can monitor the Perforce server and its use of
system resources: disk space, processes, commands, locked files,
user file access, and logging.

http://www.perforce.com/perforce/r16.1/manuals/p4dist/index.html
http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

Preface

xiv Helix Versioning Engine Administrator Guide: Fundamentals

Chapter Contents

Chapter 8, “Managing
the Server and Its
Resources” on page 127

Provides information about managing code sharing, distributed
development, users, changelists, disk space, processes, and
Windows deployments.

Chapter 9, “Tuning Perforce for
Performance” on page 145

Outlines some of the factors that can affect the performance of
a Perforce server, provides a few tips on diagnosing network-
related difficulties, and offers some suggestions on decreasing
server load for larger installations.

Chapter 10, “Customizing
Perforce: Job
Specifications” on page 167

Explains how jobs enable users to link changelists to enhancement
requests, problem reports, and other user-defined tasks. Describes
the template that defines jobs and explores the use of third party
defect tracking systems.

Chapter 11, “Using
triggers to customize
behavior” on page 177

Explains how you use different kids of scripts to customize the
behavior of server processing.

Perforce Server (p4d)
Reference on page 229

Provides complete reference information for the command used to
start and configure the Perforce server.

Moving a Perforce server to a
new machine on page 237

Explains how you move an existing Perforce server from one
machine to another .

License
Statements on page 249

Provides license information.

What’s new in this guide for the 2016.1 release
This section provides a list of changes to this guide for the Perforce Server 2016.1 release. For a list
of all new functionality and major bug fixes in Perforce Server 2016.1, see the Perforce Server 2016.1
Release Notes.

Major changes

Updates to information about
triggers

The following information has been added:

• How the content of %submitserverid% changes depending on
the deployment where the submit happens. See “Trigger script
variables” on page 221 for more information.

• Triggers for commands that respond to pushes and fetches.
For information, see “Additional triggers for push and fetch
commands” on page 202

• The use of TMP and TEMP variables when using triggers
on Windows. For more information, see “Execution
environment” on page 181.

http://www.perforce.com/perforce/r16.1/user/relnotes.txt
http://www.perforce.com/perforce/r16.1/user/relnotes.txt

Preface

Helix Versioning Engine Administrator Guide: Fundamentals xv

• Which environment variables you can access from a trigger. See
“Execution environment” on page 181 for more information.

• Clarification about the use of timeouts with triggers. See
“Execution environment” on page 181 for more information.

• Clarification about using the p4 diff2 command in a change
content trigger. See “Triggering on submits” on page 189 for
more information.

• The %specdef% variable is defined for form triggers It is expanded
to the spec string of the form in question. This allows derived
APIs to parse forms as part of triggers by loading the spec string
as an argument. See “Triggering on forms” on page 207 for
more information.

Minor changes

Allow the Perforce Windows
service to run under a regular
user account

Information has been added to explain how this can be done.
See “Windows services and servers” on page 23 for more
information.

Clarification of the use of a
prefix with the -jc option

For more information, see “Creating a checkpoint” on page 104.

You can use a file path to
specify a structured log file

See “Enabling structured logging” on page 124 for more
information.

A new route.csv structured log Log the full network route of authenticated client connections.
Errors related to net.mimcheck are also logged against the related
hop. See “Enabling structured logging” on page 124 for more
information.

Only static labels need to be
unloaded

See “Unload old client workspaces, labels, and task
streams” on page 161 for more information.

Rebalancing database trees New information has been added. See “Other server
configurables” on page 165 for more information.

Best to store journal files and
checkpoints on different drives

See “Usage Notes” on page 234 for more information.

Helix documentation
The following table lists and describes key documents for Helix users, developers, and administrators.
For complete information see the following:

http://www.perforce.com/documentation

http://www.perforce.com/documentation

Preface

xvi Helix Versioning Engine Administrator Guide: Fundamentals

For specific information about… See this documentation…

Introduction to version control concepts
and workflows; Helix architecture, and
related products.

Introducing Helix

Using the command-line interface to
perform software version management
and codeline management; working with
Helix streams; jobs, reporting, scripting,
and more.

Helix Versioning Engine User Guide

Basic workflows using P4V, the cross-
platform Helix desktop client.

P4V User Guide

Working with personal and shared
servers and understanding the distributed
versioning features of the Helix Versioning
engine.

Using Helix for Distributed Versioning

p4 command line (reference). P4 Command Reference, p4 help

Installing and administering the Helix
versioning engine, including user
management, security settings.

Helix Versioning Engine Administrator Guide:
Fundamentals

Installing and configuring Helix servers
(proxies, replicas, and edge servers) in a
distributed environment.

Helix Versioning Engine Administrator Guide: Multi-site
Deployment

Helix plug-ins and integrations. IDEs: Using IDE Plug-ins
Defect trackers: Defect Tracking Gateway Guide
Others: online help from the Helix menu or web site

Developing custom Helix applications
using the Helix C/C++ API.

C/C++ API User Guide

Working with Helix in Ruby, Perl, Python,
and PHP.

APIs for Scripting

Syntax conventions
Helix documentation uses the following syntax conventions to describe command line syntax.

Notation Meaning

literal Monospace font indicates a word or other notation that must be used in
the command exactly as shown.

http://www.perforce.com/perforce/r16.1/manuals/intro/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4guide/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4v/index.html
http://www.perforce.com/perforce/r16.1/manuals/dvcs/index.html
http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4dist/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4dist/index.html
http://www.perforce.com/perforce/r12.1/manuals/p4plugins/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4dtg/index.html
http://www.perforce.com/
http://www.perforce.com/perforce/r16.1/manuals/p4api/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4script/index.html

Preface

Helix Versioning Engine Administrator Guide: Fundamentals xvii

Notation Meaning

italics Italics indicate a parameter for which you must supply specific
information. For example, for a serverid parameter, you must supply the id
of the server.

[-f] Square brackets indicate that the enclosed elements are optional. Omit the
brackets when you compose the command.

Elements that are not bracketed are required.

… Ellipses (…) indicate that the preceding element can be repeated as often
as needed.

element1 | element2 A vertical bar (|) indicates that either element1 or element2 is required.

Please give us feedback
We are interested in receiving opinions on this manual from our users. In particular, we’d like to hear
from users who have never used Perforce before. Does this guide teach the topic well? Please let us
know what you think; we can be reached at manual@perforce.com.

If you need assistance, or wish to provide feedback about any of our products, contact
support@perforce.com.

mailto:manual@perforce.com
mailto:support@perforce.com

xviii Helix Versioning Engine Administrator Guide: Fundamentals

Helix Versioning Engine Administrator Guide: Fundamentals 1

Chapter 1 Overview
This chapter explains the scope of this book and describes the basic architecture that an administrator
can install, configure, monitor, and manage. Many of the issues that are covered in this book:
monitoring, management, tuning, jobs, and scripting are relevant to more complex architectures; for
this reason, this book remains the foundation of Perforce administration even if you are setting up
more complex architectures.

It is strongly recommended that you read Introducing Helix before you read this book.

Basic architecture
The simplest Perforce (Helix versioning engine) configuration consists of a client application and
server application communicating over a TCP/IP connection. The server application manages a
single repository that consists of one or more depots. A client application communicates with the
server to allow the user to view trees of versioned files and repository metadata (file history and other
information). Clients also manage local workspaces that contain a subset of the files in the repository.
Users can view, check out, and modify these local files and submit changes back to the repository.
Archived user files are stored on the server either in local type depots or in stream type depots.

The following figure illustrates this basic architecture. Multiple users connect to the server and view
files stored either in a streams type depot or a local type depot using workspaces (local directories) on
their own machines.

Figure 1.1. Single Server

Administrators support this architecture by installing and configuring the server, setting up users and
security, monitoring performance, managing the resources used by the server, and customizing the
behavior of the server if needed.

http://www.perforce.com/perforce/r16.1/manuals/intro/index.html

Chapter 1. Overview

2 Helix Versioning Engine Administrator Guide: Fundamentals

Users can also work disconnected from the server: they use a personal server to manage their
work locally and share their work with others via a shared server. This option expands the basic
architecture, as shown in the next figure:

Figure 1.2. Shared servers

Using this distributed versioning architecture, users can either connect directly to a shared server or
work disconnected from the server, sharing their files with others by pushing or fetching content from
their personal server to the shared server. Equally, an administrator can move content directly from
one shared server to another by pushing and fetching content. Content can be moved across disparate
networks, from one shared server to another shared server, by zipping and unzipping.

Administrators support this architecture by installing and configuring the shared server, setting
up users and security, monitoring performance, managing the resources used by the server, and
customizing the behavior of the server if needed. Personal servers are automatically set up when the
user executes the p4 init or p4 clone command to create (and populate) their workspace and depot.

The administrator can expand this basic architecture either to resolve issues of geographical
distribution, or scaling, or both.

• Helix Versioning Engine Administrator Guide: Multi-site Deployment explores some of the ways this
architecture can be expanded for geographic distribution and performance.

Basic workflow
This book is roughly organized according to the administrator workflow. This section summarizes the
basic workflow for setting up, configuring, and managing the Perforce server.

1. Set up the environment in which you will install the Perforce server.

Review installation pre-requisites in “Planning the installation” on page 7.

2. Download and install the Perforce server.

See Chapter 2, “Installing and Upgrading the Server” on page 7.

http://www.perforce.com/perforce/r16.1/manuals/p4dist/index.html

Chapter 1. Overview

Helix Versioning Engine Administrator Guide: Fundamentals 3

3. Start the server.

See the appropriate section on starting the server in Chapter 2, “Installing and Upgrading the
Server” on page 7.

4. Execute the p4 protect command to restrict access to the server.

See “When should protections be set?” on page 84.

5. Configure the server.

Basic configuration includes enabling distributed versioning if needed, defining depots, defining
case sensitivity and unicode, managing client requests, configuring logging,and configuring P4V
settings. See Chapter 3, “Configuring the Server” on page 33.

6. Define additional depots if needed.

See Chapter 4, “Working with Depots” on page 53.

7. Add users if they are not automatically added on login.

See “Creating standard users” on page 132.

8. Secure the server: set up secure client-server connection. Set up authorization and authentication.

See Chapter 5, “Securing the Server” on page 65.

9. Back up the server.

See Chapter 5, “Securing the Server” on page 65.

10. Monitor server performance and resource use.

See Chapter 7, “Monitoring the Server” on page 117.

11. Manage the server and its resources: changelists, users, code sharing, disk space, and processes.

See Chapter 8, “Managing the Server and Its Resources” on page 127.

12. Tune the server to improve performance.

See Chapter 9, “Tuning Perforce for Performance” on page 145.

13. Customize Perforce by extending job definitions.

See Chapter 10, “Customizing Perforce: Job Specifications” on page 167.

14. Customize Perforce using trigger scripts.

See Chapter 11, “Using triggers to customize behavior” on page 177.

Administrative access
Perforce security depends on the security level that is set and on how authentication and access
privileges are configured; these are described in Chapter 5, “Securing the Server” on page 65.
Access levels relevant for the administrator are admin and super:

Chapter 1. Overview

4 Helix Versioning Engine Administrator Guide: Fundamentals

• admin grants permission to run Perforce commands that affect metadata, but not server operation. A
user with admin access can edit, delete, or add files, and can use the p4 obliterate command.

• super grants permission to run all Perforce commands, allows the creation of depots and triggers,
permits the definition of protections, and enables user management.

Users of type operator are allowed to run commands that affect server operation, but not metadata.

All server commands documented in the P4 Command Reference indicate the access level needed to
execute that command.

Until you define a Perforce superuser, every Perforce user is a Perforce superuser and can run any
Perforce command on any file. After you start a new Perforce service, use the following command:

$ p4 protect

as soon as possible to define a Perforce superuser.

Naming Perforce objects
As you work with Perforce, you will be creating a variety of objects: clients, depots, branches, jobs,
labels, and so on. This section provides some guidelines you can use when naming these objects.

Object Name

Branches A good idea to name them, perhaps using a convention to indicate the
relationship of the branch to other branches or to your workflow.

Client Depends on usage, but some common naming conventions include:

• user.machineTag.product

• user.machineTag.product.branch

Whether you use product or product.branch depends on whether your
workspace gets re-purposed from stream to stream (in which case you use
just product), or whether you have multiple workspaces, one for each branch
(in which case you use product.branch, effectively tying the workspace
name to the branch).

A client may not have the same name as a depot.

Depot Depot names are part of an organizations hierarchy for all your digital
assets. Take care in choosing names and in planning the directory structure.

It is best to keep the names short.

A client may not have the same name as a depot.

Jobs Use names that match whatever your external defect tracker issues look like.
For example PRJ-1234 for JIRA issues.

http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

Chapter 1. Overview

Helix Versioning Engine Administrator Guide: Fundamentals 5

Object Name

Labels Site-dependent, varies with your code management and versioning needs.
For example: R-3.2.0.

Machine Tags The host name, or something simple and descriptive. For example Win7VM,
P4MBPro (for Perforce MacBook Pro).

User The OS user.

6 Helix Versioning Engine Administrator Guide: Fundamentals

Helix Versioning Engine Administrator Guide: Fundamentals 7

Chapter 2 Installing and Upgrading the Server
This chapter describes how to install the Perforce service or upgrade an existing installation. It contains
information about the following topics:

• Pre-requisites for installation

• Where to obtain installation files

• Installing on UNIX (or Mac OS X)

• Installing on Windows

• Default location of installed files

• Upgrading your installation

• License requirements

Many of the examples in this book are based on the UNIX version of the Perforce service. In most
cases, the examples apply equally to both Windows and UNIX installations. The material for UNIX
also applies to Mac OS X.

Warning If you are upgrading an existing installation to Release 2013.3 or later, see the notes
in “Upgrading the Perforce service” on page 28 before proceeding.

Install architecture
The chapter Chapter 1, “Overview” on page 1 describes the two deployment options that are covered
in this book. This chapter focuses on the installation of the server for connected clients. See the "Install"
chapter of Using Helix for Distributed Versioning for information on how to install a server that supports
clients who want to work disconnected.

Planning the installation
The following sections describe some of the issues you need to think about before installing and
configuring the server.

Network
Perforce can run over any TCP/IP network. For remote users or distributed configurations, Perforce
offers options like proxies and the commit/edge architecture that can enhance performance over a
WAN. Compression in the network layer can also help. For additional information about network and
performance tuning, see Chapter 9, “Tuning Perforce for Performance” on page 145.

CPU
CPU resource consumption can be adversely affected by compression, lockless reads, or a badly
designed protections table. In general, there is a trade-off between speed and the number of cores.

http://www.perforce.com/perforce/r16.1/manuals/dvcs/index.html

Chapter 2. Installing and Upgrading the Server

8 Helix Versioning Engine Administrator Guide: Fundamentals

A minimum of 2.4 GHZ and 8 cores is recommended. With greater speed, fewer cores will do: for
example, a 3.2 GHZ and 4-core processor will also work.

For additional details, see “CPU” on page 146.

Memory
There are a couple of guidelines you can follow to anticipate memory needs:

• Multiply the number of licensed users by 64MB.

• Allocate 1.5 kilobytes of RAM per file in the depot.

In general Perforce performs well on machines that have large memory footprints that can be used for
file system cache. I/O to even the fastest disk will be slower than reading from the file cache. These
guidelines only apply for a single server.

For additional information about memory and performance tuning, see Chapter 9, “Tuning Perforce
for Performance” on page 145.

Disk space allocation
Perforce disk space usage is a function of three variables:

• Number and size of client workspaces

• Size of server database

• Size of server’s archive of all versioned files

All three variables depend on the nature of your data and how heavily you use Perforce.

The client file space required is the size of the files that your users will need in their client workspaces
at any one time.

The server’s database size can be calculated with a fair level of accuracy; as a rough estimate, it
requires 0.5 kilobytes per user per file. (For instance, a system with 10,000 files and 50 users requires
250 MB of disk space for the database). The database can be expected to grow over time as histories of
the individual files grow.

The size of the server’s archive of versioned files depends on the sizes of the original files stored and
grows as revisions are added. A good guideline is to allocate sufficient space in your P4ROOT directory
to hold three times the size of your users' present collection of versioned files, plus an additional 0.5KB
per user per file to hold the database files that store the list of depot files, file status, and file revision
histories.

The db.have file holds the list of files opened in client workspaces. This file tends to grow more rapidly
than other files in the database. If you are experiencing issues related to the size of your db.have file
and are unable to quickly switch to a server with adequate support for large files, deleting unused
client workspace specifications and reducing the scope of client workspace views can help alleviate the
problem.

Chapter 2. Installing and Upgrading the Server

Helix Versioning Engine Administrator Guide: Fundamentals 9

Filesystem
File size and disk I/O are the key issues here. For more information, see “File systems” on page 146.

Filesystem performance

Perforce is judicious with regards to its use of disk I/O; its metadata is well-keyed, and accesses are
mostly sequential scans of limited subsets of the data. The most disk-intensive activity is file check-
in, where the Perforce server must write and rename files in the archive. Server performance depends
heavily on the operating system’s filesystem implementation, and in particular, on whether directory
updates are synchronous. Server performance is also highly dependent upon the capabilities of the
underlying hardware’s I/O subsystem.

Although Perforce does not recommend any specific hardware configuration or filesystem, Linux
servers are generally fastest (owing to Linux’s asynchronous directory updating), but they may have
poor recovery if power is cut at the wrong time.

Performance in systems where database and versioned files are stored on NFS-mounted volumes is
typically dependent on the implementation of NFS in question or the underlying storage hardware.
Perforce has been tested and is supported using implementations that support the flock protocol.

Under Linux and FreeBSD, database updates over NFS can be an issue because file locking is relatively
slow; if the journal is NFS-mounted on these platforms, all operations will be slower. In general (but in
particular on Linux and FreeBSD), we recommend that the Perforce database, depot, and journal files
be stored on disks local to the machine running the Perforce server process or that they be stored on a
low-latency SAN device.

These issues affect only the Perforce server process (p4d). Perforce applications, (such as p4, the
Perforce Command-Line Client) have always been able to work with client workspaces on NFS-
mounted drives (for instance, workspaces in users' home directories).

Separate physical drives for server root and journal

Whether installing on UNIX or Windows, it is advisable to have your P4ROOT directory (that is, the
directory containing your database and versioned files) on a different physical drive than your journal
file.

By storing the journal on a separate drive, you can be reasonably certain that, if a disk failure corrupts
the drive containing P4ROOT, such a failure will not affect your journal file. You can then use the journal
file to restore any lost or damaged metadata. Separating the live journal from the db.* files can also
improve performance.

Further details are available in Chapter 6, “Backup and Recovery” on page 103 and in “Journal and
archive location” on page 148.

Protections and passwords
Until you define a Perforce superuser, every Perforce user is a Perforce superuser and can run any
Perforce command on any file. After you start a new Perforce service, use:

$ p4 protect

Chapter 2. Installing and Upgrading the Server

10 Helix Versioning Engine Administrator Guide: Fundamentals

as soon as possible to define a Perforce superuser. To learn more about how p4 protect works, see
“Authorizing access” on page 83.

Without passwords, any user is able to impersonate any other Perforce user, either with the -u flag
or by setting P4USER to an existing Perforce user name. Use of Perforce passwords prevents such
impersonation. See the Helix Versioning Engine User Guide for details.

To set (or reset) a user’s password, either use p4 passwd username (as a Perforce superuser), and enter
the new password for the user, or invoke p4 user -f username (also while as a Perforce superuser)
and enter the new password into the user specification form.

The security-conscious Perforce superuser also uses p4 protect to ensure that no access higher than
list is granted to unprivileged users, p4 configure to set the security level to a level that requires
that all users have strong passwords, and p4 group to assign all users to groups (and, optionally,
to require regular changes of passwords for users on a per-group basis, to set a minimum required
password length for all users on the site, and to lock out users for predefined amounts of time after
repeated failed login attempts).

Note An alternate way to reduce security risk during initial setup or during a
maintenance interval is to start the Perforce server using localhost:port syntax.
For example:

$ p4d localhost:2019

This forces the server to ignore non-local connection requests.

For complete information about security, see Chapter 5, “Securing the Server” on page 65.

Getting Perforce
Perforce requires at least two executables: the Perforce service (p4d on Unix, p4s.exe on Windows),
and at least one Perforce application (such as p4 on UNIX, or p4.exe on Windows).

The Perforce service and applications are available from the Downloads page on the Perforce web site:

http://www.perforce.com/downloads/complete_list

Go to the web page, select the files for your platform, and save the files to disk. In addition to plain
binaries, installers for Windows are also available at the above site. You are encouraged to use them.

Many components are also available as Linux packages. See instructions in the next section for
installing OS-specific packages for select Linux distributions.

Linux package-based installation
The Perforce service is available in two distribution package formats: Debian (.deb) for Ubuntu
systems, and RPM (.rpm) for CentOS and RedHat Enterprise Linux (RHEL).

http://www.perforce.com/perforce/r16.1/manuals/p4guide/index.html
http://www.perforce.com/downloads/complete_list

Chapter 2. Installing and Upgrading the Server

Helix Versioning Engine Administrator Guide: Fundamentals 11

Using distribution packages greatly simplifies the installation, update, and removal of software, as the
tools that manage these packages are aware of the dependencies for each package.

You can install packages for the Perforce service on the following Linux (Intel x86_64) platforms:

• Ubuntu 12.04 LTS

• Ubuntu 14.04 LTS

• CentOS or Red Hat 6.x

• CentOS or Red Hat 7.x

During the course of the installation, you will be asked to make choices about case sensitivity and
Unicode settings. Please read the following sections now to understand the consequences of your
selections:

• “Case sensitivity and multi-platform development” on page 39

• “Setting up and managing Unicode installations” on page 40

Make sure, before you start the install, that you have root level access to the server that will host your
Perforce service.

Installation
1. Configure the Perforce package repository.

As root, run one of the following:

a. For Ubuntu 12.04:

Create the file /etc/apt/sources.list.d/perforce.list with the following content:

deb http://package.perforce.com/apt/ubuntu/ precise release

b. For Ubuntu 14.04:

Create the file /etc/apt/sources.list.d/perforce.list with the following content:

deb http://package.perforce.com/apt/ubuntu/ trusty release

c. For CentOS/RHEL 6:

Create the file /etc/yum.repos.d/perforce.repo, with the following content:

[perforce]
name=Perforce
baseurl=http://package.perforce.com/yum/rhel/6/x86_64/
enabled=1
gpgcheck=1

Chapter 2. Installing and Upgrading the Server

12 Helix Versioning Engine Administrator Guide: Fundamentals

d. For CentOS/RHEL 7:

Create the file /etc/yum.repos.d/perforce.repo, with the following content:

[perforce]
name=Perforce
baseurl=http://package.perforce.com/yum/rhel/7/x86_64/
enabled=1
gpgcheck=1

2. Import the Perforce package signing key.

Run one of the following:

a. For Ubuntu:

$ wget -qO - https://package.perforce.com/perforce.pubkey | sudo apt-key add -

b. For CentOS/RHEL (run this command as root):

rpm --import https://package.perforce.com/perforce.pubkey

For information about verifying the authenticity of the signing key, see: https://
www.perforce.com/perforce-packages

3. Install the appropriate Perforce service package.

The Perforce service is divided into multiple packages, so you can install just the components you
need. The component package names are:

• helix-p4d

• helix-p4dctl

• helix-proxy

• helix-broker

• helix-cli

The helix-p4d package installs the main component of a Perforce service, p4d, as well as the
command line interface, the service controller, and a configuration script to set them up.

At minimum, you need to install the helix-p4d package. To install a different package, substitute
its name for helix-p4d in the commands below.

Run one of the following:

a. For Ubuntu:

https://www.perforce.com/perforce-packages
https://www.perforce.com/perforce-packages

Chapter 2. Installing and Upgrading the Server

Helix Versioning Engine Administrator Guide: Fundamentals 13

$ sudo apt-get update
$ sudo apt-get install helix-p4d

b. For CentOS/RHEL (run this command as root):

yum install helix-p4d

The files contained in the package are installed, and status information describing the main
elements that have been installed is displayed.

4. Run the post-installation configuration script.

If you installed the helix-p4d package, and if installation was successful, proceed on to “Post-
installation configuration” on page 13.

Post-installation configuration

After the helix-p4d package has been installed, additional configuration is required. Perform the
following steps:

1. Use the configure-helix-p4d.sh script to configure a Perforce service.

Note The configure-helix-p4d.sh script can be used in a few different ways. The
steps below outline the most straightforward configuration using interactive
mode, but you can review the options by running:

$ sudo /opt/perforce/sbin/configure-helix-p4d.sh -h

Run in interactive mode:

$ sudo /opt/perforce/sbin/configure-helix-p4d.sh

In interactive mode, the configuration script begins by displaying a summary of default settings
and those which have optionally been set with a command line argument.

2. Provide information to the configuration script.

After the summary, the configuration script prompts for information it needs to set up your
Perforce service.

Note If you already have a Perforce service configured, and you supply its service
name, then the configuration script only prompts for settings that you can change
on an existing service.

Chapter 2. Installing and Upgrading the Server

14 Helix Versioning Engine Administrator Guide: Fundamentals

At each prompt, you can accept the proposed default value by pressing Enter, or you can specify
your own value.

The list below contains details about the options for each prompt:

a. The Service Name:

The name used when managing this service with p4dctl, for instance when starting and
stopping the service.

This name is also used to set the Perforce serverid attribute on the underlying p4d instance, to
distinguish it from others that may be in your overall installation.

b. The Server Root (P4ROOT):

The directory where versioned files and metadata should be stored.

c. The Unicode Mode for the server:

This is off by default.

Warning If you turn Unicode mode on, you will not be able to turn it off. Be sure
you are familiar with Unicode functionality when selecting this mode.
See “Setting up and managing Unicode installations” on page 40 for
information.

d. The Case Sensitivity for the server:

This is on by default.

See “Case sensitivity and multi-platform development” on page 39 for information.

e. The Server Address (P4PORT):

This specifies the host and port where the Perforce service should listen, and whether to
communicate in plaintext or over SSL. For more information, see “Communicating port
information” on page 19.

f. Superuser login:

The desired userid for a new user to be created with super level privileges.

For more information about superusers, see “Access levels” on page 85.

g. Superuser password:

The desired password to be set for the new superuser.

Due to the unlimited privileges granted to this user, a strong password is required.

After you answer all prompts, the script begins configuration according to your choices. As it runs,
the script displays information about the configuration taking place.

Chapter 2. Installing and Upgrading the Server

Helix Versioning Engine Administrator Guide: Fundamentals 15

After the configuration has completed successfully, a summary is displayed with details about
what was done, and where settings are stored.

You can now connect to the service, or you can manage the service using the p4dctl utility. For
more information, see Perforce Server Control (p4dctl) on page 241.

Updating
Important The package update commands with apt-get or yum do not complete the process of

updating your Perforce service. Packages for Linux simplify only certain steps of
that process.

Updating packages without completing the rest of the update process leaves your
Perforce service in a precarious state. Make sure to read and understand the entire
process before updating any packages.

1. Review the general update process.

a. See “Upgrading the Perforce service” on page 28 for details on the general process for how
to update a Perforce service, on any platform. You should read and thoroughly understand this
section before continuing.

b. Packages for Linux help you accomplish only specific steps from the general process. If you are
attempting to update your Perforce service using packages, you should still follow the general
process linked above, but with the package specific modifications below:

i. You may be able to stop, checkpoint, and start your Perforce service using p4dctl:

$ sudo -u perforce p4dctl [stop|checkpoint|start] servicename

ii. You do not need to manually retrieve the new component binaries (such as p4d) from the
Perforce website; the package update commands with apt-get or yum accomplish this step.

Platform-specific package update commands are below.

iii. You still need to upgrade the Perforce service database to use the new versions of
components delivered by the packages.

As a convenience, 2016.1 and newer packages attempt to present tailored instructions and
commands on-screen for upgrading those Perforce service databases that are discovered
automatically.

2. Determine if an updated package is available.

Note To update a different package, substitute its name for helix-p4d in the
commands below.

Run one of the following:

a. For Ubuntu:

Chapter 2. Installing and Upgrading the Server

16 Helix Versioning Engine Administrator Guide: Fundamentals

$ sudo apt-get update
$ sudo apt-cache madison helix-p4d

b. For CentOS/RHEL (run this command as root):

yum --showduplicates list helix-p4d

3. Install an updated package.

Note To update a different package, substitute its name for helix-p4d in the
commands below.

The command to update is the same used to install initially.

Run one of the following:

a. For Ubuntu:

$ sudo apt-get update
$ sudo apt-get install helix-p4d

b. For CentOS/RHEL (run this command as root):

yum install helix-p4d

Important Failure to complete all update steps in the general process referenced above
could result in continued downtime for your Perforce service.

UNIX non-package installation
Although you can install p4 and p4d in any directory, on UNIX, the Perforce applications typically
reside in /usr/local/bin, and the Perforce service is usually located either in /usr/local/bin or in its
own server root directory. You can install Perforce applications on any machine that has TCP/IP access
to the p4d host.

To limit access to the Perforce service’s files, ensure that the p4d executable is owned and run by a
Perforce user account that has been created for the purpose of running the Perforce service.

For an example Unix installation see:

http://answers.perforce.com/articles/KB_Article/Example-Unix-Installation

Note To maximize performance, configure the server root (P4ROOT) to reside on a local
disk and not an NFS-mounted volume. Perforce’s file-locking semantics work

http://answers.perforce.com/articles/KB_Article/Example-Unix-Installation

Chapter 2. Installing and Upgrading the Server

Helix Versioning Engine Administrator Guide: Fundamentals 17

with NFS mounts on Solaris 2.5.1 and later; some issues still remain regarding
file locking on noncommercial implementations of NFS (for instance, Linux and
FreeBSD). It is best to place metadata and journal data on separate drives

These issues affect only the Perforce server process (p4d). Perforce applications
(such as p4, the Perforce Command-Line Client) have always been able to work
with client workspaces on NFS-mounted drives, such as client workspaces located
in users' home directories.

To start using Perforce:

1. Download the p4 and p4d applications for your platform from the Perforce web site.

2. Make the downloaded p4 and p4d files executable.

3. Create a server root directory to hold the Perforce database and versioned files.

4. Tell the Perforce service what port to listen to by specifying a TCP/IP port to p4d.

5. Start the Perforce service (p4d).

6. Set the p4d port and address for Perforce applications by setting the P4PORT environment variable.

Downloading the files and making them executable
On UNIX (or Mac OS X), you must make the p4 and p4d binaries executable. After you download the
software, use the chmod command to make them executable, as follows:

$ chmod +x p4
$ chmod +x p4d

Creating a Perforce server root directory
The Perforce service stores all user-submitted files and system-generated metadata in files and
subdirectories beneath its own root directory. This directory is called the server root.

To specify a server root, either set the environment variable P4ROOT to point to the server root, or use
the -r server_root flag when invoking p4d. Perforce applications never use the P4ROOT directory or
environment variable; p4d is the only process that uses the P4ROOT variable.

Because all Perforce files are stored by default beneath the server root, the contents of the server root
can grow over time. See “Disk space allocation” on page 8 for information about diskspace
requirements.

The Perforce service requires no privileged access; there is no need to run p4d as root or any other
privileged user. For more information, see “Running p4d as an unprivileged user” on page 20.

The server root can be located anywhere, but the account that runs p4d must have read, write, and
execute permissions on the server root and all directories beneath it. For security purposes, set the

Chapter 2. Installing and Upgrading the Server

18 Helix Versioning Engine Administrator Guide: Fundamentals

umask(1) file-creation-mode mask of the account that runs p4d to a value that denies other users access
to the server root directory.

Telling Perforce applications which port to connect to
The p4d service and Perforce applications communicate with each other using TCP/IP. When p4d
starts, it listens (by default) for plaintext connections on port 1666. Perforce applications like p4 assume
(also by default) that the corresponding p4d is located on a host named perforce, listening on port
1666, and that communications are performed in plaintext.

If p4d is to listen on a different host or port and/or use a different protocol, either specify
the configuration with the -p protocol:host:port flag when you start p4d (as in, p4d -p
ssl:perforce:1818), or by the contents of the P4PORT environment variable.

Plaintext communications are specified with tcp:host:port and SSL encryption is specified with
ssl:port. (To use SSL, you must also supply or generate an x509 certificate and private key, and
store them in a secure location on your server. See “Using SSL to encrypt connections to a Perforce
server” on page 66 for details.)

The preferred syntax for specifying the port is the following:

protocol:host:port

There are situations, for example if you are using multiple network cards, where you might want to
specify the port on which to listen using syntax like the following:

P4PORT=ssl::1666

The use of the double colon directs the server to bind to all available network addresses and to listen
on port 1666. This can be useful if the host has multiple network addresses.

Note To enable IPv6 support, specify the wildcard address with two colons when starting
p4d. For example:

$ p4d -p tcp64:[::]:1818

starts a Perforce service that listens for plaintext connections, on both IPv6 and IPv4
transports, on port 1818. Similarly,

$ p4d -p ssl64:[::]:1818

starts a Perforce service that requires SSL and listens on IPv6 and IPv4, and

$ p4d -p ssl6:[::]:1818

starts a Perforce service that requires SSL connections, and listens for IPv6
connections exclusively.

Chapter 2. Installing and Upgrading the Server

Helix Versioning Engine Administrator Guide: Fundamentals 19

See “IPv6 support and mixed networks” on page 19 for more information about
IPv6 and IPv4 transports.

Unlike P4ROOT, the environment variable P4PORT is used by both the Perforce service and the Perforce
applications, so it must be set both on the machine that hosts the Perforce service and on individual
user workstations.

Communicating port information
Perforce applications need to know on what machine the p4d service is listening, on which TCP/IP
port p4d is listening, and whether to communicate in plaintext or over SSL.

Set each Perforce user’s P4PORT environment variable to protocol:host:port, where protocol is the
communications protocol (beginning with ssl: for SSL, or tcp: for plaintext), host is the name of the
machine on which p4d is running, and port is the number of the port on which p4d is listening. For
example:

P4PORT Behavior

tcp:dogs:3435 Perforce applications connect in plaintext to the Perforce service on host
dogs listening on port 3435.

tcp64:dogs:3435 Perforce applications connect in plaintext to the Perforce service on host
dogs listening on port 3435. The application first attempts to connect over
an IPv6 connection; if that fails, the application attempts to connect via
IPv4.

ssl:example.org:1818 Perforce applications connect via SSL to the Perforce service on host
example.org listening on port 1818.

<not set> Perforce applications connect to the Perforce service on a host named or
aliased perforce listening on port 1666. Plaintext communications are
assumed.

If you have enabled SSL, users are shown the server’s fingerprint the first time they attempt to connect
to the service. If the fingerprint is accurate, users can use the p4 trust command (either p4 trust -y,
or p4 -p ssl:host:port trust -i fingerprint) to install the fingerprint into a file (pointed to by the
P4TRUST environment variable) that holds a list of known/trusted Perforce servers and their respective
fingerprints. If P4TRUST is unset, this file is .p4trust in the user’s home directory.

IPv6 support and mixed networks
As of Release 2013.1, Perforce supports connectivity over IPv6 networks as well as over IPv4 networks.

Behavior and performance of networked services is contingent not merely upon the networking
capabilities of the machine that hosts the service, nor only on the operating systems used by the end
users, but also on your specific LAN and WAN infrastructure (and the state of IPv6 support for every
router between the end user and the Perforce versioning service).

To illustrate just one possible scenario, a user working from home; even if they have an IPv6-based
home network, their ISP or VPN provider may not fully support IPv6. We have consequently provided

Chapter 2. Installing and Upgrading the Server

20 Helix Versioning Engine Administrator Guide: Fundamentals

several variations on P4PORT to provide maximum flexibility and backwards compatibility for
administrators and users during the transition from IPv4 to IPv6.

P4PORT protocol value Behavior in IPv4/IPv6 or mixed networks

<not set> Use tcp4: behavior, but if the address is numeric and contains two or
more colons, assume tcp6: If the net.rfc3484 configurable is set, allow
the OS to determine which transport is used.

tcp: Use tcp4: behavior, but if the address is numeric and contains two or
more colons, assume tcp6: If the net.rfc3484 configurable is set, allow
the OS to determine which transport is used.

tcp4: Listen on/connect to an IPv4 address/port only.

tcp6: Listen on/connect to an IPv6 address/port only.

tcp46: Attempt to listen/connect to an IPv4 address. If this fails, try IPv6.

tcp64: Attempt to listen/connect to an IPv6 address. If this fails, try IPv4.

ssl: Use ssl4: behavior, but if the address is numeric and contains two or
more colons, assume ssl6: If the net.rfc3484 configurable is set, allow
the OS to determine which transport is used.

ssl4: Listen on/connect to an IPv4 address/port only, using SSL encryption

ssl6: Listen on/connect to an IPv6 address/port only, using SSL encryption.

ssl46: Listen on/connect to an IPv4 address/port. If that fails, try IPv6. After
connecting, require SSL encryption.

ssl64: Listen on/connect to an IPv6 address/port. If that fails, try IPv4. After
connecting, require SSL encryption.

In mixed environments it is good practice to set the net.rfc3484 configurable to 1:

$ p4 configure set net.rfc3484=1

Doing so ensures RFC3484-compliant behavior for users who do not explicitly specify the
protocol value; that is, if the client-side configurable net.rfc3484 is set to 1, and P4PORT is set to
example.com:1666, or tcp:example.com:1666, or ssl:example.com:1666, the user’s operating system
will automatically determine, for any given connection, whether to use IPv4 or IPv6 transport.

In multi-server environments, net.rfc3484, when set server-side, also controls the behavior of of host
resolution when initiating server-to-server (or proxy, broker, etc.) communications.

Running p4d as an unprivileged user
Perforce does not require privileged access. For security reasons, do not run p4d as root or otherwise
grant the owner of the p4d process root-level privileges.

Chapter 2. Installing and Upgrading the Server

Helix Versioning Engine Administrator Guide: Fundamentals 21

Create an unprivileged UNIX user (for example, perforce) to manage p4d and (optionally) a UNIX
group for it (for example, p4admin). Use the umask(1) command to ensure that the server root (P4ROOT)
and all files and directories created beneath it are writable only by the UNIX user perforce, and
(optionally) readable by members of the UNIX group p4admin.

Under this configuration, the Perforce service (p4d), running as UNIX user perforce, can write to
files in the server root, but no users are able to read or overwrite its files. To grant access to the files
created by p4d (that is, the depot files, checkpoints, journals, and so on) to trusted users, you can add
the trusted users to the UNIX group p4admin.

Running from inetd on UNIX
Under a normal installation, the Perforce service runs on UNIX as a background process that waits for
connections from users. To have p4d start up only when connections are made to it, using inetd and
p4d -i, add the following line to /etc/inetd.conf:

p4dservice stream tcp nowait username /usr/local/bin/p4d p4d -i -r p4droot

and then add the following line to /etc/services:

p4dservice nnnn /tcp

where:

• p4dservice is the service name you choose for this Perforce server

• /usr/local/bin is the directory holding your p4d binary

• p4droot is the root directory (P4DROOT) to use for this Perforce server (for example, /usr/local/p4d)

• username is the UNIX user name to use for running this Perforce server

• nnnn is the port number for this Perforce server to use

The "extra" p4d on the /etc/inetd.conf line must be present; inetd passes this to the OS as argv[0].
The first argument, then, is the -i flag, which causes p4d not to run as a background process, but rather
to serve the single client connected to it on stdin/stdout. (This is the convention used for services
started by inetd.)

This method is an alternative to running p4d from a startup script. It can also be useful for providing
special services; for example, at Perforce, we have a number of test servers running on UNIX, each
defined as an inetd service with its own port number.

There are caveats with this method:

• inetd may disallow excessive connections, so a script that invokes several thousand p4 commands,
each of which spawns an instance of p4d via inetd can cause inetd to temporarily disable the
service. Depending on your system, you might need to configure inetd to ignore or raise this limit.

Chapter 2. Installing and Upgrading the Server

22 Helix Versioning Engine Administrator Guide: Fundamentals

• There is no easy way to disable the server, since the p4d executable is run each time; disabling the
server requires modifying /etc/inetd.conf and restarting inetd.

• To use Perforce with this license, you will need to request a server license that does not specify a
port. Contact Perforce licensing for more information.

Note For information about using systemd to launch services and daemons at boot time
see http://answers.perforce.com/articles/KB/10832.

Starting the Perforce service
After you set p4d's P4PORT and P4ROOT environment variables, start the service by running p4d in the
background with the command:

$ p4d &

Although the example shown is sufficient to run p4d, you can specify other flags that control such
things as error logging, checkpointing, and journaling.

Example 2.1. Starting the Perforce service

You can override P4PORT by starting p4d with the -p flag (in this example, listen to port 1818 on IPv6
and IPv4 transports), and P4ROOT by starting p4d with the -r flag. Similarly, you can specify a journal
file with the -J flag, and an error log file with the -L flag. A startup command that overrides the
environment variables might look like this:

$ p4d -r /usr/local/p4root -J /var/log/journal -L /var/log/p4err -p tcp64:[::]:1818 &

The -r, -J, and -L flags (and others) are discussed in Chapter 6, “Backup and
Recovery” on page 103. To enable SSL support, see “Using SSL to encrypt connections to a
Perforce server” on page 66. A complete list of flags is provided in the Perforce Server (p4d)
Reference on page 229.

For information about the files that have been installed, see “Installed files” on page 28.

Stopping the Perforce service
To shut down the Perforce service, use the command:

$ p4 admin stop

Only a Perforce superuser can use p4 admin stop.

Restarting a running Perforce service
To restart a running Perforce service (for example, to read a new license file), use the command:

http://answers.perforce.com/articles/KB/10832

Chapter 2. Installing and Upgrading the Server

Helix Versioning Engine Administrator Guide: Fundamentals 23

$ p4 admin restart

Only a Perforce superuser can use p4 admin restart. On UNIX platforms, you can also use kill -HUP
to restart the service.

Windows installation
To install Perforce on Windows, use the Perforce installer (perforce.exe) from the Downloads page of
the Perforce web site:

http://www.perforce.com/downloads/complete_list

Use the Perforce installer program to install or upgrade the Perforce service, Perforce proxy, broker,
or the Perforce Command-Line Client. Other Perforce applications on Windows, such as the Perforce
Visual Client (P4V), as well as third-party plug-ins, may be downloaded and installed separately.

For an example of how to install Perforce on Windows, see:

http://answers.perforce.com/articles/KB_Article/Example-Windows-Installation

Note If you have Administrator privileges, it is usually best to install Perforce as a
service. If you don’t, install it as a server.

Windows services and servers
In this manual, the terms Perforce Service and p4d are used interchangeably to refer to "the process
which provides versioning services to Perforce applications" unless the distinction between a Windows
server process or a service process is relevant.

The Perforce versioning service (p4d) can be configured to run as a Windows service (p4s.exe) process
that starts at boot time, or as a server (p4d.exe) process that you invoke manually from a command
prompt. To run a task as a Windows server, the user must be logged in because shortcuts in a user’s
startup folder cannot be run until that user logs in.

The Perforce service (p4s.exe) and the Perforce server (p4d.exe) executables are copies of each other;
they are identical apart from their filenames. When run, the executables use the first three characters of
the name with which they were invoked (either p4s or p4d) to determine their behavior. (For example,
invoking copies of p4d.exe named p4smyservice.exe or p4dmyserver.exe invoke a service and a
server, respectively.)

By default, the Perforce installer configures Perforce as a Windows service..

Note On Windows, directory permissions are set securely by default; when Perforce runs
as a Windows server, the server root is accessible only to the user who invoked
p4d.exe from the command prompt. When Perforce is installed as a service, the
files are owned by the LocalSystem account, and are accessible only to those with
Administrator access.

http://www.perforce.com/downloads/complete_list
http://answers.perforce.com/articles/KB_Article/Example-Windows-Installation

Chapter 2. Installing and Upgrading the Server

24 Helix Versioning Engine Administrator Guide: Fundamentals

To allow the Perforce service to run under a regular user account, make sure that
the user has read/write access to the registry key and that the user has access to
the directory structure under P4ROOT. For additional information see the following
article:

http://kbportal.perforce.com/article/3925

Installing the Perforce service on a network drive
By default, the Perforce service runs under the local System account. Because the System account has
no network access, a real userid and password are required in order to make the Perforce service work
if the metadata and depot files are stored on a network drive. The Perforce service is then configured
with the supplied data and run as the specified user instead of System.

If you are installing your server root on a network drive, the Perforce installer (perforce.exe)
requests a valid combination of userid and password at the time of installation. This user must have
administrator privileges.

Although the Perforce service runs reliably using a network drive as the server root, there is still a
marked performance penalty due to increased network traffic and slower file access. Consequently,
Perforce recommends that the depot files and Perforce database reside on a drive local to the machine
on which the Perforce service is running.

Starting and stopping the Perforce service
If you install Perforce as a service under Windows, the service starts whenever the machine boots. Use
the Services applet in the Control Panel to control the Perforce service’s behavior.

To stop a Perforce service, use the command:

$ p4 admin stop

Only a Perforce superuser can use p4 admin stop.

For older revisions of Perforce, shut down services manually by using the Services applet in the
Control Panel.

For information about the files that have been installed, see “Installed files” on page 28.

Multiple Perforce services under Windows
By default, the Perforce installer for Windows installs a single Perforce server as a single service. If you
want to host more than one Perforce installation on the same machine (for instance, one for production
and one for testing), you can either manually start Perforce servers from the command line, or use the
Perforce-supplied utility svcinst.exe, to configure additional Perforce services.

Warning Setting up multiple services to increase the number of users you support without
purchasing more user licenses is a violation of the terms of your Perforce End User
License Agreement.

http://kbportal.perforce.com/article/3925

Chapter 2. Installing and Upgrading the Server

Helix Versioning Engine Administrator Guide: Fundamentals 25

Understanding the precedence of environment variables in determining Perforce configuration is
useful when configuring multiple Perforce services on the same machine. Before you begin, read and
understand “Windows configuration parameter precedence” on page 26.

To set up a second Perforce service:

1. Create a new directory for the Perforce service.

2. Copy the server executable, service executable, and your license file into this directory.

3. Create the new Perforce service using the svcinst.exe utility, as described in the example below.
(The svcinst.exe utility comes with the Perforce installer, and can be found in your Perforce server
root.)

4. Set up the environment variables and start the new service.

We recommend that you install your first Perforce service using the Perforce installer. This first service
is called Perforce and its server root directory contains files that are required by any other Perforce
services you create on the machine.

Example 2.2. Adding a second Perforce service.

You want to create a second Perforce service with a root in C:\p4root2 and a service name of
Perforce2. The svcinst executable is in the server root of the first Perforce installation you installed in
C:\perforce.

Verify that your p4d.exe executable is at Release 99.1/10994 or greater:

C:\> p4d -V

(If you are running an older release, you must first download a more recent release from http://
www.perforce.com and upgrade your server before continuing.)

Create a P4ROOT directory for the new service:

C:\> mkdir c:\p4root2

Copy the server executables, both p4d.exe (the server) and p4s.exe (the service), and your license file
into the new directory:

C:\> copy c:\perforce\p4d.exe c:\p4root2
C:\> copy c:\perforce\p4d.exe c:\p4root2\p4s.exe
C:\> copy c:\perforce\license c:\p4root2\license

Use Perforce’s svcinst.exe (the service installer) to create the Perforce2 service:

C:\> svcinst create -n Perforce2 -e c:\p4root2\p4s.exe -a

http://www.perforce.com
http://www.perforce.com

Chapter 2. Installing and Upgrading the Server

26 Helix Versioning Engine Administrator Guide: Fundamentals

After you create the Perforce2 service, set the service parameters for the Perforce2 service:

C:\> p4 set -S Perforce2 P4ROOT=c:\p4root2
C:\> p4 set -S Perforce2 P4PORT=1667
C:\> p4 set -S Perforce2 P4LOG=log2
C:\> p4 set -S Perforce2 P4JOURNAL=journal2

Finally, use the Perforce service installer to start the Perforce2 service:

$ svcinst start -n Perforce2.

The second service is now running, and both services will start automatically the next time you reboot.

Windows configuration parameter precedence
Under Windows, Perforce configuration parameters can be set in many different ways. When a
Perforce application (such as p4 or P4V), or a Perforce server program (p4d) starts up, it reads its
configuration parameters according to the following precedence:

1. For Perforce applications or a Perforce server (p4d), command-line flags have the highest
precedence.

2. For a Perforce server (p4d), persistent configurables set with p4 configure.

3. The P4CONFIG file, if P4CONFIG is set.

4. User environment variables.

5. System environment variables.

6. The Windows user registry (or OS X user preferences) (set by p4 set).

7. The Windows system registry (or OS X system preferences) (set by p4 set -s).

When a Perforce service (p4s) starts up, it reads its configuration parameters from the environment
according to the following precedence:

1. Persistent configurables set with p4 configure have the highest precedence.

2. Windows service parameters (set by p4 set -S servicename).

3. System environment variables.

4. The Windows system registry (or OS X user preferences) (set by p4 set -s).

User environment variables can be set with any of the following:

• The MS-DOS set command

• The AUTOEXEC.BAT file

Chapter 2. Installing and Upgrading the Server

Helix Versioning Engine Administrator Guide: Fundamentals 27

• The User Variables tab under the System Properties dialog box in the Control Panel

System environment variables can be set with:

• The System Variables tab under the System Properties dialog box in the Control Panel.

Starting and stopping the Perforce server
The server executable, p4d.exe, is normally found in your P4ROOT directory. To start the server, first
make sure your current P4ROOT, P4PORT, P4LOG, and P4JOURNAL settings are correct; then run: %P4ROOT%
\p4d

To start a server with settings different from those set by P4ROOT, P4PORT, P4LOG, or P4JOURNAL, use p4d
command-line flags. For example:

C:\> C:\test\p4d -r c:\test -p 1999 -L c:\test\log -J c:\test\journal

starts a Perforce server process with a root directory of c:\test, listening to port 1999, logging errors
to c:\test\log, and with a journal file of c:\test\journal. The p4d command-line flags are case-
sensitive.

To stop the Perforce server, use the command:

C:\> p4 admin stop

For information about the files that have been installed, see “Installed files” on page 28.

Support for long file names
Support for long file names is enabled by default in Perforce server versions 2015.2 or newer. For
older versions of the Perforce server, you can enable long filename support on the server with the
filesys.windows.lfn configurable.

Note The server root or client root cannot be a long path.

Set filesys.windows.lfn to 1 to support filenames longer than 260 characters on Windows platforms.
A file name length of up to 32,767 characters is allowed. Each component of the path is limited to 255
characters.

To set on the server, use a command like the following:

C:\> p4 configure set filesys.windows.lfn=1

Depending on the depth of your workspace path, you might also need to set this configurable on the
client and/or proxy (which acts as a client). To set the configurable for a proxy, use a command like
the following:

Chapter 2. Installing and Upgrading the Server

28 Helix Versioning Engine Administrator Guide: Fundamentals

C:\> p4 set -S "Perforce Proxy" P4DEBUG=filesys.windows.lfn=1

Installed files
Installation adds three types of files to the Perforce server host:

• Database files

• The Journal file

• The Perforce binary

The database files and the Journal file are placed in the root directory of the Perforce server.
Eventually, as users and administrators work with Perforce other files are added to the Perforce root
directory (P4ROOT): user’s archived files, checkpoint file, and log files.

The Perforce binary is also installed as shown in the table below

Operating system Location

Linux download Wherever the administrator puts it. Usually /usr/local/bin/p4d or /opt/
perforce/bin/p4d

SDP for CentOS /opt/perforce/bin/p4d

SDP for Ubuntu /opt/perforce/bin/p4d

Windows download Where the administrator puts it. By default it is downloaded to the
following directory: C:\Program Files\Perforce\Server\p4d

Mac OS X Where the administrator puts it. Usually /usr/bin/p4d or /user/local/
bin/p4d

Upgrading the Perforce service
You must back up your Perforce installation (see “Backup procedures” on page 109) as part of any
upgrade process.

Warning Before you upgrade the Perforce service, always read the release notes associated
with your upgraded installation.

In order to upgrade from 2013.2 (or earlier) to 2013.3 (or later), you must
restore the database from a checkpoint. See “Checkpoints for database tree
rebalancing” on page 165 for an overview of the process and “Upgrading p4d -
between 2013.2 and 2013.3” on page 30 for instructions specific to this upgrade.

In replicated and distributed environments (see Helix Versioning Engine Administrator Guide: Multi-site
Deployment), all replicas must be at the same release level as the master. Any functionality that requires
an upgrade for the master requires an upgrade for the replica, and vice versa.

http://www.perforce.com/perforce/r16.1/manuals/p4dist/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4dist/index.html

Chapter 2. Installing and Upgrading the Server

Helix Versioning Engine Administrator Guide: Fundamentals 29

Using old Perforce applications after an upgrade

Although older Perforce applications generally work with newer versions of Perforce, some features in
new server releases require upgrades to Perforce applications. In general, users with older applications
are able to use features available from the Perforce versioning service at the user application’s release
level, but are not able to use the new features offered by subsequent upgrades to the service.

Licensing and upgrades

To upgrade Perforce to a newer version, your Perforce license file must be current. Expired licenses do
not work with upgraded versions of Perforce.

Upgrading p4d

Follow the instructions in this section if both your old and new versions are 2013.3 or later, or if both
old and new versions are 2013.2 or earlier.

Read the Release Notes for complete information on upgrade procedures.

Warning In order to upgrade from 2013.2 (or earlier) to 2013.3 (or later), you must
restore the database from a checkpoint. See “Checkpoints for database tree
rebalancing” on page 165 for an overview of the process, and “Upgrading p4d -
between 2013.2 and 2013.3” on page 30 instructions specific to this upgrade.

