
Perforce 2013.1
JavaScript API for Visual Tools

April 2013

This manual copyright 2010-2013 Perforce Software.

All rights reserved.

Perforce software and documentation is available from http://www.perforce.com. You may download and
use Perforce programs, but you may not sell or redistribute them. You may download, print, copy, edit, and
redistribute the documentation, but you may not sell it, or sell any documentation derived from it. You may not
modify or attempt to reverse engineer the programs.

This product is subject to U.S. export control laws and regulations including, but not limited to, the U.S. Export
Administration Regulations, the International Traffic in Arms Regulation requirements, and all applicable end-use,
end-user and destination restrictions. Licensee shall not permit, directly or indirectly, use of any Perforce technology
in or by any U.S. embargoed country or otherwise in violation of any U.S. export control laws and regulations.

Perforce programs and documents are available from our Web site as is. No warranty or support is provided.
Warranties and support, along with higher capacity servers, are sold by Perforce Software.

Perforce Software assumes no responsibility or liability for any errors or inaccuracies that may appear in this book.

By downloading and using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce Software. Perforce software includes software
developed by the University of California, Berkeley and its contributors. This product includes software developed
by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/).

"JavaScript" is a trademark of Sun Microsystems.

Qt, and the Qt logo are trademarks of Nokia Corporation and/or its subsidiaries in Finland and other countries.

All other brands or product names are trademarks or registered trademarks of their respective companies or
organizations.

http://www.perforce.com
http://www.openssl.org/

Table of Contents
Chapter 1 Perforce JavaScript API for Visual Tools.................... 5
Overview ...5
Architecture ...5
Enabling Applets ..6
The Permissions Table Entry...7
The Central Settings File..7

Coding the Central Settings File ..8
Configuring Applets for Specific Users and Groups8
Central Settings Keys...9

Programming Applets ...10
Issuing Perforce Commands...10
Processing Command Results and Handling Server Errors11
Using P4Web URLs ..15

Extending P4Admin and P4V...15
Raising Alerts in P4Admin ...15

Example: A Basic Alert..16
Example: Check the Security Level ...17

Adding Main Tabs to P4Admin and P4V ...17
Display Connection Settings ..18
Display the Five Most Recent Submitted Changelists........................18
Detect and set selection ...20

Implementing a Custom Submit Dialog in P4V21
Administering P4V Settings Centrally ..21
Security...22

Secure Your Applet Source Code ...24
Restrict Access to the Central Settings File...24
Use Only Trusted Perforce Servers ..24
Monitor Your Perforce Server Activity ...24
Configure Only Trusted Web Servers..24
Preventing Cross-Site Scripting (XSS) Attacks...25

Types of XSS Issues ..25
Escaping Dynamic Data..25

Troubleshooting ..27
Perforce 2013.1 JavaScript API for Visual Tools 3

Table of Contents
Appendix A Method and Command Reference............................ 29
JavaScript API Methods.. 29

Central Settings Logic Methods .. 29
Alert Methods .. 29
Server Data Methods... 30
Utility Functions .. 32
The Map Function: Details ... 33

Class level methods .. 33
Properties.. 33
Instance methods... 33
Example .. 34

Supported p4 Commands... 34

Index.. 39
4 Perforce 2013.1 JavaScript API for Visual Tools

Chapter 1 Perforce JavaScript API for
Visual Tools
Overview

The Perforce JavaScript API for Visual Tools enables you to extend P4V, Perforce’s Visual
Client, and P4Admin, Perforce’s Administration Tool, using applets written in JavaScript
and HTML. Your applets can take full advantage of the capabilities offered by JavaScript
and the World Wide Web. For example, you can incorporate Google charting widgets into
a tab to graph data. Specifically, you can:

• Add alerts: By default, the Administration Tool displays three standard alerts, which
are displayed on the P4Admin Home Page. You can define your own alerts (for
example, to notify the Perforce administrator that a new superuser has been created).

• Add tabs to P4V and P4Admin: In these tabs you can display any content that can be
rendered by a Web browser.