In general, Perforce upgrades require that you:

1. Stop the Perforce service (p4 admin stop).

2. Make a checkpoint and back up your old installation. (see “Backup procedures” on page 109)

3. Verify your files, see “Verifying files during server upgrades” on page 31 for more information.

4. Run the p4d -xv and p4d -xx commands to ensure that db.* files are OK before the upgrade.

5. Replace the p4d executable with the upgraded version.

On UNIX, replace the old version of p4d with the new version downloaded from the Perforce
website. On Windows, use the Perforce installer (perforce.exe); the installer automatically replaces
the executable.

6. Some upgrades (installations with more than 1000 changelists, or upgrades with certain database
changes) may require that you manually upgrade the database by running:

p4d -r server_root -J journal_file -xu

This command may take considerable time to complete. You must have sufficient disk space to
complete the upgrade.

7. Restart the Perforce service with your site’s usual parameters.

http://www.perforce.com/perforce/r16.1/user/relnotes.txt

Chapter 2. Installing and Upgrading the Server

30 Helix Versioning Engine Administrator Guide: Fundamentals

If you have any questions or difficulties during an upgrade, contact Perforce technical support.

Upgrading p4d - between 2013.2 and 2013.3
Follow the instructions in this section if your old version is 2013.2 or earlier and your new version is
2013.3 or later.

Perforce 2013.3 contains major changes to the Perforce database implementation. These changes allow
for increased concurrency and scalability, and increase the size limit for the db.* database files to 16TB.

Although the db.* database file format has changed, the checkpoint and journal file formats are
identical. In order to upgrade from 2013.2 (or earlier) to 2013.3 (or later), you must restore the database
from a checkpoint. To do this:

1. Stop the Perforce service (p4 admin stop).

2. Make a checkpoint and back up your old installation. (see “Backup procedures” on page 109)

3. If a file called tiny.db exists in your old server root, you must back it up separately by running the
following command with the old p4d:

p4d -xf 857 > tiny.ckp

4. Remove the old db.* files, or preferably, move them to a safe location in the event that the upgrade
fails.

mv your_root_dir /db.* /tmp

There must be no db.* files in the P4ROOT directory when you rebuild a database from a checkpoint.
Although the old db.* files will not be used again, it’s good practice not to delete them until you’re
certain your upgrade was successful.

5. Remove the rdb.lbr file, if it exists.

The rdb.lbr file keeps track of files that need to be transferred to the (local) replica, and may
become out of date while the upgrade is underway. Note that this file only exists if your Perforce
service was configured as a replica.

6. Replace the old (2013.2 or earlier) p4d executable with the new (2013.3 or later) p4d executable.

Do not run p4d -xu after replacing p4d at this time. In this upgrade scenario, you are not upgrading
an existing database, you have removed it completely and will rebuild it from the checkpoint that
you just took.

7. Use the upgraded p4d to replay the checkpoint and rebuild the new database tables:

p4d -r $P4ROOT -jr checkpoint_file

8. If your site uses localized server messages from a message file obtained through Perforce technical
support, retrieve the original message.txt file and re-create db.message in the new database format
by running the following command with the new p4d:

p4d -jr /fullpath/message.txt

Chapter 2. Installing and Upgrading the Server

Helix Versioning Engine Administrator Guide: Fundamentals 31

See “Localizing server error messages” on page 43 for more information.

9. If you created a tiny.ckp file as part of your backup process, restore tiny.db by running the
following command with the new p4d:

$ p4d -xf 857 tiny.ckp

10. Run p4d -xu against the Perforce database to update the database schema:

$ p4d -r $P4ROOT -J myJournal -xu

11. Restart the Perforce service and resume operations.

Verifying files by signature
Perforce administrators can use the p4 verify filenames command to validate stored MD5 digests of
each revision of the named files. The signatures created when users store files in the depot can later
be used to confirm proper recovery in case of a crash: if the signatures of the recovered files match the
previously saved signatures, the files were recovered accurately. If a new signature does not match the
signature in the Perforce database for that file revision, Perforce displays the characters BAD! after the
signature.

It is good practice to run p4 verify before performing your nightly system backups, and to proceed
with the backup only if p4 verify reports no corruption.

For large installations, p4 verify can take some time to run. The server is also under heavy load
while files are being verified, which can impact the performance of other Perforce commands.
Administrators of large sites might want to perform p4 verify on a weekly basis, rather than a nightly
basis.

If you ever see a BAD! signature during a p4 verify command, your database or versioned files might
be corrupt, and you should contact Perforce Technical Support.

Verifying files during server upgrades

It is good practice to use p4 verify as follows before and after server upgrades:

1. Before the upgrade, run:

$ p4 verify -q //...

to verify the integrity of your server before the upgrade.

2. Take a checkpoint and copy the checkpoint and your versioned files to a safe place.

3. Perform the server upgrade.

Chapter 2. Installing and Upgrading the Server

32 Helix Versioning Engine Administrator Guide: Fundamentals

4. After the upgrade, run:

$ p4 verify -q //...

to verify the integrity of your new system.

Release and license information
The Perforce versioning service is licensed according to how many standard users it supports. There
are three types of Perforce users: standard users, operator users, and service users.

• A standard user is a traditional user of Perforce.

Standard users are the default, and each standard user consumes one Perforce license.

• An operator user is intended for human or automated system administrators.

An operator user does not require a Perforce license.

• A service user is used for server-to-server authentication, whether in the context of remote depots
(see “Remote depots and distributed development” on page 58) or in distributed environments.

Service users do not require licenses, but are restricted to automated inter-server communication
processes in replicated and multi-server environments.

Licensing information is contained in a file called license in the server root directory. The license file
is a plain text file supplied by Perforce Software. Without the license file, the service limits itself to
either 20 users and 20 client workspaces (and unlimited files), or to an unlimited number of users and
workspaces (but with a limit of 1000 files).

You can update an existing license file without stopping Perforce by using the p4 license command.
See “Adding new licensed users” on page 135 for details.

• If the service is running, any user can use p4 info to view basic licensing information.
Administrators can use p4 license -u to obtain more detailed information about how many users
and files are in use.

• If the service is down, you can also obtain licensing information by running p4d -V from the server
root directory where the license file resides, or by specifying the server root directory either on the
command line (p4d -V -r server_root) or in the P4ROOT environment variable.

The server version is also displayed when you invoke p4d -V or p4 -V.

Helix Versioning Engine Administrator Guide: Fundamentals 33

Chapter 3 Configuring the Server
The Perforce service is highly configurable and this is accomplished through the setting of server,
client, and proxy configurables. Available configurables number in the hundreds, and it is probably
best to set them as you continue to work with the server. This chapter limits itself to describing the
configurables you might initially want to configure before you begin working with the server.

The following areas are covered:

• Enabling distributed versioning

• Using p4 typemap to determine a file’s type and to implement site-wide exclusive locking

• Defining additional depots

• Managing client requests

• Managing case sensitivity and Unicode installations

• Configuring logging

• Configuring P4V settings

For complete information about using the p4 configure command and all available server, client, and
proxy configurables, see P4 Command Reference and p4 help configurables.

Enabling distributed versioning
If you need to enable the transfer of files between a user’s local repository and the shared repository,
you must set the following configurables: server.allowfetch and server.allowpush.

Defining filetypes with p4 typemap
Perforce uses the filesys.binaryscan configurable to determine how many bytes to examine when
determining if a file is of type text or binary. By default, filesys.binaryscan is 65536; if the high bit is
clear in the first 65536 bytes, Perforce assumes it to be text; otherwise, it is assumed to be binary. Files
compressed in the .zip format (including .jar files) are also automatically detected and assigned the
type ubinary.

Although this default behavior can be overridden by the use of the -t filetype flag, it’s easy for users
to overlook this consideration, particularly in cases where files' types are usually (but not always)
detected correctly. Certain file formats, such as RTF (Rich Text Format) and Adobe PDF (Portable
Document Format), can start with a series of comment fields or other textual data. If these comments
are sufficiently long, such files can be erroneously detected by Perforce as being of type text.

The p4 typemap command solves this problem by enabling system administrators to set up a table that
links Perforce file types with filename specifications. If an entry in the typemap table matches a file
being added, it overrides the file type that would otherwise be assigned by the Perforce application.
For example, to treat all PDF and RTF files as binary, use p4 typemap to modify the typemap table as
follows:

http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

Chapter 3. Configuring the Server

34 Helix Versioning Engine Administrator Guide: Fundamentals

Typemap:
 binary //....pdf
 binary //....rtf

The first three periods ("...") in the specification are a Perforce wildcard specifying that all files
beneath the root directory are to be included in the mapping. The fourth period and the file extension
specify that the specification applies to files ending in .pdf (or .rtf).

The following table lists recommended Perforce file types and modifiers for common file extensions.

File type Perforce file type Description

.asp text Active server page file

.avi binary+F Video for Windows file

.bmp binary Windows bitmap file

.btr binary Btrieve database file

.cnf text Conference link file

.css text Cascading style sheet file

.doc binary Microsoft Word document

.dot binary Microsoft Word template

.exp binary+w Export file (Microsoft Visual C++)

.gif binary+F GIF graphic file

.gz binary+F Gzip compressed file

.htm text HTML file

.html text HTML file

.ico binary Icon file

.inc text Active Server include file

.ini text+w Initial application settings file

.jpg binary JPEG graphic file

.js text JavaScript language source code file

.lib binary+w Library file (several programming languages)

.log text+w Log file

Chapter 3. Configuring the Server

Helix Versioning Engine Administrator Guide: Fundamentals 35

File type Perforce file type Description

.mpg binary+F MPEG video file

.pdf binary Adobe PDF file

.pdm text+w Sybase Power Designer file

.ppt binary Microsoft PowerPoint file

.prefab binary Unity3D file

.xls binary Microsoft Excel file

Use the following p4 typemap table to map all of the file extensions to the Perforce file types
recommended in the preceding table.

Perforce File Type Mapping Specifications.
#
TypeMap: a list of filetype mappings; one per line.
Each line has two elements:
Filetype: The filetype to use on 'p4 add'.
Path: File pattern which will use this filetype.
See 'p4 help typemap' for more information.
TypeMap:

 text //....asp
 binary+F //....avi
 binary //....bmp
 binary //....btr
 text //....cnf
 text //....css
 binary //....doc
 binary //....dot
 binary+w //....exp
 binary+F //....gif
 binary+F //....gz
 text //....htm
 text //....html
 binary //....ico
 text //....inc
 text+w //....ini
 binary //....jpg
 text //....js
 binary+w //....lib
 text+w //....log
 binary+F //....mpg
 binary //....pdf
 text+w //....pdm
 binary //....ppt
 binary //....xls

Chapter 3. Configuring the Server

36 Helix Versioning Engine Administrator Guide: Fundamentals

If a file type requires the use of more than one file type modifier, specify the modifiers consecutively.
For example, binary+lFS10 refers to a binary file with exclusive-open (l), stored in full (F) rather than
compressed, and for which only the most recent ten revisions are stored (S10).

For more information, see the p4 typemap page in the P4 Command Reference.

Implementing site-wide exclusive locking with p4 typemap
By default, Perforce supports concurrent development, but environments in which only one person is
expected to have a file open for edit at a time can implement site-wide exclusive locking by using the
+l (exclusive open) modifier as a partial filetype. If you use the following typemap, the +l modifier is
automatically applied to all newly added files in the depot:

Typemap:
 +l //depot/...

If you use this typemap, any files your users add to the depot after you update your typemap
automatically have the +l modifier applied, and may only be opened for edit by one user at a time. The
typemap table applies only to new additions to the depot; after you update the typemap table for site-
wide exclusive open, files previously submitted without +l must be opened for edit with p4 edit -t+l
filename and resubmitted. Similarly, users with files already open for edit must update their filetypes
with p4 reopen -t+l filename.

Defining depots
By default, the standard depot Depot is created in the server when the server starts up. Depending on
your user’s needs, you can change its name and you can create additional depots to serve your needs:

• Additional standard depots allow you to organize user’s work in relevant categories.

• Stream depots are dedicated to the organization and management of streams.

• Remote depots are used to facilitate the sharing of code.

• A spec depot is used to track changes to user-edited forms such as workspace specifications, jobs,
branch mappings, and so on.

• Archive depots are used to offline storage of infrequently needed content.

• Unload depots are used to offline storage of infrequently needed metadata.

Please see Chapter 4, “Working with Depots” on page 53 for more information.

Managing client requests
The following sections describe configuration options that relate to handling client requests.

http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

Chapter 3. Configuring the Server

Helix Versioning Engine Administrator Guide: Fundamentals 37

Using P4PORT to control access to the server
Under most circumstances, your Perforce server’s P4PORT setting consists of a port number. Users
must know the IP address (or be able to resolve it from a hostname) of the Perforce server in order to
connect to it.

The value of P4PORT however, can also include an IP address or hostname that resolves to an IP
address. You can set P4PORT to configure the following possibilities:

• P4PORT=portnumber

In this case, the server listens on the specified port for every IP address associated with this host.

• P4PORT=ipaddress|hostname:portnumber

In this case, the server listens on the specified port for the specified IP address or host name, and it
ignores requests to any other IP address.

• P4PORT=localhost:portnumber

In this case, the server listens on the specified port for requests that originate from users on this host.
This forces the Perforce server to ignore all non-local connection requests.

P4PORT might also specify a protocol (protocol:address:port), which further restricts possible
connections to those using the specified protocol. For complete information, see the description of the
P4PORT variable in the P4 Command Reference.

Requiring minimum client revisions
The Perforce versioning service offers a mechanism to control which revisions of client applications are
able to connect to Perforce.

To require a minimum revision, set the configurables minClient to the appropriate revision, and
(optionally) set minClientMessage to the error message displayed when users of older applications
connect to the server.

For example:

$ p4 configure set minClient=2010.2
$ p4 configure set minClientMessage="Please upgrade to 2010.2 or higher"

Rejecting client connection requests
You can set the rejectList configurable to block one or more client programs from accessing the
Perforce server. By default, all clients may access the server.

The simple version of the syntax for setting rejectList is the following:

rejectList = progName [[,progName]...]

http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

Chapter 3. Configuring the Server

38 Helix Versioning Engine Administrator Guide: Fundamentals

The syntax of progName is the following:

progName[,version=versionName]

For example, the following command blocks requests from all command line clients.

$ p4 configure set "rejectList = p4"

The following command blocks requests from command line clients version 13.1 and 13.2.

$ p4 configure set "rejectList = p4, version=13.1, p4, version=13.2"

You may not use any wild card character in the program name parameter.

The comma is used as the default separator for the elements in rejectList. If the version number for
the program you are excluding includes a comma, you must use a slightly more complicated syntax to
define rejectList:

rejectList = separator=char progName [[char progName]...]

If you define char to be #, the previous command line would look like this:

$ p4 configure set "rejectList = separator=# p4, version=13,1# p4# version=13,2"

The rejected connection is never logged; the log will not include information about the connection
attempt.

You can specify a version using a build number; for example:

$ p4 configure set "rejectList = p4, version=1221235"

Or you can use platform information; for example:

$ p4 configure set "rejectList = p4, version=DARWIN90X86_64"

Or you can block for either condition; for example:

$ p4 configure set "rejectList = p4, version=1221235, p4, version=DARWIN90X86_64"

Note the use of quotation marks for strings that include spaces!

Chapter 3. Configuring the Server

Helix Versioning Engine Administrator Guide: Fundamentals 39

Important If you accidentally lock out key clients needed to access the server, use the
following command to unset the configurable:

$ p4d -r P4ROOT '-cunset rejectList'

Disabling user metrics collection prompt
P4V users have the option of enabling user metrics collection. By default no data is collected. The first
time a user connects to the server, a prompt is displayed asking if the user wants to send Perforce
anonymous user data. Such data includes information about system hardware, non-default user
preferences, and so on. The user can subsequently change collection preference using the Preferences
menu.

If you do not want users to see the prompt, you can set a property on the server as follows:

$ p4 property -a -n P4.DataAnalyticsPrompt -v off

This prevents the user from seeing the prompt. However, this is an incomplete solution, because if
the user connects to a server that does not have the property set, they will see the prompt and might
choose to send the data. To fully disable this feature, you will need to have IT shut down any outgoing
POST requests to udc.perforce.com.

Case sensitivity and multi-platform development
Very early (pre-97.2) releases of the Perforce server treated all filenames, pathnames, and database
entity names with case significance, whether the server was running on UNIX or Windows.

For example, //depot/main/file.c and //depot/MAIN/FILE.C were treated as two completely different
files. This caused problems where users on UNIX were connecting to a Perforce server running on
Windows because the filesystem underlying the server could not store files with the case-variant
names submitted by UNIX users.

In release 97.3, the behavior was changed, and only the UNIX server supports case-sensitive names.
However, there are still some case-sensitivity problems that users can encounter when sharing
development projects across UNIX and Windows.

If you are running a pre-97.2 server on Windows, please contact support@perforce.com to discuss
upgrading your server and database.

For current releases of the server:

• The Perforce server on UNIX supports case-sensitive names.

• The Perforce server on Windows ignores case differences.

• Case is always ignored in keyword-based job searches, regardless of platform.

The following table summarizes these rules.

mailto:support@perforce.com

Chapter 3. Configuring the Server

40 Helix Versioning Engine Administrator Guide: Fundamentals

Case-sensitive UNIX server Windows server

Pathnames and filenames Yes No

Database entities (workspaces, labels, and so on.) Yes No

Job search keywords No No

To find out what platform your Perforce server runs on, use p4 info.

Perforce server on UNIX

If your Perforce server is on UNIX, and you have users on both UNIX and Windows, your UNIX users
must be very careful not to submit files whose names differ only by case. Although the UNIX server
can support these files, when Windows users sync their workspaces, they’ll find files overwriting each
other.

Conversely, Windows users will have to be careful to use case consistently in filenames and pathnames
when adding new files. They might not realize that files added as //depot/main/one.c and //depot/
MAIN/two.c will appear in two different directories when synced to a UNIX user’s workspace.

The UNIX Perforce server always respects case in client names, label names, branch view names, and
so on. Windows users connecting to a UNIX server should be aware that the lowercased workstation
names are used as the default names for new client workspaces. For example, if a new user creates
a client workspace on a Windows machine named ROCKET, his client workspace is named rocket by
default. If he later sets P4CLIENT to ROCKET (or Rocket, Perforce will tell him his workspace is undefined.
He must set P4CLIENT to rocket (or unset it) to use the client workspace he defined.

Perforce server on Windows

If your Perforce server is running on Windows, your UNIX users must be aware that their Perforce
server will store case-variant files in the same namespace.

For example, users who try something like this:

C:\> p4 add dir/file1
C:\> p4 add dir/file2
C:\> p4 add DIR/file3

should be aware that all three files will be stored in the same depot directory. The depot pathnames
and filenames assigned to the Windows server will be those first referenced. (In this case, the depot
pathname would be dir, and not DIR.)

Setting up and managing Unicode installations
The following sections describe the benefits of running the Perforce server in Unicode mode and
explain how you enable this mode.

Chapter 3. Configuring the Server

Helix Versioning Engine Administrator Guide: Fundamentals 41

Warning Converting a server to Unicode mode is a one-way operation! You cannot restore a
Unicode server to its previous state.

Overview

The Perforce server can be run in Unicode mode to convert certain elements from their unicode
representation on the server, to the particular character set used on clients and triggers that
communicate with the server. The following elements are converted:

• File names or directory names that contain Unicode characters

• Perforce identifiers (for example, user names) and specifications (for example, changelist
descriptions or jobs) that contain Unicode characters

If you need to manage textual files that contain Unicode characters, but do not need the features
listed above, you do not need to run your server in Unicode mode. For such installations, assign the
Perforce utf16 file type to textual files that contain Unicode characters.

• unicode files and metadata. These are converted to the character set configured on the user’s
machine.

The Perforce server also verifies that the unicode files and metadata contain valid UTF-8 characters.

Normally, setting the server in Unicode mode should automatically configure the appropriate
rendering for each client, independently of the platform where it runs. However, there are some cases
in which you might also have to configure the client. The following subsections describe how you set
up the server and the client if needed, and offer some troubleshooting tips.

In addition to affecting the client, Unicode settings also affect trigger scripts that communicate with
the server. You should check your trigger’s use of the elements noted above (file names, Perforce
identifiers, etc.) and make sure that these are consistent with the character set used by the server.

Note All p4d error and info logs are in UTF8 for a server in unicode mode. You need an
UTF8 console or editor to properly render this log information.

Setting up a server for Unicode

How you configure a Unicode-mode server and the workstations that access it, depends on whether
you are starting a server for the first time or whether you are converting an existing non-unicode
server to unicode mode. The following sections explain each use case.

Note The Perforce service limits the lengths of strings used to index job descriptions, to
specify filenames and view mappings, and to identify client workspaces, labels,
and other objects. The most common limit is 2,048 bytes. Because no basic Unicode
character expands to more than three bytes, you can ensure that no name exceeds
the Perforce limit by limiting the length of object names and view specifications to
682 characters for Unicode-mode servers.

Chapter 3. Configuring the Server

42 Helix Versioning Engine Administrator Guide: Fundamentals

Configuring a new server for Unicode

To configure a new server for Unicode, start the server using the following command:

$ p4d -xi -r server_root [other options]

This command verifies that all existing metadata is valid UTF8, and then sets the protected counter
unicode to indicate that the server now runs in Unicode mode. If you stop and restart the server, it
remains in Unicode mode. Once you have placed the server in this mode, you cannot change it to non-
unicode mode.

When a client connects to the server, it attempts to discover what the server’s setting is, and it sets the
P4_port_CHARSET variable to reflect that setting. If the server is not in unicode mode, the variable is set
to none. If the server is set to Unicode, the variable is set to auto. Likewise, the client sets the P4CHARSET
variable to auto. The client then examines its environment to figure out what character set it needs to
select.

The P4_port_CHARSET variable is stored in a file called .p4enviro. By default, this file is stored in
the user’s home directory. To change the file location, the user must set the P4ENVIRO variable to the
desired path.

Configuring an existing server for Unicode

To convert an existing server to Unicode mode, perform the following steps:

1. Stop the server by issuing the p4 admin stop command.

2. Create a server checkpoint, as described in Chapter 6, “Backup and Recovery” on page 103.

3. Convert the server to Unicode mode by invoking the server (p4d) and specifying the -xi flag, for
example:

p4d -xi -r server_root

The server verifies that its existing metadata contains only valid UTF-8 characters, then creates and
sets a protected configurable called unicode that is used as a flag to ensure that the next time you
start the server, it runs in Unicode mode. After validating metadata and setting the configurable,
p4d exits and displays the following message:

Server switched to Unicode mode.

If the server detects invalid characters in its metadata, it displays error messages like the following:

Table db.job has 7 rows with invalid UTF8.

In case of such errors, contact Perforce Technical Support for instructions on locating and correcting
the invalid characters.

Chapter 3. Configuring the Server

Helix Versioning Engine Administrator Guide: Fundamentals 43

4. Restart p4d, specifying server root and port as you normally do. The server now runs in Unicode
mode.

When a client connects to the server, it attempts to discover what the server’s setting is, and it sets the
P4_port_CHARSET variable to reflect that setting. If the server is not in Unicode mode, the variable is set
to none. If the server is set to Unicode, the variable is set to auto. Likewise, the client sets the P4CHARSET
variable to auto. The client then examines its environment to figure out what character set it needs to
select.

The default location of the P4_port_CHARSET variable depends on your operating system:

• On UNIX or on the Mac, the P4_port_CHARSET variable is stored in a file called .p4enviro. By default,
this file is stored in the user’s home directory. To change the file location, the user must set the
P4ENVIRO variable to the desired path.

• On Windows, the P4_port_CHARSET variable is stored in the registry. To store it in a file, use the p4
set P4ENVIRO command and specify the path of the file where you want to store the value.

Localizing server error messages

By default, the Perforce server informational and error messages are in English. You can localize server
messages. To ensure best results, contact Perforce Technical Support. The following overview explains
the localization process.

To localize Perforce server messages:

1. Obtain the message file from Perforce Technical Support.

2. Edit the message file, translating messages to the target language. Each message includes a two-
character language code. Change the language code from en (English) to the code for the target
language. Do not translate any of the key parameters or named parameters (which are specified
between percent signs and single quotes, for example, %depot%). You can change the order in which
the parameters appear in the message.

Original English:

@en@ 0 @db.message@ @en@ 822220833 @Depot '%depot%' unknown - use 'depot' to create it.@

Correct translation to Portuguese (note reordered parameters):

@pt@ 0 @db.message@ @pt@ 822220833 @Depot '%depot' inexistente - use o comando 'depot' para
 criar-lo.@

Although you are free to use any two-letter language code to designate the target language (so long
as it’s not "en," you might want to use a standard convention, such as the one described here:

http://www.w3schools.com/tags/ref_language_codes.asp

Many messages use Perforce command names. It is important to distinguish the word as a
command name from the word as a description. For example:

http://www.w3schools.com/tags/ref_language_codes.asp

Chapter 3. Configuring the Server

44 Helix Versioning Engine Administrator Guide: Fundamentals

@Depot '%depot%' unknown - use 'depot' to create it.@

In this case, depot and %depot% should not be translated.

3. Load the translated messages into the server by issuing the following command:

$ p4d -jr /fullpath/message.txt

This command creates a db.message file in the server root. The Perforce service uses this database
file when it displays error messages. The Perforce proxy can also use this db.message file; see the
section on localizing P4P in Helix Versioning Engine Administrator Guide: Multi-site Deployment

4. The character set of the resulting translation needs to be UTF-8 for unicode mode servers. That file
should not have a leading Byte-order-mark (BOM).

If the target server is not in Unicode mode, the translation file does not need to be in UTF-8. In
this case you might want multiple instances of the translated messages in multiple character sets.
You can effect this by combining the language code field with a character set name. For example,
@ru_koi8-r@ to indicate Russian with a koi8-r encoding versus @ru_iso8859-5@ to indicate Russian
with an ISQ encoding.

5. You can load translated message files into a p4d server by recovering them with the server’s journal
recovery command:

$ p4d -r server_root -jr translated_message_file

To view localized messages, set the P4LANGUAGE environment variable on user workstations to the
language code you assigned to the messages in the translated message file. For example, to have your
messages returned in Portuguese, set P4LANGUAGE to pt.

To view localized messages using P4V, you must set the LANG environment variable to the language
code that you use in the messages file.

Configuring clients for Unicode
When you set up a server to work in unicode mode, the client determines what character set to use
by examining the current environment and, generally, you should have nothing more to do to get a
correct translation. For example a UNIX client examines the LANG or LOCALE variables to determine the
appropriate character set. However, there might be situations when you need to override the selection
made by the client:

• The automatically selected setting is producing bad translations.

See “Troubleshooting user workstations in Unicode installations” on page 47 for more
information.

• You want to use separate workspaces (clients) and each of these needs to use a different character
set. In this case, you must set a different P4CHARSET value for each client.

http://www.perforce.com/perforce/r16.1/manuals/p4dist/index.html

Chapter 3. Configuring the Server

Helix Versioning Engine Administrator Guide: Fundamentals 45

• The files you check out need to be accessed by applications for which byte order is important.

See “Unicode character sets and Byte Order Markers (BOMs)” on page 45 for more information.

• You need to set P4CHARSET to an utf16 or utf32 setting.

See “Controlling translation of server output” on page 46 for more information.

• The file is checked out using Perforce client applications that handle Unicode environments in
different ways.

See “Using other Perforce client applications” on page 46 for more information.

In each of these cases, you will need to explicitly set P4CHARSET to an appropriate value or take some
other action. To get a list of the possible values for P4CHARSET, use the command:

$ p4 help P4CHARSET

Warning Do not submit a file using a P4CHARSET that is different than the one you used to
sync it; the file is translated in a way that is likely to be incorrect. That is to say, do
not change the value of P4CHARSET while files are checked out.

Unicode character sets and Byte Order Markers (BOMs)

Byte order markers (BOMs) are used in Unicode files to specify the order in which multi-byte
characters are stored and to identify the file content as Unicode. Not all extended-character file formats
use BOMs.

To ensure that such files are translated correctly by the Perforce server when the files are synced or
submitted, you must set P4CHARSET to the character set that corresponds to the format used on your
workstation by the applications that access them, such as text editors or IDEs. Typically the formats are
listed when you save the file using the Save As... menu option.

The following table lists valid settings for P4CHARSET for specifying byte order properties of Unicode
files.

Client Unicode
format

BOM? Big or Little-
Endian

Set P4CHARSET to Remarks

UTF-8 No (N/A) utf8 Suppresses Perforce
server UTF-8 validation

 Yes utf8-bom

 No utf8unchecked

 Yes utf8unchecked-bom

Chapter 3. Configuring the Server

46 Helix Versioning Engine Administrator Guide: Fundamentals

Client Unicode
format

BOM? Big or Little-
Endian

Set P4CHARSET to Remarks

UTF-16 Yes Per client utf16 Synced with a BOM
according to the client
platform byte order

 Yes Little utf16le Best choice for Windows
Unicode files

 Yes Big utf16be

 No Per client utf16-nobom

 No Little utf16le-nobom

 No Big utf16be-nobom

UTF-32 Yes Per client utf32 Synced with a BOM
according to the client
platform byte order

 Yes Little utf32le

 Yes Big utf32be

 No Per client utf32-nobom

 No Little utf32le-nobom

 No Big utf32be-nobom

If you set P4CHARSET to a UTF-8 setting, the Perforce server does not translate text files when you sync
or submit them. Perforce does verify that such files contain valid UTF-8 data.

Controlling translation of server output

If you set P4CHARSET to any utf16 or utf32 setting, you must set the P4COMMANDCHARSET to a non-utf16
or non-utf32 character set in which you want server output displayed. "Server output" includes
informational and error messages, diff output, and information returned by reporting commands.

To specify P4COMMANDCHARSET on a per-command basis, use the -Q flag. For example, to display all
filenames in the depot, as translated using the winansi code page, issue the following command:

C:\> p4 -Q winansi files //...

Using other Perforce client applications

If you are using other Perforce client applications, note how they handle Unicode environments:

Chapter 3. Configuring the Server

Helix Versioning Engine Administrator Guide: Fundamentals 47

• P4V (Perforce Visual Client): the first time you connect to a Unicode-mode server, you are
prompted to choose the character encoding. Thereafter, P4V retains your selection in association
with the connection. P4V also has a global default setting for Charset. If you set this, it will be used
instead of asking you to provide a charset.

• P4Eclipse will ask for a charset when connecting to a Unicode-mode server.

• P4Web: when you invoke P4Web, you can specify the character encoding on the command line
using the -C flag. P4Web uses this flag when it sends commands to a Unicode-mode server. This
approach means that each instance of P4Web can handle a single character encoding and that
browser machines must have compatible fonts installed.

• P4Merge: To configure the character encoding used by P4Merge, choose P4Merge’s File > Character
Encoding... menu option. When launched from P4V, P4Merge uses P4V’s P4CHARSET instead of the
one defined in it’s preferences.

• IDE SCC plug-in: the first time you connect to a Unicode-mode server, you are prompted to
choose the character encoding. Thereafter, the plug-in retains your selection in association with the
connection.

• P4GT and P4EXP use environmental settings and will fail with a Unicode-mode server.

Troubleshooting user workstations in Unicode installations

To prevent file corruption, it is essential that you configure your workstation correctly. The following
section describes common problems and provides solutions.

• "Cannot Translate" error message

This message is displayed if your workstation is configured with a character set that does not
include characters that are being sent to it by the Perforce server. Your workstation cannot display
unmapped characters. For example, if P4CHARSET is set to shiftjis and your depot contains files
named using characters from the Japanese EUC character set that do not have mappings in shift-
JIS, you see the "Cannot translate" error message when you list the files by issuing the p4 files
command.

To ensure correct translation, do not use unmappable characters in Perforce user specifications,
client specifications, jobs, or file names.

• Strange display of file content

If you attempt to display an extended-character text file and see odd-looking text, your workstation
might lack the font required to display the characters in the file. Typical symptoms of this problem
include the display of question marks or boxes in place of characters. To solve this problem, install
the required font.

Configuring logging
You might want to address the following issues in setting up logging. For information on setting up
structured logging, see “Logging and structured log files” on page 123.

Chapter 3. Configuring the Server

48 Helix Versioning Engine Administrator Guide: Fundamentals

Logging errors

Use the -L flag to p4d or the environment variable P4LOG to specify Perforce’s error output file. If no
error output file is defined, errors are dumped to the p4d process' standard error. Although p4d tries
to ensure that all error messages reach the user, if an error occurs and the user application disconnects
before the error is received, p4d also logs these errors to its error output.

Perforce also supports trace flags used for debugging. See “Setting server trace and tracking
flags” on page 121 for details.

Logging file access

If your site requires that user access to files be tracked, use the -A flag to p4d or the environment
variable P4AUDIT to activate auditing and specify the Perforce’s audit log file. When auditing is active,
every time a user accesses a file, a record is stored in the audit log file. This option can consume
considerable disk space on an active installation.

See “Auditing user file access” on page 123 for details.

Configuring P4V settings
Not every site (nor every user at every site) requires the full suite of functionality in P4V, the Perforce
Visual Client. By using the p4 property command, it is possible for an administrator to control which
P4V features are available for a given site, group, or user. Properties relate to performance, features, or
enabling the rich comparison of Microsoft .docx files. Performance and feature-related properties set at
the server level override local P4V settings.

Configuring performance-related properties

If a user connects to a new Perforce service, performance-related properties are reloaded for the
Perforce service to which the user has most recently connected.

Property Meaning

P4V.Performance.FetchCount Number of changelists, jobs, branch mappings, or labels to
fetch at any one time.

P4V.Performance.OpenedLimit Limits the number of files to check in the 'opened' call
during a rollback operation. Default value is 1000. If the
number of files to roll back exceeds the configured value,
a popup informs the user that no opened check will be
performed, and asks if the user wants to complete the
operation.

P4V.Performance.MaxFiles Maximum number of files displayed per changelist.

P4V.Performance.MaxPreviewSize Maximum size of files to preview, in kilobytes.

Chapter 3. Configuring the Server

Helix Versioning Engine Administrator Guide: Fundamentals 49

Property Meaning

P4V.Performance.ServerRefresh Number of time between display refreshes, in minutes.

Configuring feature-related properties
You can use the following properties to enable or disable P4V features. These properties are read once,
upon P4V startup, from the first service to which the user connects. Features that are deactivated by
setting these properties to Off are unavailable in P4V and do not display in P4V’s Preferences page:

Property Meaning

P4V.Features.Integration If Off, users cannot integrate.

P4V.Features.Labeling If Off, the labels tab does not appear.

P4V.Features.Jobs If Off, jobs support is disabled. Jobs do not appear in
changelists, etc.

P4V.Features.RevisionGraph If Off, the Revision Graph is disabled.

P4V.Features.Timelapse If Off, Time-Lapse View is disabled.

P4V.Features.CustomTools If Off, the Manage Custom Tools dialog is disabled.

P4V.Features.Administration If Off, the Administration menu option is not displayed.

P4V.Features.ConnectionWizard If Off, P4V does not attempt to use the New Connection
Wizard.

P4V.Features.Workspaces If Off, users cannot edit or display their own (or other
users') workspaces.

P4V.Features.DashBoard If Off, the Dashboard is not displayed.

P4V.Features.P4Applets If Off, Perforce applets are disabled in P4V, and the menu
option to re-enable them is no longer accessible.

P4V.Features.Streams If Off, streams-related icons, menus, and the Stream Graph
do not appear.

P4V.Features.Parallel If Force, parallel sync and submit is enabled regardless of
user preference. If Off, parallel sync cannot be enabled by
the user. P4V defaults to using four threads.

For example, the administrator of a site that does not use Perforce’s built-in defect tracking can disable
access to jobs from within P4V by running:

$ p4 property -a -n P4V.Features.Jobs -v Off

Chapter 3. Configuring the Server

50 Helix Versioning Engine Administrator Guide: Fundamentals

A new property is added/updated (-a), it is named (-n) P4V.Features.Jobs, and it is assigned the
value (-v) of Off.

If one group of users within the organization has a need to use the jobs functionality of P4V, the
feature can be selectively (and centrally) re-enabled for those users with:

$ p4 property -a -n P4V.Features.Jobs -v On -g jobusers

The jobs feature of P4V is re-enabled by setting its value to On, but only for users in the jobusers
group.

Configuring Swarm connections
In order for P4V to connect to a Swarm server, it must know where the server is installed. Because
Swarm is a web application, a URL can specify its location.

The Swarm or P4V administrator uses the P4.Swarm.URL[.serverid] property to specify the location of
a Swarm server.

• To identify the location of a single Swarm server, use either the P4.Swarm.URL or the
P4.Swarm.URL[.serverid] syntax, depending on whether the server has a serverid. For example, the
following command specifies that the location of the server given by 10.5.40.145:1666 is https://
my_swarm_server.com.

$ p4 -p "10.5.40.145:1666" property -a -n P4.Swarm.URL -v "https://my_swarm_server.com"

• To identify the location of several Swarm server instances, use the P4.Swarm.URL[.serverid] syntax,
and specify the server id for each Swarm server each time you invoke the p4 property command.
For example:

$ p4 -p "10.5.40.145:1666" property -a -n P4.Swarm.URL.svr1 -v "https://my_swarm_server1.com"
$ p4 -p "10.5.40.145:1667" property -a -n P4.Swarm.URL.svr2 -v "https://my_swarm_server2.com"

Using the server id format is only necessary if you are using an authentication server (and multiple
p4d instances are funneling through it) or if you are deploying multiple instances of Swarm against
replicas or edge servers.

When P4V attempts to connect to a server that has no serverid, it checks to see if the property
P4.Swarm.URL is set, and it uses that URL to access Swarm. If the property is not set, P4V does not
attempt to talk to Swarm.

When P4V attempts to connect to a server that has a serverid,

1. P4V asks the server for its server id and gets, for example, svr1.

2. P4V checks the setting of p4.Swarm.URL.svr1, and it uses that URL to talk to Swarm

3. If p4.Swarm.URL.svr1 is not set, P4V checks the value of p4.Swarm.URL and uses that value to access
the Swarm server.

https://my_swarm_server.com
https://my_swarm_server.com

Chapter 3. Configuring the Server

Helix Versioning Engine Administrator Guide: Fundamentals 51

4. If p4.Swarm.URL is not set, P4V does not attempt to talk to Swarm.

If there is a value both for p4.Swarm.URL and for p4.Swarm.URL.myserverid when P4V attempts to
connect to a Swarm server, the serverid match takes precedence over the generic match.

The user issuing the p4 property command must have an account on the specified Swarm server.

You can use the p4 property command to list the current properties of the Swarm server; for example:

$ p4 -p "10.5.40.145:1666" property -l -A
 P4.Swarm.Timeout = 10 (any) #1
 P4.Swarm.URL.master-1666 = https://my_swarm_server1.com

Enabling .docx diffs
You can use the P4.Combine.URL property to enable the rich comparison of Microsoft Word .docx files
through P4Merge. You must deploy P4Combine as part of a Commons deployment to use this feature.

To enable the feature, set the P4.Combine.URL server property to the P4Combine Web Service URL.
P4V will then display a rich compare of .docx files in the P4Merge window, using HTML5 to show
differences for text, images, formats, styles, tables, headers, footers, and other objects.

Windows configuration parameter precedence
Under Windows, Perforce configuration parameters can be set in many different ways. When a
Perforce application (such as p4 or P4V), or a Perforce server program (p4d) starts up, it reads its
configuration parameters according to the following precedence:

1. For Perforce applications or a Perforce server (p4d), command-line flags have the highest
precedence.

2. For a Perforce server (p4d), persistent configurables set with p4 configure.

3. The P4CONFIG file, if P4CONFIG is set.

4. User environment variables.

5. System environment variables.

6. The Windows user registry (or OS X user preferences) (set by p4 set).

7. The Windows system registry (or OS X system preferences) (set by p4 set -s).

When a Perforce service (p4s) starts up, it reads its configuration parameters from the environment
according to the following precedence:

1. Persistent configurables set with p4 configure have the highest precedence.

2. Windows service parameters (set by p4 set -S servicename).

3. System environment variables.

Chapter 3. Configuring the Server

52 Helix Versioning Engine Administrator Guide: Fundamentals

4. The Windows system registry (or OS X user preferences) (set by p4 set -s).

User environment variables can be set with any of the following:

• The MS-DOS set command

• The AUTOEXEC.BAT file

• The User Variables tab under the System Properties dialog box in the Control Panel

System environment variables can be set with:

• The System Variables tab under the System Properties dialog box in the Control Panel.

Helix Versioning Engine Administrator Guide: Fundamentals 53

Chapter 4 Working with Depots
All the versioned files that users work with are stored in a shared repository called a depot: files are
checked out of the depot for modification and checked back into the depot to archive changes and to
share changes with other users.

By default, a depot named Depot of type local is created in the server when the server starts up. In
addition to the default local depot, you can create additional depots of various types:

• Additional local depots allow you to organize users' work in relevant categories. You might, for
example, want to separate HR source docs from development source docs.

• Stream depots are dedicated to the organization and management of streams.

• A spec depot is used to track changes to user-edited forms such as workspace specifications, jobs,
branch mappings, and so on.

• Archive depots are used to offline storage of infrequently needed content.

• Unload depots are used to offline storage of infrequently needed metadata.

• Remote depots are used to facilitate the sharing of code.

• A tangent depot is generated by Perforce and used internally to store conflicting changes during
fetch operations. The only action the administrator might want to take with respect to the tangent
depot is to rename it if its default name of tangent is unacceptable.

This chapter includes general information about working with depots of different types. The p4 depot
command, used to create any type of depot, is described in P4 Command Reference.

Overview
New depots are defined with the command p4 depot depotname. Depots can be defined as local,
stream, remote, unload, archive, or spec depots.

Perforce servers can host multiple depots, and Perforce client applications can access files from
multiple depots. These other depots can exist on the Perforce server normally accessed by the Perforce
client, or they can reside within other, remote, Perforce servers.

Naming depots
The name of a depot may not be the same as the name of a branch, client workspace, or label.

Listing depots
To list all depots known to the current Perforce server, use the p4 depots command.

Deleting depots
To delete a depot, use p4 depot -d depotname.

http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

Chapter 4. Working with Depots

54 Helix Versioning Engine Administrator Guide: Fundamentals

To delete a depot, it must be empty; you must first obliterate all files in the depot with p4 obliterate.

For local and spec depots, p4 obliterate deletes the versioned files as well as all their associated
metadata. For remote depots, p4 obliterate erases only the locally held client and label records; the
files and metadata still residing on the remote server remain intact.

Before you use p4 obliterate, and especially if you’re about to use it to obliterate all files in a depot,
read and understand the warnings in “Reclaiming disk space by obliterating files” on page 140.

In a distributed environment, the unload depot may have different contents on each edge server.
Since the commit server does not verify that the unload depot is empty on every edge server, you
must specify p4 depot -d -f in order to delete the unload depot from the commit server. For more
information, see Helix Versioning Engine Administrator Guide: Multi-site Deployment.

Moving depots in a production environment
Follow these steps to move a depot in a production environment:

1. Shut down the server where the depot resides.

2. Move the versioned file tree to its new location.

3. Restart the server so that it listens only on localhost (or on some port other than the one you
normally use). For example:

$ p4d -p 127.0.0.1:1666 flags_you_normally_use

4. Change the map field using the p4 depot depotname command.

5. Shut down the server using a command like the following:

$ p4d -p 127.0.0.1:1666 admin stop

6. Restart the server normally.

Standard depots
Standard or local-type depots reside on local, remote, or shared servers. Local-type depots reside
on the Perforce server normally accessed by the user’s Perforce application. When using local
depots, a Perforce application communicates with the Perforce server specified by the user’s P4PORT
environment variable or equivalent setting.

To define a new local depot (that is, to create a new depot in the current Perforce server namespace),
call p4 depot with the new depot name, and edit only the Map: field in the resulting form.

For example, to create a new depot called book with the files stored in the local Perforce server
namespace in a root subdirectory called book (that is, $P4ROOT/book), enter the command p4 depot
book, and fill in the resulting form as follows:

http://www.perforce.com/perforce/r16.1/manuals/p4dist/index.html

Chapter 4. Working with Depots

Helix Versioning Engine Administrator Guide: Fundamentals 55

Depot: book
Type: local
Address: local
Suffix: .p4s
Map: book/...

The Address: and Suffix: fields do not apply to local depots and are ignored.

By default, the Map: field on a local depot points to a depot directory matching the depot name, relative
to the server root (P4ROOT) setting for your server. To store a depot’s versioned files on another volume
or drive, specify an absolute path in the Map: field. This path need not be under P4ROOT. Absolute paths
in the Map: field on Windows must be specified with forward slashes (for instance, d:/newdepot/) in
the p4 depot form.

Stream depots
Stream depots contain streams, a type of branch that includes hierarchy and policy. Like local depots,
stream depots reside on the Perforce server. When creating a stream depot, you must provide the
following information: name, owner, date, type, and stream depth. For additional information, see
"Working with Stream Depots" in the description of the p4 depot command.

If you are using the distributed versioning architecture, the personal server uses a stream-type depot.

Spec depot
The spec depot is used to track changes to user-edited forms such as client workspace specifications,
jobs, branch mappings, and so on. There can be only one spec depot per server. (If you already have a
spec depot, attempting to create another one results in an error message.)

In order to retrieve change histories of user-edited forms, you must enable versioned specifications.
After you have enabled versioned specs by creating the spec depot, all user-generated forms (such as
client workspace specifications, jobs, branch mappings, and so on) are automatically archived as text
files in the spec depot. Filenames within the spec depot are automatically generated by the server, and
are represented in Perforce syntax as follows:

//specdepotname/formtype/[objectname[suffix]]

Some formtypes (for example, the protect, triggers, and typemap forms) are unique to the server, and
do not have corresponding objectnames.

Note As of Release 2011.1, the first line of every saved form stored in the spec depot is a
comment line that identifies the user who most recently changed the form:

The form data below was edited by username

Chapter 4. Working with Depots

56 Helix Versioning Engine Administrator Guide: Fundamentals

Creating the spec depot
To create a spec depot named //spec, enter p4 depot spec, and fill in the resulting form as follows:

Depot: spec
Type: spec
Address: local
Map: spec/...
SpecMap: //spec/...
Suffix: .p4s

The Address: field does not apply to spec depots and is ignored.

Using a Suffix: is optional, but specifying a file extension for objects in the spec depot simplifies
usability for users of applications such as P4V, because users can associate the suffix used for Perforce
specifications with their preferred text editor. The default suffix for these files is .p4s.

For example, if you create a spec depot named spec, and use the default suffix of .p4s, your users can
see the history of changes to job000123 by using the command:

$ p4 filelog //spec/job/job000123.p4s

or by using P4V to review changes to job000123.p4s in whatever editor is associated with the .p4s file
extension on their workstation.

The default SpecMap: of //spec/... indicates that all specs are to be versioned.

Populating the spec depot with current forms
After you create a spec depot, you can populate it using the p4 admin updatespecdepot command.
This command causes the Perforce Server to archive stored forms (specifically, client, depot, branch,
label, typemap, group, user, and job forms) into the spec depot.

To archive all current forms, use the -a flag:

$ p4 admin updatespecdepot -a

To populate the spec depot with only one type of form (for instance, extremely large sites might elect
to update only one table at a time), use the -s flag and specify the form type on the command line. For
example:

$ p4 admin updatespecdepot -s job

In either case, only those forms that have not yet been archived are added to the spec depot; after the
spec depot is created, you only need to use p4 admin updatespecdepot once.

Chapter 4. Working with Depots

Helix Versioning Engine Administrator Guide: Fundamentals 57

Controlling which specs are versioned
By default, all specs (//spec/...) are versioned. You can use the SpecMap: field to control which specs
are versioned by adding lines in depot syntax that include (or exclude) paths in the spec depot.

For example, you can exclude the protections table from versioning by configuring your spec depot’s
SpecMap: field as follows:

SpecMap:
 //spec/...
 -//spec/protect/...

In an environment such as a build farm, in which large numbers of temporary client workspaces and/
or labels are created, you can configure the spec depot to exclude them, while keeping track of other
changes to client workspaces and labels. For example, a spec depot configured with the following spec
mapping:

SpecMap:
 //spec/...
 -//spec/client/build_ws_*
 -//spec/label/temp_label_*

will no longer track changes to client workspaces whose names begin with build_ws_, nor will it track
changes to labels whose names begin with temp_label_.

Note that adding or changing the SpecMap: field only affects future updates to the spec depot; files
already stored in the spec depot are unaffected.

Large sites and old filesystems
Use the spec.hashbuckets configurable to define the number of buckets (subdirectories) into which
files in the spec depot are hashed. By default, spec.hashbuckets is 99; for each type of object,
directories associated with objects in the spec depot are allocated between 99 subdirectories.

To disable hashing, set spec.hashbuckets to 0, as follows:

$ p4 configure set spec.hashbuckets=0

With hashing disabled, for each subdirectory for each spec type, one sub-subdirectory is created
for each object, and all of these sub-subdirectories are stored in one single subdirectory. Disabling
hashing may subject your installation to filesystem-imposed limitations on the maximum number of
subdirectories in any one directory (for example, the 32K limit imposed by older ext2, ext3, and ufs
filesystems).

Archive depots
Archive depots are used for near-line or offline storage of infrequently-accessed content. For details,
see “Reclaiming disk space by archiving files” on page 139.

Chapter 4. Working with Depots

58 Helix Versioning Engine Administrator Guide: Fundamentals

Unload depot
The unload depot is analogous to the archive depot, but provides a place to store infrequently-accessed
metadata (specifically, metadata concerning client workspaces and labels) rather than old versioned
files. There can be only one unload depot per server. For details, see “Unloading infrequently-used
metadata” on page 161.

Remote depots and distributed development
Perforce is designed to cope with the latencies of large networks and inherently supports users with
client workspaces at remote sites. A single Perforce installation is ready, out of the box, to support a
shared development project, regardless of the geographic distribution of its contributors.

Partitioning joint development projects into separate Perforce installations does not improve
throughput, and usually only complicates administration. If your site is engaged in distributed
development (that is, developers in multiple sites working on the same body of code), it is better to
set up a distributed Perforce installation. For information on setting up and monitoring a distributed
Perforce configuration, see the Helix Versioning Engine Administrator Guide: Multi-site Deployment
manual.

If, however, your organization regularly imports or exports material from other organizations, you
might want to consider using Perforce’s remote depot functionality to streamline your code drop
procedures.

When using remote depots, the user’s client application uses the Perforce server specified by the user’s
P4PORT environment variable or equivalent setting as a means to access a second, remote, Perforce
server. The local Perforce server communicates with the remote Perforce server to access a subset of its
files.

Remote depots are designed to support shared code, not shared development. They enable independent
organizations with separate Perforce installations to integrate changes between Perforce installations.
Briefly:

• A "remote depot" is a depot on your Perforce server of type remote. It acts as a pointer to a depot of
type "local" that resides on a second Perforce server.

• A user of a remote depot is typically a build engineer or handoff administrator responsible for
integrating software between separate organizations.

• Control over what files are available to a user of a remote depot resides with the administrator of the
remote server, not the users of the local server.

• See “Restricting access to remote depots” on page 61 for security requirements.

For additional information about the options you have to share code, see “Distributed development
using Fetch and Push” on page 129.

How remote depots work
The following diagram illustrates how Perforce applications use a user’s default Perforce server to
access files in a depot hosted on another Perforce server.

http://www.perforce.com/perforce/r16.1/manuals/p4dist/index.html

Chapter 4. Working with Depots

Helix Versioning Engine Administrator Guide: Fundamentals 59

In this example, an administrator of a Perforce server at oak:1234 is retrieving a file from a remote
server at pine:1818.

Although it is possible to permit individual developers to sync files from remote depots into their
client workspaces, this is generally an inefficient use of resources.

The preferred technique for using remote depots is for your organization’s build or handoff
administrator to integrate files from a remote depot into an area of your local depot. After the
integration, your developers can access copies of the files from the local depot into which the files were
integrated.

To accept a code drop from a remote depot, create a branch in a local depot from files in a remote
depot, and then integrate changes from the remote depot into the local branch. This integration
is a one-way operation; you cannot make changes in the local branch and integrate them back
into the remote depot. The copies of the files integrated into your Perforce installation become the
responsibility of your site’s development team; the files on the depot remain under the control of the
development team at the other Perforce installation.

Restrictions on remote depots

Remote depots facilitate the sharing of code between organizations (as opposed to the sharing of
development within a single organization). Consequently, access to remote depots is restricted to read-
only operations, and server metadata (information about client workspaces, changelists, labels, and so
on) cannot be accessed using remote depots.

Using remote depots for code drops
Performing a code drop requires coordination between two organizations, namely the site receiving
the code drop and the site providing the code drop. In most cases, the following three things must be
configured:

Chapter 4. Working with Depots

60 Helix Versioning Engine Administrator Guide: Fundamentals

• The Perforce administrator at the site receiving the code drop must create a remote depot on his or
her Perforce server that points to the site providing the code drop.

This is described in “Defining remote depots” on page 60.

• The Perforce administrator at the site providing the code drop should configure his or her Perforce
server to allow the recipient site’s remote depot to access the providing site’s Perforce server.

This is described in “Restricting access to remote depots” on page 61.

• The configuration manager or integration manager at the receiving site must integrate the desired
files from the remote depot into a local depot under his or her control.

This is described in “Receiving a code drop” on page 63.

Defining remote depots

To define a new remote depot:

1. Create the depot with p4 depot depotname.

2. Set the Type: to remote.

3. Direct your Perforce server to contact the remote Perforce server by providing the remote server’s
name and listening port in the Address: field.

A remote server’s host and port are specified in the Address: field just as though it were a P4PORT
setting.

4. Set the Map: field to map into the desired portion of the remote server’s namespace.

For remote depots, the mapping contains a subdirectory relative to the remote depot namespace.
For example, //depot/outbound/... maps to the outbound subdirectory of the depot named depot
hosted on the remote server.

The Map: field must contain a single line pointing to this subdirectory, specified in depot syntax,
and containing the "..." wildcard on its right side.

If you are unfamiliar with client views and mappings, see the Helix Versioning Engine User Guide for
general information about how Perforce mappings work.