• Override P4V performance settings: to reduce the server load imposed by a large
number of P4V users connected to the same Perforce server, you can use a centrally-
administered settings file to override performance-related defaults.

• Create a custom Submit dialog: you can replace the P4V Submit dialog with one of
your own design.

If you have multiple Perforce servers, you can use one of them to serve applets and
configure the other servers to refer to the central server. You can tailor applets for specific
Perforce users and groups. The following sections describe the Perforce JavaScript API for
Visual Tools in detail.

Architecture

P4V and P4Admin use the Qt toolkit as the basis of their cross-platform user interface. Qt-
based applications incorporate the open source WebKit HTML rendering engine. The
Perforce JavaScript API for Visual Tools uses WebKit to enable you to create applets that
extend P4V and P4Admin. Applets are implemented using the following components:

• Central settings file: a JavaScript file that specifies how requests are dispatched.

• Application files: HTML and JavaScript files that contain the logic for your applets.
These files can reside in a Perforce server, on local machines, or in any location that is
Web-accessible.
Perforce 2013.1 JavaScript API for Visual Tools 5

Enabling Applets
P4V and P4Admin call the central settings file according to internal application logic,
providing a key to be processed. In the central settings file, you configure extensions by
detecting the keys of interest and specifying the JavaScript or HTML files to be executed
or rendered.

Here is how P4Admin and P4V execute applets:

1. Look up and load the central settings file.

When P4V or P4Admin first connects to a Perforce server, it scans the permissions
table for a centralsettings entry that is configured for the current user, according
to the standard logic Perforce uses to parse the protections table. The user must have
read access to this file.

2. Execute the central settings file.

At startup, P4V and P4Admin execute the JavaScript in the central settings file with
various keys, according to proprietary application logic.

3. Execute the applets.

If the central settings file contains logic for a key, that logic is executed. Typically, for
alerts, JavaScript files are executed; for tabs, HTML files are rendered.

Enabling Applets

By default, applet support is disabled in P4Admin and P4V, and unconfigured in the
Perforce Server. To implement applets, you perform the following steps:

1. Perforce administrators: Create a central settings file, which dispatches alerts and tabs.
For details, see “The Central Settings File” on page 7.

2. Perforce administrators: In your Perforce server, create an entry for the central settings
file in the permissions table (using the p4 protect command or the Administration
Tool).

3. Perforce administrators: Create the HTML and JavaScript files containing the logic for
your applets.

4. All users: In P4V or P4Admin Preferences, enable the Accept applets... preference on
the Applets tab, add the Perforce server to the list of allowed servers, then exit and
relaunch the application.

The following sections describe applet development and administration in detail.
6 Perforce 2013.1 JavaScript API for Visual Tools

The Permissions Table Entry
The Permissions Table Entry

To add the required centralsettings entry to the permissions table:

1. Launch the Perforce Administration Tool and connect to the desired server as a
Perforce superuser.

1. Click the Permissions tab. The permissions table is displayed in a grid at the bottom
of the pane.

2. Click to add two lines to the permissions table.

3. In the resulting empty lines, specify the location of the central settings file. In the
host column, use the keyword centralsettings. Then add a second line to the
protections table to ensure that the file is readable by all users.

The following entries specify a single central settings file to be used for all users:
list user * centralsettings //depot/jsapi/centralsettings.js
read user * * //depot/jsapi/centralsettings.js

4. Click Save Edits to save your entry.

You can configure different central settings files for specific users or groups. For example,
the following entries configure a central settings file solely for the user named jon.

list user jon centralsettings //depot/dev/jon/jonsettings.js
read user jon * //depot/dev/jon/jonsettings.js

The Central Settings File

The central settings file is a JavaScript file that processes keys and returns the location of
the HTML or JavaScript files to be executed for tabs and alerts. It can contain per-group
and per-user logic and can point to files in other Perforce servers. To configure the central
settings files for a Perforce server, you make one or more entries in the Perforce
permissions table. To receive applets, users must have read access to the central settings
file.