5. The Suffix: field does not apply to remote depots; ignore this field.

In order for anyone on your site to access files in the remote depot, the administrator of the remote
server must grant read access to user remote to the depots and subdirectories within the depots
specified in the Map: field.

Example 4.1. Defining a remote depot

Lisa is coordinating a project and wants to provide a set of libraries to her developers from a third-
party development shop. The third-party development shop uses a Perforce server on host pine that
listens on port 1818. Their policy is to place releases of their libraries on their server’s single depot
depot under the subdirectory outbound.

http://www.perforce.com/perforce/r16.1/manuals/p4guide/index.html

Chapter 4. Working with Depots

Helix Versioning Engine Administrator Guide: Fundamentals 61

Lisa creates a new depot from which she can access the code drop; she’ll call this depot from-pine;
she’d type p4 depot from-pine and fill in the form as follows:

Depot: from-pine
Type: remote
Address: pine:1818
Map: //depot/outbound/...

This creates a remote depot called from-pine on Lisa’s Perforce server; this depot (//from-pine) maps
to the third party’s depot’s namespace under its outbound subdirectory.

Restricting access to remote depots

Remote depots are accessed either by a virtual user named remote, or (if configured) by the service
user of the accessing server’s p4d. Service users (including the virtual remote user) do not consume
Perforce licenses.

Note Perforce Servers at release 2010.2 authenticate as remote to older Perforce servers,
and either as remote (if no service user is configured), or as the service user (if
configured) to Perforce Servers at release 2010.2 and above.

By default, all files on a Perforce server can be accessed remotely. To limit or eliminate remote access to
a particular server, use p4 protect to set permissions for user remote (or the remote site’s service user)
on that server. Perforce recommends that administrators deny access to user remote across all files and
all depots by adding the following permission line in the p4 protect table:

list user remote * -//...

Because remote depots can only be used for read access, it is not necessary to remove write or super
access to user remote (or the service user). Keep in mind that the virtual user remote does not have
access to anything unless that access is granted explicitly in the protection table.

Note As of Release 2010.2, it remains good practice to deny access to user remote. If the
Perforce Servers at partner sites are configured to use service users, you can use
their service users to further restrict which portions of your server are available for
code drops.

As of Release 2010.2, it remains good practice to deny access to user remote. If the Perforce Servers
at partner sites are configured to use service users, you can use their service users to further restrict
which portions of your server are available for code drops.

Example security configuration

Using the two organizations described in “Receiving a code drop” on page 63, a basic set of
security considerations for each site would include:

On the local (oak) site:

• Deny access to //from-pine to all users. Developers at the oak site have no need to access files on the
pine server by means of the remote depot mechanism.

Chapter 4. Working with Depots

62 Helix Versioning Engine Administrator Guide: Fundamentals

• Grant read access to //from-pine to your integration or build managers. The only user at the oak site
who requires access the //from-pine remote depot is the user (in this example, adm) who performs
the integration from the remote depot to the local depot.

The oak administrator adds the following lines to the p4 protect table:

list user * * -//from-pine/...
read user adm * //from-pine/...

On the remote (pine) site, access to code residing on pine is entirely the responsibility of the pine
server’s administrator. At a minimum, this administrator should:

• Preemptively deny access to user remote across all depots from all IP addresses:

list user remote * -//...

Adding these lines to the p4 protect table is sound practice for any Perforce installation whether its
administrator intends to use remote depots or not.

• If both servers are at Release 2010.2 or higher: contact the oak site’s administrator and obtain the
name of the oak site’s service user.

In this example, the oak site’s service user is service-oak. When a user of the oak server accesses a
remote depot hosted on pine, the oak server will authenticate with the pine server as a user named
service-oak.

As administrator of the pine site, you must:

• Create a service user on your site named service-oak. (see “Service users” on page 132). This
user’s name must match the name of the receiving site’s service user.

• Assign this user a strong password.

• Inform the oak administrator of this password.

The administrator of the oak site must:

• Use the password set by the pine administrator to obtain a ticket valid for pine for the user
service-oak (that is, run p4 login service-oak against the pine server).

• Place the ticket somewhere where the oak server’s p4d process can access it. (For example, the
.p4tickets file in the server’s root directory, with P4TICKETS set to point to the location of the
ticket file.)

• Configure oak to work with the pine service user, either by starting oak’s p4d process with the -u
service-oak flag, or configure the server with p4 configure set serviceUser=service-oak.)

• Grant read access to user remote (or the oak site’s service user) to only those areas of the pine
server into which code drops are to be placed. Further restrict access to requests originating from
the IP address of the Perforce server that is authorized to receive the code drop.

Chapter 4. Working with Depots

Helix Versioning Engine Administrator Guide: Fundamentals 63

In this example, outgoing code drops reside in //depot/outbound/... on the pine server. If oak’s IP
address is 192.168.41.2, the pine site’s protections table looks like:

list user remote * -//...
read user remote 192.168.41.2 //depot/outbound/...

• If both sites are at Release 2010.2 or higher, and the oak server is configured to use service-oak as
its service user, the pine site’s protections table looks like:

list user remote * -//...
list user service-oak * -//...
read user service-oak 192.168.41.2 //depot/outbound/...

Only Perforce Servers at IP address 192.168.41.2 that have valid tickets for the pine site’s service-
oak user, are permitted to access the pine server through remote depots, and only //depot/
outbound/... is accessible.

Receiving a code drop

To perform a handoff or code drop between two Perforce installations:

1. Developers on pine:1818 complete work on a body of code for delivery.

2. The build or release manager on pine:1818 branches the deliverable code into an area of pine:1818
intended for outbound code drops. In this example, the released code is branched to //depot/
outbound/...

3. A Perforce administrator at oak:1234 configures a remote depot called //from-pine on the oak
server. This remote depot contains a Map: field that directs the oak server to the //depot/outbound
area of pine:1818.

4. Upon notification of the release’s availability, a build or release manager at oak:1234 performs the
code drop by integrating files in the //from-pine/... remote depot into a suitable area of the local
depot, such as //depot/codedrops/pine.

5. Developers at oak:1234 can now use the pine organization’s code, now hosted locally under //
depot/codedrops/pine. Should patches be required to pine’s code, oak developers can make such
patches under //depot/codedrops/pine. The pine group retains control over its code.

Chapter 4. Working with Depots

64 Helix Versioning Engine Administrator Guide: Fundamentals

Helix Versioning Engine Administrator Guide: Fundamentals 65

Chapter 5 Securing the Server
You can set up secure communication between clients and servers as well as between servers.

• Communication between clients and servers can be secured using the SSL protocol, which you
specify when connecting to the server. See “Using SSL to encrypt connections to a Perforce
server” on page 66 for information on how you secure client-server communication.

Communication between clients and servers can also be secured using a firewall. For more
information, see “Using firewalls” on page 69.

• User authentication can be done using passwords or tickets, and the strength of the password can
be defined by an administrator. Users can be authenticated against an Active Directory or LDAP
server, or against an internal Helix user database. See “Authentication options” on page 69 for
information about how you can authenticate users.

• Access is defined using a protections that determine which Perforce commands can be run, on which
files, by whom, and from which host. See “Authorizing access” on page 83 to find out how you
define protections.

• Communication between servers in a distributed environment can be secured using a trust file and
by setting permissions for the service users that own the different servers in the environment. For
more information, see Helix Versioning Engine Administrator Guide: Multi-site Deployment.

Before you can configure access and authentication, you must create users as described in “Managing
users” on page 132.

Securing the server: workflow
The following workflow summarizes the steps required to secure the server and authenticate users.
The suggested order might vary, depending on the authentication method used and on whether users
are automatically created.

1. Set up SSL if needed.

2. Set up a firewall if needed.

3. Set up protections for users and user groups.

4. Review available authentication options and server security levels.

5. Set the security level for the server.

6. Define the authentication to be used for existing users and new users.

7. Create authentication triggers if you are planning to use a non-standard LDAP server.

8. Enable and configure LDAP authentication if you are planning to authenticate users against an
LDAP or Active Directory server.

For information about basic security considerations when setting up a Perforce server, see

http://kbportal.perforce.com/article/2484

http://www.perforce.com/perforce/r16.1/manuals/p4dist/index.html
http://kbportal.perforce.com/article/2484

Chapter 5. Securing the Server

66 Helix Versioning Engine Administrator Guide: Fundamentals

Using SSL to encrypt connections to a Perforce server
The following sections explain how you set up encrypted communications between a client and a
Perforce server.

For any given Perforce server, proxy, or broker, SSL encryption is an all-or-nothing option: If a
Perforce server is configured to use SSL (presumably for security reasons), all Perforce applications
must be configured to use SSL. Conversely, if a Perforce server is configured to accept plaintext
connections (either for performance reasons or for backwards compatibility), all client applications
must connect in plaintext. It is possible however, if you have an intermediary (such as a proxy or a
broker) between the client and the Perforce server, that one leg of the communication is encrypted and
the following is not. For more information, see “Using SSL in a mixed environment” on page 69.

Note TLSv1.1 is currently supported; SSL 3.0 is not.

Server and client setup

By default, a P4PORT setting that does not specify a protocol is assumed to be in plaintext. It is good
practice to configure Perforce applications to explicitly specify the protocol, either tcp:host:port for
plaintext, or ssl:host:port for encrypted connections.

The first time a user connects to an SSL-enabled server, their Perforce applications will inform them of
the fingerprint of the server’s key.

If the user can independently verify that the fingerprint is accurate, they should add the server to their
P4TRUST file (either by using the p4 trust command, by following the prompts in P4V or other Perforce
applications, or by manually adding the fingerprint to the file).

Key and certificate management

When configured to accept SSL connections, all server processes (p4d, p4p, p4broker), require a valid
certificate and key pair on startup. These files are stored in the directory specified by the P4SSLDIR
environment variable. In order for an SSL-enabled server process to start, the following additional
conditions must be met:

• P4SSLDIR must be set to a valid directory.

• The P4SSLDIR directory must be owned by the same userid as the one running the Perforce server,
proxy, or broker process. The P4SSLDIR directory must not be readable by any other user. On UNIX,
for example, the directory’s permissions must be set to 0700 (drwx------) or 0500 (dr-x------).

• Two files, named privatekey.txt and certificate.txt, must exist in P4SSLDIR.

These files correspond to the PEM-encoded private key and certificate used for the SSL connection.
They must be owned by the userid that runs the Perforce server, proxy, and broker process, and
must also have their permissions set such as to make them unreadable by other users. On UNIX, for
example, the files' permissions must be set to 0600 (-rw-------) or 0400 (-r--------).

Chapter 5. Securing the Server

Helix Versioning Engine Administrator Guide: Fundamentals 67

You can supply your own private key and certificate, or you can use p4d -Gc to generate a self-
signed key and certificate pair.

• To generate a fingerprint from your server’s private key and certificate, run p4d -Gf . (P4SSLDIR
must be configured with the correct file names and permissions, and the current date must be valid
for the certificate.)

After you have communicated this fingerprint to your end users, your end users can then compare
the fingerprint the server offers with the fingerprint you have provided. If the two fingerprints
match, users can use p4 trust to add the fingerprint to their P4TRUST files.

Key and certificate generation
To generate a certificate and private key for your server:

1. Set P4SSLDIR to a valid directory in a secure location. The directory specified by P4SSLDIR must be
secure: owned by the same userid as the one generating the key pair, and it must not be readable by
any other user.

2. Optionally, create a file named config.txt in your P4SSLDIR directory before running p4d -Gc, and
format the file as follows:

C: Country Name - 2 letter code (default: US)
C =

ST: State or Province Name - full name (default: CA)
ST =

L: Locality or City Name (default: Alameda)
L =

O: Organization or Company Name (default: Perforce Autogen Cert)
O =

OU = Organization Unit - division or unit
OU =

CN: Common Name (usually the DNS name of the server)
(default: the current server's DNS name)
CN =

EX: number of days from today for certificate expiration
(default: 730, e.g. 2 years)
EX =

UNITS: unit multiplier for expiration (defaults to "days")
Valid values: "secs", "mins", "hours"
UNITS =

3. Generate the certificate and key pair with the following command:

p4d -Gc

Chapter 5. Securing the Server

68 Helix Versioning Engine Administrator Guide: Fundamentals

If P4SSLDIR (and optionally, config.txt) has been correctly configured, and if no existing private
key or certificate is found, two files, named privatekey.txt and certificate.txt, are created in
P4SSLDIR.

If a config.txt file is not present, the following default values are assumed, and a certificate is
created that expires in 730 days (two years, excluding leap years).

C=US
ST=CA
L=Alameda
O=Perforce Autogen Cert
OU=
CN=the-DNS-name-of-your-server
EX=730
UNITS=days

4. Generate a fingerprint for your server’s key and certificate pair.

p4d -Gf

This command displays the fingerprint of the server’s public key, and then exits.

Fingerprint: CA:BE:5B:77:14:1B:2E:97:F0:5F:31:6E:33:6F:0E:1A:E9:DA:EF:E2

Record your server’s fingerprint for your own records and communicate it to your users via an out-
of-band communications channel.

If a Perforce application reports a different fingerprint (and you have not recently installed a new
certificate and key pair), your users should consider such changes as evidence of a potential man-
in-the-middle threat.

Note Because Perforce Servers can use self-signed certificates, you may also use third-
party tools such as OpenSSL or PuTTY to generate the key pairs, or supply your
own key pair. The p4d -Gf command accepts user-supplied credentials.

If you are supplying your own key, your privatekey.txt and certificate.txt files
in P4SSLDIR must be PEM-encoded, with the private key file stripped of passphrase
protection.

Whether you supply your own key and certificate pair or generate one with p4d -
Gc, it is imperative that these files are stored in a secure location that is readable only
by the p4d binary.

Secondary cipher suite

By default, Perforce’s SSL support is based on the AES256-SHA cipher suite. To use CAMELLIA256-
SHA, set the ssl.secondary.suite tunable to 1.

Chapter 5. Securing the Server

Helix Versioning Engine Administrator Guide: Fundamentals 69

Using SSL in a mixed environment
In a mixed environment, each link between Perforce servers, proxies, or brokers may be configured
to be in either plaintext or SSL, independent of the encryption choice for any other link. Consider the
following examples:

• During a migration from cleartext to SSL, a Perforce Broker may be configured to accept plaintext
connections from older Perforce applications, and to forward those requests (encrypted by SSL) to a
Perforce Server that requires SSL connections.

• A Perforce Broker could be configured to listen on tcp:old-server:1666, and redirect all requests
to a target of ssl:new-server:1667. Users of new Perforce applications could use SSL to connect
directly to the upgraded Perforce Server (by setting P4PORT to ssl:new-server:1667), while users
of older Perforce applications could continue to use plaintext when connecting to a Perforce Broker
(by setting P4PORT to old-server:1666). After migration is complete, the broker at old-server:1666
could be deactivated (or reconfigured to require SSL connections), and any remaining legacy
processes or scripts still attempting to connect via plaintext could be upgraded manually.

The Perforce Proxy and the Perforce Broker support the -Gc and -Gf flags, and use the P4SSLDIR
environment variable. You generate certificate and key pairs for these processes (and confirm
fingerprints) as you would with a single Perforce Server. In order for two servers to communicate over
SSL, the administrator of the downstream server (typically a replica server, Proxy, or Broker process)
must also use the p4 trust command to generate a P4TRUST file for the service user associated with the
downstream server.

When migrating from a non-SSL environment to an SSL-based environment, it is your responsibility to
securely communicate the new server’s fingerprint to your users.

Using firewalls
If available, remote clients can use a Virtual Private Network (VPN) or a Secure Shell (SSH) tunnel to
access services on the inside trusted network.

For additional information about using an SSH tunnel to connect to a Perforce server, see the following
Knowledge Base article:

http://answers.perforce.com/articles/KB/2433

Authentication options
This section introduces the options you have in authenticating users who log in to Perforce. It focuses
on authenticating against Active Directory and LDAP servers without using authentication triggers.

Overview
User authentication can take place using one of three options:

• Against an Active Directory or LDAP server that is accessed according to an LDAP specification.
Enabling this option disables trigger-based authentication.

http://answers.perforce.com/articles/KB/2433

Chapter 5. Securing the Server

70 Helix Versioning Engine Administrator Guide: Fundamentals

This section focuses on this option. It notes the advantages of using this option, it explains how you
create an LDAP configuration, it gives instructions on how you activate and test this configuration,
and it provides reference information on the commands and configurables you use to implement
this option.

• Against Perforce’s internal user database, db.user.

This option allows plain-text password-based authentication. It is described in “Authenticating
using passwords and tickets” on page 72.

• Against an authentication server, using an authentication trigger.

These types of triggers are useful if you need to authenticate users against a non-standard
authentication server. Authentication triggers fire when the p4 login or p4 passwd
commands execute. This option is described in the section “Triggering to use external
authentication” on page 213.

The authentication server you choose is used for user definitions, user authentication (passwords),
group definitions, license details, and ticket generation.

Authentication is configured on a per-user basis (except for trigger-based authentication): for
each user, you can specify what method should be used for authentication. Some options are
mutually exclusive: enabling configuration-based LDAP authentication turns off trigger-based
authentication. However, you can have some users authenticate using LDAP, while others authenticate
against Perforce’s internal user database. For more information, see “Defining authentication for
users” on page 71.

When logging in using either authentication method, Perforce encrypts the password before passing it
to the specified authentication agent.

Server security levels
The authentication option you choose is partly determined by the security level set for the server.
Perforce superusers can configure server-wide password usage requirements, password strength
enforcement, and supported methods of user/server authentication by setting the security
configurable. To set or change the security configurable, issue the command:

$ p4 configure set security=seclevel

where seclevel is 0, 1, 2, 3, or 4.

Security level settings do not apply if you are using an external authentication manager such as LDAP
or Active Directory. In this case, the server either behaves as though security=3 (or greater) was set, or
is placed completely under the control of the external authentication system.

The following table explains the effect of each security level:

Security level Server behavior

0 (or unset) The default security level 0 does not require passwords and does not enforce
password strength.

Chapter 5. Securing the Server

Helix Versioning Engine Administrator Guide: Fundamentals 71

Security level Server behavior

Users with passwords can use either their P4PASSWD setting or the p4 login
command for ticket-based authentication.

1 Ensures that all users have passwords. (Users of old Perforce applications can still
enter weak passwords.)

Users with passwords can use either their P4PASSWD setting or the p4 login
command for ticket-based authentication.

2 Ensures that all users have strong passwords.

Very old Perforce applications continue to work, but users must change their
password to a strong password and upgrade to 2003.2 or later.

3 Requires that all users have strong passwords, and requires the use of ticket-based
(p4 login) authentication.

If you have scripts that rely on passwords, use p4 login to create a ticket valid for
the user running the script, or use p4 login -p to display the value of a ticket that
can be passed to Perforce commands as though it were a password (that is, either
from the command line, or by setting P4PASSWD to the value of the valid ticket).

Setting passwords with the p4 user form or the p4 passwd -O oldpass -P newpass
command is prohibited.

4 In multi-server and replicated environments this level ensures that only
authenticated service users (subject to all of the restrictions of level 3) can connect to
this server.

The following checks are also made:

• The request must come from a replica with a valid serverid.

• The serverid must identify a valid server spec.

• If the server spec has a user field, the request must come from that service user.

• If the server spec has filters, these are used in preference to whatever filters might
have been specified by the replica.

Note Use the dm.password.minlength configurable to enforce a minimum password
length at levels 1 - 3.

Defining authentication for users
Authentication is defined by the setting of the AuthMethod field of the user spec and also by
configurables that affect user authentication.

The AuthMethod field of the user specification, created with the p4 user command, specifies the
authentication method to be used for that user.

Chapter 5. Securing the Server

72 Helix Versioning Engine Administrator Guide: Fundamentals

• ldap indicates that the user is to be authenticated against the LDAP directory defined by an active
LDAP configuration. User access can be further restricted to those users who belong to a particular
LDAP group.

All authentication triggers are disabled when LDAP authentication is enabled.

• perforce indicates that the user is to be authenticated by an authentication trigger script if such a
script exists, or against Perforce’s internal user database. This is the default setting.

A superuser must edit the user spec with the p4 user -f command to change the default value to ldap
if desired.

The auth.default.method configurable defines the default value for the AuthMethod on new users.
Possible values are perforce or ldap.

By default, Perforce creates a new user record in its database whenever a previously unknown user
invokes any command that can update the repository or its metadata. For greatest security, it is
recommended that you turn this feature off using the dm.user.noautocreate configurable with the p4
configure command.

If you select the ldap configurable, only superusers are allowed to create new users (using
the p4 user command). To have new users automatically created upon login, you must set
auth.ldap.userautocreate to 1.

If you need more control over which LDAP users are allowed access to Perforce, you can use the
group-related fields of the LDAP configuration to implement a basic authorization step that filters out
non-Perforce users. For example, specifying a filter like the following limits access to LDAP users who
belong to the LDAP group with the common name perforce.

Base DN: ou=groups,dc=example,dc=org
LDAP query: (&(cn=perforce)(memberUid=%user%))

In this case, only users who provide the proper credentials and who are members of the specified
group are authenticated. For more information about the auth.default.method configurable, see
the description of the p4 configure command and the "Configurables" appendix in the P4 Command
Reference.

Note If a user is set to use LDAP-configuration based authentication, the user may not
update their password with the p4 passwd command.

Authenticating using passwords and tickets
Perforce supports two methods of authentication: password-based and ticket-based. Although it might
be more accurate to say that you can use password-only authentication or authentication that uses
passwords and associated tickets.

• Password-only authentication is based on plain-text passwords that do not expire and that are
passed around when the user executes a command.

http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html
http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

Chapter 5. Securing the Server

Helix Versioning Engine Administrator Guide: Fundamentals 73

• Ticket-based authentication is based on tickets that are issued for a given amount of time and are
generated after the user has logged in with a valid password. After log in, the ticket is used to
authenticate the user (rather than the password being passed around).

Warning Although ticket-based authentication is more secure than password-based
authentication, it does not encrypt network traffic between client workstations and
the Perforce server.

To encrypt network traffic between client workstations and the Perforce server,
configure your installation to use SSL. See “Using SSL to encrypt connections to a
Perforce server” on page 66.

Password-based authentication
Plain-text password-based authentication is stateless; after a password is correctly set, access is
granted for indefinite time periods. Passwords may be up to 1024 characters in length. To enforce
password strength and existence requirements, set the server security level. See “Server security
levels” on page 70 for details. Plain-text password based authentication is supported only at
security levels 0, 1, and 2.

The default minimum password length is eight characters. Minimum password length is configurable
by setting the dm.password.minlength configurable. For example, to require passwords to be at least 16
characters in length, a superuser can run:

$ p4 configure set dm.password.minlength=16

To require users to change their passwords after a specified interval, assign your users to at least one
group and set the PasswordTimeout: value for that group. For users in multiple groups, the largest
defined PasswordTimeout (including unlimited, but ignoring unset) value applies.

The p4 admin resetpassword command forces specified users with existing passwords to change
their passwords before they can run another command. (This command works only for users whose
authMethod is set to perforce. However, you can use it in a mixed environment, that is an environment
in which both Perforce-based and LDAP-based authentication are enabled.)

Password strength requirements
Certain combinations of server security level and Perforce applications require users to set "strong"
passwords. A password is considered strong if it is at least dm.password.minlength characters long (by
default, eight characters), and at least two of the following are true:

• The password contains uppercase letters.

• The password contains lowercase letters.

• The password contains non-alphabetic characters.

For example, the passwords a1b2c3d4, A1B2C3D4, aBcDeFgH are considered strong in an environment in
which dm.password.minlength is 8, and security is configurable to at least 2.

Chapter 5. Securing the Server

74 Helix Versioning Engine Administrator Guide: Fundamentals

You can configure a minimum password length requirement on a site-wide basis by setting the
dm.password.minlength configurable. For example, to require passwords to be at least 16 characters in
length, a superuser can run:

$ p4 configure set dm.password.minlength=16

Passwords may be up to 1,024 characters in length. The default minimum password length is eight
characters.

Managing and resetting user passwords
Perforce superusers can manually set a Perforce user’s password with:

$ p4 passwd username

When prompted, enter a new password for the user.

To force a user with an existing password to reset his or her own password the next time they use
Perforce, use the following command:

$ p4 admin resetpassword -u username

You can force all users with passwords (including the superuser that invokes this command) to reset
their passwords by using the command:

$ p4 admin resetpassword -a

Running p4 admin resetpassword -a resets only the passwords of users who already exist (and who
have passwords). If you create new user accounts with default passwords, you can further configure
your installation to require that all newly-created users reset their passwords before issuing their first
command. To do this, set the dm.user.resetpassword configurable as follows:

$ p4 configure set dm.user.resetpassword=1

Ticket-based authentication
Ticket-based authentication is based on time-limited tickets that enable users to connect to Perforce
servers. Perforce creates a ticket for a user when they log in to Perforce using the p4 login -a
command. Perforce applications store tickets in the file specified by the P4TICKETS environment
variable. If this variable is not set, tickets are stored in %USERPROFILE%\p4tickets.txt on Windows, and
in $HOME/.p4tickets on UNIX and other operating systems.

By default, tickets have a finite lifespan, after which they cease to be valid. By default, tickets are valid
for 12 hours (43200 seconds). To set different ticket lifespans for groups of users, edit the Timeout:
field in the p4 group form for each group. The timeout value for a user in multiple groups is the largest

Chapter 5. Securing the Server

Helix Versioning Engine Administrator Guide: Fundamentals 75

timeout value (including unlimited, but ignoring unset) for all groups of which a user is a member. To
create a ticket that does not expire, set the Timeout: field to unlimited.

Although tickets are not passwords, Perforce servers accept valid tickets wherever users can specify
Perforce passwords (except when logging in with the p4 login command). This behavior provides
the security advantages of ticket-based authentication with the ease of scripting afforded by password
authentication. Ticket-based authentication is supported at all server security levels, and is required at
security level 3 and 4.

If password aging is in effect, tickets expire when their passwords expire.

Login process for the user
Users are authenticated in one of two ways:

• The user logs in explicitly using the p4 login command.

The user enters a p4 command, and the command requires that the user be authenticated. If the
user is not already authenticated, the command will prompt for login. If the login is successful, the
original command continues.

To log in to Perforce, the user obtains a ticket from the server by using the p4 login command:

$ p4 login

The user is prompted for a password, and a ticket is created for the user in the file specified by
P4TICKETS. The user can extend the ticket’s lifespan by calling p4 login while already logged in; this
extends the ticket’s lifespan by 1/3 of its initial timeout setting, subject to a maximum of the user’s
initial timeout setting.

The Perforce service rate-limits the user’s ability to run p4 login after multiple failed login attempts.
To alter this behavior, set dm.user.loginattempts to the maximum allowable failed login attempts
before the service imposes a 10-second delay on subsequent login attempts.

By default, Perforce tickets are valid for the user’s IP address only. If the user has a shared home
directory that is used on more than one machine, the user can log in to Perforce from both machines by
using p4 login -a to create a ticket in the home directory that is valid from all IP addresses.

Tickets can be used by multiple clients on the same machine so long as they use the same user and
port.

Note The auth.csv log is used to log the results of p4 login attempts. If the login failed,
the reason for this is included in the log. Additional information provided by the
authentication method is included in the log entries.

Login process for the server
The server uses the following process to login a user:

1. The user logs in, specifying a name and password.

Chapter 5. Securing the Server

76 Helix Versioning Engine Administrator Guide: Fundamentals

2. The server checks to see if LDAP integration has been enabled for the server.

• If LDAP integration has been enabled, the server checks the user record as described in Step 3.

• If LDAP integration has not been enabled, the server passes the user’s credentials to an
authentication script if one exists, or it validates credentials using the db.user table; it then issues
a ticket if validation succeeds.

3. The server checks the user record to see which authentication method to use: ldap or perforce.

• If ldap, the server cycles through available LDAP configurations to find the user. If the user is
found and the password is valid, a ticket is issued for the user.

• If perforce, the server validates the user against the db.user table and issues a ticket if the user
exists and credentials are valid.

Logging out of Perforce
To log out of Perforce from one machine by removing your ticket, use the command:

$ p4 logout

The entry in your ticket file is removed. If you have valid tickets for the same Perforce server, but those
tickets exist on other machines, those tickets remain present (and you remain logged in) on those other
machines.

If you are logged in to Perforce from more than one machine, you can log out of Perforce from all
machines from which you were logged in by using the command:

$ p4 logout -a

All of your Perforce tickets are invalidated and you are logged out.

Determining ticket status
To see if your current ticket (that is, for your IP address, user name, and P4PORT setting) is still valid,
use the command:

$ p4 login -s

If your ticket is valid, the length of time for which it will remain valid is displayed.

To display all tickets you currently have, use the command:

$ p4 tickets

The contents of your ticket file are displayed.

Chapter 5. Securing the Server

Helix Versioning Engine Administrator Guide: Fundamentals 77

Invalidating a user’s ticket
As a super user, you can use the -a flag of the p4 logout command to invalidate a user’s ticket. The
following command invalidates Joe’s ticket.

$ p4 logout -a joe

LDAP Authentication
The following sections explain how you can authenticate against Active Directory and LDAP servers.
It describes how you do the following:

• Create an LDAP configuration

• Set LDAP-related configurables

• Authorize access using LDAP groups

• Test and enable LDAP configurations

• Get information about LDAP servers

• Use LDAP with SSO triggers

Authenticating against Active Directory and LDAP servers
LDAP, Lightweight Directory Access Protocol, is supported by many directory services; chief among
these is Active Directory and OpenLDAP. Perforce offers two ways of authenticating against Active
Directory or LDAP servers: using an authentication trigger or using an LDAP specification. The latter
method offers a number of advantages: it is easier to use, no external scripts are required, it allows
users who are not in the LDAP directory to be authenticated against Perforce’s internal user database,
and it is more secure.

Note Create at least one account with super access that uses perforce authentication. This
will allow you to login if by some chance you lose AD/LDAP connectivity.

SASL authentication is supported; SAML is not.

The steps required to set up configuration-based LDAP authentication are described in the following
sections. Throughout this section, information relating to LDAP authentication applies equally to using
Active Directory. In broad strokes, the configuration process include the following steps:

• Use the p4 ldap command to create an LDAP configuration specification for each LDAP or Active
Directory server that you want to use for authentication.

• Define authentication-related configurables to enable authentication, to specify the order in which
multiple LDAP servers are to be searched, and to provide additional information about how LDAP
authentication is to be implemented.

• Set the AuthMethod field of the user specification for existing users to specify how they are to be
authenticated.

Chapter 5. Securing the Server

78 Helix Versioning Engine Administrator Guide: Fundamentals

• Test the LDAP configurations you have defined to make sure searches are conducted as you expect.

• If this is the first time you have enabled LDAP authentication, restart the server.

Note You must restart the Perforce server whenever you enable or disable LDAP
authentication:

• You enable LDAP authentication the first time you enable an LDAP configuration
by setting the auth.ldap.order.N configurable.

• You disable LDAP authentication by removing or disabling all existing LDAP
configurations. You remove an LDAP configuration by using the -d option
to the p4 ldap command. You disable all LDAP configurations by having no
auth.ldap.order.N configurables set.

• LDAP implies at least security level 3.

Creating an LDAP configuration

An LDAP configuration specifies an Active Directory or other LDAP server against which the Perforce
server can authenticate users. You use the p4 ldap command to create configurations.

To define an LDAP configuration specification, you provide values that specify the host and port of
the Active Directory or LDAP service, bind method information, and security parameters. Here is a
sample LDAP configuration using the search bind method:

Name: sleepy
Host: openLdap.example.com
Port: 389
Options: getattrs
Encryption: tls
BindMethod: search
SearchBaseDN: ou=employees,dc=example,dc=com
SearchFilter: (cn=%user%)
SearchScope: subtree
GroupSearchScope: subtree

You can choose among the following bind methods: SASL, simple, and search.

• SASL: One complication of the non-SASL bind methods is that the administrator needs to know
about the structure of the directory. Most LDAP and Active Directory servers have the option of
binding using SASL, which only requires a username and password to authenticate a user.

If the LDAP server supports SASL DIGEST-MD5 (Active Directory does), this method defers the
user search to the LDAP server and does not require a distinguished name to be discovered before
the bind is attempted. This method is recommended for Active Directory. Look how simple this is:

BindMethod: sasl

Chapter 5. Securing the Server

Helix Versioning Engine Administrator Guide: Fundamentals 79

If your LDAP server has multiple realms (or domains in Active Directory), you might need to
specify which one the LDAP configuration should be using. In this case, you’ll need to set the
SaslRealm field too; for example:

BindMethod: sasl
SaslRealm: example

Active Directory supports SASL out of the box, and most LDAP servers support SASL.

• Simple: This method is suitable for simple directory layouts. It uses a pattern and the user’s
username to produce a distinguished name that the Perforce server attempts to bind against,
validating the user’s password. The name given is set on the Simple Pattern field. For example:

BindMethod: simple
SimplePattern: uid=%user%,ou=users,dc=example,dc=com

This pattern is expanded when a user is logging in. For example, if the user is jsmith, the Perforce
server would attempt to bind against the DN shown below, using the password the user provided.

uid=jsmith,ou=users,dc=example,dc=com

This bind method only works in environments where the user’s username is part of their DN and all
of the users you want to authenticate are in the same organizational unit (OU).

• Search: This method performs a search for the user’s record in the directory, overcoming the
restrictions of the simple bind method Instead of a DN pattern, an LDAP search query is provided
to identify the user’s record. The %user% placeholder is also used with this method. A starting point
and scope for the search are provided, allowing control over how much of the directory is searched.
The search relies on a known base DN and an LDAP search query; you provide these using the
SearchBaseDN, SearchFilter, and SearchScope fields of the LDAP configuration specification. This
method might also require the full distinguished name and password of a known read-only entity
in the directory. You supply these using the SearchBindDN and SearchPasswd fields of the LDAP
configuration. Here are two sample search queries:

BindMethod: search
SearchBaseDN: ou=users,dc=example,dc=com
SearchFilter: (&(objectClass=inetOrgPerson) (uid=%user%))
SearchScope: subtree
SearchBindDN: uid=read-only, dc=example, dc=com
SearchPasswd: ******

Chapter 5. Securing the Server

80 Helix Versioning Engine Administrator Guide: Fundamentals

BindMethod: search
SearchBaseDN: ou=users,dc=example,dc=com
SearchFilter: (&(objectClass=user) (sAMAccountName=%user%))
SearchScope: subtree
SearchBindDN: uid=read-only, dc=example, dc=com
SearchPasswd: ******

See the P4 Command Reference for information about the p4 ldap command and the LDAP specification.
The LDAP spec also allows you to fine tune the behavior of LDAP integration. In particular, three
options allows you to control the following behavior:

• Set the downcase option to specify that user names should be downcased from the directory on an
LDAP sync.

• Set the getattrs option to specify that the Fullname and Email fields should be populated for
autocreated users; the information is taken from the LDAP server.

• Set the realminusername option to specify that the realm should be taken for the SASL user name if it
is in UNC or UPN format

• Test your LDAP configuration using a command like the following:

$ p4 ldap -t myuser myldapconfig

After you create the configuration, you must enable it using the auth.ldap.order.N configurable. For
example:

$ p4 configure set auth.ldap.order.1=sleepy

(You must restart the server to enable LDAP.)

The configuration is now active and can be used for authentication. You might also have to define
additional configurables to define the authentication process. These are described in “Defining LDAP-
related configurables” on page 80.

You might need to create multiple LDAP configurations if you are using multiple directory servers
for failover or user management. In this case, you will need to create an LDAP configuration for each
LDAP server; you must also use the auth.ldap.order.N configurable to specify the order in which they
should be searched. Configurables are keyed on their name, therefore you may not have two LDAP
configurations using the same order number for the same Perforce server.

Defining LDAP-related configurables

To use LDAP authentication, you must set a number of authentication-related configurables:

• auth.ldap.order.N - enables an LDAP server and specifies the order in which it should be searched.

http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

Chapter 5. Securing the Server

Helix Versioning Engine Administrator Guide: Fundamentals 81

• auth.default.method - specifies whether new users should be authenticated by Perforce or using
LDAP. dm.user.noautocreate is implied at 2 for auth.default.method=ldap

• auth.ldap.userautocreate - specifies whether new users should be automatically created on login
when using LDAP authentication. This requires auth.default.method=ldap.

You can set the getattrs Options field of the LDAP configuration to have the FullName and Email
fields populated from the directory.

• dm.user.noautocreate - further controls the behavior of user autocreation.

• auth.ldap.timeout - time to wait before giving up on a connection attempt.

• auth.ldap.cafile - the path to a file used for certification when the LDAP server uses SSL or TLS.

• auth.ldap.ssllevel - level of SSL certificate validation.

• auth.ldap.ssllevel - helps you manage LDAP searches with paged results by setting limits to page
size.

For example, the following commands define the define the search order for active directories and the
default authentication method for new users to be perforce:

$ p4 configure set auth.ldap.order.1=sleepy
$ p4 configure set auth.ldap.order.2=dopey
$ p4 configure set auth.ldap.order.5=sneezy
$ p4 configure set auth.default.method=perforce

For additional information about authentication-related configurables, see the "Configurables"
appendix in the P4 Command Reference.

Authorization using LDAP groups
You use bind methods to configure user authentication, but you don’t want to give everyone in your
organization the ability to log in to your Perforce server, especially if everyone is in the same directory.
Rather, you should create a group object in the directory that contains only authorized users. The new
LDAP integration provides support for checking group membership.

LDAP groups work just like the search bind method, where an LDAP search query determines
whether a user is a member of an allowed group and whether a search base and scope are also
provided. For example, if there is a group in the LDAP directory named perforce, whose users are
allowed to access Perforce servers, you might have a configuration like this:

GroupBaseDN: ou=groups, dc=example, dc=com
GroupSearchFilter: (&(objectClass=posixGroup) (cn=perforce) (memberUid=%user%))
GroupSearchScope: subtree

Group objects in Active Directory are slightly different from those in OpenLDAP: rather than
containing a list of member’s user names, they contain a list of the member’s full DNs. These are not
typically easy to match; however, back references are added to the member’s User objects, which can
be matched. Therefore, when using group authorization against Active Directory, you will probably

http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

Chapter 5. Securing the Server

82 Helix Versioning Engine Administrator Guide: Fundamentals

need to search for the user’s User object and check that it contains a memberOf reference to the group.
For example:

GroupBaseDN: ou=users, dc=example, dc=com
SearchFilter: (&(objectClass=user) (sAMAccountName=%user%)
 (memberOf=cn=perforce,ou=groups,dc=example,dc=com))
SearchScope: subtree

Testing and enabling LDAP configurations
Before you enable LDAP configurations, you should create at least one account with super access
that uses perforce authentication. This will allow you to login if by some chance you lose AD/LDAP
connectivity.

Having created an LDAP configuration, you must test and enable the configuration. The ability to
test your LDAP configurations allows you to make sure everything is working properly without
impacting existing users, even if they are already using an authentication trigger to authenticate
against LDAP. Once the LDAP configuration proves successful, you can switch users to the new
mechanism without having to recreate them. The following steps illustrate the process of testing and
activating a configuration.

1. Test the configuration using the -t flag on the p4 ldap command; for example:

$ p4 ldap -t Cleopatra sleepy

You will be prompted for the user’s password. If the password is correct, the command completes
successfully.

The amount of information returned by testing depends on the bind method used:

• A simple bind returns only pass/fail feedback.

• A search-based bind returns information about whether the user’s credentials are bad and
whether the user could be found.

• SASL binds usually provide more diagnostics than simple binds, but results can vary.

2. Define the auth.ldap.order.N to tell Perforce to in what order to use this configuration; for
example:

$ p4 configure set auth.ldap.order.1=sleepy

You must set this configurable even if you are only using one configuration.

3. Check active configurations by running the following command:

$ p4 ldaps -A

Chapter 5. Securing the Server

Helix Versioning Engine Administrator Guide: Fundamentals 83

4. Restart the server:

$ p4 admin restart

5. Check that the server is running in LDAP authentication mode by running the following command:

$ p4 -ztag info

Then check to see that ldapAuth is enabled.

6. Create additional LDAP servers if needed, and repeat steps 1, 2, 3 for each. Of course, if you add
more configurations, you will need to assign a different priority to each.

7. Migrate users to LDAP authentication by setting the authMethod to ldap for each user to be
authenticated by LDAP.

In addition to testing authentication against a single LDAP server, you can test against multiple servers
using the p4 ldaps -t command. For more information, see the description of the see the description
of the p4 ldaps -t command in the P4 Command Reference.

Getting information about LDAP servers
You can use two commands to get information about LDAP servers:

• The p4 ldap -o command displays information about a single server.

• The p4 ldaps command lists all defined servers or, using the -A option, lists only enabled servers in
order of priority.

For more information, see the description of the two commands in P4 Command Reference.

Using LDAP with single sign-on triggers
You have the option of using auth-check-sso type triggers when LDAP authentication is enabled. In
this case, users authenticated by LDAP can define a client-side SSO script instead of being prompted
for a password. If the trigger succeeds, the active LDAP configurations are used to confirm that the
user exists in at least one LDAP server. The user must also pass the group authorization check if it
is configured. Triggers of type auth-check-sso will not be called for users who do not authenticate
against LDAP.

For information about SSO triggers, see “Triggering to use external authentication” on page 213. For
information about group authorization, see the next section.

Authorizing access
Perforce provides a protection scheme to prevent unauthorized or inadvertent access to files in the
depot. The protections determine which Perforce commands can be run, on which files, by whom, and
from which host. You configure protections with the p4 protect command.

http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html
http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

Chapter 5. Securing the Server

84 Helix Versioning Engine Administrator Guide: Fundamentals

Note Protections apply to files in the depot only. They do not apply to forms: changelists,
workspace views, and so on.

When should protections be set?
Run p4 protect immediately after installing Perforce for the first time. Before the first call to p4
protect, every Perforce user is a superuser and thus can access and change anything in the depot. The
first time a user runs p4 protect, a protections table is created that gives superuser access to the user
from all IP addresses, and lowers all other users' access level to write permission on all files from all IP
addresses.

The Perforce protections table is stored in the db.protect file in the server root directory; if p4
protect is first run by an unauthorized user, the depot can be brought back to its unprotected state by
removing this file.

Setting protections with p4 protect
The p4 protect form contains a single form field called Protections: that consists of multiple lines.
Each line in Protections: contains subfields, and the table looks like this:

Example 5.1. A sample protections table

Protections:
 read user emily * //depot/elm_proj/...
 write group devgrp * //...
 write user * 192.168.41.0/24 -//...
 write user * [2001:db8:1:2::]/64 -//...
 write user joe * -//...
 write user lisag * -//depot/...
 write user lisag * //depot/doc/...
 super user edk * //...

(The five fields might not line up vertically on your screen; they are aligned here for readability.)

Note If your site makes use of the Perforce Proxy or broker, prepend proxy- to the
addresses in the host field to make the lines apply to users of the proxy or broker.
For detailed information, see the material on "P4P and protections" in Helix
Versioning Engine Administrator Guide: Multi-site Deployment.

The permission lines' five fields

Each line specifies a particular permission level and/or access right, as defined by five fields:

Field Meaning

Access Level Which access level (list, read, open, write, review, admin, or super) or specific right
(=read, =open, =write, or =branch) is being granted or denied.

• Each permission level includes all the permissions above it (except for review).

http://www.perforce.com/perforce/r16.1/manuals/p4dist/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4dist/index.html

Chapter 5. Securing the Server

Helix Versioning Engine Administrator Guide: Fundamentals 85

Field Meaning

• Each permission right (denoted by an =) only includes the specific right and not
all of the lesser rights.

In general, one typically grants an access level to a user or group, after which, if
finer-grained control is required, one or more specific rights may then be denied.

User/Group Does this protection apply to a user or a group?

Name The user or group whose protection level is being defined. This field can contain the
* wildcard. A * by itself grants this protection to everyone, *e grants this protection
to every user (or group) whose username ends with an e.

Host The TCP/IP address of the host being granted access. This must be provided as
the numeric address of either one specific host (for instance, 192.168.41.2 or
[2001:db8:195:1:2::1234]) or a subnet expressed in CIDR notation.

The host field can also contain the * wildcard. A * by itself means that this
protection is being granted for all hosts. The wildcard can be used as in any string,
so 192.168.41.* is equivalent to 192.168.41.0/24.

You cannot combine the * wildcard with CIDR notation, except at the start of a line
when controlling proxy matching. If you are using IPv6 with the * wildcard, you
must enclose the address with square brackets. [2001:db8:1:2:*] is equivalent
to [2001:db8:1:2::]/64. Best practice is to use CIDR notation, surround IPv6
addresses with brackets, and to avoid the * wildcard.

For more about controlling access to a Perforce server via the Perforce Proxy,
see the relevant chapter of Helix Versioning Engine Administrator Guide: Multi-site
Deployment.

Files A file specification representing the files in the depot on which permissions are
being granted. Perforce wildcards can be used in the specification.

"//..." means all files in all depots.

If a depot is excluded, the user denied access will no longer see the depot in the
output of p4 depots. Nor will the depot show up, for this user, in the default
branch, client, and label views.

Access levels

The access level is described by the first value on each line. The permission levels and access rights are
described in the following table:

Level Meaning

list Permission is granted to run Perforce commands that display file metadata, such as p4
filelog. No permission is granted to view or change the contents of the files.

http://www.perforce.com/perforce/r16.1/manuals/p4dist/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4dist/index.html

Chapter 5. Securing the Server

86 Helix Versioning Engine Administrator Guide: Fundamentals

Level Meaning

read The user can run those Perforce commands that are needed to read files, such as p4
client and p4 sync. The read permission includes list access.

=read If this right is denied, users cannot use p4 print, p4 diff, or p4 sync on files.

open Grants permission to read files from the depot into the client workspace, and gives
permission to open and edit those files. This permission does not permit the user to
write the files back to the depot. The open level is similar to write, except that with open
permission, users are not permitted to run p4 submit or p4 lock.

The open permission includes read and list access.

=open If this right is denied, users cannot open files with p4 add, p4 edit, p4 delete, or p4
integrate.

write Permission is granted to run those commands that edit, delete, or add files. The write
permission includes read, list, and open access.

This permission allows use of all Perforce commands except protect, depot, obliterate,
and verify.

=write If this right is denied, users cannot submit open files.

=branch If this right is denied, users may not use files as a source for p4 integrate.

review Provides list and read access, plus use of the p4 review command. This is a special
permission granted to review scripts.

admin For Perforce administrators; grants permission to run Perforce commands that affect
metadata, but not server operation. Provides write and review access plus the added
ability to override other users' branch mappings, client specifications, jobs, labels, and
change descriptions, as well as to update the typemap table, verify and obliterate files,
and customize job specifications.

super For Perforce superusers; grants permission to run all Perforce commands. Provides
write, review, and admin access plus the added ability to create depots and triggers, edit
protections and user groups, delete users, reset passwords, and shut down the server.

Each Perforce command is associated with a particular minimum access level. For example, to run
p4 sync or p4 print on a particular file, the user must have been granted at least read access on that
file. For a full list of the minimum access levels required to run each Perforce command, see “How
protections are implemented” on page 94.

The specific rights of =read, =open, =write, and =branch can be used to override the automatic inclusion
of lower access levels. This makes it possible to deny individual rights without having to then re-grant
lesser rights.

Chapter 5. Securing the Server

Helix Versioning Engine Administrator Guide: Fundamentals 87

For example, if you want administrators to have the ability to run administrative commands, but to
deny them the ability to make changes in certain parts of the depot, you could set up a permissions
table as follows:

admin user joe * //...
=write user joe * -//depot/build/...
=open user joe * -//depot/build/...

In this example, user joe can perform administrative functions, and this permission applies to all
depots in the system. Because the admin permission level also implies the granting of all lower access
levels, joe can also write, open, read and list files anywhere in the system, including //depot/build/.
To protect the build area, the =write and =open exclusionary lines are added to the table. User joe is
prevented from opening any files for edit in the build area. He is also prevented from submitting any
changes in this area he may already have open. He can continue to create and modify files, but only if
those files are outside of the protected //depot/build/... area.

Default protections

Before p4 protect is invoked, every user has superuser privileges. When p4 protect is first run, two
permissions are set by default. The default protections table looks like this:

write user * * //...
super user edk * //...

This indicates that write access is granted to all users, on all hosts, to all files. Additionally, the user
who first invoked p4 protect (in this case, edk) is granted superuser privileges.

Which users should receive which permissions?

The simplest method of granting permissions is to give write permission to all users who don’t need
to manage the Perforce system and super access to those who do, but there are times when this simple
solution isn’t sufficient.

Read access to particular files should be granted to users who never need to edit those files. For
example, an engineer might have write permission for source files, but have only read access to the
documentation, and managers not working with code might be granted read access to all files.

Because open access enables local editing of files, but does not permit these files to be written to the
depot, open access is granted only in unusual circumstances. You might choose open access over write
access when users are testing their changes locally but when these changes should not be seen by other
users. For instance, bug testers might need to change code in order to test theories as to why particular
bugs occur, but these changes are not to be written to the depot. Perhaps a codeline has been frozen,
and local changes are to be submitted to the depot only after careful review by the development
team. In these cases, open access is granted until the code changes have been approved, after which
time the protection level is upgraded to write and the changes submitted. open access is also useful
with shelves. Using open is enough to shelve changes but not submit them and can be useful for code
reviews.

Chapter 5. Securing the Server

88 Helix Versioning Engine Administrator Guide: Fundamentals

Interpreting multiple permission lines

The access rights granted to any user are defined by the union of mappings in the protection lines
that match her user name and client IP address. (This behavior is slightly different when exclusionary
protections are provided and is described in the next section.)

Example 5.2. Multiple permission lines

Lisa, whose Perforce username is lisag, is using a workstation with the IP address 195.42.39.17. The
protections file reads as follows:

read user * 195.42.39.17 //...
write user lisag 195.42.39.17 //depot/elm_proj/doc/...
read user lisag * //...
super user edk * //...

The union of the first three permissions applies to Lisa. Her username is lisag, and she’s currently
using a client workspace on the host specified in lines 1 and 2. Thus, she can write files located in the
depot’s elm_proj/doc subdirectory but can only read other files. Lisa tries the following:

She types p4 edit depot/elm_proj/doc/elm-help.1, and is successful.

She types p4 edit //depot/elm_proj/READ.ME, and is told that she doesn’t have the proper permission.
She is trying to write to a file to which has only read access. She types p4 sync depot/elm_proj/
READ.ME, and this command succeeds, because only read access is needed, and this is granted to her on
line 1.

Lisa later switches to another machine with IP address 195.42.39.13. She types p4 edit //depot/
elm_proj/doc/elm-help.1, and the command fails; when she’s using this host, only the third
permission applies to her, and she only has read privileges.

Exclusionary protections

A user can be denied access to particular files by prefacing the fifth field in a permission line with a
minus sign (-). This is useful for giving most users access to a particular set of files, while denying
access to the same files to only a few users.

To use exclusionary mappings properly, it is necessary to understand some of their peculiarities:

• When an exclusionary protection is included in the protections table, the order of the protections
is relevant: the exclusionary protection is used to remove any matching protections above it in the
table.

• No matter what access level is provided in an exclusionary protection, all access levels for the
matching files and IP addresses are denied. The access levels provided in exclusionary protections
are irrelevant. See “How protections are implemented” on page 94 for a more detailed
explanation.

• Without exclusionary mappings, the order of items in the protections table is not important.

Example 5.3. Exclusionary protections

An administrator has used p4 protect to set up protections as follows:

Chapter 5. Securing the Server

Helix Versioning Engine Administrator Guide: Fundamentals 89

write user * * //...
read user emily * //depot/elm_proj/...
super user joe * -//...
list user lisag * -//...
write user lisag * //depot/elm_proj/doc/...

The first permission looks like it grants write access to all users to all files in all depots, but this is
overruled by later exclusionary protections for certain users.

The third permission denies Joe permission to access any file from any host. No subsequent lines grant
Joe any further permissions; thus, Joe has been effectively denied any file access.

The fourth permission denies Lisa all access to all files on all hosts, but the fifth permission gives her
back write access on all files within a specific directory. If the fourth and fifth lines were switched, Lisa
would be unable to run any Perforce command.

Displaying protections for a user, group, or path.

Use the p4 protects command to display the lines from the protections table that apply to a user,
group, or set of files.

With no options, p4 protects displays the lines in the protections table that apply to the current user.
If a file argument is provided, only those lines in the protection table that apply to the named files are
displayed. Using the -m flag displays a one-word summary of the maximum applicable access level,
ignoring exclusionary mappings.

Perforce superusers can use p4 protects -a to see all lines for all users, or p4 protects -u user, -g
group, or -h host flags to see lines for a specific user, group, or host IP address.

Use the -s option to display protection information from a protect table referenced by the file revision
specified with the spec argument. For example, the following command returns information about the
user sam in the third revision of the protections table:

C:\> p4 -u super protects -s //spec/protect.p4s#3 -u sam
write user* * //...

This is useful when users lose access privileges at a given point in time and you want to check what
changes were made to the protection table just before that date.

Note To use this option, you must define a spec depot for protect forms; this
automatically saves revisions to the protect specification every time you edit the
protection table. See the description of the p4 depot command in the P4 Command
Reference for information on how to create a spec depot.

Granting access to groups of users
Perforce groups simplify maintenance of the protections table. The names of users with identical access
requirements can be stored in a single group; the group name can then be entered in the table, and all
the users in that group receive the specified permissions.

http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html
http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

Chapter 5. Securing the Server

90 Helix Versioning Engine Administrator Guide: Fundamentals

Groups are maintained with p4 group, and their protections are assigned with p4 protect. Only
Perforce superusers can use these commands. (Perforce administrators can use p4 group -A to
administer a group, but only if the group does not already exist.)

For information about groups and LDAP, see “Synchronizing Perforce groups with LDAP
groups” on page 91.

Creating and editing groups

If p4 group groupname is called with a nonexistent groupname, a new group named groupname is
created. Calling p4 group with an existing groupname allows editing of the user list for this group.

To add users to a group, add user names in the Users: field of the form generated by the p4 group
groupname command. User names are entered under the Users: field header; each user name must be
typed on its own line, indented. A single user can be listed in any number of groups. Group owners
are not necessarily members of a group; if a group owner is to be a member of the group, the userid
must also be added to the Users: field.

Groups can contain other groups as well as individual users. To add all users in a previously defined
group to the group you’re working with, include the group name in the Subgroups: field of the p4
group form. User and group names occupy separate namespaces, so groups and users can have the
same names.

Adding nonexistent users to group definitions does not actually create the users, nor does it consume
licenses; use the p4 user command to create users.

Groups and protections

To use a group with the p4 protect form, specify a group name instead of a user name in any line in
the protections table and set the value of the second field on the line to group instead of user. All the
users in that group are granted the specified access.

Example 5.4. Granting access to Perforce groups

This protections table grants list access to all members of the group devgrp, and super access to user
edk:

list group devgrp * //...
super user edk * //...

According to the following three permission lines, group ac1 will have write access to //ac1/... while
giving the group read-only access to //ac1/ac1_dev/....

write group ac1 * //ac1/...
list group ac1 * -//ac1/ac1_dev/...
read group ac1 * //ac1/ac1_dev/...

If a user belongs to multiple groups, one permission can override another. For instance, if you use
exclusionary mappings to deny access to an area of the depot to members of group1, but grant access

Chapter 5. Securing the Server

Helix Versioning Engine Administrator Guide: Fundamentals 91

to the same area of the depot to members of group2, a user who is a member of both group1 and group2
is either granted or denied access based on whichever line appears last in the protections table. The
actual permissions granted to a specific user can be determined by replacing the names of all groups
to which a particular user belongs with the user’s name within the protections table and applying the
rules described earlier in this chapter.

Synchronizing Perforce groups with LDAP groups

You can configure Perforce to automatically synchronize the contents of a given Perforce user group
with that of an LDAP group. Protections are still assigned based on the identity of the Perforce group
(using the p4 protect command), but which users are included in the Perforce group is determined by
the membership of the LDAP group.

Synchronization can happen once or at specified intervals. See the description of the p4 ldapsync
command in the P4 Command Reference for additional information.

Before you configure group synchronization, you need to define an LDAP configuration.

Note If the LDAP server requires login for read-only queries, the LDAP configuration
must contain valid bind credentials in the LDAP spec’s SearchBindDN and
SearchPasswd fields.

To configure group synchronization, you must do the following:

1. Define the following fields in the Perforce group spec:

• LdapConfig: The name of an LDAP configuration created using the p4 ldap command.

The LDAP configuration provides the hostname, port, and encryption for the LDAP connection;
it also specifies how authentication is to be done using the SearchBindDN, SearchPasswd, and
GroupSearchBaseDN fields.

• LdapSearchQuery: The search query to identify the group member records.

• LdapUserAttribute: The attribute that contains the group member’s user id. This user name is
added to the Perforce group.

2. Define a group owner for the Perforce group. The owner does not have to be a member of the
corresponding LDAP group.

3. Use the p4 ldapsync command, specifying which Perforce group(s) should be synchronized, to test
the anticipated results using a command like the following.

$ p4 ldapsync -g -n my-perforce-group1 my-perforce-group2

p4 ldapsync uses the context provided by the LDAP configuration to execute the search query and
collect all the defined attributes from the results that are returned. The resultant list becomes the
members list of the group.

4. If you are satisfied with the preview results, run p4 ldapsync again (without -n) to synchronize the
groups.

http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

Chapter 5. Securing the Server

92 Helix Versioning Engine Administrator Guide: Fundamentals

To schedule synchronization to occur at regular intervals, you must make the p4 ldapsync
command run at startup time and specify the value of the interval. For details see the description of
the p4 ldapsync command in P4 Command Reference.

The following examples, included in “Synchronizing with Active Directory” on page 92 and
“Synchronizing with OpenLDAP” on page 93, demonstrate two ways in which you can define
group synchronization. These examples illustrate how configurations depend on how references to
users and groups are stored on different servers:

• OpenLDAP stores a list of memberUid’s in its group records; these can often be used directly as
Perforce user names.

• Active Directory stores a list of member’s full DN’s in its group records, and the full DN of each
group a user belongs to in its user records; in this case, you need to look for the user records that
contain the back reference to the group instead of finding the group record directly.

Note the difference in the GroupBaseDn in the LDAP spec. In Active Directory, we’re looking for users
who are in the group; in OpenLDAP, we’re looking for groups that contain users. This affects the path
we’re searching under.

In the following examples, both servers have user under the DN ou=users,dc=example,dc=com.
We will be creating a Perforce group called development that is populated from the LDAP group
cn=development,ou=groups,dc=example,dc=com.

Synchronizing with Active Directory

We begin with a sample LDAP configuration named my-ad-example defined as follows:

Name: my-ad-example
Host: ad.example.com
Port: 389
Encryption: tls
BindMethod: search
SearchBaseDN: ou=users,dc=example,dc=com
SearchFilter: (&(objectClass=user)(sAMAccountName=%user%))
SearchBindDN: cn=read-only,ou=users,dc=example,dc=com
SearchPasswd: password
SearchScope: subtree
GroupBaseDN: ou=users,dc=example,dc=com
GroupSearchScope: subtree

The group spec created by the command p4 group development, would then look like this:

Group: development
LdapConfig: my-ad-example
LdapSearchQuery: (&(objectClass=user)(memberOf=cn=development,ou=groups,
 dc=example,dc=com))
LdapUserAttribute: sAMAccountName
Owners: super

http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

Chapter 5. Securing the Server

Helix Versioning Engine Administrator Guide: Fundamentals 93

Synchronizing with OpenLDAP

We begin with a sample LDAP configuration named my-openldap-example defined as follows:

Name: my-openldap-example
Host: openldap.example.com
Port: 389
Encryption: tls
BindMethod: search
SearchBaseDN: ou=users,dc=example,dc=com
SearchFilter: (&(objectClass=inetOrgPerson)(uid=%user%))
SearchBindDN: cn=read-only,ou=users,dc=example,dc=com
SearchPasswd: password
SearchScope: subtree
GroupBaseDN: ou=groups,dc=example,dc=com
GroupSearchScope: subtree

The group spec created by the command p4 group development, would then look like this:

Group: development
LdapConfig: my-openldap-example
LdapSearchQuery: (&(objectClass=posixGroup)(cn=development))
LdapUserAttribute: memberUid
Owners: super

Deleting groups

To delete a group, invoke

$ p4 group -d groupname

Alternately, invoke p4 group groupname and delete all users, subgroups, and owners from the group in
the resulting editor form. The group will be deleted when the form is closed.

Comments in protection tables
Protection tables can be difficult to interpret and debug. Including comments can make this work
much easier.

• You can append comments at the end of a line using the ## symbols:

write user * 10.1.1.1 //depot/test/... ## robinson crusoe

• Or you can write a comment line by prefixing the line with the ## symbols:

robinson crusoe
write user * 10.1.1.1 //depot/test/...

Chapter 5. Securing the Server

94 Helix Versioning Engine Administrator Guide: Fundamentals

Warning Comments you have created using the P4Admin tool are not compatible with
comments created using the 2016.1 version of p4 protect. You can use the
following command to convert a file containing comments created with P4Admin
into a file containing p4 protect type comments:

$ p4 protect --convert-p4admin-comments -o

Then save the resulting file.

Once you have converted the comments, you must continue to define and manage
protections using p4 protect and can no longer use P4Admin to do so because this
tool is unable to parse p4 protect comments.

How protections are implemented
This section describes the algorithm that Perforce follows to implement its protection scheme.
Protections can be used properly without reading this section; the material here is provided to explain
the logic behind the behavior described above.

Users' access to files is determined by the following steps:

1. The command is looked up in the command access level table shown in “Access Levels Required
by Perforce Commands” on page 95 to determine the minimum access level needed to run that
command. In our example, p4 print is the command, and the minimum access level required to
run that command is read.

2. Perforce makes the first of two passes through the protections table. Both passes move up the
protections table, bottom to top, looking for the first relevant line.

The first pass determines whether the user is permitted to know if the file exists. This search simply
looks for the first line encountered that matches the user name, host IP address, and file argument.
If the first matching line found is an inclusionary protection, the user has permission to at least list
the file, and Perforce proceeds to the second pass. Otherwise, if the first matching protection found
is an exclusionary mapping, or if the top of the protections table is reached without a matching
protection being found, the user has no permission to even list the file, and will receive a message
such as File not on client.

Example 5.5. Interpreting the order of mappings in the protections table

Suppose the protections table is as follows:

write user * * //...
read user edk * -//...
read user edk * //depot/elm_proj/...

If Ed runs p4 print //depot/file.c, Perforce examines the protections table bottom to top, and
first encounters the last line. The files specified there don’t match the file that Ed wants to print, so
this line is irrelevant. The second-to-last line is examined next; this line matches Ed’s user name,

Chapter 5. Securing the Server

Helix Versioning Engine Administrator Guide: Fundamentals 95

his IP address, and the file he wants to print; since this line is an exclusionary mapping, Ed isn’t
allowed to list the file.

3. If the first pass is successful, Perforce makes a second pass at the protections table; this pass is the
same as the first, except that access level is now taken into account.

If an inclusionary protection line is the first line encountered that matches the user name, IP
address, and file argument, and has an access level greater than or equal to the access level required
by the given command, the user is given permission to run the command.

If an exclusionary mapping is the first line encountered that matches according to the above
criteria, or if the top of the protections table is reached without finding a matching protection, the
user has no permission to run the command, and receives a message such as:

You don't have permission for this operation

Access Levels Required by Perforce Commands
The following table lists the minimum access level required to run each command. For example,
because p4 add requires at least open access, you can run p4 add if you have open, write, admin, or
super access

Command Access Level Notes

add open

admin super

annotate read

archive admin

attribute write The -f flag to set the attributes of submitted files
requires admin access.

branch open The -f flag to override existing metadata or other users'
data requires admin access.

branches list

cachepurge super

change open The -o flag (display a change on standard output)
requires only list access. The -f flag to override
existing metadata or other users' data requires admin
access.

changes list This command doesn’t operate on specific files.
Permission is granted to run the command if the user
has the specified access to at least one file in any depot.

Chapter 5. Securing the Server

96 Helix Versioning Engine Administrator Guide: Fundamentals

Command Access Level Notes

clean read

client list The -f flag to override existing metadata or other users'
data requires admin access.

clients list

clone read On the remote server.

configure super

copy list list access to the source files; open access to the
destination files.

counter review list access to at least one file in any depot is required
to view an existing counter’s value; review access is
required to change a counter’s value or create a new
counter.

counters list

cstat list

dbschema super

dbstat super

dbverify super

delete open

depot super The -o flag to this command, which allows the form to
be read but not edited, requires only list access.

depots list This command doesn’t operate on specific files.
Permission is granted to run the command if the user
has the specified access to at least one file in any depot.

describe read The -s flag to this command, which does not display file
content, requires only list access.

diff read

diff2 read

dirs list

diskspace super

Chapter 5. Securing the Server

Helix Versioning Engine Administrator Guide: Fundamentals 97

Command Access Level Notes

edit open

export super

fetch admin

filelog list

files list

fix open

fixes list This command doesn’t operate on specific files.
Permission is granted to run the command if the user
has the specified access to at least one file in any depot.

flush list

fstat list

grep read

group super The -o flag to this command, which allows the form to
be read but not edited, requires only list access.

The -a flag to this command requires only list access,
provided that the user is also listed as a group owner.

The -A flag requires admin access.

groups list This command doesn’t operate on specific files.
Permission is granted to run the command if the user
has the specified access to at least one file in any depot.

have list

help none

ignores N/A

info none

init N/A

integrate open The user must have open access on the target files and
read access on the source files.

integrated list

interchanges list

Chapter 5. Securing the Server

98 Helix Versioning Engine Administrator Guide: Fundamentals

Command Access Level Notes

istat list

job open The -o flag to this command, which allows the form to
be read but not edited, requires only list access.

The -f flag to override existing metadata or other users'
data requires admin access.

jobs list This command doesn’t operate on specific files.
Permission is granted to run the command if the user
has the specified access to at least one file in any depot.

jobspec admin The -o flag to this command, which allows the form to
be read but not edited, requires only list access.

journalcopy super

journaldbchecksums super

journals super or
operator

key review list access to at least one file in any depot is required to
view an existing key’s value; review access is required to
change a key’s value or create a new key.

key list admin access is required if the dm.keys.hide configurable
is set to 2.

keys list admin access is required if the dm.keys.hide configurable
is set to 1 or 2.

label open This command doesn’t operate on specific files.
Permission is granted to run the command if the user
has the specified access to at least one file in any depot.

The -f flag to override existing metadata or other users'
data requires admin access.

labels list This command doesn’t operate on specific files.
Permission is granted to run the command if the user
has the specified access to at least one file in any depot.

labelsync open

ldap super

ldaps super

Chapter 5. Securing the Server

Helix Versioning Engine Administrator Guide: Fundamentals 99

Command Access Level Notes

ldapsync super

license super The -u flag, which displays license usage, requires only
admin access.

list open

lock write

lockstat super

logappend list

logger review

login list

logout list

logparse super

logrotate super

logschema super

logstat super

logtail super

merge open

monitor list super access is required to terminate or clear processes,
or to view arguments.

move open

obliterate admin

opened list

passwd list

ping admin

populate open

print read

Chapter 5. Securing the Server

100 Helix Versioning Engine Administrator Guide: Fundamentals

Command Access Level Notes

property list, admin list to read, admin to add/delete new properties, or
show a property setting and sequence number for all
users and groups.

protect super

protects list super access is required to use the -a, -g, and -u flags.

proxy none Must be connected to a Perforce Proxy.

prune write For stream owner.

pull super

push read or write read on the local server or write on the remote server.

reconcile open

reload open admin access is required to use p4 reload -f to reload
other users' workspaces and labels.

remote open or list or
admin

open or list to use the -o option or admin to use the -f
option.

remotes list

rename read or write read for fromFile or write for toFile.

renameuser super

reopen open

replicate super

resolve open

resolved open

restore admin

resubmit write or admin write or admin for -i option.

revert list

review review This command doesn’t operate on specific files.
Permission is granted to run the command if the user
has the specified access to at least one file in any depot.

Chapter 5. Securing the Server

Helix Versioning Engine Administrator Guide: Fundamentals 101

Command Access Level Notes

reviews list This command doesn’t operate on specific files.
Permission is granted to run the command if the user
has the specified access to at least one file in any depot.

server super

serverid list super access is required to set the server ID.

servers list

set none

shelve open admin access is required to forcibly delete shelved files
with p4 shelve -f -d

sizes list

status open

stream open

streams list

submit write

switch open or list or
write

open to use the -c or -r options, or list to use the -L, or
write for default switching.

sync read

tag list

tickets none

triggers super

trust none

typemap admin The -o flag to this command, which allows the form to
be read but not edited, requires only list access.

unload open admin access is required to use p4 unload -f to unload
other users' workspaces and labels.

unlock open The -f flag to override existing metadata or other users'
data requires admin access.

unshelve open

unsubmit admin

Chapter 5. Securing the Server

102 Helix Versioning Engine Administrator Guide: Fundamentals

Command Access Level Notes

unzip admin

update list

user list This command doesn’t operate on specific files.
Permission is granted to run the command if the user
has the specified access to at least one file in any depot.

The -f flag (which is used to create or edit users)
requires super access.

users list This command doesn’t operate on specific files.
Permission is granted to run the command if the user
has the specified access to at least one file in any depot.

If the run.users.authorize configurable is set to 1, you
must also authenticate yourself to the server before you
can run p4 users.

verify admin

where list This command doesn’t operate on specific files.
Permission is granted to run the command if the user
has the specified access to at least one file in any depot.

workspace list

workspaces list

zip super

Commands that list files, such as p4 describe, list only those files to which the user has at least list
access.

Some commands (for example, p4 change, when you edit a previously submitted changelist)
take a -f flag that can only be used by Perforce superusers. See “Forcing operations with the -f
flag” on page 127 for details.

Helix Versioning Engine Administrator Guide: Fundamentals 103

Chapter 6 Backup and Recovery
The Perforce service stores two kinds of data: versioned files and metadata.

• Versioned files are files submitted by Perforce users. Versioned files are stored in directory trees called
depots.

There is one subdirectory under the server’s root directory for each depot in your Perforce
installation. The versioned files for a given depot are stored in a tree of directories beneath this
subdirectory.

• Database files store metadata, including changelists, opened files, client workspace specifications,
branch mappings, and other data concerning the history and present state of the versioned files.

Database files appear as db.* files in the top level of the server root directory. Each db.* file contains
a single, binary-encoded database table.

This chapter describes the commands and processes you use to backup and recover your Perforce
server. For information about backup and recovery of distributed systems, see Helix Versioning Engine
Administrator Guide: Multi-site Deployment.

Backup and recovery concepts
Disk space shortages, hardware failures, and system crashes can corrupt any of the Perforce server’s
files. That’s why the entire Perforce root directory structure (your versioned files and your database)
must be backed up regularly.

The versioned files are stored in subdirectories beneath your Perforce server root, and can be restored
directly from backups without any loss of integrity.

The files that constitute the Perforce database, on the other hand, are not guaranteed to be in a state
of transactional integrity if archived by a conventional backup program. Restoring the db.* files from
regular system backups can result in an inconsistent database. The only way to guarantee the integrity
of the database after it’s been damaged is to reconstruct the db.* files from Perforce checkpoint and
journal files:

• A checkpoint is a snapshot or copy of the database at a particular moment in time.

• A journal is a log of updates to the database since the last snapshot was taken.

The checkpoint file is often much smaller than the original database, and it can be made smaller still
by compressing it. The journal file, on the other hand, can grow quite large; it is truncated whenever
a checkpoint is made, and the older journal is renamed. The older journal files can then be backed up
offline, freeing up more space locally.

Both the checkpoint and journal are text files, and have the same format. A checkpoint and (if
available) its subsequent journal can restore the Perforce database.

Warning Checkpoints and journals archive only the Perforce database files, not the versioned
files stored in the depot directories!

You must always back up the depot files (your versioned file tree) with the
standard OS backup commands after checkpointing.

http://www.perforce.com/perforce/r16.1/manuals/p4dist/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4dist/index.html

Chapter 6. Backup and Recovery

104 Helix Versioning Engine Administrator Guide: Fundamentals

Because the information stored in the Perforce database is as irreplaceable as your versioned files,
checkpointing and journaling are an integral part of administering Perforce, and must be part of your
regular backup cycle.

Checkpoint files
A checkpoint is a file that contains all information necessary to re-create the metadata in the Perforce
database. When you create a checkpoint, the Perforce database is locked, enabling you to take an
internally consistent snapshot of that database.

Versioned files are backed up separately from checkpoints. This means that a checkpoint does not
contain the contents of versioned files, and as such, you cannot restore any versioned files from a
checkpoint. You can, however, restore all changelists, labels, jobs, and so on, from a checkpoint.

To guarantee database integrity upon restoration, the checkpoint must be as old as, or older than, the
versioned files in the depot. This means that the database must be checkpointed, and the checkpoint
generation must be complete, before the backup of the versioned files starts.

Regular checkpointing is important to keep the journal from getting too long. Making a checkpoint
immediately before backing up your system is good practice.

Creating a checkpoint

Checkpoints are not created automatically; someone or something must run the checkpoint command
on the Perforce server machine. To create a checkpoint, invoke the p4d program with the -jc (journal-
create) flag:

$ p4d -r server_root -jc

You can create a checkpoint while the Perforce service (p4d) is running. The checkpoint is created in
your server root directory (that is, P4ROOT if no server_root is specified).

To make the checkpoint, p4d locks the database and then dumps its contents to a file named
checkpoint.n in the P4ROOT directory, where n is a sequence number.

Before unlocking the database, p4d also copies (on UNIX where the journal is uncompressed, renames)
the journal file to a file named journal.n-1 in the P4ROOT directory (regardless of the directory in
which the current journal is stored), and then truncates the current journal. The MD5 checksum of the
checkpoint is written to a separate file, checkpoint.n.md5, and the lastCheckpointAction counter is
updated to reflect successful completion.

Note When verifying the MD5 signature of a compressed checkpoint, the checkpoint
must first be uncompressed into a form that reflects the line ending convention
native to the system that produced the checkpoint. (That is, a compressed
checkpoint generated by a Windows server should have CR/LF line endings, and a
compressed checkpoint generated on a UNIX system should have LF line endings.)

This guarantees that the last checkpoint (checkpoint.n) combined with the current journal (journal)
always reflects the full contents of the database at the time the checkpoint was created.

Chapter 6. Backup and Recovery

Helix Versioning Engine Administrator Guide: Fundamentals 105

The sequence numbers reflect the roll-forward nature of the journal. To restore databases to older
checkpoints, match the sequence numbers. That is, you can restore the state of the Perforce server as
it was when checkpoint.6 was taken by restoring checkpoint.5 and then loading journal.5 which
contains all the changes made between checkpoint.5 and checkpoint.6. In most cases, you’re only
interested in restoring the current database, which is reflected by the highest-numbered checkpoint.n
rolled forward with the changes in the current journal.

To specify a prefix or directory location for the checkpoint and journal, use the -jc option. For
example, you might create a checkpoint with:

$ p4d -jc prefix

In this case, your checkpoint and journal files are named prefix.ckp.n and prefix.jnl.n respectively,
where prefix is as specified on the command line and n is a sequence number. If no prefix is
specified, the default filenames checkpoint.n and journal.n are used. You can store checkpoints and
journals in the directory of your choice by specifying the directory as part of the prefix. For example:

$ p4 -r . -J /where/my/journal/lives/journal -z -jc
 /Users/bruges/server151/checkpoints/mybackup

returns

Checkpointing to /Users/bruges/server151/checkpoints/mybackup.ckp.299.gz...
MD5 (/Users/bruges/server151/checkpoints/mybackup.ckp.299) = 5D7D8E548D080B16ECB66AD6CE0F2E5D
Rotating journal to /Users/bruges/server151/checkpoints/mybackup.jnl.298.gz...

You can also specify the prefix for a server with:

$ p4 configure set journalPrefix=prefix

When the journalPrefix configurable is set, the configured prefix takes precedence over the default
filenames. This behavior is particularly useful in multi-server and replicated environments.

To create a checkpoint without being logged in to the machine running the Perforce service, use the
command:

$ p4 admin checkpoint [-z | -Z] [prefix]

Running p4 admin checkpoint is equivalent to p4d -jc except that using p4 admin checkpoint
requires that you be connected to the server. You must be a Perforce superuser to use p4 admin.

You can set up an automated program to create your checkpoints on a regular schedule. Be sure to
always check the program’s output to ensure that checkpoint creation was started. Compare the
checkpoint’s actual MD5 checksum with that recorded in the .md5 file, and back up the .md5 file along
with the checkpoint. After successful creation, a checkpoint file can be compressed, archived, or moved

Chapter 6. Backup and Recovery

106 Helix Versioning Engine Administrator Guide: Fundamentals

onto another disk. At that time or shortly thereafter, back up the versioned files stored in the depot
subdirectories.

To restore from a backup, the checkpoint must be at least as old as the files in the depots, that is, the
versioned files can be newer than the checkpoint, but not the other way around. As you might expect,
the shorter this time gap, the better.

If the checkpoint command itself fails, contact Perforce technical support immediately. Checkpoint
failure is usually a symptom of a resource problem (disk space, permissions, and so on) that can put
your database at risk if not handled correctly.

Note You can verify the integrity of a checkpoint using the p4d -jv command.

Journal files
The journal is the running transaction log that keeps track of all database modifications since the last
checkpoint. It’s the bridge between two checkpoints.

If you have Monday’s checkpoint and the journal that was collected from then until Wednesday,
those two files (Monday’s checkpoint plus the accumulated journal) contain the same information as
a checkpoint made Wednesday. If a disk crash were to cause corruption in your Perforce database
on Wednesday at noon, for instance, you could still restore the database even though Wednesday’s
checkpoint hadn’t yet been made.

Warning By default, the current journal filename is journal, and the file resides in the P4ROOT
directory. However, if a disk failure corrupts that root directory, your journal file
will be inaccessible too.

We strongly recommend that you set up your system so that the journal is written
to a filesystem other than the P4ROOT filesystem. To do this, specify the name of the
journal file in the environment variable P4JOURNAL or use the -J filename flag when
starting p4d.

To restore your database, you only need to keep the most recent journal file accessible, but it doesn’t
hurt to archive old journals with old checkpoints, should you ever need to restore to an older
checkpoint.

Journaling is automatically enabled on all Windows and UNIX platforms. If P4JOURNAL is left unset
(and no location is specified on the command line), the default location for the journal is $P4ROOT/
journal.

The journal file grows until a checkpoint is created; you’ll need make regular checkpoints to control
the size of the journal file. An extremely large current journal is a sign that a checkpoint is needed.

Every checkpoint after your first checkpoint starts a new journal file and renames the old one. The old
journal is renamed to journal.n, where n is a sequence number, and a new journal file is created.

By default, the journal is written to the file journal in the server root directory (P4ROOT. Because there
is no sure protection against disk crashes, the journal file and the Perforce server root should be located

Chapter 6. Backup and Recovery

Helix Versioning Engine Administrator Guide: Fundamentals 107

on different filesystems, ideally on different physical drives. The name and location of the journal can
be changed by specifying the name of the journal file in the environment variable P4JOURNAL or by
providing the `-J filename] flag to p4d.

Warning If you create a journal file with the -J filename flag, make sure that subsequent
checkpoints use the same file, or the journal will not be properly renamed.

Whether you use P4JOURNAL or the -J journalfile option to p4d, the journal filename can be provided
either as an absolute path, or as a path relative to the server root.

Example 6.1. Specifying journal files

Starting the service with:

$ p4d -r $P4ROOT -p 1666 -J /usr/local/perforce/journalfile
Perforce Server starting...

requires that you either checkpoint with:

$ p4d -r $P4ROOT -J /usr/local/perforce/journalfile -jc
Checkpointing to checkpoint.19...
Saving journal to journal.18...
Truncating /usr/local/perforce/journalfile...

or set P4JOURNAL to /usr/local/perforce/journalfile and use the following command:

$ p4d -r $P4ROOT -jc
Checkpointing to checkpoint.19...
MD5(checkpoint.19)=48769A82387B04987568309823E784C9
Rotating /usr/local/perforce/journalfile to journal.18

If your P4JOURNAL environment variable (or command-line specification) doesn’t match the setting used
when you started the Perforce service, the checkpoint is still created, but the journal is neither saved
nor truncated. This is highly undesirable!

Checkpoint and journal history

You can use the p4 journals command to display the history of checkpoint and journal activity for
the server. This history includes information about the following events: the server takes a checkpoint,
journal rotation, journal replay, checkpoint scheduling. For detailed information about command
output and options, see the description of the p4 journals command in the P4 Command Reference.

Verifying journal integrity

You can verify the integrity of a checkpoint using the p4d -jv command.

http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

Chapter 6. Backup and Recovery

108 Helix Versioning Engine Administrator Guide: Fundamentals

Automating maintenance work after journal rotation

To configure Perforce to run trigger scripts when journals are rotated, use the journal-rotate and
journal-rotate-lock type triggers. Journal-rotate triggers are executed after the journal is rotated on
a running server, but only if journals are rotated with the p4 admin journal or p4 admin checkpoint
commands. Journals are not rotated if you invoke the p4d -jc or p4d --jj commands.

Journal-rotate triggers allow you to run maintenance routines on servers after the journal has been
rotated, either while the database tables are still locked or after the locks have been released. These
triggers are intended to be used on replicas or edge servers where journal rotation is triggered by
journal records. The server must be running for these triggers to be invoked.

See “Triggering on journal rotation” on page 202 for more information.

Disabling journaling

To disable journaling, stop the service, remove the existing journal file (if it exists), set the environment
variable P4JOURNAL to off, and restart p4d without the -J flag.

Versioned files
Your checkpoint and journal files are used to reconstruct the Perforce database files only. Your
versioned files are stored in directories under the Perforce server root, and must be backed up
separately.

Versioned file formats

Versioned files are stored in subdirectories beneath your server root. Text files are stored in RCS
format, with filenames of the form filename,v. There is generally one RCS-format (,v) file per text file.
Binary files are stored in full in their own directories named filename,d. Depending on the Perforce
file type selected by the user storing the file, there can be one or more archived binary files in each
filename,d directory. If more than one file resides in a filename,d directory, each file in the directory
refers to a different revision of the binary file, and is named 1.n, where n is the revision number.

Perforce also supports the AppleSingle file format for Macintosh. These files are stored in full and
compressed, just like other binary files. They are stored in the Mac’s AppleSingle file format; if need
be, the files can be copied directly from the server root, uncompressed, and used as-is on a Macintosh.

Because Perforce uses compression in the depot file tree, do not assume compressibility of the data
when sizing backup media. Both text and binary files are either compressed by p4d (and are denoted
by the .gz suffix) before storage, or they are stored uncompressed. At most installations, if any binary
files in the depot subdirectories are being stored uncompressed, they were probably incompressible to
begin with. (For example, many image, music, and video file formats are incompressible.)

Backing up after checkpointing

In order to ensure that the versioned files reflect all the information in the database after a post-crash
restoration, the db.* files must be restored from a checkpoint that is at least as old as (or older than)
your versioned files. For this reason, create the checkpoint before backing up the versioned files in the
depot directory or directories.

Chapter 6. Backup and Recovery

Helix Versioning Engine Administrator Guide: Fundamentals 109

Although your versioned files can be newer than the data stored in your checkpoint, it is in your best
interest to keep this difference to a minimum; in general, you’ll want your backup script to back up
your versioned files immediately after successfully completing a checkpoint.

Backup procedures
To back up your Perforce installation, perform the following steps as part of your nightly backup
procedure.

1. Verify the integrity of your server:

$ p4 verify //...

You might want to use the -q (quiet) option with p4 verify. If called with the -q option, p4 verify
produces output only when errors are detected.

By running p4 verify before the backup, you verify that the archive data on the server is correct
and has not been damaged since the files were submitted.

Regular use of p4 verify is good practice not only because it enables you to spot any corruption
before a backup, but also because it gives you the ability, following a crash, to determine whether
or not the files restored from your backups are in good condition.

Note For large installations, p4 verify might take some time to run. Furthermore,
the server is under heavy load when p4 verify is verifying files, which can
impact the performance of other Perforce commands. Administrators of large
sites might choose to perform p4 verify on a weekly basis, rather than a nightly
basis.

For more about the p4 verify command, see “Verifying files by
signature” on page 31.

2. Make a checkpoint by invoking p4d with the -jc (journal-create) flag, or by using the p4 admin
command. Use one of:

$ p4d -jc

or:

$ p4 admin checkpoint

Because p4d locks the entire database when making the checkpoint, you do not generally have to
stop the Perforce service during any part of the backup procedure.

Note If your site is very large (gigabytes of db.* files), creating a checkpoint might
take a considerable length of time.

Chapter 6. Backup and Recovery

110 Helix Versioning Engine Administrator Guide: Fundamentals

Under such circumstances, you might want to defer checkpoint creation and
journal truncation until times of low system activity. You might, for instance,
archive only the journal file in your nightly backup and only create checkpoints
and roll the journal file on a weekly basis.

3. Ensure that the checkpoint has been created successfully before backing up any files. (After a disk
crash, the last thing you want to discover is that the checkpoints you’ve been backing up for the
past three weeks were incomplete!)

You can tell that the checkpoint command has completed successfully by examining the error code
returned from p4d -jc (or p4d admin checkpoint) or by observing the truncation of the current
journal file. You can also use the command p4d -jv to verify the integrity of a checkpoint.

4. Confirm that the checkpoint was correctly written to disk by comparing the MD5 checksum of the
checkpoint with the .md5 file created by the checkpoint process.

The checksum in the .md5 file corresponds to the checksum of the file as it existed before any
compression was applied, and assumes UNIX-style line endings even if the service is hosted on
Windows.

If your checkpoint file was created with the -z compression option, you might need to decompress
it and account for line ending differences. On Windows, after decompressing a checkpoint,
Windows line endings must be re-added before calculating the .md5 sum.

5. Once the checkpoint has been created successfully, back up the checkpoint file, its .md5 file, the
rotated journal file, and your versioned files. (In most cases, you don’t actually need to back up
the journal, but it is usually good practice to do so. If the checkpoint is n, the rotated journal is
journal.n-1.)

Note There are rare instances (for instance, users obliterating files during backup,
or submitting files on Windows servers during the file backup portion of
the process) in which your versioned file tree can change during the interval
between the time the checkpoint was taken and the time at which the versioned
files are backed up by the backup utility.

Most sites are unaffected by these issues. Having Perforce available on a 24/7
basis is generally a benefit worth this minor risk, especially if backups are being
performed at times of low system activity.

If, however, the reliability of every backup is of paramount importance, consider
stopping the Perforce service before checkpointing, and restart it only after the
backup process has completed. Doing so will eliminate any risk of the system
state changing during the backup process.

You never need to back up the db.* files. Your latest checkpoint and journal
contain all the information necessary to re-create them. More significantly,
a database restored from db.* files is not guaranteed to be in a state of
transactional integrity. A database restored from a checkpoint is.

Chapter 6. Backup and Recovery

Helix Versioning Engine Administrator Guide: Fundamentals 111

Note On Windows, if you make your system backup while the Perforce service is
running, you must ensure that your backup program doesn’t attempt to back up
the db.* files.

If you try to back up the db.* files with a running server, Windows locks them
while the backup program backs them up. During this brief period, Perforce is
unable to access the files; if a user attempts to perform an operation that would
update the file, the server can fail.

If your backup software doesn’t allow you to exclude the db.* files from the
backup process, stop the server with p4 admin stop before backing up, and
restart the service after the backup process is complete.

6. If you have used the p4 serverid command to identify your server with a server.id file, the
server.id file (which exists in the server’s root directory) must be backed up.

Recovery procedures
If the database files become corrupted or lost either because of disk errors or because of a hardware
failure such as a disk crash, the database can be re-created with your stored checkpoint and journal.

There are many ways in which systems can fail. Although this guide cannot address all failure
scenarios, it can at least provide a general guideline for recovery from the two most common
situations, specifically:

• corruption of your Perforce database only, without damage to your versioned files

• corruption to both your database and versioned files.

The recovery procedures for each failure are slightly different and are discussed separately in the
following two sections.

If you suspect corruption in either your database or versioned files, contact Perforce technical support.

Database corruption, versioned files unaffected
If only your database has been corrupted, (that is, your db.* files were on a drive that crashed, but you
were using symbolic links to store your versioned files on a separate physical drive), you need only re-
create your database.

You will need:

• The last checkpoint file, which should be available from the latest P4ROOT directory backup. If, when
you backed up the checkpoint, you also backed up its corresponding .md5 file, you can confirm that
the checkpoint was restored correctly by comparing its checksum with the contents of the restored
.md5 file.

• The current journal file, which should be on a separate filesystem from your P4ROOT directory, and
which should therefore have been unaffected by any damage to the filesystem where your P4ROOT
directory was held.

Chapter 6. Backup and Recovery

112 Helix Versioning Engine Administrator Guide: Fundamentals

You will not need:

• Your backup of your versioned files; if they weren’t affected by the crash, they’re already up to date.

To recover the database

1. Stop the current instance of p4d:

$ p4 admin stop

(You must be a Perforce superuser to use p4 admin.)

2. Rename (or move) the database (db.*) files:

$ mv your_root_dir /db.* /tmp

There can be no db.* files in the P4ROOT directory when you start recovery from a checkpoint.
Although the old db.* files are never used during recovery, it’s good practice not to delete them
until you’re certain your restoration was successful.

3. Verify the integrity of your checkpoint using a command like the following:

$ p4d -jv my_checkpoint_file

The command tests the following:

• Can the checkpoint be read from start to finish?

• If it’s zipped can it be successfully unzipped?

• If it has an MD5 file with its MD5, does it match?

• Does it have the expected header and trailer?

Use the -z flag with the -jv flag to verify the integrity of compressed checkpoints.

4. Invoke p4d with the -jr (journal-restore) flag, specifying your most recent checkpoint and current
journal. If you explicitly specify the server root (P4ROOT), the -r $P4ROOT argument must precede
the -jr flag. Also, because the p4d process changes its working directory to the server root upon
startup, any relative paths for the checkpoint_file and journal_file must be specified relative to
the P4ROOT directory:

$ p4d -r $P4ROOT -jr checkpoint_file journal_file

This recovers the database as it existed when the last checkpoint was taken, and then applies the
changes recorded in the journal file since the checkpoint was taken.

Chapter 6. Backup and Recovery

Helix Versioning Engine Administrator Guide: Fundamentals 113

Note If you’re using the -z (compress) option to compress your checkpoints upon
creation, you’ll have to restore the uncompressed journal file separately from the
compressed checkpoint.

That is, instead of using:

$ p4d -r $P4ROOT -jr checkpoint_file journal_file

you’ll use two commands:

$ p4d -r $P4ROOT -z -jr checkpoint_file.gz
$ p4d -r $P4ROOT -jr journal_file

You must explicitly specify the .gz extension yourself when using the -z flag, and
ensure that the -r $P4ROOT argument precedes the -jr flag.

Check your system

Your restoration is complete. See “Ensuring system integrity after any restoration” on page 115 to
make sure your restoration was successful.

Your system state

The database recovered from your most recent checkpoint, after you’ve applied the accumulated
changes stored in the current journal file, is up to date as of the time of failure.

After recovery, both your database and your versioned files should reflect all changes made
up to the time of the crash, and no data should have been lost. If restoration was successful, the
lastCheckpointAction counter will indicate "checkpoint completed".

Both database and versioned files lost or damaged
If both your database and your versioned files were corrupted, you need to restore both the database
and your versioned files, and you’ll need to ensure that the versioned files are no older than the
restored database.

You will need:

• The last checkpoint file, which should be available from the latest P4ROOT directory backup. If, when
you backed up the checkpoint, you also backed up its corresponding .md5 file, you can confirm that
the checkpoint was restored correctly by comparing its checksum with the contents of the restored
.md5 file.

• Your versioned files, which should be available from the latest P4ROOT directory backup.

You will not need:

• Your current journal file.

Chapter 6. Backup and Recovery

114 Helix Versioning Engine Administrator Guide: Fundamentals

The journal contains a record of changes to the metadata and versioned files that occurred between the
last backup and the crash. Because you’ll be restoring a set of versioned files from a backup taken before
that crash, the checkpoint alone contains the metadata useful for the recovery, and the information in
the journal is of limited or no use.

To recover the database

1. Stop the current instance of p4d:

$ p4 admin stop

(You must be a Perforce superuser to use p4 admin.)

2. Rename (or move) the corrupt database (db.*) files:

$ mv your_root_dir /db.* /tmp

The corrupt db.* files aren’t actually used in the restoration process, but it’s safe practice not to
delete them until you’re certain your restoration was successful.

3. Compare the MD5 checksum of your most recent checkpoint with the checksum generated at the
time of its creation, as stored in its corresponding .md5 file.

The .md5 file written at the time of checkpointing holds the checksum of the file as it existed before
any compression was applied, and assumes UNIX-style line endings even if the service is hosted
on Windows. (If your checkpoint file was created with the -z compression option, you may need to
decompress them and account for line ending differences.)

4. Invoke p4d with the -jr (journal-restore) flag, specifying only your most recent checkpoint:

$ p4d -r $P4ROOT -jr checkpoint_file

This recovers the database as it existed when the last checkpoint was taken, but does not apply
any of the changes in the journal file. (The -r $P4ROOT argument must precede the -jr flag. Also,
because the p4d process changes its working directory to the server root upon startup, any relative
paths for the checkpoint_file must be specified relative to the P4ROOT directory.)

The database recovery without the roll-forward of changes in the journal file brings the database up
to date as of the time of your last backup. In this scenario, you do not want to apply the changes in
the journal file, because the versioned files you restored reflect only the depot as it existed as of the
last checkpoint.

To recover your versioned files

1. After you recover the database, you then need to restore the versioned files according to your
system’s restoration procedures (for instance, the UNIX restore(1) command) to ensure that they
are as new as the database.

Chapter 6. Backup and Recovery

Helix Versioning Engine Administrator Guide: Fundamentals 115

Check your system

Your restoration is complete. See “Ensuring system integrity after any restoration” on page 115 to
make sure your restoration was successful.

Files submitted to the depot between the time of the last system backup and the disk crash will not be
present in the restored depot.

Note Although "new" files (submitted to the depot but not yet backed up) do not appear
in the depot after restoration, it’s possible (indeed, highly probable!) that one or
more of your users will have up-to-date copies of such files present in their client
workspaces.

Your users can find such files by using the following Perforce command to examine
how files in their client workspaces differ from those in the depot. If they run…

$ p4 diff -se

…they’ll be provided with a list of files in their workspace that differ from the files
Perforce believes them to have. After verifying that these files are indeed the files
you want to restore, you may want to have one of your users open these files for
edit and submit the files to the depot in a changelist.

Your system state

After recovery, your depot directories might not contain the newest versioned files. That is, files
submitted after the last system backup but before the disk crash might have been lost.

• In most cases, the latest revisions of such files can be restored from the copies still residing in your
users' client workspaces.

• In a case where only your versioned files (but not the database, which might have resided on a
separate disk and been unaffected by the crash) were lost, you might also be able to make a separate
copy of your database and apply your journal to it in order to examine recent changelists to track
down which files were submitted between the last backup and the disk crash.

In either case, contact Perforce Technical Support for further assistance.

Ensuring system integrity after any restoration
After any restoration, use the command:

$ p4 counter lastCheckpointAction

to confirm that the lastCheckpointAction counter has been updated to reflect the date and time of the
checkpoint completion.

You should also run p4 verify to ensure that the versioned files are at least as new as the database:

Chapter 6. Backup and Recovery

116 Helix Versioning Engine Administrator Guide: Fundamentals

$ p4 verify -q //...

This command verifies the integrity of the versioned files. The -q (quiet) option tells the command to
produce output only on error conditions. Ideally, this command should produce no output.

If any versioned files are reported as MISSING by the p4 verify command, you’ll know that there
is information in the database concerning files that didn’t get restored. The usual cause is that you
restored from a checkpoint and journal made after the backup of your versioned files (that is, that your
backup of the versioned files was older than the database).

If (as recommended) you’ve been using p4 verify as part of your backup routine, you can run p4
verify after restoration to reassure yourself that the restoration was successful.

If you have any difficulties restoring your system after a crash, contact Perforce Technical Support for
assistance.

Helix Versioning Engine Administrator Guide: Fundamentals 117

Chapter 7 Monitoring the Server
This chapter describes how you use p4d commands to monitor the server and its resources:

• You use the p4 diskspace command to monitor diskspace usage.

• You use the p4 monitor command to monitor processes.

• You set server trace flags with the p4d startup command to diagnose problems.

• You examine logs to track commands that exceed predetermined thresholds of resource usage.

• You use the p4 monitor command to display information about locked files.

• You use the P4AUDIT environment variable to enable the auditing of file access.

• You use a variety of logging commands to log information and manage log files.

Monitoring disk space usage
Use the p4 diskspace command to monitor diskspace usage. By default, p4 diskspace displays the
amount of free space, diskspace used, and total capacity of any filesystem used by Perforce.

By default, the Perforce Server rejects commands when free space on the filesystems housing
the P4ROOT, P4JOURNAL, P4LOG, or TEMP fall below 10 megabytes. To change this behavior, set the
filesys.P4ROOT.min (and corresponding) configurables to your desired limits:

Configurable Default Value Meaning

filesys.P4ROOT.min 10M Minimum diskspace required on server root
filesystem before server rejects commands.

filesys.P4JOURNAL.min 10M Minimum diskspace required on server journal
filesystem before server rejects commands.

filesys.P4LOG.min 10M Minimum diskspace required on server log
filesystem before server rejects commands.

filesys.TEMP.min 10M Minimum diskspace required for temporary
operations before server rejects commands.

filesys.depot.min 10M Minimum diskspace required for any depot before
server rejects commands. (If there is less than
filesys.depot.min diskspace available for any
one depot, commands are rejected for transactions
involving all depots.)

If the user account that runs the Perforce Server process is subject to disk quotas, the Server observes
these quotas with respect to the filesys.*.min configurables, regardless of how much physical free
space remains on the filesystem(s) in question. The next section explains the options you have in
reconfiguring default values.

Chapter 7. Monitoring the Server

118 Helix Versioning Engine Administrator Guide: Fundamentals

Specifying values for filesys configurables
In specifying filesys.*.min values, you have the option of specifying an absolute number or a
percentage indicating a portion of the current space. So, there are six possible numeric formats you can
use, as shown in the following table:

Format Meaning

nnn A plain number, used as is.

nnnK A number in kilobytes

For example, the following command sets filesys.P4TEMP.min to 100
kilobytes.

$ p4 configure set filesys.P4TEMP.min=100K

nnnM A number in megabytes

For example, the following command sets filesys.P4ROOT.min to 10
megabytes.

$ p4 configure set filesys.P4ROOT.min=10M

nnnG A number in gigabytes.

For example, the following command sets filesys.P4JOURNAL.min to 1
gigabytes.

$ p4 configure set filesys.P4JOURNAL.min=1G

nnnT A number in terabytes.

nnn% A number as a percentage of the current space.

For example, the following command means that at least ten percent of the
total disk space must be free and available for P4ROOT.

$ p4 configure set filesys.P4ROOT.min=10%

Determining available disk space
To estimate how much disk space is currently occupied by specific files in a depot, use the p4 sizes
command with a block size corresponding to that used by your storage solution. For example, the
command:

Chapter 7. Monitoring the Server

Helix Versioning Engine Administrator Guide: Fundamentals 119

$ p4 sizes -a -s -b 512 //depot/...

shows the sum (-s) of all revisions (-a) in //depot/..., as calculated with a block size of 512 bytes.

//depot/... 34161 files 277439099 bytes 5429111 blocks

The data reported by p4 sizes actually reflects the diskspace required when files are synced to a client
workspace, but can provide a useful estimate of server-side diskspace consumption.

Monitoring processes
Use the p4 monitor command to observe and control Perforce-related processes running on your
Perforce server machine.

The following sections explain how you enable process monitoring and list running processes,.

Enabling process monitoring
Server process monitoring requires minimal system resources, but you must enable process
monitoring for p4 monitor to work. To monitor all active commands, set the monitor configurable as
follows:

$ p4 configure set monitor=1

Additional settings offer more options:

• 0: Server process monitoring off. (Default)

• 2: monitor both active commands and idle connections.

• 5: monitor both active commands and idle connections, including a list of the files locked by the
command for more than one second.

• 10: monitor both active commands and idle connections, including a list of the files locked by the
command for more than one second, with lock wait times included in the lock information.

• 25: monitor both active commands and idle connections, including a list of the files locked by the
command for any duration, with lock wait times included in the lock information.

How you set up monitoring levels 5, 10, and 25, depends on the platform where the server is running.
See the description of the p4 monitor command in P4 Command Reference for more information.

Enabling idle processes monitoring
By default, IDLE processes (often associated with custom applications based on the Perforce API)
are not included in the output of p4 monitor. To include idle processes in the default output of p4
monitor, use monitoring level 2.

http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

Chapter 7. Monitoring the Server

120 Helix Versioning Engine Administrator Guide: Fundamentals

$ p4 configure set monitor=2

To display idle processes, use the command:

$ p4 monitor show -s I

Listing running processes
To list the processes monitored by the Perforce server, use the command:

$ p4 monitor show

To restrict the display to processes currently in the running state, use the command:

$ p4 monitor show -s R

By default, each line of p4 monitor output looks like this:

pid status owner hh:mm:ss command [args]

where pid is the UNIX process ID (or Windows thread ID), status is R or T depending on whether the
process is running or marked for termination, owner is the Perforce user name of the user who invoked
the command, hh:mm:ss is the time elapsed since the command was called, and command and args are
the command and arguments as received by the Perforce server. For example:

$ p4 monitor show
74612 R qatool 00:00:47 job
78143 R edk 00:00:01 filelog
78207 R p4admin 00:00:00 monitor

To show the arguments with which the command was called, use the -a (arguments) flag:

$ p4 monitor show -a
74612 R qatool 00:00:48 job job004836
78143 R edk 00:00:02 filelog //depot/main/src/proj/file1.c //dep
78208 R p4admin 00:00:00 monitor show -a

To obtain more information about user environment, use the -e flag. The -e flag produces output of
the form:

pid client IP-address status owner workspace hh:mm:ss command [args]

Chapter 7. Monitoring the Server

Helix Versioning Engine Administrator Guide: Fundamentals 121

where client is the Perforce application (and version string or API protocol level), IP-address is the IP
address of the user’s Perforce application, and workspace is the name of the calling user’s current client
workspace setting. For example:

$ p4 monitor show -e
74612 p4/2011.1 192.168.10.2 R qatool buildenvir 00:00:47 job
78143 192.168.10.4 R edk eds_elm 00:00:01 filelog
78207 p4/2011.1 192.168.10.10 R p4admin p4server 00:00:00 monitor

By default, all user names and (if applicable) client workspace names are truncated at 10 characters,
and lines are truncated at 80 characters. To disable truncation, use the -l (long-form) option:

$ p4 monitor show -a -l
74612 R qatool 00:00:50 job job004836
78143 R edk 00:00:04 filelog //depot/main/src/proj/file1.c //dep
ot/main/src/proj/file1.mpg
78209 R p4admin 00:00:00 monitor show -a -l

Only Perforce administrators and superusers can use the -a, -l, and -e options.

Setting server trace and tracking flags
To modify the behavior of command tracing or performance tracking, specify the appropriate -v
subsystem=value flag to the p4d startup command. Use P4LOG or the -L `logfile` flag to specify the
log file. For example:

$ p4d -r /usr/perforce -v server=2 -p 1666 -L /usr/perforce/logfile

Before you activate logging, make sure that you have adequate disk space.

Note When running Perforce as a Windows service, use the p4 set command to set
P4DEBUG as a registry variable. You can also set these trace flags when running
p4d.exe as a server process from the command line.

Setting server debug levels on a Perforce server (p4d) has no effect on the debug level of a Perforce
Proxy (p4p) process, and vice versa.

Higher levels of the Perforce server command tracing and tracking flags are typically recommended
only for system administrators working with Perforce Technical Support to diagnose or investigate
problems.

Command tracing

The server command trace flags and their meanings are as follows.

Chapter 7. Monitoring the Server

122 Helix Versioning Engine Administrator Guide: Fundamentals

Trace flag Meaning

server=0 Disable server command logging.

server=1 Logs server commands to the server log file.

(As of release 2011.1, this is the default setting.)

server=2 In addition to data logged at level 1, logs server command completion and basic
information on CPU time used. Time elapsed is reported in seconds. On UNIX, CPU
usage (system and user time) is reported in milliseconds, as per getrusage().

server=3 In addition to data logged at level 2, adds usage information for compute phases of
p4 sync and p4 flush (p4 sync -k) commands.

For command tracing, output appears in the specified log file, showing the date, time, username, IP
address, and command for each request processed by the server.

Performance tracking
The Perforce Server produces diagnostic output in the server log whenever user commands exceed
certain predetermined thresholds of resource usage. Performance tracking is enabled by default, and
if P4DEBUG is unset (or the tracking flag is not specified on the command line), the tracking level is
computed based on the number of users in the license file.

Tracking flag Meaning

track=0 Turn off tracking.

track=1 Track all commands.

track=2 Track excess usage for a server with less than 10 users.

track=3 Track excess usage for a server with less than 100 users.

track=4 Track excess usage for a server with less than 1000 users.

track=5 Track excess usage for a server with more than 1000 users.

The precise format of the tracking output is undocumented and subject to change.

Showing information about locked files
You can use the -L option of the p4 monitor to show information about locked files. The information is
collected only for the duration of the p4 monitor command and is not persisted. See the description of
the p4 monitor command for more information about how to set up this kind of monitoring.

The following sample output to the p4 monitor show -L command, shows the information displayed
about locked files:

Chapter 7. Monitoring the Server

Helix Versioning Engine Administrator Guide: Fundamentals 123

8764 R user 00:00:00 edit
 [server.locks/clients/88,d/ws4(W),db.locks(R),db.rev(R)]
8766 R user 00:00:00 edit
 [server.locks/clients/89,d/ws5(W),db.locks(R),db.rev(R)]
8768 R user 00:00:00 monitor

Following pid, status, owner, and time information, output shows two edit commands that have
various files locked, including the client workspace lock in exclusive mode for the workspaces ws4 and
ws5, and db.locks and db.rev tables in read-only mode.

Auditing user file access
The Perforce Server is capable of logging individual file accesses to an audit logfile. Auditing is
disabled by default, and is only enabled if P4AUDIT is set to point to the location of the audit log file, or
if the server is started with the -A auditlog flag.

When auditing is enabled, the server adds a line to the audit log file every time file content is
transferred from the server to the client. On an active server, the audit log file will grow very quickly.

Lines in the audit log appear in the form:

date time user@client clientIP command file#rev

For example:

$ tail -2 auditlog
2011/05/09 09:52:45 karl@nail 192.168.0.12 diff //depot/src/x.c#1
2011/05/09 09:54:13 jim@stone 127.0.0.1 sync //depot/inc/file.h#1

If a command is run on the machine that runs the Perforce Server, the clientIP is shown as 127.0.0.1.

If you are auditing server activity in a replicated environment, each of your build farm or forwarding
replica servers must have its own P4AUDIT log set.

Logging and structured log files
The Perforce Server can be configured to write log files in a structured (.csv) format. Structured log
files contain more detail than conventional log files, are easier to parse, and the Perforce Server offers
additional commands to help customize your site’s logging configuration. This section summarizes the
commands you use to manage logging, describes the use of structured logs, and explains how log files
are rotated.

Note All p4d error and info logs are in UTF8 for a server in unicode mode. You need an
UTF8 console or editor to properly render this log information.