The following sections provide details about configuring, coding, and administering the
central settings file. For details about administering permissions, refer to the Perforce
System Administrator’s Guide.

To configure the central settings file, you must, at a minimum:

• Create two entries in the permissions table. The first entry specifies the location of the
central settings file (in the local filesystem or a Perforce server), and the second entry
grants users read permission to that file.

• Create the central settings file and any HTML or JavaScript files that it calls.
Perforce 2013.1 JavaScript API for Visual Tools 7

The Central Settings File
Coding the Central Settings File

To add applets, you create a function that returns the applet that is to be executed,
branching according to the key that P4V or P4Admin passed to the central settings file.
For alerts, return JavaScript files. For tabs, return HTML files. The files can reside on the
local filesystem, in a Perforce server, or on the Web, as follows:

Finally, you include a line of code that executes the function to process the key passed by
the Administration Tool. Important: This function call must be the last line of the central
settings file.

The JavaScript API includes a set of methods for coding the logic in the central settings
file. For details, see “Method and Command Reference” on page 29.

Following is an extremely basic central settings file that adds a tab to the Perforce
Administration tool. The contents of the tab are determined by the specified HTML file.

Configuring Applets for Specific Users and Groups

You can configure different central settings files on a per-user or per-group basis, for
example, to provide different tabs for different users. One approach is to make separate
entries in the permissions table for each group or user. For example, the following entries
configure different tabs for developers and for artists.

File resides in Specify the file and path using...

The local filesystem Operating system syntax

A Perforce server Perforce URI syntax:

p4://[user@][server[:port]]/files/depot-file-path

(or, for files in the currently-connected server, the depot path.)

If you omit connection settings, the current connection settings
are used.

The Web The URL of the file (can be http or https)

function settings(key)
{
if (key == "p4admin_mainTabs")

return ["p4://admin@perforce:1667/files/depot/jsapi/mytab.html"];

}

settings(P4JsApi.centralSettingsKey());

list group dev centralsettings //depot/jsapi/centralsettings-dev.js
read group dev * //depot/jsapi/centralsettings-dev.js
list group art centralsettings //depot/jsapi/centralsettings-art.js
read group art * //depot/jsapi/centralsettings-art.js
8 Perforce 2013.1 JavaScript API for Visual Tools

The Central Settings File
Another approach is to specify the per-user or per-group logic in the central settings file
itself. For example, the following logic ensures that users Tony and Herman each see their
own tab, while other users see the default tab:.

Central Settings Keys

The return value is a string or an array of strings, depending on the key that you specify.
The following keys are supported:

function settings(key, user)

{
if (key == 'p4admin_mainTabs')
{

if (user == "tonyz")
return ["p4:///files/depot/jsapi/tony.html"];

else if (user == "herman")
return ["p4:///files/depot/jsapi/herm.html"];

else
return ["p4:///files/depot/jsapi/default-tab.html"];

}
}

settings(P4JsApi.centralSettingsKey(), P4JsApi.getUser());

Key Description

p4admin_alerts Use this key to add alerts to the P4Admin home page’s alerts
widget. Return an array of strings specifying the JavaScript
files to be executed. In alert applets, you cannot execute any p4
commands that alter the state of the workspace or server.

p4admin_mainTabs

p4v_mainTabs

Use this key to add custom tabs to the main P4Admin or P4V
window. Return an array of strings specifying the HTML files
to be rendered.

p4v_preferences Use this key to override P4V’s defaults for performance-
related settings with settings stored in an XML file that resides
in a Perforce server. Return a string specifying a path to the
XML file. For details, see “Administering P4V Settings
Centrally” on page 21.

centralSettingsFile Use this key to execute a different central settings file. Return a
string specifying a path to the file.

p4v_submitDialog Use this key to replace the standard changelist submission
dialog with your own custom dialog. Return a string
specifying a path to the HTML file to be rendered in place of
the Submit dialog.
Perforce 2013.1 JavaScript API for Visual Tools 9

Programming Applets
Programming Applets

Issuing Perforce Commands

To issue Perforce commands, use the p4() method. For example, to obtain a list of open
jobs:

var cmdOutput = P4JsApi.p4("jobs -e status=open");

The following example creates a new pending changelist.