Chapter 7. Monitoring the Server

124 Helix Versioning Engine Administrator Guide: Fundamentals

Logging commands
You can use the following commands to work with logs.

Command Meaning

p4 logappend If the user log is enabled, write an entry to user.csv

p4 logparse Parse a structured log file and return the logged data in tagged format

p4 logrotate Rotate a named logfile, or, if no name is specified, all server logs. This command
applies only to structured logs; it does not rotate the unstructured P4LOG or
P4AUDIT logs.

p4 logstat Report the file size of the journal (P4JOURNAL, error log (P4LOG), audit log
(P4AUDIT), or the named structured log file.

p4 logtail Output the last block of the error log (P4LOG)

p4 logschema Return a description of the specified log record type.

Enabling structured logging
To enable structured logging, set the serverlog.file.N configurable to the name of the file. Valid
names for structured log files and the information logged are shown in the following table. You can
use a file path in conjunction with the file name.

Warning You must use one of the file names specified in the table. If you use an arbitrary
name, no data will be logged to the file you specify.

Filename Description

all.csv All loggable events (commands, errors, audit, etc…)

audit.csv Audit events (audit, purge)

auth.csv The results of p4 login attempts. If the login failed, the reason for this is included
in the log. Additional information provided by the authentication method is also
included.

commands.csv Command events (command start, compute, and end)

errors.csv Error events (errors-failed, errors-fatal)

events.csv Server events (startup, shutdown, checkpoint, journal rotation, etc.)

integrity.csv Major events that occur during replica integrity checking.

route.csv Log the full network route of authenticated client connections. Errors related to
net.mimcheck are also logged against the related hop.

Chapter 7. Monitoring the Server

Helix Versioning Engine Administrator Guide: Fundamentals 125

Filename Description

track.csv Command tracking (track-usage, track-rpc, track-db)

user.csv User events; one record every time a user runs p4 logappend.

Files do not have to be set in consecutive order; for example, this is fine:

$ p4 configure set serverlog.file.1=audit.csv
$ p4 configure set serverlog.file.2=auth.csv
$ p4 configure set serverlog.file.4=track.csv

Note Enabling all structured logging files can consume considerable diskspace. See
“Structured logfile rotation” on page 125 for information on how to manage the
size of the log file and the number of log rotations.

The value you specify for N may not exceed 500.

Structured logfile rotation
Each of the configured serverlog.file.N files has its own corresponding serverlog.maxmb.N and
serverlog.retain.N configurables. For each configured server log type, these configurables control
the maximum size (in megabytes) of the logfile before rotation, and the number of rotated server logs
retained by the server.

Structured log files are automatically rotated on checkpoint, journal creation, overflow of associated
serverlog.maxmb.N limit (if configured), and the p4 logrotate command. You can disable log rotation
after journal rotation by setting the configurable dm.rotatelogwithinjnl to 0. Disabling this behavior
can help when you’re doing frequent journal rotations and you want the log rotated on a different
schedule.

You can use the serverlog.counter.N configurable to create a counter that tracks the number of times
a structured log file has been rotated. For example, the following command creates a rotation counter
called myErrorsCount:

$ p4 configure set serverlog.counter.3=myErrorsCount

Each time the errors.csv log file is rotated, the counter is increased by one. In addition, the name of
the log file is changed to specify the pre-incremented counter value. That is, if the counter myErrors is
7, the errors.csv file is named errors-6.csv.

You can create a counter for each file described in the preceding table. Do not use system reserved
counter names for your counter: change, maxCommitChange, job, journal, traits, upgrade.

The p4 logtail command returns the current value of the counter when you logtail that log. It also
returns the current size of the log at the end of the output (along with the ending offset in the log). The
size and offset are identical if p4 logtail reads to the end of the log. Security monitoring tools can

Chapter 7. Monitoring the Server

126 Helix Versioning Engine Administrator Guide: Fundamentals

use counters and the p4 logtail command in the process of scanning log files to monitor suspicious
activity.

Helix Versioning Engine Administrator Guide: Fundamentals 127

Chapter 8 Managing the Server and Its Resources
This chapter describes common management, maintenance, and troubleshooting tasks:

• Managing the sharing of code

• Managing distributed development

• Managing users

• Managing changelists

• Backing up a workspace

• Managing disk space

• Managing processes

• Scripted client deployment

• Troubleshooting Windows installations

These are all tasks that go beyond the initial configuration of the server.

Forcing operations with the -f flag
Certain commands support the -f flag, which enables Perforce administrators and superusers to force
certain operations unavailable to ordinary users. Perforce administrators can use this flag with p4
branch, p4 change, p4 client, p4 job, p4 label, and p4 unlock. Perforce superusers can also use it to
override the p4 user command. The usages and meanings of this flag are as follows.

Command Syntax Function

p4 branch p4 branch -f branchname Allows the modification date to be changed
while editing the branch mapping

 p4 branch -f -d branchname Deletes the branch, ignoring ownership

p4 change p4 change -f [changelist#] Allows the modification date to be changed
while editing the changelist specification

 p4 change -f changelist# Allows the description field and username in
a committed changelist to be edited

 p4 change -f -d changelist# Deletes empty, committed changelists

p4 client p4 client -f clientname Allows the modification date to be changed
while editing the client specification

 p4 client -f -d clientname Deletes the client, ignoring ownership, even
if the client has opened files

Chapter 8. Managing the Server and Its Resources

128 Helix Versioning Engine Administrator Guide: Fundamentals

Command Syntax Function

p4 job p4 job -f [jobname] Allows the manual update of read-only fields

p4 label p4 label -f labelname Allows the modification date to be changed
while editing the label specification

 p4 label -f -d labelname Deletes the label, ignoring ownership

p4 unlock p4 unlock -c changelist -f file Releases a lock (set with p4 lock) on an
open file in a pending numbered changelist,
ignoring ownership

p4 user p4 user -f username Allows the update of all fields, ignoring
ownership

This command requires super access.

 p4 user -f -d username Deletes the user, ignoring ownership

This command requires super access.

Managing the sharing of code
Users have three options in how they share code:

• Using distributed development

This method allows users to share code and development. Using this option, users connect to a
shared server and use the p4 push and p4 fetch commands to copy files to and from the shared
server. Integration with the shared server is bi-directional and both file contents and history is
shared. See “Distributed development using Fetch and Push” on page 129 for more information
about this option.

• Using the p4 zip and p4 unzip commands

This option allows users to share code. In addition to file contents, users can see the
associated changelists, fixes, file attributes and integration history. See “Code drops without
connectivity” on page 131 for additional information about this option.

• Using remote depots

This option enables independent organizations with separate Perforce installations to integrate
changes between installations. Code integration is only one way, and metadata information cannot
be accessed. This option allows code drops to expose only files and file content. This might be
preferable for security reasons.

For additional information about this option, see Chapter 4, “Working with Depots” on page 53.

Chapter 8. Managing the Server and Its Resources

Helix Versioning Engine Administrator Guide: Fundamentals 129

Managing distributed development
This section explains the work you need to do to support code sharing between distributed sites. This
functionality is similar to using remote depots to do code drops, except that you can move file history
in addition to files.

Distributed development using Fetch and Push

The following sections describe how you use the p4 fetch and p4 push commands to share code easily
between distributed sites.

Consider the scenario described below.

The gaming company Ukko Productions has offices in Sweden, Argentina and the United States. Each
site is responsible for a different part of the gaming code; each does development on the section of
code or "component" for which it is responsible. This work happens on the office’s Perforce server, in a
directory of the Perforce depot called dev. dev will contain locally submitted changes.

Let’s suppose Sweden is working on a widget which is used by the developers in Argentina and the
United States. First, Sweden makes the widget code available to Argentina and the United States
by dropping the code — using the p4 push into drop directories on the servers in Argentina and the
United States (see "1" in the figure below). (Alternatively, the Argentina and United States developers
could use the p4 fetch to copy Sweden’s code into their drop directories.) The Argentina and United
States development teams can then merge the Sweden widget code into their respective dev directories
using p4 merge (See "2" in the figure below). They can then customize the widget for their own
purposes, without sharing these customizations with the Sweden developers.

If developers in the US and Argentina have a subset of changes they do want to share with Sweden,
they use p4 push to copy this code into a special drop location on the Sweden server — one location for
Argentina and one for the United States. (See "3" in the figure below). (Alternatively, Sweden could use
the p4 fetch to obtain the code and drop it into the appropriate locations.) The Sweden developers can
then merge the Argentina and United States code into their dev directory using p4 merge (See "4" in the
figure below).

Then the cycle repeats.

This scenario is illustrated in the following drawing:

Chapter 8. Managing the Server and Its Resources

130 Helix Versioning Engine Administrator Guide: Fundamentals

The next section explains how you must define remote specs to be able to implement this scenario.

Configuring the remote specifications

In order for the p4 push and p4 fetch commands to work properly, each of the three
servers — Argentina’s, the United States' and Sweden’s — must have properly configured remote
specifications. Remote specifications determine which remote servers a local server can fetch from
or push to and which files will be fetched and pushed. (For more information about remotes and
remote specifications, see the "Understanding Remotes" section of "Using Perforce for Distributed
Versioning.")

Because the Argentina developers are fetching from or pushing to Sweden’s server, their server’s
remote spec would look as follows:

Chapter 8. Managing the Server and Its Resources

Helix Versioning Engine Administrator Guide: Fundamentals 131

RemoteID: ServerSweden
Address: ServerSweden:1666
DepotMap:
 //depot/code-dropA/... //depot/Sweden-dev/...
 //depot/Argentina-dev/... //depot/code-dropS/...

Because the United States developers are fetching from or pushing to Sweden’s server, their server’s
remote spec would look as follows:

RemoteID: ServerSweden
Address: ServerSweden:1666
DepotMap:
 //depot/code-dropUSA/... //depot/Sweden-dev/...
 //depot/USA-dev/... //depot/code-dropS/...

Because the Sweden developers are fetching from or pushing to Argentina, their server’s remote spec
would look as follows:

RemoteID: ServerArgentina
Address: ServerArgentina:1666
DepotMap:
 //depot/code-dropS/... //depot/Argentina-dev/...
 //depot/Sweden-dev/... //depot/code-dropA/...

Because the Sweden developers are also fetching from or pushing to the United States, their server
would have a second remote spec that would look as follows:

RemoteID: ServerUnitedStates
Address: ServerUnitedStates:1666
DepotMap:
 //depot/code-dropS/... //depot/USA-dev/...
 //depot/Sweden-dev/... //depot/code-dropUSA/...

Code drops without connectivity

Perforce Server provides a pair of commands that enable you to move files and their associated change
history between servers when there is no connectivity between the servers; they are p4 zip and its
companion command p4 unzip.

The p4 zip takes the specified list of files and the changelists which submitted those files and writes
them to the specified zip file. It lets you bundle up any depot path from a server — from a subset to
all the files on the server — into a zip file. You can also bundle by changelist number, capturing any
number of changes through history.

You can then use the p4 unzip to unzip the content of the zip file into any Perforce server or servers.

Chapter 8. Managing the Server and Its Resources

132 Helix Versioning Engine Administrator Guide: Fundamentals

Managing users
This section describes the three types of Perforce users and explains how you can create users, add
new licensed users, rename users, delete users, and manage the files of deleted users.

For information about authenticating users and granting them access, please see Chapter 5, “Securing
the Server” on page 65.

User types
There are three types of Perforce users: standard users, operator users, and service users.

• A standard user is a traditional user of Perforce.

Standard users are the default, and each standard user consumes one Perforce license.

• An operator user is intended for human or automated system administrators.

An operator user does not require a Perforce license.

• A service user is used for server-to-server authentication, whether in the context of remote depots
(see “Remote depots and distributed development” on page 58) or in distributed environments (see
Helix Versioning Engine Administrator Guide: Multi-site Deployment.)

Service users do not require licenses, but are restricted to automated inter-server communication
processes in replicated and multi-server environments.

The following sections describe these types and how they need to be managed.

Important Once you set the user type, you cannot change it.

Creating standard users

By default, Perforce creates a new user record in its database whenever a command is issued by a user
who does not exist. Perforce superusers can also use the -f (force) flag to create a new user as follows:

$ p4 user -f username

Fill in the form fields with the information for the user you want to create.

The p4 user command also has an option (-i) to take its input from the standard input instead of the
forms editor. To quickly create a large number of users, write a script that reads user data, generates
output in the format used by the p4 user form, and then pipes each generated form to p4 user -i -f.

Service users

Creating a service user for each Perforce service you install can simplify the task of interpreting your
server logs, and also improve security by requiring that any remote Perforce services with which
yours is configured to communicate have valid login tickets for your installation. Service users do not
consume Perforce licenses.

http://www.perforce.com/perforce/r16.1/manuals/p4dist/index.html

Chapter 8. Managing the Server and Its Resources

Helix Versioning Engine Administrator Guide: Fundamentals 133

A service user can run only the following commands:

p4 dbschema p4 export p4 info p4 login

p4 logout p4 logparse p4 logschema p4 logstat

p4 logtail p4 passwd p4 servers p4 user

To create a service user, run the command:

$ p4 user -f service1

The standard user form is displayed. Enter a new line to set the new user’s Type: to be service; for
example:

User: service1
Email: services@example.com
FullName: Service User for remote depots
Type: service

By default, the output of p4 users omits service users. To include service users, run p4 users -a.

Tickets and timeouts for service users

A newly-created service user that is not a member of any groups is subject to the default ticket timeout
of 12 hours. To avoid issues that arise when a service user’s ticket ceases to be valid, create a group for
your service users that features an extremely long timeout, or set the value to unlimited. On the master
server, issue the following command:

$ p4 group service_users

Add service1 to the list of Users: in the group, and set the Timeout: and PasswordTimeout: values to a
large value or to unlimited.

Group: service_users
Timeout: unlimited
PasswordTimeout: unlimited
Subgroups:
Owners:
Users:
 service1

Permissions for service users

On your server, use p4 protect to grant the service user super permission. Service users are tightly
restricted in the commands they can run, so granting them super permission is safe. If you are

Chapter 8. Managing the Server and Its Resources

134 Helix Versioning Engine Administrator Guide: Fundamentals

only using the service user for remote depots and code drops, you may further reduce this user’s
permissions as described in “Restricting access to remote depots” on page 61.

Operator users

Organizations whose system administrators do not use Perforce’s versioning capabilities might be able
to economize on licensing costs by using the operator user type.

The operator user type is intended for system administrators who, even though they have super
or admin privileges, are responsible for the maintenance of the Perforce Server, rather than the
development of software or other assets on the server.

An operator user does not require a Perforce license, and can run only the following commands:

p4 admin stop p4 admin restart p4 admin checkpoint

p4 admin journal p4 dbstat p4 dbverify

p4 depots p4 diskspace p4 configure

p4 counter (including -f) p4 counters p4 info

p4 journaldbchecksums p4 jobs (including -R) p4 login

p4 logout p4 logappend p4 logparse

p4 logrotate p4 logschema p4 logstat

p4 logtail p4 lockstat p4 monitor

p4 passwd p4 ping p4 serverid

p4 verify p4 user

Preventing automatic creation of users
By default, Perforce creates a new user record in its database whenever a user invokes any
command that can update the depot or its metadata. You can control this behavior by setting the
dm.user.noautocreate configurable with the p4 configure command:

Value Meaning

0 A user record is created whenever any new user invokes a command that updates the
depot or its metadata (default).

1 New users must create their own user records by explicitly running p4 user.

2 Only the Perforce superuser can create a new user with p4 user.

For example:

Chapter 8. Managing the Server and Its Resources

Helix Versioning Engine Administrator Guide: Fundamentals 135

$ p4 configure set dm.user.noautocreate=1

changes the server’s behavior to require that new users first create their own accounts before
attempting to modify data on the server.

Adding new licensed users
Perforce licenses are controlled by a text file called license. This file resides in the server root
directory.

To add or update a license file, stop the Perforce Server, copy the license file into the server root
directory, and restart the Perforce Server.

You can update an existing license without shutting down the Perforce Server, use p4 license -i to
read the new license file from the standard input.

Most new license files obtained from Perforce can be installed with p4 license, except for when the
server IP address has changed. If the server IP address has changed, or if no license file currently
exists, restart the Server with p4 admin restart.

Renaming users
You can use the p4 renameuser command to rename users. The command renames the user and
modifies associated artifacts to reflect the change: the user record, groups that include the user,
properties that apply to the user, and so on. For detailed information see the description of the p4
renameuser command in the P4 Command Reference. In general, the user name is not changed in
descriptive text fields such as change descriptions. It is only changed where the name appears as the
owner or user field of the database record.

For best results, follow these guidelines:

• Before you use this command, check to see that the new user name does not already exist. Using an
existing name might result in the merging of data for the existing and the renamed user despite the
best efforts of the system to prevent such merges.

• The user issuing this command should not be the user being renamed.

• The user being renamed should not be using the server when this command executes. After the
command completes, the user should log out and then log back in.

• The p4 renameuser command does not process unloaded workspaces: all the user’s workspaces
should be reloaded (or deleted) first.

A distributed installation might contain local workspaces or local labels owned by the user; these
workspaces and labels, which are bound to Edge Servers, should be deleted or moved to the Commit
Server first.

• Files of type +k which contain the $Author$ tag that were submitted by the user will have incorrect
digests following this command. Use p4 verify -v to recompute the digest value after the rename.

http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

Chapter 8. Managing the Server and Its Resources

136 Helix Versioning Engine Administrator Guide: Fundamentals

Deleting obsolete users
Each standard user on the system consumes one Perforce license. A Perforce administrator can free up
licenses by deleting users with the following command:

$ p4 user -d -f username

Before you delete a user, you must first revert (or submit) any files a user has open in a changelist. If
you attempt to delete a user with open files, Perforce displays an error message to that effect.

Deleting a user frees a Perforce license but does not automatically update the group and protections
tables. Use p4 group and p4 protect to delete the user from these tables.

Reverting files left open by obsolete users
If files have been left open by a nonexistent or obsolete user (for instance, a departing employee), a
Perforce administrator can revert the files by deleting the client workspace specification in which the
files were opened.

As an example, if the output of p4 opened includes:

//depot/main/code/file.c#8 - edit default change (txt) by jim@stlouis

you can delete the stlouis client workspace specification with:

$ p4 client -d -f stlouis

Deleting a client workspace specification automatically reverts all files opened in that workspace,
deletes pending changelists associated with the workspace, and any pending fix records associated
with the workspace. Deleting a client workspace specification does not affect any files in the workspace
actually used by the workspace’s owner; the files can still be accessed by other employees.

Deleting changelists and editing changelist descriptions
Perforce administrators can use the -f (force) flag with p4 change to change the description, date,
or user name of a submitted changelist. The syntax is p4 change -f changenumber. This command
presents the standard changelist form, but also enables superusers to edit the changelist’s time,
description, date, and associated user name.

You can also use the -f flag to delete any submitted changelists that have been emptied of files with p4
obliterate. The full syntax is p4 change -d -f changenumber.

Example 8.1. Updating changelist 123 and deleting changelist 124

Use p4 change with the -f (force) flag:

Chapter 8. Managing the Server and Its Resources

Helix Versioning Engine Administrator Guide: Fundamentals 137

$ p4 change -f 123
$ p4 change -d -f 124

The User: and Description: fields for change 123 are edited, and change 124 is deleted.

Managing shelves
It’s a good idea to check periodically for stale or abandoned shelves. Based on the last time a shelf was
accessed, you might decide to delete the shelf.

The command p4 -Ztag change -o displays, in addition to other information, the access time for
shelved files. You can use this information to determine if a shelved file has been abandoned and
needs to be removed.

p4 -Ztag change -o 38
... Change 38
... Date 2015/10/01 16:54:47
... Client edge-one
... User markm
... Status pending
... Description shelve file

... Files0 //depot/new/code/dma/dmajob.cc

... Type public

... extraTag0 IsPromoted

... extraTagType0 int

... IsPromoted 1

... extraTag1 shelveAccess

... extraTagType1 date

... shelveAccess 2015/10/08 15:53:12

Note When a shelf is viewed or modified, its access time is updated if its last access time
was longer than the limit specified by the value of dm.shelve.accessupdate

Backing up a workspace
You can use the -o flag to the p4 unload command to unload a client, label, or task stream to a flat
file on the client rather than to a file in the unload depot. This can be useful for seeding a client into
another database or for creating a private backup of the client. The flat file uses standard journal
format. The client, label, or task stream remains fully loaded after the command is run.

Managing disk space
You can manage disk space by minimizing the amount of space taken up by journal files and
checkpoints and by relocating files. The following sections describe the strategies available for
minimizing disk space use.

Chapter 8. Managing the Server and Its Resources

138 Helix Versioning Engine Administrator Guide: Fundamentals

Diskspace Requirements

By default, the Perforce Server rejects commands when free space on the filesystems housing
the P4ROOT, P4JOURNAL, P4LOG, or TEMP fall below 10 megabytes. To change this behavior, set the
filesys.P4ROOT.min (and corresponding) configurables to your desired limits:

Configurable Default Value Meaning

filesys.P4ROOT.min 10M Minimum diskspace required on server root
filesystem before server rejects commands.

filesys.P4JOURNAL.min 10M Minimum diskspace required on server journal
filesystem before server rejects commands.

filesys.P4LOG.min 10M Minimum diskspace required on server log
filesystem before server rejects commands.

filesys.TEMP.min 10M Minimum diskspace required for temporary
operations before server rejects commands.

filesys.depot.min 10M Minimum diskspace required for any depot before
server rejects commands. (If there is less than
filesys.depot.min diskspace available for any
one depot, commands are rejected for transactions
involving all depots.)

You can use the following abbreviations to specify size:

t or T for tebibytes
g or G for gibibytes
m or M for mebibytes
k or K for kibibytes

You can also use a percentage to specify the relative amount of free diskspace required. For example,
setting filesys.P4JOURNAL.min to 5% means that at least 5% of total diskspace must be free for the
server to continue to accept commands.

Saving disk space

All of Perforce’s versioned files reside in subdirectories beneath the server root, as do the database
files, and (by default) the checkpoints and journals. If you are running low on disk space, consider the
following approaches to limit disk space usage:

• Configure Perforce to store the journal file on a separate physical disk. Use the P4JOURNAL
environment variable or p4d -J to specify the location of the journal file.

• Keep the journal file short by taking checkpoints on a daily basis.

• Compress checkpoints, or use the -z option to tell p4d to compress checkpoints on the fly.

Chapter 8. Managing the Server and Its Resources

Helix Versioning Engine Administrator Guide: Fundamentals 139

• Use the -jc prefix option with the p4d command to write the checkpoint to a different disk.
Alternately, use the default checkpoint files, but back up your checkpoints to a different drive and
then delete the copied checkpoints from the root directory. Moving checkpoints to separate drives
is good practice not only in terms of diskspace, but also because old checkpoints are needed when
recovering from a hardware failure, and if your checkpoint and journal files reside on the same disk
as your depot, a hardware failure could leave you without the ability to restore your database.

• On UNIX systems, you can relocate some or all of the depot directories to other disks by using
symbolic links. If you use symbolic links to shift depot files to other volumes, create the links only
after you stop the Perforce service.

• If your installation’s database files have grown to more than 10 times the size of a checkpoint, you
might be able to reduce the size of the files by re-creating them from a checkpoint. See “Checkpoints
for database tree rebalancing” on page 165.

• Use the p4 diskspace and p4 sizes commands to monitor the amount of disk space currently
consumed by your entire installation, or by selected portions of your installation. See “Monitoring
disk space usage” on page 117.

• If you have large binary files that are no longer accessed frequently, consider creating an archive
depot and using the p4 archive command to transfer these files to bulk, near-line, or off-line
storage. See “Reclaiming disk space by archiving files” on page 139.

Reclaiming disk space by archiving files
Over time, a Perforce server accumulates many revisions of files from old projects that are no longer in
active use. Because p4 delete merely marks files as deleted in their head revisions, it cannot be used to
free up disk space on the server.

Archive depots are a solution to this problem. You use archive depots to move infrequently-accessed
files to bulk storage. To create one, mount a suitable filesystem, and use the p4 archive (and related p4
restore) commands to populate an archive depot located on this storage.

Note Archive depots are not a backup mechanism.

Archive depots are merely a means by which you can free up diskspace by
reallocating infrequently-accessed files to bulk storage, as opposed to p4
obliterate, which removes file data and history.

Archiving is restricted to files that meet all of the following criteria:

• By default, files must be stored in full (+F) or compressed (+C) format. To archive text files (or
other files stored as deltas), use p4 archive -t, but be aware that the archiving of RCS deltas is
computationally expensive.

• Files must not be copied or branched from other revisions

• Files must not be copied or branched to other revisions

• Files must already exist in a local depot.

To create an archive depot and archive files to it:

Chapter 8. Managing the Server and Its Resources

140 Helix Versioning Engine Administrator Guide: Fundamentals

1. Create a new depot with p4 depot and set the depot’s Type: to archive. Set the archive depot’s Map:
to point to a filesystem for near-line or detachable storage.

2. Mount the volume to which the archive depot is to store its files.

3. Use p4 archive to transfer the files from a local depot to the archive depot.

4. (Optionally), unmount the volume to which the archive files were written.

Disk space is freed up on the (presumably high-performance) storage used for your local depot, and
users can no longer access the contents of the archived files, but all file history is preserved.

To restore files from an archive depot:

1. Mount the volume on which the archive depot’s files are stored.

2. Use the p4 verify -A command to verify files before you restore them.

3. Use p4 restore to transfer the files from the archive depot to a local depot.

4. (Optionally), unmount the volume to which the archive files were restored.

To purge data from an archive depot

1. Mount the volume on which the archive depot’s files are stored.

2. Use p4 archive -p to purge the archives of the specified files in the archive depot.

On completion, the action for affected revisions is set to purge, and the purged revisions can no
longer be restored. The data is permanently lost.

3. (Optionally), unmount the volume from which the archive files were purged.

Reclaiming disk space by obliterating files
The purpose of a version management system is to enable your organization to maintain a history of
what operations were performed on which files. The p4 obliterate command defeats this purpose; as
such, it is intended only to be used to remove files that never belonged in the depot in the first place,
and not as part of a normal software development process. Consider using p4 archive and p4 restore
instead.

Note also that p4 obliterate is computationally expensive; obliterating files requires that the entire
body of metadata be scanned per file argument. Avoid using p4 obliterate during peak usage
periods.

Warning Use p4 obliterate with caution. This is the one of only two commands in Perforce
that actually remove file data. (The other command that removes file data is the
archive-purging option for p4 archive)

Occasionally, users accidentally add files (or entire directory trees) to the wrong areas of the depot by
means of an inadvertent branch or submit. There may also be situations that require that projects not

Chapter 8. Managing the Server and Its Resources

Helix Versioning Engine Administrator Guide: Fundamentals 141

only be removed from a depot, but the history of development work be removed with it. These are the
situations in which p4 obliterate can be useful.

Perforce administrators can use p4 obliterate filename to remove all traces of a file from a depot,
making the file indistinguishable from one that never existed.

Warning Do not use operating system commands (erase, rm, and their equivalents) to
remove files from the Perforce server root by hand.

By default, p4 obliterate filename does nothing; it merely reports on what it would do. To actually
destroy the files, use p4 obliterate -y filename.

To destroy only one revision of a file, specify only the desired revision number on the command line.
For instance, to destroy revision 5 of a file, use:

$ p4 obliterate -y file#5

Revision ranges are also acceptable. To destroy revisions 5 through 7 of a file, use:

$ p4 obliterate -y file#5,7

Warning If you intend to obliterate a revision range, be certain you’ve specified it properly. If
you fail to specify a revision range, all revisions of the file are obliterated.

The safest way to use p4 obliterate is to use it without the -y flag until you are
certain the files and revisions are correctly specified.

Managing processes
The following sections describe the circumstances under which you might want to pause or terminate
a process, and explain why you might need to do some clean-up work after a process has terminated.

Pausing, resuming, and terminating processes
To pause and resume long-running processes (such as p4 verify or p4 pull), a Perforce superuser
can use the commands p4 monitor pause and p4 monitor resume. If a process on a Perforce Server
consumes excessive resources, it can also be marked for termination with p4 monitor terminate.

Once marked for termination, the process is terminated by the Perforce server within 50,000 scan rows
or lines of output. Only processes that have been running for at least ten seconds can be marked for
termination.

Users of terminated processes are notified with the following message:

Command has been canceled, terminating request

Chapter 8. Managing the Server and Its Resources

142 Helix Versioning Engine Administrator Guide: Fundamentals

Processes that involve the use of interactive forms (such as p4 job or p4 user) can also be marked
for termination, but data entered by the user into the form is preserved. Some commands, such as p4
obliterate, cannot be terminated.

Clearing entries in the process table
Under some circumstances (for example, a Windows machine is rebooted while certain Perforce
commands are running), entries may remain in the process table even after the process has terminated.

Perforce superusers can remove these erroneous entries from the process table altogether with p4
monitor clear dip, where dip is the erroneous process ID. To clear all processes from the table
(running or not), use p4 monitor clear all.

Running processes removed from the process table with p4 monitor clear continue to run to
completion.

Managing the database tables
Use the p4 dbstat command to display statistics on the internal state of the Perforce database. For
example,

$ p4 dbstat -a

You can also specify the name of a database file in your server’s root directory. This command is
typically used in conjunction with Perforce technical support to estimate disk seeks due to sequential
database scans.

Options allow you to display the following:

• statistics for all tables

• a page count, free pages, and percent free data for the specified table

• a histogram showing distances between leaf pages

• a report on the file sizes of database tables

Warning Because p4 dbstat blocks write access to the database while it scans the tables, use
this command with care. You will most often use this command when working with
Perforce technical support.

Scripted client deployment on Windows
The Perforce installer supports scripted installation, enabling you to accelerate a deployment of
Perforce across a large number of desktops.

Scripted installations are controlled by a configuration file that comes with the scrip table version of
the Perforce installer. You can edit this file to preconfigure Perforce environment variables (such as

Chapter 8. Managing the Server and Its Resources

Helix Versioning Engine Administrator Guide: Fundamentals 143

P4PORT) for your environment, to automatically select Perforce applications in use at your site, and
more.

To learn more about how to automate a deployment of Perforce, see "Automated Deployment of
Perforce" in the Perforce knowledge base:

http://answers.perforce.com/articles/KB_Article/Automated-Deployment-of-Perforce

Perforce technical support personnel are available to answer any questions or concerns you have about
automating your Perforce deployment.

Troubleshooting Windows installations
The following sections explain how you might resolve some Windows-related installation issues.

Resolving Windows-related instabilities
Many large sites run Perforce servers on Windows without incident. There are also sites in which a
Perforce service or server installation appears to be unstable; the server dies mysteriously, the service
can’t be started, and in extreme cases, the system crashes. In most of these cases, this is an indication of
recent changes to the machine or a corrupted operating system.

Though not all Perforce failures are caused by OS-level problems, a number of symptoms can indicate
the OS is at fault. Examples include: the system crashing, the Perforce server exiting without any error
in its log and without Windows indicating that the server crashed, or the Perforce service not starting
properly.

In some cases, installing third-party software after installing a service pack can overwrite critical files
installed by the service pack; reinstalling your most-recently installed service pack can often correct
these problems. If you’ve installed another application after your last service pack, and server stability
appears affected since the installation, consider reinstalling the service pack.

Resolving issues with P4EDITOR or P4DIFF
Your Windows users might experience difficulties using the Perforce Command-Line Client (p4.exe) if
they use the P4EDITOR or P4DIFF environment variables.

The reason for this is that Perforce applications sometimes use the DOS shell (cmd.exe) to start
programs such as user-specified editors or diff utilities. Unfortunately, when a Windows command
is run (such as a GUI-based editor like notepad.exe) from the shell, the shell doesn’t always wait
for the command to complete before terminating. When this happens, the Perforce client then
mistakenly behaves as if the command has finished and attempts to continue processing, often deleting
the temporary files that the editor or diff utility had been using, leading to error messages about
temporary files not being found, or other strange behavior.

You can get around this problem in two ways:

• Unset the environment variable SHELL. Perforce applications under Windows use cmd.exe only when
SHELL is set; otherwise they call spawn() and wait for the Windows programs to complete.

• Set the P4EDITOR or P4DIFF variable to the name of a batch file whose contents are the command:

http://answers.perforce.com/articles/KB_Article/Automated-Deployment-of-Perforce

Chapter 8. Managing the Server and Its Resources

144 Helix Versioning Engine Administrator Guide: Fundamentals

start /wait program %1 %2

where program is the name of the editor or diff utility you want to invoke. The /wait flag instructs
the system to wait for the editor or diff utility to terminate, enabling the Perforce application to
behave properly.

Some Windows editors (most notably, Wordpad) do not exhibit proper behavior, even when
instructed to wait. There is presently no workaround for such programs.

Helix Versioning Engine Administrator Guide: Fundamentals 145

Chapter 9 Tuning Perforce for Performance
Your Perforce server should normally be a light consumer of system resources. As your installation
grows, however, you might want to revisit your system configuration to ensure that it is configured for
optimal performance.

This chapter briefly outlines some of the factors that can affect the performance of a Perforce server,
provides a few tips on diagnosing network-related difficulties, and offers some suggestions on
decreasing server load for larger installations:

• It describes the variables that affect performance: operating system, disk subsystem, file system,
CPU, memory, network connectivity settings, journal and archive location, use patterns, the use of
read-only clients, and parallel processing for submits and syncs.

• It explains how you can improve performance with lockless reads.

• It explains how you can diagnose slow response times.

• It describes the factors that create server swamp.

• It explains how you can improve performance by rebalancing B-trees.

Tuning for performance
In general, Perforce performs well on any server-class hardware platform. The following variables can
affect the performance of your Perforce server.

Operating systems
32-bit operating systems might not be able to address large amounts of physical memory, which can
restrict the effective size of the filesystem cache. The various 64-bit operating systems each have their
own performance characteristics that can favor a particular Perforce workload. In general, Linux
distributions using later Linux 2.6 64-bit kernels have good performance characteristics for most
Perforce workloads.

Disk subsystem
For I/O requests that must be satisfied from beyond the filesystem cache, there might be several
improvements possible for the I/O subsystem. The storage subsystem containing the db.* files
should have a memory cache; maximizing the storage subsystem’s memory cache is also a good
recommendation. For best performance, write-back caching should be enabled, which of course
requires that the storage subsystem’s memory have battery backup power. I/O latency to the logical
drive where the db.* files are located should be minimized, including the rotational latency of the
physical drives themselves. Minimizing I/O latency might require direct connections between the host
and the storage subsystem, and usually requires physical drives with the fastest rotational speed (such
as 15K RPM).

RAID 1+0 (or RAID 10) is usually the better performing RAID configuration, and is recommended for
the logical drive where the db.* files are located. The number of physical drives in the logical drive can
also have an affect on *p4d* performance. Generally, performance improves as the number of physical
drives in the logical drive increases. For a given amount of disk space required, better performance

Chapter 9. Tuning Perforce for Performance

146 Helix Versioning Engine Administrator Guide: Fundamentals

might result from using more smaller-capacity physical drives. The stripe size for the logical drive
can also affect performance; the optimal stripe size might be dependent upon the number of physical
drives in the logical drive.

Hardware-based RAID implementations (that is, RAID logic that is not implemented as software
running on the host) usually have good performance characteristics. Software-based RAID
implementations can require CPU cycles that might otherwise be needed for p4d processes. Therefore,
software-based RAID implementations should be avoided.

File systems
Filesystem performance is an important component of operating system performance. The various
operating systems usually offer several filesystems, each with their own performance characteristics
that can favor a particular Perforce workload. For best p4d performance, the db.* files should be
located on a high-performance filesystem. In general, the XFS filesystem has good performance
characteristics for most Perforce workloads. The XFS filesystem is available on several operating
systems, including Linux distributions using later Linux 2.6 64-bit kernels.

Reading pages into a cache in anticipation of being requested is an optimization that is often
implemented within various I/O subsystem components. This optimization is commonly known
as "read-ahead". In some implementations, read-ahead can be tuned, which might result in better
performance. But tuning read-ahead can be a bit of an art. For example, increasing the read-ahead
size might result in better performance for operations requiring mostly sequential reads. But the same
increased read-ahead size applied consistently during random reads might unnecessarily discard
previously-cached data that might have satisfied subsequent requests.

CPU
CPU resource consumption can be adversely affected by compression, lockless reads, or a badly
designed protections table. In general, there is a trade-off between speed and the number of cores.
A minimum of 2.4 GHZ and 8 cores is recommended. With greater speed, fewer cores will do: for
example, a 3.2 GHZ and 4-core processor will also work.

Faster processors and memory in the machine where p4d executes might result in faster execution
of p4d commands. Since portions of some commands acquire and hold resources that might block
other commands, it is important that these portions of the commands execute as fast as possible. For
example, most p4d commands have a compute phase, during which shared locks are acquired and held
on some of the db.* files. A shared lock on a db.* file blocks an operation that writes to the same db.
* file. If the data needed for a command’s compute phase is cached within the operating system’s
filesystem cache, only the processor and memory speed constrains the compute phase.

If you are using lockless reads, CPU speed is not as critical, but can still be helpful for good
performance. Since some readers will no longer block a writer (and a writer will no longer block some
readers), speeding commands through the server might not be as critical from a concurrency point of
view. And since more commands might now run concurrently through the Perforce Server, more CPU
cores might be better utilized.

The complexity of the site’s protections table and of client views can affect CPU requirements. You can
monitor CPU utilization using OS utilities such as top (on Linux and Unix) and perfmon (on Windows).
Installations with high CPU utilization on the machine where p4d executes that are already using faster

Chapter 9. Tuning Perforce for Performance

Helix Versioning Engine Administrator Guide: Fundamentals 147

processors might need more processors and/or processors with more cores while maintaining the
speed of the processors.

Note If you are using SSL to secure client-server connections, choose a CPU that
supports the AES instruction set. Perforce normally uses AES-256 to encrypt its
SSL connections, so using a CPU that supports AES will minimize the encryption
overhead: in most CPUs, it will eliminate the performance penalty.

Some processors and operating systems support dynamic frequency scaling, which allows the
processor to vary power consumption by dynamically adjusting the processor voltage and core
frequency. As more demand is placed on the processor, the voltage and core frequency increase. Until
the processor is ramped up to full speed, p4d performance might be impacted. Although the power-
saving capability of the dynamic frequency scaling feature is useful for mobile computers, it is not
recommended for the machine where p4d executes.

Examples of dynamic frequency scaling include the following:

• Intel SpeedStep - available on some Xeon processors and generally available on mobile computers

• AMD PowerNow! - available on an array of AMD processors, including server-level processors

Both features are supported on Linux (and enabled by default in some SuSE distributions), Windows,
and Mac OS X platforms. If this feature is enabled on the machine where p4d executes, we recommend
disabling it. In some Linux distributions, such as SuSE, this feature can be disabled by setting the
"powersaved" service to "off".

You might be able to determine the current speed of the processors on your computer. On Linux, the
current speed of each core is reported on the "cpu MHz" line in the output from the cat /proc/cpuinfo
OS command.

Memory
Server performance is highly dependent upon having sufficient memory. Two bottlenecks are relevant.
The first bottleneck can be avoided by ensuring that the server doesn’t page when it runs large queries,
and the second by ensuring that the db.rev table (or at least as much of it as practical) can be cached in
main memory:

• Determining memory requirements for large queries is fairly straightforward: the server requires
about 1 kilobyte of RAM per file to avoid paging; 10,000 files will require 10 MB of RAM.

• To cache db.rev, the size of the db.rev file in an existing installation can be observed and used as an
estimate. New installations of Perforce can expect db.rev to require about 150-200 bytes per revision,
and roughly three revisions per file, or about 0.5 kilobytes of RAM per file.

• I/O requests that can be satisfied from a larger filesystem cache complete faster than requests that
must be satisfied from beyond the filesystem cache.

Thus, if there is 1.5 kilobytes of RAM available per file, or 150 MB for 100,000 files, the server does
not page, even when performing operations involving all files. It is still possible that multiple large
operations can be performed simultaneously and thus require more memory to avoid paging. On the
other hand, the vast majority of operations involve only a small subset of files.

Chapter 9. Tuning Perforce for Performance

148 Helix Versioning Engine Administrator Guide: Fundamentals

One way to determine if you have allocated sufficient memory is to look at the physical read rate on
the device that contains only the database files. This read rate should be trivial.

Network
Perforce can run over any TCP/IP network. For remote users or distributed configurations, Perforce
offers options like proxies and the commit/edge architecture that can enhance performance over a
WAN. Compression in the network layer can also help.

Perforce uses a TCP/IP connection for each client interaction with the server. The server’s port address
is defined by P4PORT, but the TCP/IP implementation picks a client port number. After the command
completes and the connection is closed, the port is left in TIME_WAIT state for two minutes. Although
the port number ranges from 1025 to 32767, generally only a few hundred or thousand can be in use
simultaneously. It is therefore possible to occupy all available ports by invoking a Perforce command
many times in rapid succession, such as with a script.

By default, idle connections are not kept alive. If your network silently drops idle connections,
this behavior may cause unexpected connectivity issues. (Consider a p4 pull thread that transfers
data between a master server and a replica at a remote site; depending on each site’s respective
business hours and user workloads, such a connection could be idle for several hours per day.) Four
configurables are available to manage the state of idle connections.

Configurable Default Value Meaning

net.keepalive.disable 0 If non-zero, disable the sending of TCP keepalive
packets.

net.keepalive.idle 0 Idle time (in seconds) before starting to send
keepalives.

net.keepalive.interval 0 Interval (in seconds) between sending keepalive
packets.

net.keepalive.count 0 Number of unacknowledged keepalives before
failure.

If your network configuration requires keepalive packets, consider setting net.keepalive.idle to a
suitably long value, for example 3,600 seconds (1 hour), and an interval measured in tens of minutes.

Journal and archive location
For recoverability, the live journal should not be on the same physical device that contains the db.*
files. Separating the live journal and the db.* files also improves performance. During operations that
write to the db.* files, entries are written to the live journal as records are written to the db.* files.
If the live journal and the db.* files are on the same physical device, the I/O throughput to the db.
* files is degraded. For best performance, the live journal should be on a separate storage subsystem
connected to a separate host adapter. The live journal should be on a logical drive and filesystem that
is optimized for sequential writes.

The versioned files should be located on a separate logical drive than the logical drives where the db.*
files and the live journal are located. For best performance, the logical drive where the versioned files

Chapter 9. Tuning Perforce for Performance

Helix Versioning Engine Administrator Guide: Fundamentals 149

are located should be on a separate storage subsystem connected to a separate host adapter. Since
the versioned files typically require significantly more disk space and the I/O throughput is not as
critical as for the db.* files, a more economical RAID configuration, such as RAID 5, can be used for
the logical drive where the versioned files are located.

Use patterns
Perforce usage can affect performance. There are several usage patterns that can have a direct effect on
performance. Since the depot filenames are the leading portion of the key in several important db.*
files (db.rev, db.revhx, and db.integed are among the more notable), the length of paths in the depot
filenames have a direct effect on performance. As the length of paths increase, performance decreases.
It is therefore prudent to discourage the use of overly-descriptive paths in the depot filenames.

The development methodology can also have a direct effect on performance. If the development
methodology calls for frequent creation of full branches (perhaps branching for each bug fix), then
the amount of metadata rapidly increases, resulting in more levels within the db.* file B-trees. As the
number of levels increase, more key comparisons and I/O requests are required to traverse to the leaf
pages, which will impact performance. Creating full branches also requires more metadata read and
written; the additional metadata read and written might affect the filesystem cache to the detriment
of other Perforce tasks. Rather than frequent creation of full branches, it might be prudent to branch
only those files needed for each bug fix, or consider a development methodology in which multiple
bug fixes can occur on the same branch.

Using read-only clients in automated builds
Build automation scripts, which routinely create, sync, and tear down clients, may fragment the
db.have table over time. To avoid this, you can specify the type readonly for these clients. Such clients
cannot add, delete, edit, integrate, or submit files, but this should not be an issue in build scripts.

A readonly client is assigned its own personal db.have database table, and the location of this table is
specified using the client.readonly.dir configurable.

To set up a read-only client:

1. Set the client.readonly.dir configurable to the directory where the db.* tables for the client
should be stored.

For example, if you create a read-only client whose name is myroc and you set client.readonly.dir
to /perforce/1, then syncing files using this client will write to the following database

/perforce/1/server.dbs/client/hashdir/db.myroc

2. Set the Type field of the client spec to readonly.

Using parallel processing for submits and syncs
You can configure the server to transfer files in parallel for submit and sync processing. Parallel
processing is most effective with long-haul, high latency networks or with other network configuration
that prevents the use of available bandwidth with a single TCP flow. Parallel processing might also

Chapter 9. Tuning Perforce for Performance

150 Helix Versioning Engine Administrator Guide: Fundamentals

be appropriate when working with large compressed binary files, where the client must perform
substantial work to decompress the file.

• Use the net.parallel.max configurable to transfer files in parallel during the submit process. For
this feature to work, you must have both server and client upgraded to version 2015.1.

• Use the net.parallel.max configurable to speed up sync processing by having the p4 sync
command transfer files using multiple threads. You do this by setting the net.parallel.max
configuration variable to a value greater than one and by using the --parallel option to the p4 sync
command.

For more information see the p4 submit command and the p4 sync command in P4 Command Reference.

Improving concurrency with lockless reads
Prior to Release 2013.3, commands that only read data from the database take a read-lock on one
(or more) database tables. Although other commands can read from the tables at the same time,
any commands attempting to write to the read-locked tables are forced to wait for the read-lock to
complete before writing could begin. Currently, the default behavior is to allow some commands to
perform lock-free reads (or "peeks") on these tables, without sacrificing consistency or isolation. This
provides significant performance improvement by ensuring that write operations on these tables can
run immediately, rather than being held until the read-lock is released.

Note Lockless reads require that server locks be enabled. Because this can cause issues
for long duration syncs, the default value for controlling the 'sync' server lock
(server.locks.sync) is currently disabled by default.

maxlocktime has been changed when peeking is enabled. To revert to the old
behavior, set the dbpeeking.usemaxlock configurable to 1.

To change the setting of lockless reads on your Perforce Server, use the p4 configure set
db.peeking=N command.

Any change to db.peeking requires a server restart to take effect.

Possible values for db.peeking are as follows:

db.peeking Meaning

0 If db.peeking is unset or 0, the old database locking order is used and lockless
reads ("peeking") are disabled.

This corresponds to the behavior of Perforce at release 2013.2 and below.

1 If db.peeking is set to 1, the new database locking order is used, but peeking
remains disabled.

This configuration is intended primarily for diagnostic purposes.

2 (default) If db.peeking is set to 2, the new database locking order is used and lockless
reads ("peeking") are enabled.

http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

Chapter 9. Tuning Perforce for Performance

Helix Versioning Engine Administrator Guide: Fundamentals 151

db.peeking Meaning

This configuration is expected to provide the best performance results for most
sites. It is the default value.

3 If db.peeking is set to 3, the new database locking order is used and lockless
reads ("peeking") are enabled, but optimizations for the db.revhx and db.revdx
tables are bypassed.

This configuration involves a trade-off between concurrency and command
completion speed; in general, if a repository has many revisions per file, then
some commands will complete more slowly with db.peeking=3, but will no
longer require read locks on the db.revhx and db.revdx tables. If read locks on
these tables are in fact the bottleneck, overall performance may still be better
with db.peeking=3. One guideline: if you have lots of history, use the default; if
you have lots of single revision branch data, try db.peeking=3; if you max out
cpu, go back to the default (2).

Commands implementing lockless reads
When peeking is enabled, the following commands run lockless:

Command Notes

annotate

branches

changes

clients

counters

depots

describe

diff

diff2

dir2

filelog

files Applies to files -a

fixes

fstat when db.peeking=3

Chapter 9. Tuning Perforce for Performance

152 Helix Versioning Engine Administrator Guide: Fundamentals

Command Notes

have

interchanges

integ

integed

istat

jobs

keys

labels

merge

streams

sizes Applies to sizes -a

sync when db.peeking=3

print Applies to print -a

resolved

users

verify

The following commands run partially lockless; in most cases these commands will operate lock-free,
but lockless operation is not guaranteed:

Command Notes

copy

cstat

fstat when db.peeking=2

interchanges in the context of copy operations

istat in the context of copy operations

opened

sync when db.peeking=2

Chapter 9. Tuning Perforce for Performance

Helix Versioning Engine Administrator Guide: Fundamentals 153

Overriding the default locking behavior

You can override the db.peeking setting on a per-command basis by using the -Zpeeking= flag
followed by your preferred value. For example, to disable peeking for one command, run the
following command:

$ p4 -Zpeeking=1 fstat

and compare the results with:

$ p4 -Zpeeking=2 fstat

Observing the effect of lockless reads

To determine whether read locks are impacting performance (and the extent to which enabling lockless
reads has improved performance), you can examine the server logs, or you can use the -Ztrack flag to
output, for any given command, the lines that would be written to the P4LOG. For example:

$ p4 -Zpeeking=1 -Ztrack sync

produces output for 11 database tables. The relevant lines here are those that refer to "locks read/
write".

...
--- db.counters
--- pages in+out+cached 3+0+2
--- locks read/write 1/0 rows get+pos+scan put+del 1+0+0 0+0
--- db.user
--- pages in+out+cached 3+0+2
--- locks read/write 1/0 rows get+pos+scan put+del 1+0+0 0+0
...

The 1 appearing in ("locks read/write 1/0") every table’s locking results shows one read lock taken
per table. By contrast, the diagnostic output from:

$ p4 -Zpeeking=2 -Ztrack sync

...
--- db.counters
--- pages in+out+cached 3+0+2
--- locks read/write 0/0 rows get+pos+scan put+del 1+0+0 0+0
...

Chapter 9. Tuning Perforce for Performance

154 Helix Versioning Engine Administrator Guide: Fundamentals

shows that the sync operation completed without any read or write locks required on db.counters (if
you try it yourself, on many other tables); when peeking is enabled, many commands will show read/
write 0/0 locks (or at least, fewer locks) taken.

Side-track servers must have the same db.peeking level
A single Perforce instance can detect and ignore inadvertent attempts to override db.peeking that
would change table locking order and risk deadlock. (For example, if you attempt to use db.peeking=3
on a server for which peeking is disabled by having db.peeking set to 0 (or unset), the service ignores
the attempt altogether and the command proceeds with the old behavior.

In the case of "side-track servers" described in the following Knowledge Base article:

http://answers.perforce.com/articles/KB_Article/Setting-Up-a-Side-track-Server

this protection is not available.

Warning All side-track servers must have the same db.peeking setting as the main server.
Server deadlock may result.

Diagnosing slow response times
Perforce is normally a light user of network resources. Although it is possible that an extremely large
user operation could cause the Perforce server to respond slowly, consistently slow responses to p4
commands are usually caused by network problems. Any of the following can cause slow response
times:

1. Misconfigured domain name system (DNS)

2. Misconfigured Windows networking

3. Difficulty accessing the p4 executable on a networked file system

A good initial test is to run p4 info. If this does not respond immediately, then there is a network
problem. Although solving network problems is beyond the scope of this manual, here are some
suggestions for troubleshooting them.

Hostname vs. IP address
Try setting P4PORT to the service’s IP address instead of its hostname. For example, instead of using:

P4PORT=host.domain:1666

try using:

P4PORT=1.2.3.4:1666

with your site-specific IP address and port number.

http://answers.perforce.com/articles/KB_Article/Setting-Up-a-Side-track-Server

Chapter 9. Tuning Perforce for Performance

Helix Versioning Engine Administrator Guide: Fundamentals 155

On most systems, you can determine the IP address of a host by invoking:

$ ping hostname

If p4 info responds immediately when you use the IP address, but not when you use the hostname,
the problem is likely related to DNS.

Windows wildcards
In some cases, p4 commands on Windows can result in a delayed response if they use unquoted file
patterns with a combination of depot syntax and wildcards, such as:

$ p4 files //depot/*

You can prevent the delay by putting double quotes around the file pattern, like this:

$ p4 files "//depot/*"

The cause of the problem is the p4 command’s use of a Windows function to expand wildcards. When
quotes are not used, the function interprets //depot as a networked computer path and spends time in
a futile search for a machine named depot.

DNS lookups and the hosts file
On Windows, the %SystemRoot%\system32\drivers\etc\hosts file can be used to hardcode IP address-
hostname pairs. You might be able to work around DNS problems by adding entries to this file. The
corresponding UNIX file is /etc/hosts.

Location of the p4 executable
If none of the above diagnostic steps explains the sluggish response time, it’s possible that the p4
executable itself is on a networked file system that is performing very poorly. To check this, try
running:

$ p4 -V

This merely prints out the version information, without attempting any network access. If you
get a slow response, network access to the p4 executable itself might be the problem. Copying or
downloading a copy of p4 onto a local filesystem should improve response times.

Working over unreliable networks
To set a hard upper bound on how long a connection is willing to wait on any single network read or
write, set the net.maxwait configurable to the number of seconds to wait before disconnecting with
a network error. Users working over unreliable connections can set net.maxwait value either in their

Chapter 9. Tuning Perforce for Performance

156 Helix Versioning Engine Administrator Guide: Fundamentals

P4CONFIG files, or use -vnet.maxwait=t on a per-command basis, where t is the number of seconds to
wait before timing out.

Note Although net.maxwait can be set on the Perforce server, it is generally inadvisable
to do so. For example, if net.maxwait is set to 60 on the server, users of the
Command-Line Client must complete every interactive form within one minute
before the command times out. If, however, individual users set net.maxwait in
their own P4CONFIG files (which reside on their own workstations) their connections
are not subject to this limitation; commands only fail if the versioning service takes
more than 60 seconds to respond to their requests.

It is useful to combine net.maxwait with the -rN global option, where N is the number of times to
attempt reconnection in the event that the network times out. For example:

$ p4 -r3 -vnet.maxwait=60 sync

attempts to sync the user’s workspace, making up to three attempts to resume the sync if interrupted.
The command fails after the third 60-second timeout.