For long-running commands that you want to run asynchronously (to enable users to
continue working instead of waiting for the results to be returned), specify a callback
function to process the results. If you run the command asynchronously, an empty object
is returned by the p4 method and results are returned to the callback function when the
command completes. For example:.

var changeNumber = 'new';
var changeClient = 'bruno_ws';
var changeUser = 'bruno';
var changeStatus = 'new';
var changeDescription = 'Sample P4JsApi change.';
var changeSpec = 'Change: ' + changeNumber + '\n\n' +

'Client: ' + changeClient + '\n\n' +
'User: ' + changeUser + '\n\n'
'Status: ' + changeStatus + '\n\n' +
'Description:\n' +
' ' + changeDescription + '\n';

P4JsApi.p4('-u bruno -c bruno_ws change -i "' + changeSpec + '"');

/* Run the "p4 info" command with a callback function.
* When the command is received by the p4 server,
* its data will be returned to the 'myInfoCallback' function.
*/
function myInfoCommand()
{

P4JsApi.p4("info", myInfoCallback);
}
/* Callback function for myInfoCommand().
* Access the returned data contained in the 'arguments' array.
* The data array contains the information that is returned by the
* command that is run by the calling function.
*/
function myInfoCallback()
{

// The 'data' array might have more than one element.
var info = arguments[0].data[0];
alert(info.userName);

}

10 Perforce 2013.1 JavaScript API for Visual Tools

Programming Applets
To pass form data to a command, you can specify the form as a string or a JSON data
object.

Example: Passing a form using a string

Example: Passing a form using a JSON data object

The JavaScript API controls the p4 commands that can be executed, to maximize security.
For a complete list of supported commands, see “Method and Command Reference” on
page 29.

Processing Command Results and Handling Server Errors

Command results are returned as JavaScript objects composed of the following
properties:

• data: an array of objects composed of name/value pairs.

• size: the number of objects in the data array.

• error: Client error message, if any (for example if an invalid command is given)

• info: Client info message, if any

• text: Results of command, returned for the diff2 and print commands

• binary: Returned if file is binary (also returned for text files if the file’s line endings do
not conform to the line ending setting for the workspace)

Server errors and messages are returned as data rows on the return object data array. For
some commands (such as fstat), the server might return rows of data interspersed with
rows of error, warning, and info messages. For example, the fstat command might
return a “No such file” error message. These server error messages are returned as a row
in the data array with a special property of p4ERROR, p4WARNING, or p4INFO. The value of
these properties is an object with the following properties, providing more classification
information about the message:

var jobstr = 'Job: new\nStatus: open\nUser: randy\nDate:
2010/08/10\nDescription:\n\tNew feature request: add 3D
rendering\n';

var jobJSON = {
'Job' : 'new',
'Status' : 'open',
'User' : 'randy',
'Date' : '2010/08/10',
'Description' : '\n\tNew feature request: add 3D rendering\n' };
Perforce 2013.1 JavaScript API for Visual Tools 11

Programming Applets
• message: (text) Description of the problem

• generic: (integer) Server numeric error code

• severity: Severity level associated with the message

• args: An object contain the arguments specified when the command was issued

The following example illustrates the basics of processing command results.

function processP4Result(p4out) {
// Errors, warnings and infos coming from server appear in data[],
// interspersed with real data
// Try to find them and promote to errors.