Because the format of the output of a command that times out and is restarted cannot be guaranteed
(for example, if network connectivity is broken in the middle of a line of output), avoid the use of -r on
any command that reads from standard input. For example, the behavior of the following command,
which reads a list of files from stdin and passes it to p4 add, can result in the attempted addition of
"half a filename" to the depot.

$ find . -print | p4 -x - -r3 add

To prevent this from happening (for example, if adding a large number of files over a very unreliable
connection), consider an approach like the following:

$ find directoryname -type f -exec p4 -r5 -vmax.netwait=60 add {} \;

All files (-type f) in directoryname are found, and added one at a time, by invoking the command "p4
-r5 -vmax.netwait=60 add" for each file individually.

After all files have been added, assign the changelist a changelist number with p4 change, and submit
the numbered atomically with:

$ p4 -r5 -vmax.netwait=60 submit -c changenum

If connectivity is interrupted, the numbered changelist submission is resumed.

Preventing server swamp
Generally, Perforce’s performance depends on the number of files a user tries to manipulate in a single
command invocation, not on the size of the depot. That is, syncing a client view of 30 files from a

Chapter 9. Tuning Perforce for Performance

Helix Versioning Engine Administrator Guide: Fundamentals 157

3,000,000-file depot should not be much slower than syncing a client view of 30 files from a 30-file
depot.

The number of files affected by a single command is largely determined by the following factors:

• p4 command-line arguments (or selected folders in the case of GUI operations)

Without arguments, most commands operate on, or at least refer to, all files in the client workspace
view.

• Client views, branch views, label views, and protections

Because commands without arguments operate on all files in the workspace view, it follows that the
use of unrestricted views and unlimited protections can result in commands operating on all files in
the depot.

When the server answers a request, it locks down the database for the duration of the computation
phase. For normal operations, this is a successful strategy, because the server can "get in and out"
quickly enough to avoid a backlog of requests. Abnormally large requests, however, can take seconds,
sometimes even minutes. If frustrated users press CTRL+C and retry, the problem gets even worse; the
server consumes more memory and responds even more slowly.

Warning The p4 obliterate command scans the entire database once per file argument and
locks the entire database while scanning. It is best to do this during off hours for
large sites.

At sites with very large depots, unrestricted views and unqualified commands make a Perforce server
work much harder than it needs to. Users and administrators can ease load on their servers by the
following:

• Using "tight" views

• Assigning protections

• Limiting maxresults

• Limiting simultaneous connections with server.maxcommands

• Unloading infrequently-used metadata

• Writing efficient scripts

• Using compression efficiently

• Other server configurables

The following sections examine each of these solutions:

Using tight views
The following "loose" view is trivial to set up but could invite trouble on a very large depot:

//depot/... //workspace/...

Chapter 9. Tuning Perforce for Performance

158 Helix Versioning Engine Administrator Guide: Fundamentals

In the loose view, the entire depot was mapped into the client workspace; for most users, this can be
"tightened" considerably. The following view, for example, is restricted to specific areas of the depot:

//depot/main/srv/devA/... //workspace/main/srv/devA/...
//depot/main/drv/lport/... //workspace/main/dvr/lport/...
//depot/rel2.0/srv/devA/bin/... //workspace/rel2.0/srv/devA/bin/...
//depot/qa/s6test/dvr/... //workspace/qa/s6test/dvr/...

Client views, in particular, but also branch views and label views, should also be set up to give users
just enough scope to do the work they need to do.

Client, branch, and label views are set by a Perforce administrator or by individual users with the p4
client, p4 branch, and p4 label commands, respectively.

Two of the techniques for script optimization (described in “Using branch views” on page 163 and
“Using a temporary client workspace” on page 164) rely on similar techniques. By limiting the size
of the view available to a command, fewer commands need to be run, and when run, the commands
require fewer resources.

Assigning protections
Protections (see “Authorizing access” on page 83) are actually another type of Perforce view.
Protections are set with the p4 protect command and control which depot files can be affected by
commands run by users.

Unlike client, branch, and label views, however, the views used by protections can be set only by
Perforce superusers. (Protections also control read and write permission to depot files, but the
permission levels themselves have no impact on server performance.) By assigning protections in
Perforce, a Perforce superuser can effectively limit the size of a user’s view, even if the user is using
"loose" client specifications.

Protections can be assigned to either users or groups. For example:

write user sam * //depot/admin/...
write group rocketdev * //depot/rocket/main/...
write group rocketrel2 * //depot/rocket/rel2.0/...

Perforce groups are created by superusers with the p4 group command. Not only do they make it
easier to assign protections, they also provide useful fail-safe mechanisms in the form of maxresults
and maxscanrows, described in the next section.

Limiting database queries
Each Perforce group has an associated maxresults, maxscanrows, and maxlocktime value. The default for
each is unset, but a superuser can use p4 group to limit it for any given group.

MaxResults prevents the server from using excessive memory by limiting the amount of data buffered
during command execution. Users in limited groups are unable to run any commands that buffer more
database rows than the group’s MaxResults limit. (For most sites, MaxResults should be larger than the
largest number of files anticipated in any one user’s individual client workspace.)

Chapter 9. Tuning Perforce for Performance

Helix Versioning Engine Administrator Guide: Fundamentals 159

Like MaxResults, MaxScanRows prevents certain user commands from placing excessive demands on the
server. (Typically, the number of rows scanned in a single operation is roughly equal to MaxResults
multiplied by the average number of revisions per file in the depot.)

Finally, MaxLockTime is used to prevent certain commands from locking the database for prolonged
periods of time. Set MaxLockTime to the number of milliseconds for the longest permissible database
lock.

To set these limits, fill in the appropriate fields in the p4 group form. If a user is listed in multiple
groups, the highest of the MaxResults (or MaxScanRows, or MaxLockTime) limits (including unlimited,
but not including the default unset setting) for those groups is taken as the user’s MaxResults (or
MaxScanRows, or MaxLockTime) value.

Example 9.1. Effect of setting maxresults, maxscanrows, and maxlocktime.

As an administrator, you want members of the group rocketdev to be limited to operations of 20,000
files or less, that scan no more than 100,000 revisions, and lock database tables for no more than 30
seconds:

Group: rocketdev
MaxResults: 20000
MaxScanRows: 100000
MaxLockTime: 30000
Timeout: 43200
Subgroups:
Owners:
Users:
 bill
 ruth
 sandy

Suppose that Ruth has an unrestricted (loose) client view. She types:

$ p4 sync

Her sync command is rejected if the depot contains more than 20,000 files. She can work around this
limitation either by restricting her client view, or, if she needs all of the files in the view, by syncing
smaller sets of files at a time, as follows:

$ p4 sync //depot/projA/...
$ p4 sync //depot/projB/...

Either method enables her to sync her files to her workspace, but without tying up the server to
process a single extremely large command.

Ruth tries a command that scans every revision of every file, such as:

$ p4 filelog //depot/projA/...

Chapter 9. Tuning Perforce for Performance

160 Helix Versioning Engine Administrator Guide: Fundamentals

If there are fewer than 20,000 revisions, but more than 100,000 integrations (perhaps the projA
directory contains 1,000 files, each of which has fewer than 20 revisions and has been branched more
than 50 times), the MaxResults limit does not apply, but the MaxScanRows limit does.

Regardless of which limits are in effect, no command she runs will be permitted to lock the database
for more than the MaxLockTime of 30,000 milliseconds.

To remove any limits on the number of result lines processed (or database rows scanned, or
milliseconds of database locking time) for a particular group, set the MaxResults or MaxScanRows, or
MaxLockTime value for that group to unlimited.

Because these limitations can make life difficult for your users, do not use them unless you find that
certain operations are slowing down your server. Because some Perforce applications can perform
large operations, you should typically set MaxResults no smaller than 10,000, set MaxScanRows no
smaller than 50,000, and MaxLockTime to somewhere within the 1,000-30,000 (1-30 second) range.

For more information, including a comparison of Perforce commands and the number of files they
affect, type:

$ p4 help maxresults
$ p4 help maxscanrows
$ p4 help maxlocktime

from the command line.

MaxResults, MaxScanRows and MaxLockTime for users in multiple groups

As mentioned earlier, if a user is listed in multiple groups, the highest numeric MaxResults limit of all
the groups a user belongs to is the limit that affects the user.

The default value of unset is not a numeric limit; if a user is in a group where MaxResults is set to
unset, he or she is still limited by the highest numeric MaxResults (or MaxScanRows or MaxLockTime)
setting of the other groups of which he or she is a member.

A user’s commands are truly unlimited only when the user belongs to no groups, or when any of the
groups of which the user is a member have their MaxResults set to unlimited.

Limiting simultaneous connections
If monitoring is enabled (p4 configure set monitor=1 or higher), you can set the server.maxcommands
configurable to limit the number of simultaneous command requests that the service will attempt to
handle.

Ideally, this value should be set low enough to detect a runaway script or denial of service attack
before the underlying hardware resources are exhausted, yet high enough to maintain a substantial
margin of safety between the typical average number of connections and your site’s peak activity.

If P4LOG is set, the server log will contain lines of the form:

Server is now using nnn active threads.

Chapter 9. Tuning Perforce for Performance

Helix Versioning Engine Administrator Guide: Fundamentals 161

You can use the server log to determine what levels of activity are typical for your site. As a general
guideline, set server.maxcommands to at least 200-500% of your anticipated peak activity.

Unloading infrequently-used metadata
Over time, a Perforce server accumulates metadata associated with old projects that are no longer in
active development. On large sites, reducing the working set of data, (particularly that stored in the
db.have and db.labels tables) can significantly improve performance.

Create the unload depot

To create an unload depot named //unload, enter p4 depot unload, and fill in the resulting form as
follows:

Depot: unload
Type: unload
Map: unloaded/...

In this example, unloaded metadata is stored in flat files in the /unloaded directory beneath your
server root (that is, as specified by the Map: field).

After you have created the unload depot, you can use p4 unload and p4 reload to manage your
installation’s handling of workspace and label-related metadata.

Unload old client workspaces, labels, and task streams

The p4 unload command transfers infrequently-used metadata from the versioning engine’s db.* files
to a set of flat files in the unload depot.

Individual users can use the -c, -l, and -s flags to unload client workspaces, static labels, or task
streams that they own. For example, maintainers of build scripts that create one workspace and/or
label per build, particularly in continuous build environments, should be encouraged to unload the
labels after each build:

$ p4 unload -c oldworkspace
$ p4 unload -l oldlabel

Similarly, developers should be encouraged to unload (p4 unload -s oldtaskstream) or delete (p4
stream -d oldtaskstream) task streams after use.

To manage old or obsolete metadata in bulk, administrators can use the -a, -al, or -ac flags in
conjunction with the -d date and/or -u user flags to unload all static labels and workspaces older
than a specific date, owned by a specific user, or both.

By default, only unlocked labels or workspaces are unloaded; use the -L flag to unload locked labels or
workspaces.

To unload or reload a workspace or label, a user must be able to scan all the files in the workspace’s
have list and/or files tagged by the label. Set MaxScanrows and MaxResults high enough (see

Chapter 9. Tuning Perforce for Performance

162 Helix Versioning Engine Administrator Guide: Fundamentals

“MaxResults, MaxScanRows and MaxLockTime for users in multiple groups” on page 160) that
users do not need to ask for assistance with p4 unload or p4 reload operations.

Accessing unloaded data

By default, Perforce commands such as p4 clients, p4 labels, p4 files, p4 sizes, and p4 fstat
ignore unloaded metadata. Users who need to examine unloaded workspaces and labels (or other
unloaded metadata) can use the -U flag when using these commands. For more information, see the P4
Command Reference.

Reloading workspaces and labels

If it becomes necessary to restore unloaded metadata back into the db.have or db.labels table, use the
p4 reload command.

Scripting efficiently
The Perforce Command-Line Client, p4, supports the scripting of any command that can be run
interactively. The Perforce server can process commands far faster than users can issue them, so
in an all-interactive environment, response time is excellent. However, p4 commands issued by
scripts — triggers, or command wrappers, for example — can cause performance problems if you
haven’t paid attention to their efficiency. This is not because p4 commands are inherently inefficient,
but because the way one invokes p4 as an interactive user isn’t necessarily suitable for repeated
iterations.

This section points out some common efficiency problems and solutions.

Iterating through files

Each Perforce command issued causes a connection thread to be created and a p4d subprocess to be
started. Reducing the number of Perforce commands your script runs might make it more efficient if
the command is lockless. Depending on the use of shared locks however, it might be more efficient to
have several commands operate on smaller sets of files than having one command operate on a large
set of files.

To minimize the number of commands, try this approach:

for i in p4 diff2 path1/... path2/...
do
 [process diff output]
done

Instead of an inefficient approach like:

for i in p4 files path1/...
do
 p4 diff2 path1/$i path2/$i
 [process diff output]
done

http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html
http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

Chapter 9. Tuning Perforce for Performance

Helix Versioning Engine Administrator Guide: Fundamentals 163

Using list input files

Any Perforce command that accepts a list of files as a command-line argument can also read the same
argument list from a file. Scripts can make use of the list input file feature by building up a list of files
first, and then passing the list file to p4 -x.

For example, if your script might look something like this:

for components in header1 header2 header3
do
 p4 edit ${component}.h
done

A more efficient alternative would be:

for components in header1 header2 header3
do
 echo ${component}.h >> LISTFILE
done
p4 -x LISTFILE edit

The -x file flag instructs p4 to read arguments, one per line, from the named file. If the file is specified
as - (a dash), the standard input is read.

By default, the server processes arguments from -x file in batches of 128 arguments at a time; you
can change the number of arguments processed by the server by using the -b batchsize flag to pass
arguments in different batch sizes.

Using branch views

Branch views can be used with p4 integrate or p4 diff2 to reduce the number of Perforce command
invocations. For example, you might have a script that runs:

$ p4 diff2 pathA/src/... pathB/src/...
$ p4 diff2 pathA/tests/... pathB/tests/...
$ p4 diff2 pathA/doc/... pathB/doc/...

You can make it more efficient by creating a branch view that looks like this:

Branch: pathA-pathB
View:
 pathA/src/... pathB/src/...
 pathA/tests/... pathB/tests/...
 pathA/doc/... pathB/doc/...

…and replacing the three commands with one:

Chapter 9. Tuning Perforce for Performance

164 Helix Versioning Engine Administrator Guide: Fundamentals

$ p4 diff2 -b pathA-pathB

Limiting label references

Repeated references to large labels can be particularly costly. Commands that refer to files using labels
as revisions will scan the whole label once for each file argument. To keep from hogging the Perforce
server, your script should get the labeled files from the server, and then scan the output for the files it
needs.

For example, this:

$ p4 files path/...@label | egrep "path/f1.h|path/f2.h|path/f3.h"

imposes a lighter load on the Perforce server than either this:

$ p4 files path/f1.h@label path/f1.h@label path/f3.h@label

or this:

$ p4 files path/f1.h@label
$ p4 files path/f2.h@label
$ p4 files path/f3.h@label

The "temporary client workspace" trick described below can also reduce the number of times you have
to refer to files by label.

On large sites, consider unloading infrequently-referenced or obsolete labels from the database. See
“Unloading infrequently-used metadata” on page 161.

Using a temporary client workspace

Most Perforce commands can process all the files in the current workspace view with a single
command-line argument. By making use of a temporary client workspace with a view that contains
only the files on which you want to work, you might be able to reduce the number of commands you
have to run, or to reduce the number of file arguments you need to give each command.

For instance, suppose your script runs these commands:

$ p4 sync pathA/src/...@label
$ p4 sync pathB/tests/...@label
$ p4 sync pathC/doc/...@label

You can combine the command invocations and reduce the three label scans to one by using a client
workspace specification that looks like this:

Chapter 9. Tuning Perforce for Performance

Helix Versioning Engine Administrator Guide: Fundamentals 165

Client: XY-temp
View:
 pathA/src/... //XY-temp/pathA/src/...
 pathB/tests/... //XY-temp/pathB/tests/...
 pathC/doc/... //XY-temp/pathC/doc/...

Using this workspace specification, you can then run:

$ p4 -c XY-temp sync @label

Using compression efficiently
There are cases where compression is automatically handled:

• By default, revisions of files of type binary are compressed when stored on the Perforce server. Some
file formats (for example, .GIF and .JPG images, .MPG and .AVI media content, files compressed
with .gz compression) include compression as part of the file format.

Attempting to compress such files on the Perforce server results in the consumption of server CPU
resources with little or no savings in disk space. To disable server storage compression for these file
types, specify such files as type binary+F (binary, stored on the server in full, without compression)
either from the command line or from the p4 typemap table.

For more about p4 typemap, including a sample typemap table, see “Defining filetypes with p4
typemap” on page 33.

• By default compression is enabled between the Perforce server and the proxy; if this connection is
going across a VPN that is already doing compression at a lower layer, you might want to disable
the compression for the proxy (-c flag).

Other server configurables
The Perforce server has many configurables that may be changed for performance purposes.

A complete list of configurables may be found by running p4 help configurables.

Checkpoints for database tree rebalancing
Perforce’s internal database stores its data in structures called Bayer trees, more commonly referred
to as B-trees. While B-trees are a very common way to structure data for rapid access, over time, the
process of adding and deleting elements to and from the trees can eventually lead to imbalances in the
data structure.

Eventually, the tree can become sufficiently unbalanced that performance is degraded. The Perforce
checkpoint and restore processes (see “Backup and recovery concepts” on page 103) re-create the trees
in a balanced manner, and consequently, you might see some improvement in server performance
following a backup, a removal of the db.* files, and the re-creation of the db.* files from a checkpoint.

Chapter 9. Tuning Perforce for Performance

166 Helix Versioning Engine Administrator Guide: Fundamentals

Given the length of time required for the trees to become unbalanced during normal Perforce use,
we expect that the majority of sites will never need to restore the database from a checkpoint (that is,
rebalance the trees) to improve performance.

(The changes to the B-trees between Perforce 2013.2 and 2013.3 require that any upgrade that crosses
this release boundary must be performed by taking a checkpoint with the older release and restoring
that checkpoint with the newer release. See “Upgrading p4d - between 2013.2 and 2013.3” on page 30
for details.)

Helix Versioning Engine Administrator Guide: Fundamentals 167

Chapter 10 Customizing Perforce: Job Specifications
Perforce’s jobs feature enables users to link changelists to enhancement requests, problem reports, and
other user-defined tasks. Perforce also offers P4DTG (Perforce Defect Tracking Gateway) as a means to
integrate third-party defect tracking tools with Perforce. See “Working with third-party defect tracking
systems” on page 174 for details.

The Perforce user’s use of p4 job is discussed in the Helix Versioning Engine User Guide. This chapter
covers administrator modification of the jobs system.

Perforce’s default jobs template has five fields for tracking jobs. These fields are sufficient for small-
scale operations, but as projects managed by Perforce grow, the information stored in these fields
might be insufficient. To modify the job template, use the p4 jobspec command. You must be a
Perforce administrator to use p4 jobspec.

This chapter discusses the mechanics of altering the Perforce job template.

Warning Improper modifications to the Perforce job template can lead to corruption of your
server’s database. Recommendations, caveats, and warnings about changes to job
templates are summarized at the end of this chapter.

The default Perforce job template
To understand how Perforce jobs are specified, consider the default Perforce job template. The
examples that follow in this chapter are based on modifications to the this template.

A job created with the default Perforce job template has this format:

A Perforce Job Specification.
#
Job: The job name. 'new' generates a sequenced job number.
Status: Either 'open', 'closed', or 'suspended'. Can be changed.
User: The user who created the job. Can be changed.
Date: The date this specification was last modified.
Description: Comments about the job. Required.
Job: new
Status: open
User: edk
Date: 2011/06/03 23:16:43
Description:
 <enter description here>

The template from which this job was created can be viewed and edited with p4 jobspec. The default
job specification template looks like this:

http://www.perforce.com/perforce/r16.1/manuals/p4guide/index.html

Chapter 10. Customizing Perforce: Job Specifications

168 Helix Versioning Engine Administrator Guide: Fundamentals

A Perforce Job Specification.
#
Updating this form can be dangerous!
See 'p4 help jobspec' for proper directions.
Fields:
 101 Job word 32 required
 102 Status select 10 required
 103 User word 32 required
 104 Date date 20 always
 105 Description text 0 required
Values:
 Status open/suspended/closed
Presets:
 Status open
 User $user
 Date $now
 Description $blank
Comments:
 # A Perforce Job Specification.
 #
 # Job: The job name. 'new' generates a sequenced job number.
 # Status: Either 'open', 'closed', or 'suspended'. Can be changed.
 # User: The user who created the job. Can be changed.
 # Date: The date this specification was last modified.
 # Description: Comments about the job. Required.

The job template’s fields
There are four fields in the p4 jobspec form. These fields define the template for all Perforce jobs
stored on your server. The following table shows the fields and field types.

Field / Field Type Meaning

Fields: A list of fields to be included in each job.

Each field consists of an ID#, a name, a datatype, a length, and a setting.

Field names must not contain spaces.

Values: A list of fields whose datatype is select.

For each select field, you must add a line containing the field’s name, a
space, and its list of acceptable values, separated by slashes.

Presets: A list of fields and their default values.

Values can be either literal strings or variables supported by Perforce.

Comments: The comments that appear at the top of the p4 job form. They are also
used by P4V, the Perforce Visual Client, to display tooltips.

Chapter 10. Customizing Perforce: Job Specifications

Helix Versioning Engine Administrator Guide: Fundamentals 169

The Fields: field
The p4 jobspec field Fields: lists the fields to be tracked by your jobs and specifies the order in which
they appear on the p4 job form.

The default Fields: field includes these fields:

Fields:
 101 Job word 32 required
 102 Status select 10 required
 103 User word 32 required
 104 Date date 20 always
 105 Description text 0 required

Warning Do not attempt to change, rename, or redefine fields 101 through 105. Fields 101
through 105 are used by Perforce and should not be deleted or changed. Use p4
jobspec only to add new fields (106 and above) to your jobs.

Each field must be listed on a separate line. A field is defined by a line containing each of the following
five field descriptors.

Field descriptor Meaning

ID# A unique integer identifier by which this field is indexed. After a field has been
created and jobs entered into the system, the name of this field can change, but
the data becomes inaccessible if the ID number changes.

ID numbers must be between 106 and 199.

Name The name of the field as it should appear on the p4 job form. No spaces are
permitted.

Data type One of six datatypes (word, text, line, select, date or bulk), as described in the
next table.

Length The recommended size of the field’s text box as displayed in P4V, the Perforce
Visual Client. To display a text box with room for multiple lines of input, use a
length of 0; to display a single line, enter the Length as the maximum number of
characters in the line.

The value of this field has no effect on jobs edited from the Perforce command
line, and it is not related to the actual length of the values stored by the server.

Field type Determines whether a field is read-only, contains default values, is required,
and so on. The valid values for this field are:

• optional: the field can take any value or can be deleted.

• default: a default value is provided, but it can be changed or erased.

Chapter 10. Customizing Perforce: Job Specifications

170 Helix Versioning Engine Administrator Guide: Fundamentals

Field descriptor Meaning

• required: a default is given; it can be changed but the field can’t be left
empty.

• once: read-only; the field is set once to a default value and is never changed.

• always: read-only; the field value is reset to the default value when the job is
saved. Useful only with the $now variable to change job modification dates,
and with the $user variable to change the name of the user who last modified
the job.

Fields have the following six datatypes.

Field Type Explanation Example

word A single word (a string without spaces). A userid: edk

text A block of text that can span multiple lines. A job’s description.

line One line of text. A user’s real name: Ed K.

select One of a set of user-defined values.

Each field with datatype select must have a
corresponding line in the Values: field entered
into the job specification.

A job’s status. One of: open/
suspended/closed

date A date value:
year/month/day:hours:minutes:seconds

The date and time of job creation:
1998/07/15:13:21:46

bulk A block of text that can span multiple lines, but
which is not indexed for searching with p4 jobs
-e.

Alphanumeric data for which text
searches are not expected.

The Values: fields

You specify the set of possible values for any field of datatype select by entering lines in the Values:
field. Each line should contain the name of the field, a space, and the list of possible values, separated
by slashes.

In the default Perforce job specification, the Status: field is the only select field, and its possible
values are defined as follows:

Values:
 Status open/suspended/closed

Chapter 10. Customizing Perforce: Job Specifications

Helix Versioning Engine Administrator Guide: Fundamentals 171

The Presets: field

All fields with a field type of anything other than optional require default values. To assign a default
value to a field, create a line in the jobspec form under Presets, consisting of the field name to which
you’re assigning the default value. Any single-line string can be used as a default value.

The following variables are available for use as default values.

Variable Value

$user The Perforce user creating the job, as specified by the P4USER environment variable, or as
overridden with p4 -u username job

$now The date and time at the moment the job is saved.

$blank The text <enter description here>

When users enter jobs, any fields in your jobspec with a preset of $blank must be filled in
by the user before the job is added to the system.

The lines in the Presets: field for the standard jobs template are:

Presets:
 Status open
 User $user
 Date $now
 Description $blank

Using Presets: to change default fix status

The Presets: entry for the job status field (field 102) has a special syntax for providing a default fix
status for p4 fix, p4 change -s, and p4 submit -s.

To change the default fix status from closed to some other fixStatus (assuming that your preferred
fixStatus is already defined as a valid select setting in the Values: field), use the following syntax:

Presets:
 Status openStatus,fix/fixStatus

In order to change the default behavior of p4 fix, p4 change, and p4 submit to leave job status
unchanged after fixing a job or submitting a changelist, use the special fixStatus of same. For example:

Presets:
 Status open,fix/same

Chapter 10. Customizing Perforce: Job Specifications

172 Helix Versioning Engine Administrator Guide: Fundamentals

The Comments: field
The Comments: field supplies the comments that appear at the top of the p4 job form. Because p4 job
does not automatically tell your users the valid values of select fields, which fields are required, and
so on, your comments must tell your users everything they need to know about each field.

Each line of the Comments: field must be indented by at least one tab stop from the left margin, and
must begin with the comment character #.

The comments for the default p4 job template appear as:

Comments:
 # A Perforce Job Specification.
 # Job: The job name. 'new' generates a sequenced job number.
 # Status: Either 'open', 'closed', or 'suspended'. Can be changed
 # User: The user who created the job. Can be changed.
 # Date: The date this specification was last modified.
 # Description: Comments about the job. Required.

These fields are also used by P4V, the Perforce Visual Client, to display tooltips.

Caveats, warnings, and recommendations
Although the material in this section has already been presented elsewhere in this chapter, it is
important enough to bear repeating. Please follow the guidelines presented here when editing job
specifications with p4 jobspec.

Warning Please read and understand the material in this section before you attempt to edit a
job specification.

• Do not attempt to change, rename, or redefine fields 101 through 105. These fields are used by
Perforce and should not be deleted or changed. Use p4 jobspec only to add new fields (106 and
above) to your jobs.

Field 101 is required by Perforce and cannot be renamed nor deleted.

Fields 102 through 105 are reserved for use by Perforce applications. Although it is possible to
rename or delete these fields, it is highly undesirable to do so. Perforce applications may continue to
set the value of field 102 (the Status: field) to closed (or some other value defined in the Presets:
for field 102) upon changelist submission, even if the administrator has redefined field 102 for use as
a field that does not contain closed as a permissible value, leading to unpredictable and confusing
results.

• After a field has been created and jobs have been entered, do not change the field’s ID number. Any
data entered in that field through p4 job will be inaccessible.

• Field names can be changed at any time. When changing a field’s name, be sure to also change the
field name in other p4 jobspec fields that reference this field name. For example, if you create a new

Chapter 10. Customizing Perforce: Job Specifications

Helix Versioning Engine Administrator Guide: Fundamentals 173

field 106 named severity and subsequently rename it to bug-severity, then the corresponding line
in the jobspec’s Presets: field must be changed to bug-severity to reflect the change.

• The comments that you write in the Comments: field are the only way to let your users know the
requirements for each field. Make these comments understandable and complete. These comments
are also used to display tooltips in P4V, the Perforce Visual Client.

Example: a custom template
The following example shows a more complicated jobspec and the resulting job form:

A Custom Job Specification.
#
Updating this form can be dangerous!
See 'p4 help jobspec' for proper directions.
Fields:
 101 Job word 32 required
 102 Status select 10 required
 103 User word 32 required
 104 Date date 20 always
 111 Type select 10 required
 112 Priority select 10 required
 113 Subsystem select 10 required
 114 Owned_by word 32 required
 105 Description text 0 required
Values:
 Status open/closed/suspended
 Type bug/sir/problem/unknown
 Priority A/B/C/unknown
 Subsystem server/gui/doc/mac/misc/unknown
Presets:
 Status open
 User setme
 Date $now
 Type setme
 Priority unknown
 Subsystem setme
 Owned_by $user
 Description $blank
Comments:
 # Custom Job fields:
 # Job: The job name. 'new' generates a sequenced job number.
 # Status: Either 'open', 'closed', or 'suspended'. Can be changed
 # User: The user who created the job. Can be changed.
 # Date: The date this specification was last modified.
 # Type: The type of the job. Acceptable values are
 # 'bug', 'sir', 'problem' or 'unknown'
 # Priority: How soon should this job be fixed?
 # Values are 'a', 'b', 'c', or 'unknown'
 # Subsystem: One of server/gui/doc/mac/misc/unknown
 # Owned_by: Who's fixing the bug
 # Description: Comments about the job. Required.

Chapter 10. Customizing Perforce: Job Specifications

174 Helix Versioning Engine Administrator Guide: Fundamentals

The order of the listing under Fields: in the p4 jobspec form determines the order in which the fields
appear to users in job forms; fields need not be ordered by numeric identifier.

Running p4 job against the example custom jobspec displays the following job form:

Custom Job fields:
Job: The job name. 'new' generates a sequenced job number.
Status: Either 'open', 'closed', or 'suspended'. Can be changed
User: The user who created the job. Can be changed.
Date: The date this specification was last modified.
Type: The type of the job. Acceptable values are
'bug', 'sir', 'problem' or 'unknown'
Priority: How soon should this job be fixed?
Values are 'a', 'b', 'c', or 'unknown'
Subsystem: One of server/gui/doc/mac/misc/unknown
Owned_by: Who's fixing the bug
Description: Comments about the job. Required.
Job: new
Status: open
User: setme
Type: setme
Priority: unknown
Subsystem: setme
Owned_by: edk
Description:
 <enter description here>

Working with third-party defect tracking systems
Perforce currently offers two independent platforms to integrate Perforce with third-party defect
tracking systems. Both platforms allow information to be shared between Perforce’s job system and
external defect tracking systems.

P4DTG, The Perforce Defect Tracking Gateway

P4DTG, the Perforce Defect Tracking Gateway, is an integrated platform that includes both a graphical
configuration editor and a replication engine.

The P4DTG includes a graphical configuration editor that you can use to control the relationship
between Perforce jobs and the external system. Propagation of the data between the two systems
is coordinated by a replication engine. P4DTG comes with plug-ins for HP Quality Center, JIRA,
Redmine, and Bugzilla.

For more information, see the product page at:

http://www.perforce.com/product/components/defect_tracking_gateway

Available from this page are an overview of P4DTG’s capabilities, the download for P4DTG itself, and
a link to the Defect Tracking Gateway Guide, which describes how to install and configure the gateway to
replicate data between a Perforce server and a defect tracker.

http://www.perforce.com/product/components/defect_tracking_gateway
http://www.perforce.com/perforce/r16.1/manuals/p4dtg/index.html

Chapter 10. Customizing Perforce: Job Specifications

Helix Versioning Engine Administrator Guide: Fundamentals 175

Building your own integration
Even if you don’t use Perforce’s integrations as your starting point, you can still use Perforce’s job
system as the interface between Perforce and your defect tracker. Depending on the application, the
interface you set up will consist of one or more of the following:

• A trigger or script on the defect tracking system side that adds, updates, or deletes a job in Perforce
every time a bug is added, updated, or deleted in the defect tracking system.

The third-party system should generate the data and pass it to a script that reformats the data to
resemble the form used by a manual (interactive) invocation of p4 job. The script can then pipe the
generated form to the standard input of a p4 job -i command.

The -i flag to p4 job is used when you want p4 job to read a job form directly from the standard
input, rather than using the interactive "form-and-editor" approach typical of user operations.
Further information on automating Perforce with the -i option is available in the P4 Command
Reference.

• A trigger on the Perforce side that checks changelists being submitted for any necessary bug fix
information.

For more about triggers, including examples, see Chapter 11, “Using triggers to customize
behavior” on page 177.

http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html
http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

176 Helix Versioning Engine Administrator Guide: Fundamentals

Helix Versioning Engine Administrator Guide: Fundamentals 177

Chapter 11 Using triggers to customize behavior
Perforce triggers are user-written programs or scripts that are called by a Perforce server whenever
certain operations (such as changelist submits, changes to forms, attempts by users to log in or change
passwords) are performed. If the script returns a value of 0, the operation continues; if the script
returns any other value, the operation fails.

Triggers allow you to extend or customize Perforce functionality. Consider the following common
uses:

• To validate changelist contents beyond the mechanisms afforded by the Perforce protections table.
For example, you can use a pre-submit trigger to ensure that whenever file1 is submitted in a
changelist, file2 is also submitted.

• To perform some action before or after the execution of a particular Perforce command.

• To validate forms, or to provide customized versions of Perforce forms. For example, you can use
form triggers to generate a customized default workspace view when users run the p4 client
command, or to ensure that users always enter a meaningful workspace description.

• To configure Perforce to work with external authentication mechanisms such as LDAP or Active
Directory.

You might prefer to enable LDAP authentication by using an LDAP specification. For more
information, see section “Authentication options” on page 69.

• To retrieve content from data sources archived outside of the Perforce repository.

For simplicity’s sake, this guide refers to trigger scripts and programs as triggers.

Note If the API level is 79 or greater, canonical filetypes are now displayed by default for
all commands that display filetypes. If the API level is 78 or lower, filetype aliases
are displayed instead. If your script depends on the display of filetype aliases, you
will need either to change the API level or to change your script.

Creating triggers
This section explains the basic workflow used to create a trigger, describes a sample trigger, discusses
the trigger definition, and examines a trigger’s execution environment.

To create a trigger and have Perforce execute it, you must do the following:

1. Write the program or script. Triggers can be written in a shell script such as Perl, Python, or Ruby;
or they can be written in any programming language that can interface with Perforce, including
UNIX shell and compiled languages like C/C+.

Triggers have access to trigger variables that can be used to get server state information, execution
context, client information, information about the parameters passed to the trigger, and so on. For
information about trigger variables, see “Trigger script variables” on page 221.

Triggers communicate with the server using trigger variables or by using a dictionary of key/
value pairs accessed via STDIN and STDOUT. For more information on these methods, see
“Communication between a trigger and the server” on page 183.

Chapter 11. Using triggers to customize behavior

178 Helix Versioning Engine Administrator Guide: Fundamentals

Triggers can also use the command-line client (p4.exe) or the Perforce scripting API’s (P4-Ruby,
P4-Python, P4-PHP) when data is needed that cannot be accessed by trigger variables. For more
information, see APIs for Scripting.

Triggers can be located on the server’s file system or in the depot itself, for information on using a
trigger that is located in the depot, see “Storing triggers in the depot” on page 186.

Triggers can be written for portability across servers. For more information, see “Writing triggers to
support multiple Perforce servers” on page 188.

2. Use the p4 triggers command to create a trigger definition that determines when the trigger
will fire. Trigger definitions are composed of four fields: these specify the trigger name, the event
type that must occur, the location of the trigger and, in some cases, some file pattern that must be
matched in order to fire the trigger.

For more information, see “Trigger definition” on page 179.

Warning When you use trigger scripts, remember that Perforce commands that write data
to the depot are dangerous and should be avoided. In particular, do not run the p4
submit command from within a trigger script.

It’s also important to avoid recursion and to watch out for client workspace locks. A
trigger running commands as the requesting user could accidentally stall if it hits a
lock.

Sample trigger

The following code sample is a bash auth-check type trigger that tries to authenticate a user (passed
to the script using the %user% variable) using the Active Directory. If that fails, all users have the same
"secret" password, and special user bruno is able to authenticate without a password.

http://www.perforce.com/perforce/r16.1/manuals/p4script/index.html

Chapter 11. Using triggers to customize behavior

Helix Versioning Engine Administrator Guide: Fundamentals 179

USERNAME=$1
echo "USERNAME is $USERNAME"

read user-supplied password from stdin
read USERPASS
echo Trying AD authentication for $USERNAME
echo $USERPASS | /home/perforce/p4auth_ad 192.168.100.80 389 DC=ad,DC=foo,DC=com $USERNAME
if [$? == 0]
then
 # Successful AD
 echo Active Directory login successful
 exit 0
fi
Compare user-supplied password with correct password, "secret"
PASSWORD=secret
if ["$USERPASS" = $PASSWORD]
then
 # Success
 exit 0
fi
if ["$USERNAME" = "bruno"]
then
 # Always let user bruno in
 exit 0
fi
Failure
password $USERPASS for $USERNAME is incorrect;
exit 1

To define this trigger, use the p4 triggers command, and add a line like the following to the triggers
form:

bypassad auth-check auth "/home/perforce/bypassad.sh %user%"

The auth-check trigger is fired, if it exists, after a user executes the p4 login command. For
authentication triggers, the password is sent on STDIN.

Note Use an auth-check trigger rather than the service-check trigger for operator users.

Trigger definition
After you have written a trigger, you create the trigger definition by issuing the p4 triggers command
and providing trigger information in the triggers form. You must be a Perforce superuser to run this
command. The p4 triggers form looks like this:

Triggers:
 relnotecheck change-submit //depot/bld/... "/usr/bin/rcheck.pl %user%"
 verify_jobs change-submit //depot/... "/usr/bin/job.py %change%"

Chapter 11. Using triggers to customize behavior

180 Helix Versioning Engine Administrator Guide: Fundamentals

As with all Perforce commands that use forms, field names (such as Triggers:) must be flush left (not
indented) and must end with a colon, and field values (that is, the set of lines you add, one for each
trigger) must be indented with spaces or tabs on the lines beneath the field name.

Each line in the trigger form you fill out when you use the p4 triggers command has four fields.
These are briefly described in the following table. Values for three of these fields vary with the trigger
type; these values are described in additional detail in the sections describing each type of trigger. The
name field uses the same format for all trigger types.

Field Meaning

name The user-defined name of the trigger.

To use the same trigger script with multiple file patterns, list the same trigger multiple
times on contiguous lines in the trigger table. Use exclusionary mappings to prevent files
from activating the trigger script; the order of the trigger entries matters, just as it does
when exclusionary mappings are used in views. In this case, only the command of the first
such trigger line that matches a path is used.

type Triggers are divided into ten categories: submit triggers, push triggers, command
triggers, journal-rotate triggers, shelve triggers, edge-server triggers, fix triggers, form
triggers, authentication triggers, and archive triggers. One or more types is defined
for each of these categories. For example, submit triggers include the change-submit,
change-content, change-commit, and change-failed types.

Please consult the section describing the category of interest to determine which types
relate to that trigger.

path The use of this field varies with the trigger type. For example, for submit, edge server,
and shelve triggers, this field is a file pattern in depot syntax. When a user submits a
changelist that contains files that match this pattern, the trigger script executes.

Please consult the section describing the trigger of interest to determine which path is
appropriate for that trigger.

command The trigger for the Perforce server to run when the conditions implied by the trigger
definition is satisfied.

You must specify the name of the trigger script or executable in ASCII, even when the
server is running in Unicode mode and passes arguments to the trigger script in UTF8.

Specify the trigger in a way that allows the Perforce server to locate and run the
command. The command (typically a call to a script) must be quoted, and can take
as arguments any argument that your command is capable of parsing, including any
applicable Perforce trigger variables.

On those platforms where the operating system does not know how to run the trigger,
you will need to specify an interpreter in the command field. For example, Windows
does not know how to run .pl files.

lo form-out label "perl //myscripts/validate.pl"

Chapter 11. Using triggers to customize behavior

Helix Versioning Engine Administrator Guide: Fundamentals 181

Field Meaning

When your trigger script is stored in the depot, its path must be specified in depot
syntax, delimited by percent characters. For example, if your script is stored in the depot
as //depot/scripts/myScript.pl, the corresponding value for the command field might
be "/usr/bin/perl %//depot/scripts/myScript.pl%" . See “Storing triggers in the
depot” on page 186 for more information.

Triggers are run in the order listed in the trigger table; if a trigger script fails for a specified type,
subsequent trigger scripts also associated with that type are not run.

The p4 triggers command has a very simple syntax:

p4 triggers [-i | -o]

• With no flags, the user’s editor is invoked to specify the trigger definitions.

• The -i flag reads the trigger table from standard input.

• The -o flag displays all the trigger definitions stored in the trigger table.

Execution environment
When testing and debugging triggers, remember that any p4 commands invoked from within the
script will run within a different environment (P4USER, P4CLIENT, and so on) than that of the calling
user. You must therefore take care to initialize the environment you need from within the trigger script
and not inherit these values from the current environment. For example:

export P4USER=george
export P4PASSWD=abracadabra
cd /home/pforce/database

p4 admin checkpoint
ls -l checkpoint.* journal*

In general, it is good practice to observe the following guidelines:

• Wherever possible, use the full path to executables.

• For path names that contain spaces, use the short path name.

For example, C:\Program Files\Perforce\p4.exe is most likely located in C:\PROGRA~1\Perforce
\p4.exe.

• Unicode settings affect trigger scripts that communicate with the server. You should check your
trigger’s use of file names, directory names, Perforce identifiers, and files that contain Unicode
characters, and make sure that these are consistent with the character set used by the server.

• Login tickets may not be located in the same place as they were during testing; for testing, you can
pass in data with p4 login < input.txt.

Chapter 11. Using triggers to customize behavior

182 Helix Versioning Engine Administrator Guide: Fundamentals

• If you are using LDAP authentication, or authentication triggers, you must authenticate using
tickets (as with security level 3). It then follows that you cannot store a plaintext password value in
P4PASSWD: you should set P4PASSWD to a ticket value obtained from p4 login -p instead.

• For troubleshooting, log output to a file. For example:

date /t >> trigger.log
p4 info >> trigger.log
C:\PROGRA~1\Perforce\p4.exe -p myServer:1666 info

If a trigger fails to execute, the event is now logged in the Server log and an error is sent to the user.

• Perforce commands in trigger scripts are always run by a specific Perforce user. If no user is
specified, an extra Perforce license for a user named SYSTEM (or on UNIX, the user that owns the p4d
process) is assumed. To prevent this from happening:

• Pass a %user% argument to the trigger that calls each Perforce command to ensure that each
command is called by that user. For example, if Joe submits a changelist that activates trigger
script trigger.pl, and trigger.pl calls the p4 changes command, the script can run the command
as p4 -u %user% changes.

• Set P4USER for the account that runs the trigger to the name of an existing user. (If your Perforce
server is installed as a service under Windows, note that Windows services cannot have a P4USER
value; on Windows, you must therefore pass a user value to each command as described above.)

• You can access the following environment variables from a trigger: P4USER, P4CLIENT, P4HOST,
P4LANGUAGE, CWD, OS.

• Timeouts associated with the trigger user might affect trigger execution. To prevent an unwanted
timeout, place the user running the trigger in a group that will not time out.

Timeout is the login ticket duration as defined by the group spec of the user the trigger is using
to run commands; the ticket is the one created for use with the trigger. For example, the default
login ticket duration is 8 hours, so if that is left unchanged for the trigger user, the trigger will have
stopped working by the next day. Consider disabling the timeout so the trigger is not concerned
about logins while it has access to the ticket file.

• By default, the Perforce service runs under the Windows local System account. The System account
may have different environmental configurations (including not just Perforce-related variables, but
PATH settings and file permissions) than the one in which you are using to test or write your trigger.

• Because Windows requires a real account name and password to access files on a network drive, if
the trigger script resides on a network drive, you must configure the service to use a real userid and
password to access the script.

• On Windows, standard input does not default to binary mode. In text mode, line ending translations
are performed on standard input, which is inappropriate for binary files.

If you are using archive triggers against binary files on a Windows machine, you must prevent
unwanted line-ending translations by ensuring that standard input is changed to binary mode
(O_BINARY).

Chapter 11. Using triggers to customize behavior

Helix Versioning Engine Administrator Guide: Fundamentals 183

• When using triggers on Windows, %formfile% and other variables that use a temp directory should
use the TMP and TEMP system variables in Windows, not the user’s TEMP variables.

Trigger basics
This section contains information for working with triggers. Detailed information about implementing
each type of trigger is found in the sections that follow. The information in this section applies to all
types of triggers.

• “Communication between a trigger and the server” on page 183 describes how to select the
method used for communication and how to parse dictionary input.

• “Storing triggers in the depot” on page 186 describes how to format depot paths if you want to
run a trigger from the depot.

• “Using multiple triggers” on page 187 explains how Perforce interprets and processes the trigger
table when it includes multiple trigger definitions.

• “Writing triggers to support multiple Perforce servers” on page 188 describes how you can write
a trigger so that it is portable across Perforce servers.

• “Triggers and distributed architecture” on page 188 explains the issues you must address when
locating triggers on replicas.

For information about debugging triggers, see http://answers.perforce.com/articles/KB/1249

Communication between a trigger and the server

Triggers can communicate with the server in one of two ways: by using the variables described in
“Trigger script variables” on page 221 or by using a dictionary of key/value pairs accessed via
STDIN and STDOUT. The setting of the triggers.io configuration variable determines which method
is used. The method chosen determines the content of STDIN and STDOUT and also affects how trigger
failure is handled. The following table summarizes the effect of these settings. Client refers to the client
application (Swarm, P4V, P4, etc) that is connected to the server where the trigger executes.

 triggers.io = 0 triggers.io = 1

Trigger
succeeds

The trigger communicates with the
server using trigger variables.

STDIN is only used by archive or
authentication triggers. It is the file
content for an archive trigger, and it
is the password for an authentication
trigger.

The trigger’s STDOUT is sent as an
unadorned message to the client for
all triggers except archive triggers;
for archive triggers, the command’s
standard output is the file content.

The trigger communicates with the server
using STDIN and STDOUT.

STDIN is a textual dictionary of name-
value pairs of all the trigger variables
except for %clienthost% and %peerhost%.

This setting does not affect STDIN values
for archive and authentication triggers.

The trigger should exit with a zero value.

http://answers.perforce.com/articles/KB/1249

Chapter 11. Using triggers to customize behavior

184 Helix Versioning Engine Administrator Guide: Fundamentals

 triggers.io = 0 triggers.io = 1

The trigger should exit with a zero value.

Trigger
fails

The trigger’s STDOUT and STDERR are
sent to the client as the text of a trigger
failure error message.

The trigger should exit with a non-zero
value.

STDOUT is a textual dictionary that
contains error information. STDERR is
merged with STDOUT.

Failure indicates that the trigger script
can’t be run, that the output dictionary
includes a failure message, or that the
output is mis-formatted. The execution
error is logged by the server, and the
server sends the client the information
specified by STDOUT. If no dictionary
is provided, the server sends the client a
generic message that something has gone
wrong.

The dictionary format is a sequence of lines containing key:value pairs. Any non-printable characters
must be percent-encoded. Data is expected to be UTF8-encoded on unicode-enabled servers. Here are
some examples of how the %client%, %clientprog%, %command%, and %user% variables would be
represented in the %dictionary:

client:jgibson-aaaatchoooo
clientprog:P4/LINUX45X86_128/2017.9.MAIN/1773263782 (2017/OCT/09).
command:user-dwim
user:jgibson

The example above shows only a part of the dictionary. When variables are passed in this way, all the
variables described in “Trigger script variables” on page 221 are passed in STDIN, and the trigger
script must read all of STDIN even if the script only references some of these variables. If the script
does not read all of STDIN, the script will fail and the server will see errors like this:

write: yourTriggerScript: Broken pipe

The trigger must send back a dictionary to the server via STDOUT. The dictionary must at a minimum
contain an action with an optional message. The action is either pass or fail. Non-printable characters
must be percent encoded. For example:

action:fail
message:too bad!

Malformed trigger response dictionaries and execution problems are reported to the client with a
generic error. A detailed message is recorded in the server log.

The introduction to this section suggested that the two ways of communicating with the server were
mutually exclusive. In general, they are. There is one case, however, in which you must specify

Chapter 11. Using triggers to customize behavior

Helix Versioning Engine Administrator Guide: Fundamentals 185

variables on the command line even if you set triggers.io to 1. This is when you want to reference the
%peerhost% or %clienthost% variables. These variables are very expensive to pass. For their values to
be included in the dictionary, you must specify one or both on the command line.

The following is a sample Perl program that echoes its input dictionary to the user:

use strict;
use warnings FATAL=>"all";
use open qw/ :std :utf8 /;
use Data::Dumper;
use URI::Escape;

$Data::Dumper::Quotekeys = 0;
$Data::Dumper::Sortkeys = 1;

my %keys = map { /(.*):(.*)/ } <STDIN>;

print "action:pass\nmessage:" . uri_escape Dumper \ %keys;

The listing begins with some code that sets Perl up for basic Unicode support and adds some error
handling. The gist of the program is in line 8. <STDIN> is a file handle that is applied to the map{},
where the map takes one line of input at a time and runs the function between the map’s {}. The
expression (.*):(.*) is a regular expression with a pair of capture groups that are split by the colon.
No key the server sends has a colon in it, so the first .* will not match. Since most non-printable
characters (like newline) are percent-encoded in the dictionary, a trigger can expect every key/value
pair to be a single line; hence the single regular expression can extract both the key and the value.
The return values of the regular expression are treated as the return values for the map’s function,
which is a list of strings. When a list is assigned to a hash, Perl tries to make it into a list of key/value
pairs. Because we know it’s an even list, this works and we’ve gotten our data. The print command
makes the result dictionary and sends it to the server. Calling it a pass action tells the server to let the
command continue and that the message to send the user is the formated hash of the trigger’s input
dictionary.

Exceptions

Setting triggers.io to 1 does not affect authentication and archive triggers; these behave as if
triggers.io were set to 0 no matter what the actual setting is.

Compatibility with old triggers

When you set the triggers.io variable to 1, it affects how the server runs all scripts, both old and new.
If you don’t want to rewrite your old trigger scripts, you can insert a shim between the trigger table
and the old trigger script, which collects trigger output and formats it as the server now expects it. That
is, the shim runs the old trigger, captures its output and return code, and then emits the appropriate
dictionary back to the server. The following Perl script illustrates such a shim:

t form-out label unset "perl shim.pl original_trigger.exe orig_args..."

The shim.pl program might look like this:

Chapter 11. Using triggers to customize behavior

186 Helix Versioning Engine Administrator Guide: Fundamentals

use strict;
use warnings FATAL => "all";
use open qw/ :std :utf8 /;
use URI::Escape;
use IPC::Run3;

@_=<STDIN>;
run3 \@ARGV, undef, \$_, \$_;
print 'action:' . (? ? 'fail' : 'pass') . "\nmessage:" . uri_escape $_;

Storing triggers in the depot

You can store a trigger in the depot. This has two advantages:

• It allows you to version the trigger and be able to access prior versions if needed.

• In a distributed architecture, it enables Perforce to propagate the latest trigger script to every replica
without your having to manually update the file in the filesystem of each server.

When you store a trigger in the depot, you must specify the trigger name in a special way in the
command field of the trigger definition by enclosing the file path of the file containing the trigger in %
signs. If you need to pass additional variables to the trigger, add them in the command field as you
usually do. The server will create a temporary file that holds the contents of the file path name you
have specified for the command field. (Working with a temporary file is preferable for security reasons
and because depot files cannot generally be executed without some further processing.)

Multiple files can be loaded from the depot. In the next trigger definition, two depot paths are
provided. Multiple depot paths may be used to load multiple files out of the depot when the trigger
executes. For example, the triggers script might require a configuration file that is stored next to the
script in the depot:

lo form-out label "perl %//admin/validate.pl% %//admin/validate.conf%"

The depot file must already exist to be used as a trigger. All file types are acceptable so long as the
content is available. For text types on unicode-enabled servers, the temporary file will be in UTF8.
Protections on the depot script file must be such that only trusted users can see or write the content.

If the file path name contains spaces or if you need to pass additional parameters, you must enclose the
command field in quotes.

In the next trigger definition, note that an interpreter is specified for the trigger. Specifying the
interpreter is needed for those platforms where the operating system does not know how to run the
trigger. For example, Windows does not know how to run .pl files.

lo form-out label "perl %//admin/validate.pl%"

In the next trigger definition, the depot path is quoted because of the revision number. The absence of
an interpreter value implies that the operating system knows how to run the script directly.

Chapter 11. Using triggers to customize behavior

Helix Versioning Engine Administrator Guide: Fundamentals 187

lo form-out branch "%//depot/scripts/validate.exe#123%"

Warning A depot file path name may not contain reserved characters. This is because the
hex replacement contains a percent sign, which is the terminator for a %var%. For
example, no file named @myScript can be used because it would be processed as
%40myScript inside a var %%40myScript%.

Using multiple triggers

Submit and form triggers are run in the order in which they appear in the triggers table. If you have
multiple triggers of the same type that fire on the same path, each is run in the order in which it
appears in the triggers table. If one of these triggers fails, no further triggers are executed.

Example 11.1. Multiple triggers on the same file

All *.c files must pass through the scripts check1.sh, check2.sh, and check3.sh:

Triggers:
 check1 change-submit //depot/src/*.c "/usr/bin/check1.sh %change%"
 check2 change-submit //depot/src/*.c "/usr/bin/check2.sh %change%"
 check3 change-submit //depot/src/*.c "/usr/bin/check3.sh %change%"

If any trigger fails (for instance, check1.sh), the submit fails immediately, and none of the subsequent
triggers (that is, check2.sh and check3.sh) are called. Each time a trigger succeeds, the next matching
trigger is run.

To link multiple file specifications to the same trigger (and trigger type), list the trigger multiple times
in the trigger table.

Example 11.2. Activating the same trigger for multiple filespecs

Triggers:
 bugcheck change-submit //depot/*.c "/usr/bin/check4.sh %change%"
 bugcheck change-submit //depot/*.h "/usr/bin/check4.sh %change%"
 bugcheck change-submit //depot/*.cpp "/usr/bin/check4.sh %change%"

In this case, the bugcheck trigger runs on the *.c files, the *.h files, and the *.cpp files.

Multiple submit triggers of different types that fire on the same path fire in the following order:

1. change-submit (fired on changelist submission, before file transmission)

2. change-content triggers (after changelist submission and file transmission)

3. change-commit triggers (on any automatic changelist renumbering by the server)

Similarly, form triggers of different types are fired in the following order:

1. form-out (form generation)

Chapter 11. Using triggers to customize behavior

188 Helix Versioning Engine Administrator Guide: Fundamentals

2. form-in (changed form is transmitted to the server)

3. form-save (validated form is ready for storage in the Perforce database)

4. form-delete (validated form is already stored in the Perforce database)

Writing triggers to support multiple Perforce servers

To call the same trigger script from more than one Perforce server, use the %serverhost%, %serverip%,
and %serverport% variables to make your trigger script more portable.

For instance, if you have a script that uses hardcoded port numbers and addresses…

#!/bin/sh
Usage: jobcheck.sh changelist
CHANGE=$1
P4CMD="/usr/local/bin/p4 -p 192.168.0.12:1666"
$P4CMD describe -s $1 | grep "Jobs fixed...\n\n\t" > /dev/null

…and you call it with the following line in the trigger table…

jc1 change-submit //depot/qa/... "jobcheck.sh %change%"

…you can improve portability by changing the script as follows…

#!/bin/sh
Usage: jobcheck.sh changelist server:port
CHANGE=$1
P4PORT=$2
P4CMD="/usr/local/bin/p4 -p $P4PORT"
$P4CMD describe -s $1 | grep "Jobs fixed...\n\n\t" > /dev/null

…and passing the server-specific data as an argument to the trigger script:

jc2 change-submit //depot/qa/... "jobcheck.sh %change% %serverport%"

Note that the %serverport% variable can contain a transport prefix: ssl, tcp6, or ssl6.

For a complete list of variables that apply for each trigger type, see “Trigger script
variables” on page 221.

Triggers and distributed architecture

Triggers installed on the master server must also exist on any of its replicas.

• The trigger definition is automatically propagated to all replicas.

• It is your responsibility to make sure that the program file that implements the trigger exists on
every replica where the trigger might be activated. Its location on every replica must correspond to
the location provided in the command field of the trigger definition.

Chapter 11. Using triggers to customize behavior

Helix Versioning Engine Administrator Guide: Fundamentals 189

You can do this either by placing the trigger script in the same location in the file system on every
server, or you can do it by storing it in the depot on the master or commit server and using depot
syntax to specify the file name. In this case, the file is automatically propagated to all the replicas.
For more information, see “Storing triggers in the depot” on page 186.

Triggers installed on the replicas must have the same execution environment for the triggers and the
trigger bodies. This might typically include trigger login tickets or trigger script runtimes like Perl or
Python.

Note Edge servers have triggers that fire between client and edge server communication,
and between edge server and commit server communication. For more information,
see Helix Versioning Engine Administrator Guide: Multi-site Deployment.

Triggering on submits
To configure Perforce to run trigger scripts when users submit changelists, use submit triggers: these are
triggers of type change-submit, change-content, and change-commit. You can also use change-failed
triggers for the p4 submit or the p4 populate command.

You might want to take into consideration file locking behavior associated with submits: Before
committing a changelist, p4 submit briefly locks all files being submitted. If any file cannot be locked
or submitted, the files are left open in a numbered pending changelist. By default, the files in a failed
submit operation are left locked unless the submit.unlocklocked configurable is set. Files are unlocked
even if they were manually locked prior to submit if submit fails when submit.unlocklocked is set.

The following table describes the fields of a submit trigger. For sample definitions, see the subsequent
sections, describing each trigger subtype.

Field Meaning

type • change-submit: Execute a submit trigger after changelist creation, but before file
transfer. Trigger may not access file contents.

• change-content: Execute a submit trigger after changelist creation and file transfer, but
before file commit.

To obtain file contents, use the revision specifier @=change (where change is the
changelist number of the pending changelist as passed to the script in the %changelist
% variable) with commands such as p4 diff2, p4 files, p4 fstat, and p4 print.

• change-commit: Execute a submit trigger after changelist creation, file transfer, and
changelist commit.

• change-failed: Execute a submit trigger if the p4 submit or the p4 populate command
fails. This trigger only fires on errors that occur after a commit process has started. It
does not fire for early usage errors, or due to errors from the submit form. That is, if an
edge or change trigger could have run, then the change-failed trigger will fire if that
commit fails.

When using p4 diff2 in a change-content trigger:

http://www.perforce.com/perforce/r16.1/manuals/p4dist/index.html

Chapter 11. Using triggers to customize behavior

190 Helix Versioning Engine Administrator Guide: Fundamentals

Field Meaning

• The first file argument can be either file@change or file#headrev, but NOT
file@=change.

• The second file argument (typically the change being submitted) must use the
file@=change syntax to report differences successfully. (Using file@change without the
equals sign reports the file revisions as identical, which is wrong.)

For example, to submit a file //depot/foo as change 1001, and the previously submitted
change was 1000, with a head revision of 25, both these revision specifier formats should
work correctly if generated and called in the trigger script:

 p4 diff2 //depot/foo@1000 file@=1001

p4 diff2 //depot/foo#25 file@=1001

path A file pattern in depot syntax.

When a user submits a changelist that contains any files that match this file pattern,
the trigger specified in the command field is run. Use exclusionary mappings to prevent
triggers from running on specified files.

command The trigger for the Perforce server to run when a user submits a changelist that contains
any file patterns specified by path. Specify the command in a way that allows the
Perforce server account to locate and run the command. The command (typically a call to a
script) must be quoted, and can take as arguments anything that your command is capable
of parsing, including any applicable Perforce trigger variables.

When your trigger script is stored in the depot, its path must be specified in depot
syntax, delimited by percent characters. For example, if your script is stored in the
depot as //depot/scripts/myScript.pl, the corresponding value for the command field
might be "/usr/bin/perl %//depot/scripts/myScript.pl%". See “Storing triggers in the
depot” on page 186 for more information.

For change-submit and change-content triggers (and their corresponding edge server
triggers), changelist submission does not continue if the trigger fails. For change-commit
triggers, changelist submission succeeds regardless of trigger success or failure, but
subsequent change-commit triggers do not fire if the script fails.

Even when a change-submit or change-content trigger script succeeds, the submit can fail because
of subsequent trigger failures, or for other reasons. Use change-submit and change-content triggers
only for validation, and use change-commit triggers for operations that are contingent on the successful
completion of the submit.

Be aware of edge cases: for example, if a client workspace has the revertunchanged option set, and a
user runs p4 submit on a changelist with no changed files, a changelist has been submitted with files
contents, but no changes are actually committed. (That is, a change-submit trigger fires, a change-
content trigger fires, but a change-commit trigger does not.)

Chapter 11. Using triggers to customize behavior

Helix Versioning Engine Administrator Guide: Fundamentals 191

Change-submit triggers
Use the change-submit trigger type to create triggers that fire after changelist creation, but before files
are transferred to the server. Because change-submit triggers fire before files are transferred to the
server, these triggers cannot access file contents. Change-submit triggers are useful for integration with
reporting tools or systems that do not require access to file contents.

In addition to the p4 submit command, the p4 populate command, which does an implicit submit as
part of its branching action, fires a change-submit trigger to allow for validation before submission.

Example 11.3. The following change-submit trigger is an MS-DOS batch file that rejects a
changelist if the submitter has not assigned a job to the changelist. This trigger fires only
on changelist submission attempts that affect at least one file in the //depot/qa branch.

@echo off

rem REMINDERS
rem - If necessary, set Perforce environment vars or use config file
rem - Set PATH or use full paths (C:\PROGRA~1\Perforce\p4.exe)
rem - Use short pathnames for paths with spaces, or quotes
rem - For troubleshooting, log output to file, for instance:
rem - C:\PROGRA~1\Perforce\p4 info >> trigger.log

if not x%1==x goto doit
echo Usage is %0[change#]

:doit
p4 describe -s %1|findstr "Jobs fixed..." > nul
if errorlevel 1 echo No jobs found for changelist %1
p4 describe -s %1|findstr "Jobs fixed..." > nul

To use the trigger, add the following line to your triggers table:

sample1 change-submit //depot/qa/... "jobcheck.bat %changelist%"

Every time a changelist is submitted that affects any files under //depot/qa, the jobcheck.bat file is
called. If the string “Jobs fixed…” (followed by two newlines and a tab character) is detected, the script
assumes that a job has been attached to the changelist and permits changelist submission to continue.
Otherwise, the submit is rejected.

The second findstr command ensures that the final error level of the trigger script is the same as the
error level that determines whether to output the error message.

Change-content triggers
Use the change-content trigger type to create triggers that fire after changelist creation and file
transfer, but prior to committing the submit to the database. Change-content triggers can access file
contents by using the p4 diff2, p4 files, p4 fstat, and p4 print commands with the @=change

Chapter 11. Using triggers to customize behavior

192 Helix Versioning Engine Administrator Guide: Fundamentals

revision specifier, where change is the number of the pending changelist as passed to the trigger script
in the %changelist% variable.

Use change-content triggers to validate file contents as part of changelist submission and to abort
changelist submission if the validation fails.

Even when a change-submit or change-content trigger script succeeds, the submit can fail because
of subsequent trigger failures, or for other reasons. Use change-submit and change-content triggers
only for validation, and use change-commit triggers for operations that are contingent on the successful
completion of the submit.

Example 11.4. The following change-content trigger is a Bourne shell script that ensures
that every file in every changelist contains a copyright notice for the current year.

The script assumes the existence of a client workspace called copychecker that includes all of //depot/
src. This workspace does not have to be synced.

#!/bin/sh
Set target string, files to search, location of p4 executable...
TARGET="Copyright 'date +%Y' Example Company"
DEPOT_PATH="//depot/src/..."
CHANGE=$1
P4CMD="/usr/local/bin/p4 -p 1666 -c copychecker"
XIT=0
echo ""
For each file, strip off #version and other non-filename info
Use sed to swap spaces w/"%" to obtain single arguments for "for"
for FILE in '$P4CMD files $DEPOT_PATH@=$CHANGE | \
 sed -e 's/\(.*\)\#[0-9]* - .*$/\1/' -e 's/ /%/g''
do
 # Undo the replacement to obtain filename...
 FILE="'echo $FILE | sed -e 's/%/ /g''"
...and use @= specifier to access file contents:
 # p4 print -q //depot/src/file.c@=12345
 if $P4CMD print -q "$FILE@=$CHANGE" | grep "$TARGET" > /dev/null
 then echo ""
 else
 echo "Submit fails: '$TARGET' not found in $FILE"
 XIT=1
 fi
done
exit $XIT

To use the trigger, add the following line to your triggers table:

sample2 change-content //depot/src/... "copydate.sh %change%"

The trigger fires when any changelist with at least one file in //depot/src is submitted. The
corresponding DEPOT_PATH defined in the script ensures that of all the files in the triggering changelist,
only those files actually under //depot/src are checked.

Chapter 11. Using triggers to customize behavior

Helix Versioning Engine Administrator Guide: Fundamentals 193

Change-commit triggers

Use the change-commit trigger type to create triggers that fire after changelist creation, file transfer,
and changelist commission to the database. Use change-commit triggers for processes that assume (or
require) the successful submission of a changelist.

Warning When a change-commit trigger fires, any file in the committed changelist has already
been submitted and could be changed by a user while the change-commit trigger
executes.

Example 11.5. A change-commit trigger that sends emails to other users who have files
open in the submitted changelist.

#!/bin/sh
mailopens.sh - Notify users when open files are updated
changelist="$1
workspace="$2"
user="$3"
p4 fstat -e "$changelist" //... | while read -r line
do
 # Parse out the name/value pair.
 name=$(echo "$line" | sed 's/[\.]\+\([^]\+\) .\+/\1/')
 value=$(echo "$line" | sed 's/[\.]\+[^]\+ \(.\+\)/\1/')
 if ["$name" = "depotFile"]
 then
 # Line is "... depotFile <depotFile>". Parse to get depotFile.
 depotfile="$value"
 elif ["$(echo "$name" | cut -b-9)" = "otherOpen"] && \
 ["$name" != "otherOpen"]
 then
 # Line is "... ... otherOpen[0-9]+ <otherUser@otherWorkspace>".
 # Parse to get otherUser and otherWorkspace.
 otheruser=$(echo "$value" | sed 's/\(.\+\)@.\+/\1/')
 otherworkspace=$(echo "$value" | sed 's/.\+@\(.\+\)/\1/')
 # Get email address of the other user from p4 user -o.
 othermail=$(p4 user -o "$otheruser" | grep "Email:" | \
 grep -v \# | cut -b8-)

 # Mail other user that a file they have open has been updated
 mail -s "$depotfile was just submitted" "$othermail" <<EOM
The Perforce file: $depotfile
was just submitted in changelist $changelist by Perforce user $user
from the $workspace workspace. You have been sent this message
because you have this file open in the $otherworkspace workspace.
EOM
 fi
done
exit 0

To use the trigger, add the following line to your triggers table:

Chapter 11. Using triggers to customize behavior

194 Helix Versioning Engine Administrator Guide: Fundamentals

sample3 change-commit //... "mailopens.sh %change% %client% %user%"

Whenever a user submits a changelist, any users with open files affected by that changelist receive an
email notification.

Triggering on pushes and fetches
To configure Perforce to run trigger scripts when the p4 push, p4 unzip, or p4 fetch commands are
invoked, use push triggers: these include triggers of type push-submit, push-content, and push-commit.

This section describes the triggers that can be used when initiating a push or fetch. See “Additional
triggers for push and fetch commands” on page 202 for a description of the triggers that can be used
by the server receiving the pushed items or responding to the fetch request.

Because during a push, the local server acts as the client of the shared server, there are many
similarities between the processing of submits and that of pushes:

• Push actions are atomic: either everything is pushed or nothing is pushed.

• Pushes occur in three distinct phases and different types of push triggers are appropriate for each
phase.

(It is also the case that push triggers differ from change triggers; these differences affect the possible
content of push triggers and influence the kind of trigger you want to use to customize the processing
of changes. We will describe these differences shortly.)

The following figure illustrates the path of submitted files, via a changelist, from the client, to the
local server, and finally, to the shared server. It also shows the types of triggers that may be run
during each phase of these processes. There is no requirement that any triggers be run at any point
in the submission or push process: the figure includes all possible types of triggers to illustrate the
similarities between submits and pushes.

Figure 11.1. Change and push triggers

The three phases of submits and pushes include the following:

1. Metadata is sent.

Following this phase, a change-submit or push-submit trigger may test to see whether the user is
allowed to perform the action, whether the file type is acceptable, and so on. Anything one can
query about the metadata is actionable.

Chapter 11. Using triggers to customize behavior

Helix Versioning Engine Administrator Guide: Fundamentals 195

2. Files are sent but changes are not yet committed.

Following this phase, a content-submit or push-submit trigger may parse the contents of the files
and take appropriate action depending on what it discovers. During this phase, one might look to
see whether the submitted files adhere to coding conventions or other policies.

3. The changes are committed.

Following this phase, the commit is irrevocable, but the trigger may take some action: send a
notification, do some clean up, and so on.

Turning to look at the differences between submits and pushes, we discover the following:

• While both submits and pushes are atomic, a submit encompasses a single changelist; a push may
contain multiple changelists. Thus the failure of a push is more costly.

• Submits are unidirectional; pushes (which might happen as the result of a p4 push, p4 fetch, or p4
unzip) are bidirectional; depending on the command that causes the trigger to execute, either the
local server or the shared server might play the role of client.

• During the first phase of a push, metadata is read into memory, which limits the data that the push-
commit trigger (which is a separate process with its own per-instance memory) can access. See “Push-
submit triggers” on page 196 for more information.

• If a submit fails, you’re left with work in progress that you can change and retry. Having a push
operation fail requires that you retrace your steps prior to the submit to the local server. For this
reason, you might want to run triggers during the submit operation rather than the push operation if
possible.

• Change triggers are involved in the processing of p4 submit commands only. Push triggers are
invoked in the context of three somewhat different scenarios: the execution of p4 push, p4 fetch, or
p4 unzip commands.

You should keep these differences in mind when you decide how to define your triggers and at what
stage to run them.

The following table describes the fields of a push trigger. For sample definitions, see the subsequent
sections, describing each push trigger type.

Field Meaning

type • push-submit: Execute this trigger after changelist creation, but before file transfer.
Trigger may not access file contents.

• push-content: Execute this trigger after changelist creation and file transfer, but before
file commit.

To obtain file contents, use the revision specifier @=change (where change is the
changelist number of the pending changelist as passed to the script in the %changelist
% variable) with commands such as p4 diff2, p4 files, p4 fstat, and p4 print.

• push-commit: Execute this trigger after changelist creation, file transfer, and changelist
commit.

Chapter 11. Using triggers to customize behavior

196 Helix Versioning Engine Administrator Guide: Fundamentals

Field Meaning

path A file pattern in depot syntax.

When a user uses the p4 push, p4 unzip, or p4 fetch commands to submit a changelist
that contains any files that match this file pattern, the trigger specified in the command
field is run. Use exclusionary mappings to prevent triggers from running on specified
files.

command The trigger for the Perforce server to run when a user invokes the p4 push, p4 unzip, or
p4 fetch commands to submit a changelist that contains any file patterns specified by
path. Specify the command in a way that allows the Perforce server account to locate and
run the command. The command (typically a call to a script) must be quoted, and can take
as arguments anything that your command is capable of parsing, including any applicable
Perforce trigger variables.

When your trigger script is stored in the depot, its path must be specified in depot
syntax, delimited by percent characters. For example, if your script is stored in the depot
as //depot/scripts/myScript.pl, the corresponding value for the command field might
be "/usr/bin/perl %//depot/scripts/myScript.pl%" . See “Storing triggers in the
depot” on page 186 for more information.

For push-submit and push-content triggers, changelist submission does not continue if
the trigger fails. For push-commit triggers, changelist submission succeeds regardless of
trigger success or failure, but subsequent push-commit triggers do not fire if the script
fails.

Even when a push-submit or push-content trigger script succeeds, the submission that caused the
trigger to run can fail because of subsequent trigger failures, or for other reasons. Use push-submit
and push-content triggers only for validation, and use push-commit triggers or for operations that are
contingent on the successful completion of the push or fetch.

Push-submit triggers
Use the push-submit trigger type to create triggers that fire after changelist creation, but before files are
transferred to the shared server. Because push-submit triggers fire before files are transferred to the
server, these triggers cannot access file contents. Push-submit triggers are useful for integration with
reporting tools or systems that do not require access to file contents.

As mentioned in the previous section where submit and push processing was described, push
processing limits the commands you can run in a push-submit trigger. Please use the following
commands only:

p4 change -o %changelist%

p4 describe -s %changelist%

p4 files //path/...@=%changelist%

p4 fstat //path/...@=%changelist%

Chapter 11. Using triggers to customize behavior

Helix Versioning Engine Administrator Guide: Fundamentals 197

Example 11.6. The following push-submit trigger is an MS-DOS batch file that rejects a
changelist being pushed if the changelist description does not contain a line of the form
Reviewed and signed off by: XXXXXXXX .

@echo off

if not x%1==x goto doit
echo Usage is %0[change#]
exit 1
:doit
p4 describe -s %1 | findstr "Reviewed and signed off" > nul
if errorlevel 1 echo "Changelist %1 missing review information."

To use the trigger, add the following line to your triggers table:

sample1 push-submit //depot/qa/... "reviewcheck.bat %changelist%"

Every time a changelist is pushed that affects any files under //depot/qa, the reviewcheck.bat file is
called. If the string "Reviewed and signed off" is detected, the script assumes that the required review
has happened and permits the changelist push to continue. Otherwise the push is rejected.

Note The p4 change and p4 describe commands do not display associated fixes when
run from the push-submit or push-content triggers, even if the changes being
pushed have associated fixes that are added as part of the push.

Push-content triggers

Use the push-content trigger type to create triggers that fire after changelist creation and file transfer,
but prior to committing the push to the database. Push-content triggers can access file contents by
using the p4 diff2, p4 files, p4 fstat, and p4 print commands with the @=change revision specifier,
where change is the number of the pending changelist as passed to the trigger script in the %changelist
% variable.

Use push-content triggers to validate file contents as part of changelist submission and to abort
changelist submission if the validation fails.

Even when a push-submit or push-content trigger script succeeds, the push can fail because of
subsequent trigger failures, or for other reasons. Use push-submit and push-content triggers only
for validation, and use push-commit triggers for operations that are contingent on the successful
completion of the push.

Example 11.7. The following push-content trigger is a Bourne shell script that ensures that
every file in every changelist contains a copyright notice for the current year.

The script assumes the existence of a client workspace called copychecker that includes all of //depot/
src. This workspace does not have to be synced.

Chapter 11. Using triggers to customize behavior

198 Helix Versioning Engine Administrator Guide: Fundamentals

#!/bin/sh
Set target string, files to search, location of p4 executable...
TARGET="Copyright 'date +%Y' Example Company"
DEPOT_PATH="//depot/src/..."
CHANGE=$1
P4CMD="/usr/local/bin/p4 -p 1666 -c copychecker"
XIT=0
echo ""
For each file, strip off #version and other non-filename info
Use sed to swap spaces w/"%" to obtain single arguments for "for"
for FILE in '$P4CMD files $DEPOT_PATH@=$CHANGE | \
 sed -e 's/\(.*\)\#[0-9]* - .*$/\1/' -e 's/ /%/g''
do
 # Undo the replacement to obtain filename...
 FILE="'echo $FILE | sed -e 's/%/ /g''"
...and use @= specifier to access file contents:
 # p4 print -q //depot/src/file.c@=12345
 if $P4CMD print -q "$FILE@=$CHANGE" | grep "$TARGET" > /dev/null
 then echo ""
 else
 echo "Submit fails: '$TARGET' not found in $FILE"
 XIT=1
 fi
done
exit $XIT

To use the trigger, add the following line to your triggers table:

sample2 push-content //depot/src/... "copydate.sh %change%"

The trigger fires when any changelist with at least one file in //depot/src is pushed. The
corresponding DEPOT_PATH defined in the script ensures that of all the files in the triggering changelist,
only those files actually under //depot/src are checked.

Note The p4 change and p4 describe commands do not display associated fixes when
run from the push-submit or push-content triggers, even if the changes being
pushed have associated fixes that are added as part of the push.

Push-commit triggers

Use the push-commit trigger type to create triggers that fire after changelist creation, file transfer,
and changelist commission to the database. Use push-commit triggers for processes that assume (or
require) the successful push of a changelist.

Chapter 11. Using triggers to customize behavior

Helix Versioning Engine Administrator Guide: Fundamentals 199

Example 11.8. A push-commit trigger that sends emails to other users who have files open
in the pushed changelist.

#!/bin/sh
mailopens.sh - Notify users when open files are updated
changelist=$1
workspace=$2
user=$3
p4 fstat @$changelist,@$changelist | while read line
do
 # Parse out the name/value pair.
 name='echo $line | sed 's/[\.]\+\([^]\+\) .\+/\1/''
 value='echo $line | sed 's/[\.]\+[^]\+ \(.\+\)/\1/''
 if ["$name" = "depotFile"]
 then
 # Line is "... depotFile <depotFile>". Parse to get depotFile.
 depotfile=$value
 elif ["'echo $name | cut -b-9'" = "otherOpen" -a \
 "$name" != "otherOpen"]
 then
 # Line is "... ... otherOpen[0-9]+ <otherUser@otherWorkspace>".
 # Parse to get otherUser and otherWorkspace.
 otheruser='echo $value | sed 's/\(.\+\)@.\+/\1/''
 otherworkspace='echo $value | sed 's/.\+@\(.\+\)/\1/''
 # Get email address of the other user from p4 user -o.
 othermail='p4 user -o $otheruser | grep Email: \
 | grep -v \# | cut -b8-'

 # Mail other user that a file they have open has been updated
 mail -s "$depotfile was just submitted" $othermail <<EOM
The Perforce file: $depotfile
was just pushed in changelist $changelist by Perforce user $user
from the $workspace workspace. You have been sent this message
because you have this file open in the $otherworkspace workspace.
EOM
 fi
done
exit 0

To use the trigger, add the following line to your triggers table:

sample3 push-commit //... "mailopens.sh %change% %client% %user%"

Whenever a user pushes a changelist, any users with open files affected by that changelist receive an
email notification.

The section “Triggering before or after commands” on page 200 describes some additional options
you have for triggers with push and fetch actions.

Chapter 11. Using triggers to customize behavior

200 Helix Versioning Engine Administrator Guide: Fundamentals

Triggering before or after commands
Triggers of type command allow you to configure Perforce to run a trigger before or after a given
command executes. Generally, you might want to execute a script before a command runs to prevent
that command from running; you might want to run a script after a command if you want to connect
its action with that of another tool or process.

Note You may use command type triggers with p4 push and p4 fetch commands.

The following table describes the fields of the command trigger.

Field Meaning

type command

The command to execute is specified in the path field.

path The`pre-user-command` value specifies the command before which the trigger should
execute. The post-user-command value specifies the command after which the trigger
should execute. command can be a regular expression. For additional information about
the grammar of regular expressions, see p4 help grep.

Here are examples of possible path values:

pre-user-login \\ before the login command
post-user-(add|edit) \\ after the add or edit command
pre-user-obliterate \\ before the obliterate command
(pre|post)-user-sync \\ before or after the sync command

If you want to match a command name that’s a substring of another valid command,
you should use the end-of-line meta-character to terminate matching. For example, use
change$ so you don’t also match changes.

For additional information about path values with p4 push and p4 change commands,
see “Additional triggers for push and fetch commands” on page 202.

You cannot create a pre-user-info trigger.`

command The trigger for the Perforce server to run when the condition implied by path is satisfied.

Specify the command in a way that allows the Perforce server to locate and run the
command. The command (typically a call to a script) must be quoted, and can take as
arguments anything that your command is capable of parsing, including any applicable
Perforce trigger variable.

When your trigger script is stored in the depot, its path must be specified in depot
syntax, delimited by percent characters. For example, if your script is stored in the depot
as //depot/scripts/myScript.pl, the corresponding value for the command field might

Chapter 11. Using triggers to customize behavior

Helix Versioning Engine Administrator Guide: Fundamentals 201

Field Meaning

be "/usr/bin/perl %//depot/scripts/myScript.pl%" . See “Storing triggers in the
depot” on page 186 for more information.

Parsing the input dictionary

One thing you might need to do in a command trigger is to parse the input dictionary. The following
code sample does just that, putting the key/value store in a Perl data structure ready for access, and it
shows how to send data back to the server.

use strict
use warnings FATAL => "all";
use open qw / :std :utf8 /;
use Data::Dumper;
use URI::Escape;

$Data::Dumper::Quotekeys = 0;
$Data::Dumper::Sortkeys = 1;

my %keys = map
{ /([^:]*):(.*)/ }
<STDIN>;

print "action:pass\nmessage:" . uri_escape Dumper \ %keys;

The listing is a bit bigger than it needs to be in order to illustrate good trigger coding practice: it begins
with some code that sets Perl up for basic Unicode support and adds some error handling. The gist
of the program is in line 8. <STDIN> is a file handle that is applied to the map{}, where the map takes
one line of input at a time and runs the function between the map’s {}. The expression (.*):(.*) is a
regular expression with a pair of capture groups that are split by the colon. No key the server sends
has a colon in it, so the first .* will not match. Since most non-printable characters (like newline) are
percent-encoded in the dictionary, a trigger can expect every key/value pair to be a single line; hence
the single regular expression can extract both the key and the value. The return values of the regular
expression are treated as the return values for the map’s function, which is a list of strings. When a list
is assigned to a hash, Perl tries to make it into a list of key/value pairs. Because we know it’s an even
list, this works and we’ve gotten our data.

The print command makes the result dictionary and sends it to the server. Calling it a pass action tells
the server to let the command continue and that the message to send the user is the formated hash of
the trigger’s input dictionary.

After you write the script, you can add it to the trigger table by editing the p4 triggers form.

Triggers:
 myTrig command post-user-move "perl /usr/bin/test.pl "

After the p4 move command executes, this trigger fires.

Chapter 11. Using triggers to customize behavior

202 Helix Versioning Engine Administrator Guide: Fundamentals

Additional triggers for push and fetch commands

The section “Triggering on pushes and fetches” on page 194 describes the triggers that you can run
during the various phases of the p4 push and p4 fetch commands. These are triggers that are run by
the server initiating the push or the fetch. However, for every initiator, there is a responder:

• For every push by server A to server B, there is a server B receiving the items pushed by A.

• For every fetch by server A from server B, there is a sever B that is being fetched from.

This creates additional trigger opportunities for the server receiving the push and the server
responding to the fetch request. You can use command type triggers to take advantage of these
opportunities. Within this context, pre-user and post-user actions refer to the server initiating the
push or fetch; pre-rmt and post-rmt actions refer to the responding server. The following table lists the
triggers that can be used by the responding, or remote, server.

Trigger Meaning

pre-rmt-Push Run this trigger on the remote server before it receives pushed content.

post-rmt-Push Run this trigger on the remote server after it receives pushed content.

Two special variables are available for use with post remote push
triggers:

• %%firstPushedChange%% specifies the first new changelist number

• %%lastPushedChange%% specifies the last new changelist number

pre-rmt-Fetch Run this trigger on the remote server before it responds to a fetch
request.

post-rmt-Fetch Run this trigger on the remote server after it responds to a fetch
request.

Triggering on journal rotation
To configure Perforce to run trigger scripts when journals are rotated, use the journal-rotate and
journal-rotate-lock type triggers. Journal-rotate triggers are executed after the journal is rotated on
a running server, but only if journals are rotated with the p4 admin journal or p4 admin checkpoint
commands. Journal rotate triggers will not execute when journals are rotated with the p4d -jc or p4d
--jj commands.

Journal-rotate triggers allow you to run maintenance routines on servers after the journal has been
rotated, either while the database tables are still locked or after the locks have been released. These
triggers are intended to be used on replicas or edge servers where journal rotation is triggered by
journal records. The server must be running for these triggers to be invoked.

The following table describes the fields of a journal-rotate trigger:

Chapter 11. Using triggers to customize behavior

Helix Versioning Engine Administrator Guide: Fundamentals 203

Field Meaning

type • journal-rotate-lock: Execute the trigger after the journal is rotated but while the
database files are still locked.

• journal-rotate: Execute the trigger after the journal is rotated and data base file locks
are released.

path The server on which the triggers should be run. One of the following:

• any

• serverid- run on the specified server

command The trigger for the Perforce server to run when the server matching path is found for the
trigger type. Specify the command in a way that allows the Perforce server account to
locate and run the command. The command (typically a call to a script) must be quoted,
and can take as arguments anything that your command is capable of parsing, including
any applicable Perforce trigger variables.

Journal-rotate triggers can process two variables: %journal% and %checkpoint%. These
specify the names of the rotated journal and the new checkpoint if a checkpoint was
taken. If no checkpoint was taken, %checkpoint% is an empty string.

When your trigger script is stored in the depot, its path must be specified in depot
syntax, delimited by percent characters. For example, if your script is stored in the depot
as //depot/scripts/myScript.pl, the corresponding value for the command field might
be "/usr/bin/perl %//depot/scripts/myScript.pl%" . See “Storing triggers in the
depot” on page 186 for more information.

Triggering on shelving events
To configure Perforce to run trigger scripts when users work with shelved files, use shelve triggers:
these are triggers of type shelve-submit, shelve-commit, and shelve-delete.

The following table describes the fields of a shelving type trigger:

Field Meaning

type • shelve-submit: Execute a pre-shelve trigger after changelist has been created and files
locked, but prior to file transfer.

• shelve-commit: Execute a post-shelve trigger after files are shelved.

• shelve-delete: Execute a shelve trigger prior to discarding shelved files.

path A file pattern in depot syntax.

If a shelve contains any files in the specified path, the trigger fires. To prevent some
shelving operations from firing these triggers, use an exclusionary mapping in the path.

Chapter 11. Using triggers to customize behavior

204 Helix Versioning Engine Administrator Guide: Fundamentals

Field Meaning

command The trigger for the Perforce server to run when a matching path applies for the trigger
type. Specify the command in a way that allows the Perforce server account to locate and
run the command. The command (typically a call to a script) must be quoted, and can take
as arguments anything that your command is capable of parsing, including any applicable
Perforce trigger variables.

When your trigger script is stored in the depot, its path must be specified in depot
syntax, delimited by percent characters. For example, if your script is stored in the depot
as //depot/scripts/myScript.pl, the corresponding value for the command field might
be "/usr/bin/perl %//depot/scripts/myScript.pl%" . See “Storing triggers in the
depot” on page 186 for more information.

Shelve-submit triggers

The shelve-submit trigger works like the change-submit trigger; it fires after the shelved changelist
is created, but before before files are transferred to the server. Shelve-submit triggers are useful for
integration with reporting tools or systems that do not require access to file contents.

Example 11.9. A site administrator wants to prohibit the shelving of large disk images; the
following shelve-submit trigger rejects a shelving operation if the changelist contains .iso
files.

#!/bin/sh

shelve1.sh - Disallow shelving of certain file types

This trigger always fails: when used as a shelve-submit trigger
with a specified path field, guarantees that files matching that
path are not shelved

echo "shelve1.sh: Shelving operation disabled by trigger script."

exit 1

To use the trigger, add the following line to your triggers table, specifying the path for which shelving
is to be prohibited in the appropriate field, for example:

shelving1 shelve-submit //....iso shelve1.sh

Every time a changelist is submitted that affects any .iso files in the depot, the shelve1.sh script runs,
and rejects the request to shelve the disk image files.

Chapter 11. Using triggers to customize behavior

Helix Versioning Engine Administrator Guide: Fundamentals 205

Shelve-commit triggers
Use the shelve-commit trigger to create triggers that fire after shelving and file transfer. Use shelve-
commit triggers for processes that assume (or require) the successful submission of a shelving
operation.

Example 11.10. A shelve-commit trigger that notifies a user (in this case, reviewers) about a
shelved changelist.

#!/bin/sh
shelve2.sh - Send email to reviewers when open files are shelved
changelist=$1
workspace=$2
user=$3

mail -s "shelve2.sh: Files available for review" reviewers << EOM
 $user has created shelf from $workspace in $changelist"
EOM

exit 0

To use the trigger, add the following line to your triggers table:

shelving2 shelve-commit //... "shelve2.sh %change% %client% %user%"

Whenever a user shelves a changelist, reviewers receive an email notification.

Shelve-delete triggers
Use the shelve-delete trigger to create triggers that fire after users discard shelved files.

Example 11.11. A shelve-delete trigger that notifies reviewers that shelved files have been
abandoned.

#!/bin/sh
shelve3.sh - Send email to reviewers when files deleted from shelf
changelist=$1
workspace=$2
user=$3

mail -s "shelve3.sh: Shelf $changelist deleted" reviewers << EOM
 $user has deleted shelved changelist $changelist"
EOM

exit 0

To use the trigger, add the following line to your triggers table:

Chapter 11. Using triggers to customize behavior

206 Helix Versioning Engine Administrator Guide: Fundamentals

shelving3 shelve-delete //... "shelve3.sh %change% %client% %user%"

Whenever a user deletes files from the shelf, reviewers receive an email notification. A more realistic
example might check an external (or internal) data source to verify that code review was complete
complete before permitting the user to delete the shelved files.

Triggering on fixes
To configure Perforce to run trigger scripts when users add or delete fixes from changelists, use fix
triggers: these are triggers of type fix-add and fix-delete.

The special variable %jobs% is available for expansion with fix triggers; it expands to one argument for
every job listed on the p4 fix command line (or in the Jobs: field of a p4 change or p4 submit form),
and must therefore be the last argument supplied to the trigger script.

Note Fix-add triggers might be also be run following the submission of a changelist if
the job associated with the changelist exists both on the personal and the shared
servers. For more information on push triggers, see “Triggering on pushes and
fetches” on page 194.

The following table describes the fields used for a fix trigger definition.

Field Meaning

type • fix-add: Execute fix trigger prior to adding a fix.

• fix-delete: Execute fix trigger prior to deleting a fix.

path Use fix as the path value.

command The trigger for the Perforce server to run when a user adds or deletes a fix. Specify
the command in a way that allows the Perforce server account to locate and run the
command. The command (typically a call to a script) must be quoted, and can take
as arguments any argument that your command is capable of parsing, including any
applicable Perforce trigger variables.

When your trigger script is stored in the depot, its path must be specified in depot
syntax, delimited by percent characters. For example, if your script is stored in the depot
as //depot/scripts/myScript.pl, the corresponding value for the command field might
be "/usr/bin/perl %//depot/scripts/myScript.pl%" . See “Storing triggers in the
depot” on page 186 for more information.

For fix-add and fix-delete triggers, fix addition or deletion continues whether the
script succeeds or fails.

Fix-add and fix-delete triggers

Example 11.12. The following script, when copied to fixadd.sh and fixdel.sh, fires when
users attempt to add or remove fix records, whether by using the p4 fix command, or

Chapter 11. Using triggers to customize behavior

Helix Versioning Engine Administrator Guide: Fundamentals 207

by modifying the Jobs: field of the forms presented by the p4 change and p4 submit
commands.

#!/bin/bash
fixadd.sh, fixdel.sh - illustrate fix-add and fix-delete triggers

COMMAND=$0
CHANGE=$1
NUMJOBS=$(($# - 1))

echo $COMMAND: fired against $CHANGE with $NUMJOBS job arguments.
echo $COMMAND: Arguments were: $*

These fix-add and fix-delete triggers fire whenever users attempt to add (or delete) fix records from
changelists. To use the trigger, add the following lines to the trigger table:

sample4 fix-add fix "fixadd.sh %change% %jobs%"
sample5 fix-delete fix "fixdel.sh %change% %jobs%"

Using both copies of the script, observe that fixadd.sh is triggered by p4 fix, the fixdel.sh script
is triggered by p4 fix -d, and either script may be triggered by manually adding (or deleting) job
numbers from within the Jobs: field in a changelist form - either by means of p4 change or as part of
the p4 submit process.

Because the %jobs% variable is expanded to one argument for every job listed on the p4 fix command
line (or in the Jobs: field of a p4 change or p4 submit form), it must be the last argument supplied to
any fix-add or fix-delete trigger script.

Triggering on forms
To configure Perforce to run trigger scripts when users edit forms, use form triggers: these are triggers
of type form-save, form-in, form-out, form-delete, and form-commit.

Use form triggers to generate customized field values for users, to validate data provided on forms, to
notify other users of attempted changes to form data, and to otherwise interact with process control
and management tools.

The %specdef% variable is defined for form triggers: it is expanded to the spec string of the form in
question. This allows derived APIs to parse forms as part of triggers by loading the spec string as an
argument.

If you write a trigger that fires on trigger forms, and the trigger fails in such a way that the p4
triggers command no longer works, the only recourse is to remove the db.triggers file in the server
root directory.

The following table describes the fields of a form trigger definition:

Chapter 11. Using triggers to customize behavior

208 Helix Versioning Engine Administrator Guide: Fundamentals

Field Meaning

type • form-save: Execute a form trigger after the form contents are parsed, but before the
contents are stored in the Perforce database. The trigger cannot modify the form
specified in %formfile% variable.

• form-out: Execute form trigger upon generation of form to end user. The trigger can
modify the form.

• form-in: Execute form trigger on edited form before contents are parsed and validated
by the Perforce server. The trigger can modify the form.

• form-delete: Execute form trigger after the form contents are parsed, but before the
form is deleted from the Perforce database. The trigger cannot modify the form.

• form-commit: Execute form trigger after the form has been committed for access to
automatically-generated fields such as jobname, dates, etc.

path The name of the type of form, (branch, change, client, depot, group, job, label, protect,
server, spec, stream, triggers, typemap, or user).

command The trigger for the Perforce server to run when the type of form specified in the path field
is processed.

Specify the command in a way that allows the Perforce server account to locate and
run the command. The command (typically a call to a script) must be quoted, and can
take as arguments any argument that your command is capable of parsing, including any
applicable Perforce trigger variables.

When your trigger script is stored in the depot, its path must be specified in depot
syntax, delimited by percent characters. For example, if your script is stored in the depot
as //depot/scripts/myScript.pl, the corresponding value for the command field might
be "/usr/bin/perl %//depot/scripts/myScript.pl%" . See “Storing triggers in the
depot” on page 186 for more information.

For form-in, form-out, form-save, and form-delete triggers, the data in the specification
becomes part of the Perforce database if the script succeeds. Otherwise, the database is
not updated.

Form-save triggers

Use the form-save trigger type to create triggers that fire when users send changed forms to the server.
Form-save triggers are called after the form has been parsed by the server but before the changed form
is stored in the Perforce metadata.

Chapter 11. Using triggers to customize behavior

Helix Versioning Engine Administrator Guide: Fundamentals 209

Example 11.13. To prohibit certain users from modifying their client workspaces, add the
users to a group called lockedws and use the following form-save trigger.

This trigger denies attempts to change client workspace specifications for users in the lockedws group,
outputs an error message containing the user name, IP address of the user’s workstation, and the name
of the workspace on which a modification was attempted, and notifies an administrator.

#!/bin/bash
NOAUTH=lockedws
USERNAME=$1
WSNAME=$2
IPADDR=$3

GROUPS='p4 groups "$1"'

if echo "$GROUPS" | grep -qs $NOAUTH
then
 echo "$USERNAME ($IPADDR) in $NOAUTH may not change $WSNAME"
 mail -s "User $1 workspace mod denial" admin@127.0.0.1
 exit 1
else
 exit 0
fi

This form-save trigger fires on client forms only. To use the trigger, add the following line to the
trigger table:

sample6 form-save client "ws_lock.sh %user% %client% %clientip%"

Users whose names appear in the output of p4 groups lockedws have changes to their client
workspaces parsed by the server, and even if those changes are syntactically correct, the attempted
change to the workspace is denied, and an administrator is notified of the attempt.

Form-out triggers

Use the form-out trigger type to create triggers that fire whenever the Perforce server generates a form
for display to the user.

Warning Never use a Perforce command in a form-out trigger that fires the same form-out
trigger, or infinite recursion will result. For example, never run p4 job -o from
within a form-out trigger script that fires on job forms.

Example 11.14. The default Perforce client workspace view maps the entire depot //
depot/... to the user’s client workspace. To prevent novice users from attempting to sync

Chapter 11. Using triggers to customize behavior

210 Helix Versioning Engine Administrator Guide: Fundamentals

the entire depot, this Perl script changes a default workspace view of //depot/... in the p4
client form to map only the current release codeline of //depot/releases/main/...

#!/usr/bin/perl
default_ws.pl - Customize the default client workspace view.
$p4 = "p4 -p localhost:1666";
$formname = $ARGV[0]; # from %formname% in trigger table
$formfile = $ARGV[1]; # from %formfile% in trigger table
Default server-generated workspace view and modified view
(Note: this script assumes that //depot is the only depot defined)
$defaultin = "\t//depot/... //$formname/...\n";
$defaultout = "\t//depot/releases/main/... //$formname/...\n";
Check "p4 clients": if workspace exists, exit w/o changing view.
(This example is inefficient if there are millions of workspaces)
open CLIENTS, "$p4 clients |" or die "Couldn't get workspace list";
while (<CLIENTS>)
{
 if (/^Client $formname .*/) { exit 0; }
}
Build a modified workspace spec based on contents of %formfile%
$modifiedform = "";
open FORM, $formfile or die "Trigger couldn't read form tempfile";
while (<FORM>)
{ ## Do the substitution as appropriate.
 if (m:$defaultin:) { $_ = "$defaultout"; }
 $modifiedform .= $_;
}
Write the modified spec back to the %formfile%,
open MODFORM, ">$formfile" or die "Couldn't write form tempfile";
print MODFORM $modifiedform;
exit 0;

This form-out trigger fires on client workspace forms only. To use the trigger, add the following line
to the trigger table:

sample7 form-out client "default_ws.pl %formname% %formfile%"

New users creating client workspaces are presented with your customized default view.

Form-in triggers

Use the form-in trigger type to create triggers that fire when a user attempts to send a form to the
server, but before the form is parsed by the Perforce server.

Example 11.15. All users permitted to edit jobs have been placed in a designated group
called jobbers. The following Python script runs p4 group -o jobbers with the -G (Python

Chapter 11. Using triggers to customize behavior

Helix Versioning Engine Administrator Guide: Fundamentals 211

marshaled objects) flag to determine if the user who triggered the script is in the jobbers
group.

import sys, os, marshal

Configure for your environment
tuser = "triggerman" # trigger username
job_group = "jobbers" # Perforce group of users who may edit jobs

Get trigger input args
user = sys.argv[1]

Get user list
Use global -G flag to get output as marshaled Python dictionary
CMD = "p4 -G -u %s -p 1666 group -o %s" % \
 (tuser, job_group)
result = {}
result = marshal.load(os.popen(CMD, 'r'))

job_users = []
for k in result.keys():
 if k[:4] == 'User': # user key format: User0, User1, ...
 u = result[k]
 job_users.append(u)

Compare current user to job-editing users.
if not user in job_users:
 print "\n\t>>> You don't have permission to edit jobs."
 print "\n\t>>> You must be a member of '%s'.\n" % job_group
 sys.exit(1)
else: # user is in job_group -- OK to create/edit jobs
 sys.exit(0)

This form-in trigger fires on job forms only. To use the trigger, add the following line to the trigger
table:

sample8 form-in job "python jobgroup.py %user%"

If the user is in the jobbers group, the form-in trigger succeeds, and the changed job is passed to
the Perforce server for parsing. Otherwise, an error message is displayed, and changes to the job are
rejected.

Form-delete triggers

Use the form-delete trigger type to create triggers that fire when users attempt to delete a form, after
the form is parsed by the Perforce server, but before the form is deleted from the Perforce database.

Chapter 11. Using triggers to customize behavior

212 Helix Versioning Engine Administrator Guide: Fundamentals

Example 11.16. An administrator wants to enforce a policy that users are not to delete jobs
from the system, but must instead mark such jobs as closed.

#!/bin/sh

echo "Jobs may not be deleted. Please mark jobs as closed instead."
exit 1

This form-delete trigger fires on job forms only. To use the trigger, add the following line to the
trigger table:

sample9 form-delete job "nodeljob.sh"

Whenever a user attempts to delete a job, the request to delete the job is rejected, and the user is shown
an error message.

Form-commit triggers
Unlike the other form triggers, the form-commit trigger fires after a form is committed to the database.
Use these triggers for processes that assume (or require) the successful submission of a form. In the
case of job forms, the job’s name is not set until after the job has been committed to the database;
the form-commit trigger is the only way to obtain the name of a new job as part of the process of job
creation.

Example 11.17. The following script, when copied to newjob.sh, shows how to get a
job name during the process of job creation, and also reports the status of changelists
associated with job fixes.

#!/bin/sh
newjob.sh - illustrate form-commit trigger

COMMAND=$0
USER=$1
FORM=$2
ACTION=$3

echo $COMMAND: User $USER, formname $FORM, action $ACTION >> log.txt

To use the trigger, add the following line to the trigger table:

sample10 form-commit job "newjob.sh %user% %formname% %action%"

Use the %action% variable to distinguish whether or not a change to a job was prompted by a user
directly working with a job by means of p4 job, or indirectly by means of fixing the job within the
context of p4 fix or the Jobs: field of a changelist.

Chapter 11. Using triggers to customize behavior

Helix Versioning Engine Administrator Guide: Fundamentals 213

The simplest case is the creation of a new job (or a change to an existing job) with the p4 job
command; the trigger fires, and the script reports the user, the name of the newly-created (or edited)
job. In these cases, the %action% variable is null.

The trigger also fires when users add or delete jobs to changelists, and it does so regardless of whether
the changed jobs are being manipulated by means of p4 fix, p4 fix -d, or by editing the Jobs: field
of the changelist form provided by p4 change or p4 submit form). In these cases, the %action% variable
holds the status of the changelist (pending or submitted) to which the jobs are being added or deleted.
The form-commit trigger does not run if zero jobs are attached to the changelist.

Because the %action% variable is not always set, it must be the last argument supplied to any form-
commit trigger script.

Triggering to use external authentication
To configure Perforce to work with an external authentication manager (such as LDAP or Active
Directory), use authentication triggers (auth-check, auth-check-sso, service-check, and auth-set).
These triggers fire on the p4 login and p4 passwd commands, respectively.

Note You might prefer to enable LDAP authentication by using an LDAP specification.
This option is recommended: it is easier to use, no external scripts are required,
it provides greater flexibility in defining bind methods, it allows users who
are not in the LDAP directory to be authenticated against Perforce’s internal
user database, and it is more secure. For more information, see “Authentication
options” on page 69.

That being said, you also have the option of using auth-check-sso triggers when
LDAP authentication is enabled. In this case, users authenticated by LDAP can
define a client-side SSO script instead of being prompted for a password. If the
trigger succeeds, the active LDAP configurations are used to confirm that the user
exists in at least one LDAP server. The user must also pass the group authorization
check if it is configured. Triggers of type auth-check-sso will not be called for users
who do not authenticate against LDAP.

Authentication triggers differ from changelist and form triggers in that passwords typed by the user
as part of the authentication process are supplied to authentication scripts as standard input; never on
the command line. (The only arguments passed on the command line are those common to all trigger
types, such as %user%, %clientip%, and so on.)

Warning Be sure to spell the trigger name correctly when you add the trigger to the trigger
table because a misspelling can result in all users being locked out of Perforce.

Be sure to fully test your trigger and trigger table invocation prior to deployment in
a production environment.

Contact Perforce Technical Support if you need assistance with restoring access to
your server.

Chapter 11. Using triggers to customize behavior

214 Helix Versioning Engine Administrator Guide: Fundamentals

The examples in this book are for illustrative purposes only. For a more detailed discussion, including
links to sample code for an LDAP environment, see "Setting Up External Authentication Triggers" in
the Perforce knowledge base:

http://answers.perforce.com/articles/KB_Article/Setting-Up-External-Authentication-Triggers

You must restart the Perforce server after adding an auth-check (or service-check) trigger in order for
it to take effect. You can, however, change an existing auth-check trigger table entry (or trigger script)
without restarting the server.

After an auth-check trigger is in place and the server restarted, the Perforce security configurable
is ignored; because authentication is now under the control of the trigger script, the server’s default
mechanism for password strength requirements is redundant.

The following table describes the fields of an authentication trigger definition.

Field Meaning

type • auth-check: Execute an authentication check trigger to verify a user’s password against
an external password manager during login, or when setting a new password. If an
auth-check trigger is present, the Perforce security configurable (and any associated
password strength requirement) is ignored, as authentication is now controlled by the
trigger script.

You must restart the Perforce server after adding an auth-check trigger.

• auth-check-sso: Facilitate a single sign-on user authentication.

• auth-set: Execute an authentication set trigger to send a new password to an external
password manager.

• service-check: Execute a trigger to verify the password of a service user, rather than
a standard user. Service check triggers work in the same way that auth-check triggers
do. Do not use this type of trigger for an operator user; use the auth-check type trigger
instead.

You must restart the Perforce server after adding a service-check trigger.

path Use auth as the path value.

command The trigger for the Perforce server to run. See the following sections about specific
authentication trigger types for more information on when the trigger is fired. In most
cases, it is when the p4 login command executes.

Specify the command in a way that allows the Perforce server account to locate and
run the command. The command (typically a call to a script) must be quoted, and can
take as arguments any argument that your command is capable of parsing, including any
applicable Perforce trigger variables.

When your trigger script is stored in the depot, its path must be specified in depot
syntax, delimited by percent characters. For example, if your script is stored in the depot
as //depot/scripts/myScript.pl, the corresponding value for the command field might

http://answers.perforce.com/articles/KB_Article/Setting-Up-External-Authentication-Triggers

Chapter 11. Using triggers to customize behavior

Helix Versioning Engine Administrator Guide: Fundamentals 215

Field Meaning

be "/usr/bin/perl %//depot/scripts/myScript.pl%" . See “Storing triggers in the
depot” on page 186 for more information.

For auth-check and service-check triggers (fired by p4 login from standard/operator
users and service users respectively), the user’s typed password is supplied to the trigger
command as standard input. If the trigger executes successfully, the Perforce ticket is
issued. The user name is available as %user% to be passed on the command line.

For auth-check-sso triggers, (fired by p4 login for all users) the output of the client-side
script (specified by P4LOGINSSO) is sent to the server-side script in cleartext.

For auth-set triggers, (fired by p4 passwd, but only after also passing an auth-check
trigger check) the user’s old password and new password are passed to the trigger as
standard input. The user name is available as %user% to be passed on the command line.

Auth-check and service-check triggers

Triggers of type auth-check fire when standard or operator users run the p4 login command.
Similarly, service-check triggers fire when service users users run the p4 login command. If the script
returns 0, login is successful, and a ticket file is created for the user.

The service-check trigger works exactly like an auth-check trigger, but applies only to users whose
Type: has been set to service. The service-check trigger type is used by Perforce administrators
who want to use LDAP to authenticate other Perforce servers in replicated and other multi-server
environments.

Warning If you are using auth-check triggers, the Perforce superuser must also be able to
authenticate against the remote authentication database. (If you, as the Perforce
superuser, cannot use the trigger, you may find yourself locked out of your own
server, and will have to (temporarily) overwrite your auth-check trigger with a
script that always passes in order to resolve the situation.)

Example 11.18. A trivial authentication-checking script.

All users must enter the password "secret" before being granted login tickets. Passwords supplied by
the user are sent to the script on STDIN.