// Of the statuses that do not represent a valid data returned, map
// the possible properties from P4JsApi output to them

var msgTypeMapNonData = {
'p4ERROR': 'ERROR'
,'p4WARNING': 'WARN'
,'p4INFO': 'INFO'

}
,statuses = []
,data = []
,msgType
,nonDataProperty
,returnObj = {

data: null
,statuses: null
,msgMap: {

errors: []
,warnings: []
,infos: []
,valids: []

}
,hasErrors: function() {return this.msgMap.errors.length>0;}
,hasWarnings: function() {return this.msgMap.warnings.length>0;}
,hasInfos: function() {return this.msgMap.infos.length>0;}
,hasValids: function() {return this.msgMap.valids.length>0;}

};
12 Perforce 2013.1 JavaScript API for Visual Tools

Programming Applets
if (!!p4out.data && p4out.data.length > 0) {
for (var i=0, len=p4out.data.length;i<len; i++) {

var datum = p4out.data[i];
// assume data is good
msgType = 'VALID';
// check if any of the non-data types exist on
// the data row
for (var mProp in msgTypeMapNonData) {

if (datum.hasOwnProperty(mProp)) {
// row is not data, but some other msg from server.
// save the property in nonDataProperty, and
// save the msgType
msgType = msgTypeMapNonData[mProp];
nonDataProperty = mProp;
break;

}
}
statuses.push(

{
type: msgType
,subType: msgType == 'VALID' ? '' : datum[nonDataProperty].subType
,severity: msgType == 'VALID' ? 0 : datum[nonDataProperty].severity
,generic: msgType == 'VALID' ? 0 : datum[nonDataProperty].generic
,message: msgType == 'VALID' ? '' : datum[nonDataProperty].message

}
);
if (msgType == 'VALID') {

data.push(datum);
}

}
}

// set the status array and data array on the resultObj
returnObj.statuses = statuses
returnObj.data = data;

// from all the statuses collected, put them
// in mapped buckets by type on the returnObj so type-based getters
// can get them
statuses.forEach(function(stat){

switch (stat.type) {
case 'ERROR':

returnObj.msgMap.errors.push(stat);
break;

case 'WARN':
returnObj.msgMap.warnings.push(stat);
break;
Perforce 2013.1 JavaScript API for Visual Tools 13

Programming Applets
case 'INFO':
returnObj.msgMap.infos.push(stat);
break;

case 'VALID':
returnObj.msgMap.valids.push(stat);
break;

}
}, this);

return returnObj;
}

// execute the command
var p4out = P4JsApi.p4('fstat //depot/NotARealFile.cc //depot/... -m500');

// process the results, looking for non-data messages
var processedResults = processP4Result(p4out);

// the processedResults object can contain any combination of data, and
// error/warning/info messages. Some error messages are not necessarily
// fatal. Application must determine how to handle interspersed data and
// messages. This simple example logs them to the console.
if (processedResults.hasErrors()) {
console.error('ERRORS: ' + processedResults.msgMap.errors.join('\n'));

}
if (processedResults.hasWarnings()) {
console.log('WARNINGS: ' + processedResults.msgMap.warningss.join('\n'));

}
if (processedResults.hasInfos()) {
console.log('INFO: ' + processedResults.msgMap.infos.join('\n'));

}

// use the data
if (processedResults.data.length>0) {
// handle data response
console.log('got data');
// ...

}

14 Perforce 2013.1 JavaScript API for Visual Tools

Extending P4Admin and P4V
Using P4Web URLs

If you have an instance of P4Web running, you can take advantage of its display logic by
embedding a P4Web URL in your HTML file. To construct the P4Web URL, use a browser
to display the desired data. When you have the data displayed as desired, copy the URL
to your HTML file. For details about P4Web URLs, consult the discussion of action codes
in the P4Web documentation on the Perforce web site:
http://www.perforce.com/perforce/doc.current/manuals/p4web/help/actioncodes.html

Extending P4Admin and P4V

Raising Alerts in P4Admin

Alerts are messages that are displayed on the Administration Tool home page, typically
indicating an event or condition that requires attention. For example:

Alerts are visible only to superusers (because users with lower levels of privilege see only
the Users and Groups tab). By default, alerts are run when the Administration Tool is
refreshed (either automatically by the Administration Tool or manually when you

click). To specify how often the alert is to be run, independent of refreshes, call
startAlertRefreshTimer(). To display an alert, call addAlert(). To update its text, call
updateAlert() (specifying the alert ID that was returned when you added the alert), and
to remove an alert, call deleteAlert().