Chapter 11. Using triggers to customize behavior

216 Helix Versioning Engine Administrator Guide: Fundamentals

#!/bin/bash
checkpass.sh - a trivial authentication-checking script

in this trivial example, all users have the same "secret" password
USERNAME=$1
PASSWORD=secret

read user-supplied password from stdin
read USERPASS

compare user-supplied password with correct password
if ["$USERPASS" = $PASSWORD]
then
 # Success
 exit 0
fi

Failure
echo checkpass.sh: password $USERPASS for $USERNAME is incorrect
exit 1

This auth-check trigger fires whenever users run p4 login. To use the trigger, add the following line to
the trigger table:

sample11 auth-check auth "checkpass.sh %user%"

Users who enter the "secret" password are granted login tickets.

Single signon and auth-check-sso triggers
Triggers of type auth-check-sso fire when standard users run the p4 login command. Two scripts are
run: a client-side script is run on the user’s workstation, and its output is passed (in plaintext) to the
Perforce Server, where the server-side script runs.

• On the user’s client workstation, a script (whose location is specified by the P4LOGINSSO environment
variable) is run to obtain the user’s credentials or other information verifiable by the Perforce Server.
The P4LOGINSSO contains the name of the client-side script and zero or more of the following trigger
variables, passed as parameters to the script: %user%, %serverAddress%, and %P4PORT%. For example:

export P4LOGINSSO="/path/to/sso-client.sh %user% %serverAddress% %P4PORT%"

Where %user% is the Perforce client user, %serverAddress% is the address of the target Perforce server,
and %P4PORT% is an intermediary between the client and the server.

• On the server, the output of the client-side script is passed to the server-side script as standard input.
The server-side script specified in the trigger table runs, and the server returns an exit status of 0 if
successful.

With a distributed configuration in which a proxy or broker acts as an intermediary between the
client and the server, the %serverAddress% variable will hold the address/port of the server and the

Chapter 11. Using triggers to customize behavior

Helix Versioning Engine Administrator Guide: Fundamentals 217

%P4PORT% variable will hold the port of the intermediary. It is up to the script to decide what to do
with this information.

Example 11.19. Interaction between client-side and server-side scripts.

An auth-check-sso trigger fires whenever users run p4 login. The system administrator might add
the following line to the trigger table to specify the script that should run on the server side:

sample13 auth-check-sso auth "serverside.sh %user%"

and each end user sets the following environment variable on the client side:

export P4LOGINSSO=/usr/local/bin/clientside.sh %serverAddress%

When the user attempts to log on, the P4LOGINSSO script runs on the user’s workstation:

##!/bin/bash
clientside.sh - a client-side authentication script
#
if we use %serverAddress% in the command-line like this:
p4 -E P4LOGINSSO=clientside.sh %serverAddress%
then this script receives the serverAddress as $1, and the user
can use it for multiple connections to different Perforce servers.
#
In this example, we simulate a client-side authentication process
based on whether the user is connecting to the same Perforce Server
as is already configured in his or her environment.
(We also output debugging information to a local file.)

input_saddr=$1

env_saddr=`p4 info | grep "Server address" | awk '{printf "%s", $3}'`

if test "$input_saddr" == "$env_saddr"
 then
 # User is connected to the server specified by P4PORT - pass
 echo "sso pass"; echo pass "$input_saddr" >> debug.txt; exit 0
 else
 # User is attempting to connect to another server - fail
 echo "no pass"; echo fail "$input_saddr" >> debug.txt; exit 1
fi

If the user is connected to the same Perforce Server as specified by P4PORT (that is, if the server address
passed from the Server to this script matches the server that appears in the output of a plain p4 info
command), client-side authentication succeeds. If the user is connected to another Perforce Server
(for example, by running p4 -p host:port login against a different Perforce Server), client-side
authentication fails.

The server-side script is as follows:

Chapter 11. Using triggers to customize behavior

218 Helix Versioning Engine Administrator Guide: Fundamentals

#!/bin/bash
#
serverside.sh - a server-side authentication script
#

if test $# -eq 0
 then
 echo "No user name passed in.";
 exit 1;
fi

read msg </dev/stdin

if test "$msg" == ""
 then
 echo "1, no stdin"
 exit 1
fi

if test "$msg" == "sso pass"
 then
 exit 0
 else
 exit 1
fi

In a more realistic example, the end user’s P4LOGINSSO script points to a clientside.sh script that
contacts an authentication service to obtain a token of some sort. The client-side script then passes this
token to Perforce Server’s trigger script, and serverside.sh uses the single-signon service to validate
the token.

In this example, clientside.sh merely checks whether the user is using the same connection as
specified by P4PORT, and the output of clientside.sh is trivially checked for the string "sso pass"; if
the string is present, the user is permitted to log on.

Triggering for external authentication

Triggers of type auth-set fire when users (standard users or service users) run the p4 passwd
command and successfully validate their old password with an auth-check (or service-check) trigger.
The process is as follows:

1. A user invokes p4 passwd.

2. The Perforce server prompts the user to enter his or her old password.

3. The Perforce server fires an auth-check trigger to validate the old password against the external
authentication service.

4. The script associated with the auth-check trigger runs. If the auth-check trigger fails, the process
ends immediately: the user is not prompted for a new password, and the auth-set trigger never
fires.

Chapter 11. Using triggers to customize behavior

Helix Versioning Engine Administrator Guide: Fundamentals 219

5. If the auth-check trigger succeeds, the server prompts the user for a new password.

6. The Perforce server fires an auth-set trigger and supplies the trigger script with both the old
password and the new password on the standard input, separated by a newline.

Note In most cases, users in an external authentication environment will continue
to set their passwords without use of Perforce. The auth-set trigger type is
included mainly for completeness.

Because the Perforce server must validate the user’s current password, you must have a properly
functioning auth-check trigger before attempting to write an auth-set trigger.

Example 11.20. A trivial authentication-setting script

#!/bin/bash
setpass.sh - a trivial authentication-setting script

USERNAME=$1

read OLDPASS
read NEWPASS

echo setpass.sh: $USERNAME attempted to change $OLDPASS to $NEWPASS

This auth-set trigger fires after users run p4 passwd and successfully pass the external authentication
required by the auth-check trigger. To use the trigger, add the following two lines to the trigger table:

sample11 auth-check auth "checkpass.sh %user%"
sample12 auth-set auth "setpass.sh %user%"

This trivial example doesn’t actually change any passwords; it merely reports back what the user
attempted to do.

Triggering to affect archiving
The archive trigger type is used in conjunction with the +X filetype modifier in order to replace
the mechanism by which the Perforce Server archives files within the repository. They are used for
storing, managing, or generating content archived outside of the Perforce repository. See “Execution
environment” on page 181 for platform-specific considerations.

The following table describes the fields of an archive trigger definition:

Field Meaning

type archive: Execute the script when a user accesses any file with a filetype containing the +X
filetype modifier. The script can read, write, or delete files in the archive.

Chapter 11. Using triggers to customize behavior

220 Helix Versioning Engine Administrator Guide: Fundamentals

Field Meaning

The script is run once per file requested.

For read operations, scripts should deliver the file to the user on standard output. For
write operations, scripts receive the file on standard input.

path A file pattern to match the name of the file being accessed in the archive.

command The trigger for the Perforce server to run when a file matching path is found in the
archive.

Specify the command in a way that allows the Perforce server account to locate and
run the command. The command (typically a call to a script) must be quoted, and can
take as arguments any argument that your command is capable of parsing, including any
applicable Perforce trigger variables.

When your trigger script is stored in the depot, its path must be specified in depot
syntax, delimited by percent characters. For example, if your script is stored in the depot
as //depot/scripts/myScript.pl, the corresponding value for the command field might
be "/usr/bin/perl %//depot/scripts/myScript.pl%" . See “Storing triggers in the
depot” on page 186 for more information.

If the command succeeds, the command’s standard output is the file content. If the
command fails, the command standard output is sent to the client as the text of a trigger
failure error message.

Example 11.21. An archive trigger

This archive trigger fires when users access files that have the +X (archive) modifier set.

Chapter 11. Using triggers to customize behavior

Helix Versioning Engine Administrator Guide: Fundamentals 221

#!/bin/sh
archive.sh - illustrate archive trigger

OP=$1
FILE=$2
REV=$3

if ["$OP" = read]
then
 cat ${FILE}${REV}
fi

if ["$OP" = delete]
then
 rm ${FILE}${REV}
fi

if ["$OP" = write]
then
 # Create new file from user's submission via stdin
 while read LINE; do
 echo ${LINE} >> ${FILE}${REV}
 done
 ls -t ${FILE}* |
 {
 read first; read second;
 cmp -s $first $second
 if [$? -eq 0]
 then
 # Files identical, remove file, replace with symlink.
 rm ${FILE}${REV}
 ln -s $second $first
 fi
 }
fi

To use the trigger, add the following line to the trigger table:

arch archive path "archive.sh %op% %file% %rev%"

When the user attempts to submit (write) a file of type +X in the specified path, if there are no changes
between the current revision and the previous revision, the current revision is replaced with a symlink
pointing to the previous revision.

Trigger script variables
You can use trigger script variables to pass data to a trigger script. All data is passed as a string; it is up
to the trigger to interpret and use these appropriately.

It is also possible to have the server and trigger communicate using STDIN and STDOUT. For more
information, see “Communication between a trigger and the server” on page 183.

Chapter 11. Using triggers to customize behavior

222 Helix Versioning Engine Administrator Guide: Fundamentals

The maxError… variables refer to circumstances that prevented the server from completing a command;
for example, an operating system resource issue. Note also that client-side errors are not always visible
to the server and might not be included in the maxError count.

The terminated and termType variables indicate whether the command exited early and why.

Note The processing of unknown variables has changed. Previously, unknown variables
were removed from the trigger invocation. Currently they are left as is. This
preserves the trigger argument ordering, and might be a clue to authors that data
they assumed to be available is not.

Argument Description Available for type

%action% Either null or a string reflecting an action
taken to a changelist or job.

For example,"pending change 123 added"
or "submitted change 124 deleted" are
possible %action% values on change forms,
and "job000123 created" or "job000123
edited" are possible %action% values for job
forms.

form-commit

%argc% Command argument count. all except archive

%args% Command argument string. all except archive

%argsQuoted% Command argument string that contains the
command arguments as a percent-encoded
comma-separated list.

all except archive

%changelist%, %change% The number of the changelist being
submitted. The abbreviated form %change% is
equivalent to %changelist%.

A change-submit trigger is passed the
pending changelist number; a change-commit
trigger receives the committed changelist
number.

A shelve-commit or shelve-delete trigger
receives the changelist number of the shelf.

change-submit
push-submit
change-content
push-content
change-commit
push-commit
fix-add,
fix-delete,
form-commit,
shelve-commit,
shelve-delete

%changeroot% The root path of files submitted. change-commit

push-commit

%client% Triggering user’s client workspace name. all

%clientcwd% Client’s current working directory. all except archive

Chapter 11. Using triggers to customize behavior

Helix Versioning Engine Administrator Guide: Fundamentals 223

Argument Description Available for type

%clienthost% Hostname of the user’s workstation (even if
connected through a proxy, broker, replica,
or an edge server.)

all

%clientip% The IP address of the user’s workstation
(even if connected through a proxy, broker,
replica, or an edge server.)

all

%clientprog% The name of the user’s client application. For
example, P4V, P4Win, etc.

all

%clientversion% The version of the user’s client application. all

%command% Command name. all except archive

%file% Path of archive file based on depot’s Map:
field. If the Map: field is relative to P4ROOT,
the %file% is a server-side path relative to
P4ROOT. If the Map: field is an absolute path,
the %file% is an absolute server-side path.

archive

%firstPushedChange% First new changelist number.

See “Additional triggers for push and
fetch commands” on page 202 for more
information.

command

%formfile% Path to temporary form specification file. To
modify the form from an in or out trigger,
overwrite this file. The file is read-only for
triggers of type save and delete.

form-commit,
form-save,
form-in,
form-out,
form-delete

%formname% Name of form (for instance, a branch name
or a changelist number).

form-commit,
form-save,
form-in,
form-out,
form-delete

%formtype% Type of form (for instance, branch, change,
and so on).

form-commit,
form-save,
form-in,
form-out,
form-delete

%groups% List of groups to which the user belongs,
space-separated.

all except archive

%intermediateService% A broker or proxy is present. all except archive

Chapter 11. Using triggers to customize behavior

224 Helix Versioning Engine Administrator Guide: Fundamentals

Argument Description Available for type

%jobs% A string of job numbers, expanded to one
argument for each job number specified on
a p4 fix command or for each job number
added to (or removed from) the Jobs: field
in a p4 submit, or p4 change form.

fix-add,
fix-delete

%lastPushedChange% Last new changelist number.

See “Additional triggers for push and
fetch commands” on page 202 for more
information.

command

%maxErrorSeverity% One of empty, error, or warning. all except archive

%maxErrorText% Error number and text. all except archive

%maxLockTime% A user-specified value that specifies the
number of milliseconds for the longest
permissible database lock. If this variable
is set, it means the user has overridden the
group setting for this value.

all except archive

%maxResults% A user-specified value that specifies the
amount of data buffered during command
execution. If this variable is set, it means the
user has overridden the group setting for
this value.

all except archive

%maxScanRows% A user-specified value that specifies the
maximum number of rows scanned in a
single operation. If this variable is set, it
means the user has overridden the group
setting for this value.

all except archive

%oldchangelist% If a changelist is renumbered on submit, this
variable contains the old changelist number.

change-commit

push-commit

%op% Operation: read, write, or delete. archive

%peerhost% If the command was sent through a proxy,
broker, replica, or edge server, the hostname
of the proxy, broker, replica, or edge
server. (If the command was sent directly,
%peerhost% matches %clienthost%)

all

%peerip% If the command was sent through a proxy,
broker, replica, or edge server, the IP
address of the proxy, broker, replica, or edge

all

Chapter 11. Using triggers to customize behavior

Helix Versioning Engine Administrator Guide: Fundamentals 225

Argument Description Available for type

server. (If the command was sent directly,
%peerip% matches %clientip%)

%P4PORT% The host port to which the client connects.
If the client connects to the server through
an intermediary, this will hold the port
number of the intermediary. If there’s no
intermediary, this will hold the same value
as the %serverAddress% variable.

auth-check-sso
(client-side script
only)

%quote% A double quote character. all

%rev% Revision of archive file archive

%serverAddress% The IP address and port of the Perforce
server, passable only in the context of a
client-side script specified by P4LOGINSSO.

auth-check-sso
(client-side script
only)

%serverhost% Hostname of the Perforce server. all

%serverid% The value of the Perforce server’s server.id.
See p4 serverid in the P4 Command Reference
for details.

all

%serverip% The IP address of the server. all

%servername% The value of the Perforce server’s P4NAME. all

%serverport% The transport, IP address and port
of the Perforce server, in the format
prefix:ip_address:port.

prefix can be one of ssl, tcp6, or ssl6. This
means that the command p4 -p %serverport
% can be used to connect to the server no
matter which type of connection the server
uses.

all

%serverroot% The P4ROOT directory of the Perforce server. all

%serverservices% A string specifying the role of the server.
One of the following:

• standard

• replica

• broker

• proxy

all except archive

http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

Chapter 11. Using triggers to customize behavior

226 Helix Versioning Engine Administrator Guide: Fundamentals

Argument Description Available for type

• commit-server

• edge-server

• forwarding-replica

• build-server

• P4AUTH

• P4CHANGE

%serverVersion% Version string for the server that terminated
if the command exited early. Reason for
termination is given in %termType%.

all except archive

%specdef% Expanded to the spec string of the form in
question.

form

%submitserverid% If this is not a distributed installation,
%submitserverid% is always empty.

In a distributed installation, for any change
trigger:

• if the submit was run on the commit
server, %submitserverid% equals
%serverid%.

• if the submit was run on the edge
server, %submitserverid% does not equal
%serverid%. In this case, %submitserverid%
holds the edge server’s server id.

If there is a forwarding replica between
the commit server and the edge server,
then %submitserverid% actually holds the
forwarding replica’s server id.

See p4 serverid in the P4 Command Reference
for details.

change-submit,
change-content,
change-commit,

Not available for
push-* triggers.

%terminated% The value of 0 indicates that the command
completed. A value of 1 indicates that the
command did not complete.

%termType% The reason for early termination. This might
be one of the following:

• 'p4 monitor terminate'

all except archive

http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

Chapter 11. Using triggers to customize behavior

Helix Versioning Engine Administrator Guide: Fundamentals 227

Argument Description Available for type

• client disconnect

• maxScanRows

• maxLockTime

• maxResults

See also %serverVersion%.

%triggerMeta_action% Command to execute when trigger is fired.
Last field of trigger definition. Set only when
you run a script from the depot.

all except archive

%triggerMeta_depotFile% Third field in trigger definition. Its meaning
varies with the trigger type. For a change-
submit trigger, it is the path for which the
trigger is expected to match. For a form-
out trigger, it might be the form type to
which the trigger is expected to apply. See
the description of the trigger types for more
information on the meaning of this field.

all except archive

%triggerMeta_name% Trigger name: first field from trigger
definition. Set only when you run a script
from the depot.

all except archive

%triggerMeta_trigger% Trigger type: second field in trigger
definition. Set only when you run a script
from the depot.

all except archive

%user% Perforce username of the triggering user. all

228 Helix Versioning Engine Administrator Guide: Fundamentals

Helix Versioning Engine Administrator Guide: Fundamentals 229

Appendix Perforce Server (p4d) Reference

Synopsis
Start the Perforce service or perform checkpoint/journaling (system administration) tasks.

Syntax

p4d [options]
p4d.exe [options]
p4s.exe [options]
p4d -j? [-z | -Z] [args ...]

Description
The first three forms of the command invoke the background process that manages the Perforce
versioning service. The fourth form of the command is used for system administration tasks involving
checkpointing and journaling.

On UNIX and Mac OS X, the executable is p4d.

On Windows, the executable is p4d.exe (running as a server) or p4s.exe (running as a service).

Exit Status
After successful startup, p4d does not normally exit. It merely outputs the following startup message:

Perforce server starting...

and runs in the background.

On failed startup, p4d returns a nonzero error code.

Also, if invoked with any of the -j checkpointing or journaling options, p4d exits with a nonzero error
code if any error occurs.

Options
Server options Meaning

-d Run as a daemon (in the background)

-f Run as a single-threaded (non-forking) process

-i Run from inetd on UNIX

-q Run quietly (no startup messages)

Perforce Server (p4d) Reference

230 Helix Versioning Engine Administrator Guide: Fundamentals

Server options Meaning

--pid-file[=file] Write the PID of the server to a file named server.pid in the directory
specified by P4ROOT, or write the PID to the file specified by file. This
makes it easier to identify a server instance among many.

The file parameter can be a complete path specification. The file does
not have to reside in P4ROOT.

-xi Irreversibly reconfigure the Perforce server (and its metadata) to
operate in Unicode mode. Do not use this option unless you know you
require Unicode mode. See the Release Notes and Internationalization
Notes for details.

-xu Run database upgrades and exit.

This will no longer run automatically if there are fewer than 1000
changelists. Upgrades must be run manually unless the server is
a DVCS personal server; in this case, any upgrade steps are run
automatically.

-xv Run low-level database validation and quit.

-xvU Run fast verification; do not lock database tables, and verify only that
the unlock count for each table is zero.

-xD [serverID] Display (or set) the server’s serverID (stored in the server.id file) and
exit.

General options Meaning

-h, -? Print help message.

-V Print version number.

-A auditlog Specify an audit log file. Overrides P4AUDIT setting. Default is null.

-Id description A server description for use with p4 server. Overrides P4DESCRIPTION
setting.

-In name A server name for use with p4 configure. Overrides P4NAME setting.

-J journal Specify a journal file. Overrides P4JOURNAL setting. Default is journal.
(Use -J off to disable journaling.)

-L log Specify a log file. Overrides P4LOG setting. Default is STDERR.

-p port Specify a port to listen to. Overrides P4PORT. Default 1666.

-r root Specify the server root directory. Overrides P4ROOT. Default is current
working directory.

http://www.perforce.com/perforce/r16.1/user/relnotes.txt
http://www.perforce.com/perforce/r16.1/user/i18nnotes.txt
http://www.perforce.com/perforce/r16.1/user/i18nnotes.txt

Perforce Server (p4d) Reference

Helix Versioning Engine Administrator Guide: Fundamentals 231

General options Meaning

-v subsystem=level Set trace options. Overrides value P4DEBUG setting. Default is null.

-C1 Force the service to operate in case-insensitive mode on a normally
case-sensitive platform.

--pid-file[=name] Write the server’s PID to the specified file.

Default name for the file is server.pid

Checkpointing options Meaning

-c command Lock database tables, run command, unlock the tables, and exit.

-jc [prefix] Journal-create; checkpoint and .md5 file, and save/truncate journal.

In this case, your checkpoint and journal files are named prefix.ckp.n
and prefix.jnl.n respectively, where prefix is as specified on the
command line and n is a sequence number. If no prefix is specified, the
default filenames checkpoint.n and journal.n are used. You can store
checkpoints and journals in the directory of your choice by specifying
the directory as part of the prefix.

Warning If you use this option, it must be the last option on
the command line.

-jd file Journal-checkpoint; create checkpoint and .md5 file without saving/
truncating journal.

-jj [prefix] Journal-only; save and truncate journal without checkpointing.

-jr file Journal-restore; restore metadata from a checkpoint and/or journal file.

If you specify the -r $P4ROOT option on the command line, the -r
option must precede the -jr option.

-jv file Verify the integrity of the checkpoint or journal specified by file as
follows:

• Can the checkpoint or journal be read from start to finish?

• If it’s zipped can it be successfully unzipped?

• If it has an MD5 file with its MD5, does it match?

• Does it have the expected header and trailer?

This command does not replay the journal.

Perforce Server (p4d) Reference

232 Helix Versioning Engine Administrator Guide: Fundamentals

Checkpointing options Meaning

Use the -z option with the -jv option to verify the integrity of
compressed journals or compressed checkpoints.

-z Compress (in gzip format) checkpoints and journals.

When you use this option with the -jd option, Perforce automatically
adds the .gz extension to the checkpoint file. So, the command:

p4d -jd -z myCheckpoint

creates two files: myCheckpoint.gz and myCheckpoint.md5.

-Z Compress (in gzip format) checkpoint, but leave journal uncompressed
for use by replica servers. That is, it applies to -jc, not -jd.

Journal restore options Meaning

-jrc file Journal-restore with integrity-checking. Because this option locks the
database, this option is intended only for use by replica servers started
with the p4 replicate command.

-jrF file Allow replaying a checkpoint over an existing database. (Bypass the
check done by the -jr option to see if a checkpoint is being replayed
into an existing database directory by mistake.)

-b bunch -jr file Read bunch lines of journal records, sorting and removing duplicates
before updating the database. The default is 5000, but can be set to 1 to
force serial processing. This combination of options is intended for use
with by replica servers started with the p4 replicate command.

-f -jr file Ignore failures to delete records; this meaning of -f applies only when
-jr is present. This combination of options is intended for use with by
replica servers started with the p4 replicate command. By default,
journal restoration halts if record deletion fails.

As with all journal-restore commands, if you specify the -r $P4ROOT
option on the command line, the -r option must precede the -jr
option.

-m -jr file Schedule new revisions for replica network transfer. Required only in
environments that use p4 pull -u for archived files, but p4 replicate
for metadata. Not required in replicated environments based solely on
p4 pull.

-s -jr file Record restored journal records into regular journal, so that the
records can be propagated from the server’s journal to any replicas
downstream of the server. This combination of options is intended for
use in conjunction with Perforce technical support.

Perforce Server (p4d) Reference

Helix Versioning Engine Administrator Guide: Fundamentals 233

Replication and multi-
server options

Meaning

-a host:port In multi-server environments, specify an authentication server for
licensing and protections data. Overrides P4AUTH setting. Default is
null.

-g host:port In multi-server environments, specify a changelist server from which to
obtain changelist numbers. Overrides P4CHANGE setting. Default is null.

-t host:port For replicas, specify the target (master) server from which to pull data.
Overrides P4TARGET setting. Default is null.

-u serviceuser For replicas, authenticate as the specified serviceuser when
communicating with the master. The service user must have a valid
ticket before replica operations will succeed.

Journal dump/restore filtering Meaning

-jd file db.table Dump db.table by creating a checkpoint file that
contains only the data stored in db.table

This command can also be used with non-journaled
tables.

-k db.table1,db.table2,... -jd file Dump a set of named tables to a single dump file.

-K db.table1,db.table2,... -jd file Dump all tables except the named tables to the dump
file.

-P serverid -jd file Specify filter patterns for p4d -jd by specifying a
serverid from which to read filters (see p4 help
server, or use the older syntax described in p4 help
export.)

This option is useful for seeding a filtered replica.

-k db.table1,db.table2,... -jr file Restore from file, including only journal records for
the tables named in the list specified by the -k option.

-K db.table1,db.table2,... -jr file Restore from file, excluding all journal records for the
tables named in the list specified by the -K option.

Certificate Handling Meaning

-Gc Generate SSL credentials files for the server: create a private key and
certificate file in P4SSLDIR, and then exit.

Requires that P4SSLDIR be set to a directory that is owned by the user
invoking the command, and that is readable only by that user. If

Perforce Server (p4d) Reference

234 Helix Versioning Engine Administrator Guide: Fundamentals

Certificate Handling Meaning

config.txt is present in P4SSLDIR, generate a self-signed certificate
with specified characteristics.

-Gf Display the fingerprint of the server’s public key, and exit.

Administrators can communicate this fingerprint to end users, who
can then use the p4 trust command to determine whether or not the
fingerprint (of the server to which they happen to be connecting) is
accurate.

Configuration options Meaning

-cshow Display the contents of db.config without starting the service. (That is,
run p4 configure show allservers, but without a running service.)

-cset server#var=val Set a Perforce configurable without starting the service, optionally
specifying the server for which the configurable is to apply. For
example,

p4d -r . "-cset replica#P4JOURNAL=off"

p4d -r . "-cset replica#P4JOURNAL=off replica#server=3"

It is best to include the entire variable=value expression in quotation
marks.

-cunset server#var Unset the specified configurable.

Usage Notes
• On all systems, journaling is enabled by default. If P4JOURNAL is unset when p4d starts, the default

location for the journal is $P4ROOT. If you want to manually disable journaling, you must explicitly
set P4JOURNAL to off.

• Take checkpoints and truncate the journal often, preferably as part of your nightly backup process.

• Checkpointing and journaling preserve only your Perforce metadata (data about your stored files).
The stored files themselves (the files containing your source code) reside under P4ROOT and must be
also be backed up as part of your regular backup procedure.

• It is best to keep journal files and checkpoints on a different hard drive or network location than the
Perforce database.

• If your users use triggers, don’t use the -f (non-forking mode) option; the Perforce service needs to
be able to spawn copies of itself ("fork") in order to run trigger scripts.

Perforce Server (p4d) Reference

Helix Versioning Engine Administrator Guide: Fundamentals 235

• After a hardware failure, the options required for restoring your metadata from your checkpoint and
journal files can vary, depending on whether data was corrupted.

• Because restorations from backups involving loss of files under P4ROOT often require the journal
file, we strongly recommend that the journal file reside on a separate filesystem from P4ROOT. This
way, in the event of corruption of the filesystem containing P4ROOT, the journal is likely to remain
accessible.

• The database upgrade option (-xu) can require considerable disk space. See the Release Notes for
details when upgrading.

Related Commands

To start the service, listening to port 1999, with
journaling enabled and written to journalfile.

p4d -d -p 1999 -J /opt/p4d/journalfile

To checkpoint a server with a non-default
journal file, the -J option (or the environment
variable P4JOURNAL) must match the journal file
specified when the server was started.

Checkpoint with:

p4d -J /p4d/jfile -jc

or

P4JOURNAL=/p4d/jfile ; export P4JOURNAL;
p4d -jc

To create a compressed checkpoint from a server
with files in directory P4ROOT

p4d -r $P4ROOT -z -jc

To create a compressed checkpoint with a user-
specified prefix of “ckp” from a server with files
in directory P4ROOT

p4d -r $P4ROOT -z -jc ckp

To restore metadata from a checkpoint named
checkpoint.3 for a server with root directory
P4ROOT

p4d -r $P4ROOT -jr checkpoint.3

(The -r option must precede the -jr option.)

To restore metadata from a compressed
checkpoint named checkpoint.3.gz for a server
with root directory P4ROOT

p4d -r $P4ROOT -z -jr checkpoint.3.gz

(The -r option must precede the -jr option.)

http://www.perforce.com/perforce/r16.1/user/relnotes.txt

236 Helix Versioning Engine Administrator Guide: Fundamentals

Helix Versioning Engine Administrator Guide: Fundamentals 237

Appendix Moving a Perforce server to a new machine
How you move an existing Perforce server from one machine to another depends on the following
factors:

• whether the machines use the same byte order

• whether the machines use different byte ordering, but the same text file (CR/LF) format

• whether the machines use different byte order and a different text file format.

Additional considerations apply if the new machine has a different IP address/hostname.

The Perforce server stores two types of data under the Perforce root directory: versioned files and
a database containing metadata describing those files. Your versioned files are the ones created and
maintained by your users, and your database is a set of Perforce-maintained binary files holding the
history and present state of the versioned files. In order to move a Perforce server to a new machine,
both the versioned files and the database must be successfully migrated from the old machine to the
new machine.

For more about the distinction between versioned files and database, as well as for an overview of
backup and restore procedures in general, see Chapter 6, “Backup and Recovery” on page 103.

For more information, see "Moving a Perforce Server" in the Perforce knowledge base:

http://answers.perforce.com/articles/KB_Article/Moving-a-Perforce-Server

Moving between machines of the same byte order
If the architecture of the two machines uses the same byte order (for example, SPARC/SPARC, x86/
x86, or even 32-bit Windows to 64-bit Windows), the versioned files and database can be copied
directly between the machines, and you only need to move the server root directory tree to the new
machine. You can use tar, cp, xcopy.exe, or any other method. Copy everything in and under the
P4ROOT directory - the db.* files (your database) as well as the depot subdirectories (your versioned
files).

1. Back up your server (including a p4 verify before the backup) and take a checkpoint.

2. On the old machine, stop p4d.

3. Copy the contents of your old server root (P4ROOT) and all its subdirectories on the old machine into
the new server root directory on the new machine.

4. Start p4d on the new machine with the desired flags.

5. Run p4 verify on the new machine to ensure that the database and your versioned files were
transferred correctly to the new machine.

(Although the backup, checkpoint, and subsequent p4 verify are not strictly necessary, it’s always
good practice to verify, checkpoint, and back up your system before any migration and to perform a
subsequent verification after the migration.)

http://answers.perforce.com/articles/KB_Article/Moving-a-Perforce-Server

Moving a Perforce server to a new machine

238 Helix Versioning Engine Administrator Guide: Fundamentals

Moving between different byte orders that use the same text format
If the internal data representation (big-endian vs. little-endian) convention differs between the two
machines (for example, Linux-on-x86/SPARC), but their operating systems use the same CR/LF text
file conventions, you can still simply move the server root directory tree to the new machine.

Although the versioned files are portable across architectures, the database, as stored in the db.* files,
is not. To transfer the database, you will need to create a checkpoint of your Perforce server on the
old machine and use that checkpoint to re-create the database on the new machine. The checkpoint is
a text file that can be read by a Perforce server on any architecture. For more details, see “Creating a
checkpoint” on page 104.

After you create the checkpoint, you can use tar, cp, xcopy.exe, or any other method to copy the
checkpoint file and the depot directories to the new machine. (You don’t need to copy the db.* files,
because they will be re-created from the checkpoint you took.)

1. On the old machine, use p4 verify to ensure that the database is in a consistent state.

2. On the old machine, stop p4d.

3. On the old machine, create a checkpoint:

p4d -jc checkpointfile

4. Copy the contents of your old server root (P4ROOT) and all its subdirectories on the old machine into
the new server root directory on the new machine.

(To be precise, you don’t need to copy the db.* files, just the checkpoint and the depot
subdirectories. The db.* files will be re-created from the checkpoint. If it’s more convenient to copy
everything, then copy everything.)

5. On the new machine, if you copied the db.* files, be sure to remove them from the new P4ROOT
before continuing.

6. Re-create a new set of db.* files suitable for your new machine’s architecture from the checkpoint
you created:

p4d -jr checkpointfile

7. Start p4d on the new machine with the desired flags.

8. Run p4 verify on the new machine to ensure that the database and your versioned files were
transferred correctly to the new machine.

Moving between Windows and UNIX
In this case, both the architecture of the system and the CR/LF text file convention may be different.
You still have to create a checkpoint, copy it, and re-create the database on the new platform, but when
you move the depot subdirectories containing your versioned files, you also have to address the issue
of the differing linefeed convention between the two platforms.

Moving a Perforce server to a new machine

Helix Versioning Engine Administrator Guide: Fundamentals 239

Depot subdirectories can contain both text and binary files. The text files (in RCS format, ending with
",v") and binary files (directories of individual binary files, each directory ending with ",d") need to
be transferred in different ways in order to translate the line endings on the text files while leaving the
binary files unchanged.

As with all other migrations, be sure to run p4 verify after your migration.

Warning Windows is a case-insensitive operating system. Files that differ by case only on
a UNIX server will occupy the same namespace when transferred to a Windows
machine. For instance, files Makefile and file makefile on a UNIX server will
appear to be the same file on a Windows machine.

Due to the risk of data loss due to case collision, migrations from UNIX servers to
Windows are not supported.

Contact Perforce Technical Support for assistance when migrating a Perforce server from Windows to
UNIX.

Changing the IP address of your server
If the IP address of the new machine is not the same as that of the old machine, you will
need to update any IP-address-based protections in your protections table. See “Authorizing
access” on page 83 for information on setting protections for your Perforce server.

If you are a licensed Perforce customer, you will also need a new license file to reflect the server’s new
IP address. Contact Perforce Technical Support to obtain an updated license.

Changing the hostname of your server
If the hostname of the new machine serving Perforce is different from that of its predecessor, your
users must change their P4PORT settings. If the old machine is being retired or renamed, consider
setting an alias for the new machine to match that of the old machine, so that your users won’t have to
change their P4PORT settings.

240 Helix Versioning Engine Administrator Guide: Fundamentals

Helix Versioning Engine Administrator Guide: Fundamentals 241

Appendix Perforce Server Control (p4dctl)
The Perforce Service Control (p4dctl) utility allows you to manage Perforce services running on
the local host. Non-root users can administer the services they own, while root may administer all
services, but may not own any.

Note p4dctl can only be obtained as part of the UNIX package installation. It is not
supported on Windows.

You use the p4dctl utility to configure the environment in which services run and to manage the
services themselves. The basic workflow for an administrator using the p4dctl utility is as follows:

1. Edit a configuration file that defines the environment for the services you want to control.

2. Execute p4dctl commands to start and stop services, to get information about services, and to
checkpoint services.

You can use a single p4dctl command to manage all services or an arbitrary group of services by
assigning them a common name in the p4dctl configuration file.

p4dctl introduces no new environment variables; it enforces strict control of the environment of any
service it starts according to the directives in the p4dctl configuration file. This prevents failures that
stem from the differences between the user’s environment and that of root.

Installation
p4dctl is installed as part of the UNIX package installation. The installation process automatically
creates a master configuration file located at /etc/perforce/p4dctl.conf.

As part of the package install, p4dctl is installed as a setuid root executable because it uses root
privileges to maintain pid files for compatibility with systems that use them. For all other operations,
p4dctl runs with the privileges of the executing user. This allows non-root users to start and stop the
services they own while having the pid file remain up to date.

Configuration file format
p4dctl uses a configuration file, p4dctl.conf, to control the following:

• service settings for the services started with the p4dctl command.

• settings for the p4dctl utility itself

• service processes managed by p4dctl, for example checkpointing and journal rotation

• the environment in which managed services are running

The environment is configured using environment variables that may be defined globally or for a
specific service. The service type determines which variables must be defined. See “Service types
and required settings” on page 244 for information on the requirements for each type.

A p4dctl configuration file is made up of an environment block and one or more server type blocks.
The following sections describe each type in detail.

Perforce Server Control (p4dctl)

242 Helix Versioning Engine Administrator Guide: Fundamentals

The configuration file may also contain comments; these are designated by starting the comment line
with the # sign.

Settings specified outside of a server block are global and are merged into the settings of all services.
They take the following form:

setting_name = value

For example:

PATH = /bin:/user/bin

Environment block
An environment block defines environment variables that are applied to one or more services. You
can have more than one environment block. Server-specific environment blocks settings override
corresponding settings in global environment blocks.

An environment block is defined using the following syntax:

Environment
{
 variable = value
}

An environment block may be used outside of a server block or inside of it.

• If the block is outside a server block, the variables it contains are applied to the environment of all
processes created by p4dctl.

• If the block is inside a server block, the variables it defines are set only in the environment of that
server’s processes, but they do override corresponding settings at the environment level.

For example, the following settings outside a server block ensure that the owner is set to perforce,
logging is enabled, and the correct P4CONFIG files are used.

Environment
{
 P4DEBUG = "server=1" # Embedded = requires quotes
 P4LOG = log
 P4CONFIG = .p4config
}

Server block
A server block defines settings and variables that apply only to the specified type of service. Type may
be one of the following:

Perforce Server Control (p4dctl)

Helix Versioning Engine Administrator Guide: Fundamentals 243

Type Meaning

p4d Perforce server

p4p Perforce proxy server

p4broker Perforce broker

p4ftp Perforce FTP plugin

p4web Perforce web client

other Any other service

A server block is defined using the following syntax:

server_type name
{
 setting = value
 Environment
 {
 variable = value
 }
}

The specified name name must refer to services of a given type, but the name can include different
types of servers. This allows you to control or query groups of heterogeneous servers that share the
same name.

For example, a configuration that defines p4d, proxy, and p4ftp services all using the name main can
use a command like the following to stop all these services without affecting any other services.

$ p4dctl stop main

You can define the following variables within server blocks. Owner and Execute are required for all
server types.

Setting Meaning

Owner The owner of the service.

The service is started under the owner’s account and with their privileges. The user
can also use p4dctl to manage the server they own.

Required.

Execute The path to the binary to execute when starting this server.

Required.

Args A string containing the arguments to be passed to the binary specified with Execute.

Perforce Server Control (p4dctl)

244 Helix Versioning Engine Administrator Guide: Fundamentals

Setting Meaning

The string must be quoted if it contains a space.

Enabled Set to FALSE to disable the service and not start it with the p4dctl start command.

Default: TRUE

Umask An octal value specifying the umask to be applied to the child processes for this
service. The default umask on most Linux/Unix systems is 022, which means all new
files are readable by all users.

Setting this variable to 077 ensures that the files created by this service are only
accessible to the owner of the service.

Prefix A string containing a prefix to apply when checkpointing the server or rotating the
journal. This prefix is passed down to the relevant p4d command if needed.

Default: none

PrettyNames Set to true to have p4dctl format the names of the server processes it starts, in an
informative way.

In the following example, the p4d process is qualified with its host and port name
when PrettyNames is set to true.

PrettyNames=true
 perforce callto:21397%201%200%2010[21397 1 0 10]:48 ? 00:00:00 p4d
 [blacksphere/1666]
PrettyNames=false
 perforce callto:21725%201%200%2010[21725 1 0 10]:50 ? 00:00:00
 /usr/sbin/p4d

Default: true

Service types and required settings

Each service type requires that you define the owner of the server (which cannot be root) and the
execute path where its binary can be found. For example, for the p4d type, you specify the path to the
p4d binary, for the broker, you must provide the path to the p4broker binary, and so on.

For each service type, you must also define certain environment variables; these are listed in the
following subsections.

Type Variable Setting

p4d P4PORT Port to use for this service

 P4ROOT Path to the server’s root directory

Perforce Server Control (p4dctl)

Helix Versioning Engine Administrator Guide: Fundamentals 245

Type Variable Setting

 PATH Search path to be used for this service

p4p PORT Port to use for this service

 P4TARGET Address of the target Perforce service

 P4ROOT Path to the server’s root directory

 PATH Search path to be used for this service

p4broker P4BROKEROPTIONS Command line options to pass to this broker

p4ftp PORT Address of the target Perforce service

 P4FTPPORT Port to use for serving FTP requests

p4web PORT Address of the target Perforce server

 P4WEBPORT Port to use for serving HTTP requests

 P4ROOT Path to the server’s root directory

 PATH Search path to be used for this service

Configuration file examples

The following example shows a basic Perforce server (p4d) configuration file.

p4d minimum
{
 Owner = perforce
 Execute = /usr/bin/p4d
 Environment

 {
 P4ROOT = /home/perforce/p4-main
 P4PORT = 1666
 PATH = /bin:/usr/bin:/usr/local/bin
 }
}

In the following example, the PATH environment variable is defined once, globally for both the service
and its proxy. Note how the name 'test' is used to refer to both.

Perforce Server Control (p4dctl)

246 Helix Versioning Engine Administrator Guide: Fundamentals

Environment
{
 PATH = /bin:/usr/bin:/usr/local/bin
}

p4d test
{
 Owner = perforce
 Execute = /usr/bin/p4d

Environment
 {
 P4ROOT = /home/perforce/p4-main
 P4PORT = "localhost:1667"
 }
}

p4p test
{
 Owner = perforce
 Execute = /usr/bin/p4p

 Environment
 {
 P4ROOT = /home/perforce/proxy-main
 P4PORT = 1666
 P4TARGET = "localhost:1667"
 }
}

Using multiple configuration files

You can modularize your configuration by creating multiple configuration files and directories and
including these in your configuration.

• To include a specific file, use the following syntax:

include pathToFile

• To include directories, use the following syntax:

include directoryPath

When including directories, p4dctl requires that names for files included end in .conf.

The following example shows a multiple file configuration.

Perforce Server Control (p4dctl)

Helix Versioning Engine Administrator Guide: Fundamentals 247

Environment
{
 PATH = /bin:/usr/bin:/usr/local/bin
}

 include /etc/perforce/p4dctl.conf.d

p4dctl commands
p4dctl commands can be divided into three categories: commands that stop and start services,
commands that checkpoint services, and commands that return information about services.

The p4dctl checkpoint command is similar to the p4d -jc command.

The following table presents a summary of command syntax for each category. The parameter -a
specifies all servers.

Category Syntax

Control services p4dctl [options] start [-t type] -a
p4dctl [options] start [-t type] name
p4dctl [options] stop [-t type] -a
p4dctl [options] stop [-t type] name
p4dctl [options] restart [-t type] -a
p4dctl [options] restart [-t type] name

Checkpoints and journals p4dctl [options] checkpoint -a
p4dctl [options] checkpoint name

Query services p4dctl [options] status [-t type] -a
p4dctl [options] status [-t type] name
p4dctl [options] list [-t type]
p4dctl [options] list [-t type] name
p4dctl [options] env [-t type] -a var [var…]
p4dctl [options] status [-t type] name var [var…]

Options to p4dctl commands are described in the following table. The meaning of variable names
other than option names is explained in “Configuration file format” on page 241.

Options Meaning

-c configFile Path to the configuration file

Default: /etc/perforce/p4dctl.conf

-p pidDir Path to the pid file directory.

Default: /var/run

Perforce Server Control (p4dctl)

248 Helix Versioning Engine Administrator Guide: Fundamentals

Options Meaning

-q Send output to syslog instead of STDOUT or STDERR

-v level Set debug level (0-9)

For more information, see the description of the P4DEBUG environment
variable in P4 Command Reference.

-V Display version and exit.

Helix Versioning Engine Administrator Guide: Fundamentals 249

Appendix License Statements
Perforce software includes software developed by the University of California, Berkeley and its
contributors. This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/).

Perforce software includes software from the Apache ZooKeeper project, developed by the Apache
Software Foundation and its contributors. (http://zookeeper.apache.org/)

Perforce software includes software developed by the OpenLDAP Foundation (http://
www.openldap.org/).

Perforce software includes software developed Computing Services at Carnegie Mellon University:
Cyrus SASL (http://www.cmu.edu/computing/).

http://www.openssl.org/
http://zookeeper.apache.org/
http://www.openldap.org/
http://www.openldap.org/
http://www.cmu.edu/computing/

250 Helix Versioning Engine Administrator Guide: Fundamentals

	Helix Versioning Engine Administrator Guide: Fundamentals
	Table of Contents
	Preface
	About this manual
	What’s new in this guide for the 2016.1 release
	Major changes
	Minor changes

	Helix documentation
	Syntax conventions
	Please give us feedback

	Chapter 1. Overview
	Basic architecture
	Basic workflow
	Administrative access
	Naming Perforce objects

	Chapter 2. Installing and Upgrading the Server
	Install architecture
	Planning the installation
	Network
	CPU
	Memory
	Disk space allocation
	Filesystem
	Filesystem performance
	Separate physical drives for server root and journal

	Protections and passwords

	Getting Perforce
	Linux package-based installation
	Installation
	Post-installation configuration
	Updating

	UNIX non-package installation
	Downloading the files and making them executable
	Creating a Perforce server root directory
	Telling Perforce applications which port to connect to
	Communicating port information
	IPv6 support and mixed networks
	Running p4d as an unprivileged user
	Running from inetd on UNIX
	Starting the Perforce service
	Stopping the Perforce service
	Restarting a running Perforce service

	Windows installation
	Windows services and servers
	Installing the Perforce service on a network drive
	Starting and stopping the Perforce service
	Multiple Perforce services under Windows
	Windows configuration parameter precedence
	Starting and stopping the Perforce server
	Support for long file names

	Installed files
	Upgrading the Perforce service
	Using old Perforce applications after an upgrade
	Licensing and upgrades
	Upgrading p4d
	Upgrading p4d - between 2013.2 and 2013.3
	Verifying files by signature
	Verifying files during server upgrades

	Release and license information

	Chapter 3. Configuring the Server
	Enabling distributed versioning
	Defining filetypes with p4 typemap
	Implementing site-wide exclusive locking with p4 typemap
	Defining depots
	Managing client requests
	Using P4PORT to control access to the server
	Requiring minimum client revisions
	Rejecting client connection requests
	Disabling user metrics collection prompt

	Case sensitivity and multi-platform development
	Perforce server on UNIX
	Perforce server on Windows

	Setting up and managing Unicode installations
	Overview
	Setting up a server for Unicode
	Configuring a new server for Unicode
	Configuring an existing server for Unicode
	Localizing server error messages

	Configuring clients for Unicode
	Unicode character sets and Byte Order Markers (BOMs)
	Controlling translation of server output
	Using other Perforce client applications

	Troubleshooting user workstations in Unicode installations

	Configuring logging
	Logging errors
	Logging file access

	Configuring P4V settings
	Configuring performance-related properties
	Configuring feature-related properties
	Configuring Swarm connections
	Enabling .docx diffs

	Windows configuration parameter precedence

	Chapter 4. Working with Depots
	Overview
	Naming depots
	Listing depots
	Deleting depots
	Moving depots in a production environment

	Standard depots
	Stream depots
	Spec depot
	Creating the spec depot
	Populating the spec depot with current forms
	Controlling which specs are versioned
	Large sites and old filesystems

	Archive depots
	Unload depot
	Remote depots and distributed development
	How remote depots work
	Restrictions on remote depots

	Using remote depots for code drops
	Defining remote depots
	Restricting access to remote depots
	Example security configuration
	Receiving a code drop

	Chapter 5. Securing the Server
	Securing the server: workflow
	Using SSL to encrypt connections to a Perforce server
	Server and client setup
	Key and certificate management
	Key and certificate generation
	Secondary cipher suite
	Using SSL in a mixed environment

	Using firewalls
	Authentication options
	Overview
	Server security levels
	Defining authentication for users

	Authenticating using passwords and tickets
	Password-based authentication
	Password strength requirements
	Managing and resetting user passwords
	Ticket-based authentication
	Login process for the user
	Login process for the server
	Logging out of Perforce
	Determining ticket status
	Invalidating a user’s ticket

	LDAP Authentication
	Authenticating against Active Directory and LDAP servers
	Creating an LDAP configuration
	Defining LDAP-related configurables
	Authorization using LDAP groups
	Testing and enabling LDAP configurations
	Getting information about LDAP servers
	Using LDAP with single sign-on triggers

	Authorizing access
	When should protections be set?
	Setting protections with p4 protect
	The permission lines' five fields
	Access levels
	Default protections
	Which users should receive which permissions?
	Interpreting multiple permission lines
	Exclusionary protections
	Displaying protections for a user, group, or path.

	Granting access to groups of users
	Creating and editing groups
	Groups and protections
	Synchronizing Perforce groups with LDAP groups
	Synchronizing with Active Directory
	Synchronizing with OpenLDAP

	Deleting groups

	Comments in protection tables
	How protections are implemented
	Access Levels Required by Perforce Commands

	Chapter 6. Backup and Recovery
	Backup and recovery concepts
	Checkpoint files
	Creating a checkpoint

	Journal files
	Checkpoint and journal history
	Verifying journal integrity
	Automating maintenance work after journal rotation
	Disabling journaling

	Versioned files
	Versioned file formats
	Backing up after checkpointing

	Backup procedures
	Recovery procedures
	Database corruption, versioned files unaffected
	To recover the database
	Check your system
	Your system state

	Both database and versioned files lost or damaged
	To recover the database
	To recover your versioned files
	Check your system
	Your system state

	Ensuring system integrity after any restoration

	Chapter 7. Monitoring the Server
	Monitoring disk space usage
	Specifying values for filesys configurables
	Determining available disk space

	Monitoring processes
	Enabling process monitoring
	Enabling idle processes monitoring
	Listing running processes

	Setting server trace and tracking flags
	Command tracing
	Performance tracking

	Showing information about locked files
	Auditing user file access
	Logging and structured log files
	Logging commands
	Enabling structured logging
	Structured logfile rotation

	Chapter 8. Managing the Server and Its Resources
	Forcing operations with the -f flag
	Managing the sharing of code
	Managing distributed development
	Distributed development using Fetch and Push
	Configuring the remote specifications

	Code drops without connectivity

	Managing users
	User types
	Creating standard users
	Service users
	Tickets and timeouts for service users
	Permissions for service users

	Operator users

	Preventing automatic creation of users
	Adding new licensed users
	Renaming users
	Deleting obsolete users
	Reverting files left open by obsolete users

	Deleting changelists and editing changelist descriptions
	Managing shelves
	Backing up a workspace
	Managing disk space
	Diskspace Requirements
	Saving disk space
	Reclaiming disk space by archiving files
	Reclaiming disk space by obliterating files

	Managing processes
	Pausing, resuming, and terminating processes
	Clearing entries in the process table

	Managing the database tables
	Scripted client deployment on Windows
	Troubleshooting Windows installations
	Resolving Windows-related instabilities
	Resolving issues with P4EDITOR or P4DIFF

	Chapter 9. Tuning Perforce for Performance
	Tuning for performance
	Operating systems
	Disk subsystem
	File systems
	CPU
	Memory
	Network
	Journal and archive location
	Use patterns
	Using read-only clients in automated builds
	Using parallel processing for submits and syncs

	Improving concurrency with lockless reads
	Commands implementing lockless reads
	Overriding the default locking behavior
	Observing the effect of lockless reads
	Side-track servers must have the same db.peeking level

	Diagnosing slow response times
	Hostname vs. IP address
	Windows wildcards
	DNS lookups and the hosts file
	Location of the p4 executable
	Working over unreliable networks

	Preventing server swamp
	Using tight views
	Assigning protections
	Limiting database queries
	MaxResults, MaxScanRows and MaxLockTime for users in multiple groups

	Limiting simultaneous connections
	Unloading infrequently-used metadata
	Create the unload depot
	Unload old client workspaces, labels, and task streams
	Accessing unloaded data
	Reloading workspaces and labels

	Scripting efficiently
	Iterating through files
	Using list input files
	Using branch views
	Limiting label references
	Using a temporary client workspace

	Using compression efficiently
	Other server configurables

	Checkpoints for database tree rebalancing

	Chapter 10. Customizing Perforce: Job Specifications
	The default Perforce job template
	The job template’s fields
	The Fields: field
	The Values: fields
	The Presets: field
	Using Presets: to change default fix status

	The Comments: field

	Caveats, warnings, and recommendations
	Example: a custom template
	Working with third-party defect tracking systems
	P4DTG, The Perforce Defect Tracking Gateway
	Building your own integration

	Chapter 11. Using triggers to customize behavior
	Creating triggers
	Sample trigger
	Trigger definition
	Execution environment
	Trigger basics
	Communication between a trigger and the server
	Exceptions
	Compatibility with old triggers

	Storing triggers in the depot
	Using multiple triggers
	Writing triggers to support multiple Perforce servers
	Triggers and distributed architecture

	Triggering on submits
	Change-submit triggers
	Change-content triggers
	Change-commit triggers

	Triggering on pushes and fetches
	Push-submit triggers
	Push-content triggers
	Push-commit triggers

	Triggering before or after commands
	Parsing the input dictionary
	Additional triggers for push and fetch commands

	Triggering on journal rotation
	Triggering on shelving events
	Shelve-submit triggers
	Shelve-commit triggers
	Shelve-delete triggers

	Triggering on fixes
	Fix-add and fix-delete triggers

	Triggering on forms
	Form-save triggers
	Form-out triggers
	Form-in triggers
	Form-delete triggers
	Form-commit triggers

	Triggering to use external authentication
	Auth-check and service-check triggers
	Single signon and auth-check-sso triggers
	Triggering for external authentication

	Triggering to affect archiving
	Trigger script variables

	Perforce Server (p4d) Reference
	Synopsis
	Syntax
	Description
	Exit Status
	Options
	Usage Notes
	Related Commands

	Moving a Perforce server to a new machine
	Moving between machines of the same byte order
	Moving between different byte orders that use the same text format
	Moving between Windows and UNIX
	Changing the IP address of your server
	Changing the hostname of your server

	Perforce Server Control (p4dctl)
	Installation
	Configuration file format
	Environment block
	Server block
	Service types and required settings
	Configuration file examples
	Using multiple configuration files

	p4dctl commands

	License Statements