To display an image to the left of the alert text, specify the optional image parameter in the
call to addAlert() or updateAlert(). To specify the image, use the HTML img tag. To
display one of the P4V images provided in the JavaScript API, use the getImage()
method as follows:
P4JsApi.addAlert('Alert text goes here', '<img src="' +
P4JsApi.getImage('Image name goes here') + '" />');

To obtain a list of images provided by the JavaScript API, call the getImageNames()
method.

By default, the image is displayed as 18 pixels square. To override this default, specify
height and width attributes in the img tag.
Perforce 2013.1 JavaScript API for Visual Tools 15

http://www.perforce.com/perforce/doc.current/manuals/p4web/help/actioncodes.html

Extending P4Admin and P4V
Example: A Basic Alert

The following example creates an alert that tells you whether a Perforce counter is set to
an even number, an odd number, or is not set.

In the central settings file, the following code specifies the JavaScript file to be executed
when it is called with the alerts key:

The alert.js file displays alert text:

function settings(key)
{
if (key == "p4admin_alerts")
{

return ["p4:///files/depot/jsapi/alert.js"];
}

}

settings(P4JsApi.centralSettingsKey());

var alertID;

function testalert()
{
var counter = P4JsApi.p4(’counter alerttest’);
if (typeof alertID == ’undefined’)
{

// add a new alert that will be updated below
alertID = P4JsApi.addAlert("Checking counter...");

}

if (counter.data[0].value==’0’)
{

P4JsApi.updateAlert(alertID,"Counter is unset");
}
else
{

if ((counter.data[0].value % 2) == 0)
{

P4JsApi.updateAlert(alertID,"Counter is even");
}
else
{

P4JsApi.updateAlert(alertID,"Counter is odd");
}

}
}
testalert();
16 Perforce 2013.1 JavaScript API for Visual Tools

Extending P4Admin and P4V
Example: Check the Security Level

This alert calls the getServerSecurityLevel() method to check the security level of the
Perforce server, and displays an alert if the level is lower than level two.

Adding Main Tabs to P4Admin and P4V

The Perforce JavaScript API for Visual Tools enables you to add up to 25 tabs to the
P4Admin and P4V main windows. After you add custom tabs, uses can display them by
choosing them in the View menu.

The following examples illustrate some approaches to coding tabs. Because the tab is
essentially a WebKit HTML browser, you can code almost anything that a standard
browser can render.

For example, to display an intranet page in a tab:

To add multiple tabs, specify them in an array. For example:

function securityAlert(slevel)
{
if (slevel == 0)

P4JsApi.addAlert ('Security level set to the lowest level: ' + slevel);
if (slevel == 1)

P4JsApi.addAlert ('Security level too low: ' + slevel);
}
securityAlert(P4JsApi.getServerSecurityLevel());

if (key == "p4v_mainTabs")
{
return ["http://example.com/intranet/index.html"];

}

if (key == "p4admin_mainTabs")
{
return ["C:\\jsapi\\Tab1.html","C:\\tmp\\Tab2.html","C:\\tmp\\Tab3.html"];

}

Perforce 2013.1 JavaScript API for Visual Tools 17

Extending P4Admin and P4V
Display Connection Settings

The following code displays your connections settings (and other related settings). The
contents of the title tag is displayed as the name of the tab.

Display the Five Most Recent Submitted Changelists

The following example displays the five most recent submitted changelists in a simple
table. The code in the central settings file specifies the HTML file to be invoked when the
settings method is invoked with the p4admin_mainTabs key as an argument. The
latest_changes.html file, which resides in the specified path in the depot, queries the
server for the five most recent changelists, builds the table that contains the data, then
displays the table.

(Note: The HTML example mixes JavaScript and HTML for the purposes of brevity. In a
production environment, they are typically separate.)

<html>
<head>
<title>Current Settings</title>

</head>
<body>
<script type="text/javascript">
content = '<H1>Current Settings</H1>' +

'<p>Port: ' +
P4JsApi.encodeForHTML(P4JsApi.getPort()) +
'<p>Client workspace: ' +
P4JsApi.encodeForHTML(P4JsApi.getClient()) +
'<p>User: ' +
P4JsApi.encodeForHTML(P4JsApi.getUser()) +
'<p>Charset: ' +
P4JsApi.encodeForHTML(P4JsApi.getCharset()) +
'<p>Server version: ' +
P4JsApi.encodeForHTML(P4JsApi.getServerVersion()) +
'<p>Unicode?: ' +
(P4JsApi.isServerUnicode()=="true" ? 'Yes' : 'No') +
'<p>Case sensitive?: ' +
(P4JsApi.isServerCaseSensitive()=="true" ? 'Yes' : 'No') +
'<p>Security level: ' +
P4JsApi.encodeForHTML(P4JsApi.getServerSecurityLevel());

document.write(content);
</script>
</body>
</html>
18 Perforce 2013.1 JavaScript API for Visual Tools

Extending P4Admin and P4V
Use the following central settings code:

And the following HTML code:

function settings(key) {
if (key == "p4admin_mainTabs")
{

return ["p4:///files/depot/jsapi/latest_changes.html"];
}

}

settings(P4JsApi.centralSettingsKey());

<html>
<head>
<title>Five Latest Changes</title>
<script type="text/javascript">
function getLast5Changes() {
// get latest changes.
changes = P4JsApi.p4("changes -l -m5");
// add changes to table
table = document.getElementById('changes');
for (var i=0; i<changes.size; i++)
{

var change = changes.data[i];
var row = document.createElement("tr");
row.innerHTML =

"<td>" +
P4JsApi.encodeForHTML(change.Change) +
"</td>" +
"<td>" +
P4JsApi.encodeForHTML(change.User) +
"</td>" +
"<td>" +
P4JsApi.encodeForHTML(change.Description) +
"</td>";

table.appendChild(row);
}

}
</script>
</head>

<body onLoad="getLast5Changes();">
<table id=changes border=1 width="50%">
<tr>
<th>Change</th>
<th>User</th>
<th>Description</th>

</tr>
</table>
</body>
</html>
Perforce 2013.1 JavaScript API for Visual Tools 19

Extending P4Admin and P4V
Detect and set selection

To detect user-selected files and folders or to select files and folders from a script, use the
getSelection and setSelection methods. The following example creates a simple tab
that exercises both. Note the use of the p4selection event, which is raised by P4V when
the user selects a file or folder in the depot pane..

<html>
<head>
<link rel="stylesheet" type="text/css" href="table.css" />
<script type="text/javascript">P4JsApi.setWebKitDeveloperExtrasEnabled(
true);</script>
<script type="text/javascript">

function reportSelection(v) {
var sel = "";
for (var idx = 0; idx < v.length; ++idx)

sel += v[idx] + "
";
document.getElementById("currentSel").innerHTML = sel;

}

document.addEventListener('p4selection', function(e) {
reportSelection(e.customData);

});

function selectPaths() {
var pathlist = document.getElementById("paths").value;
var paths = pathlist.split(',');
var selList = [];
for (var idx = 0; idx < paths.length; ++idx) {

var path = paths[idx].trim();
selList.push("p4:///files" + path);

}

P4JsApi.setSelection(selList, function(v) { console.log('complet
ed: ' + v); });

}

</script>
<title>Selection test</title>
</head>
<body onLoad="reportSelection(P4JsApi.getSelection());">
<div>Paths to select (comma separated): <input type="text" id="paths"><
a href="javascript:selectPaths();">GO</div>
<div>Curr
ent selection:<div id="currentSel"></div></div>
</body>

</html>
20 Perforce 2013.1 JavaScript API for Visual Tools

Administering P4V Settings Centrally
Implementing a Custom Submit Dialog in P4V

To replace the standard P4V Submit dialog with your own customized version, add logic
to the central settings file specifying the HTML file that defines the custom dialog. Your
custom Submit dialog can include logic, for example, to include information from a defect
tracker. To submit the changelist, use the P4JsApi.p4 method to issue the submit
command.

For more information on custom Submit dialogs (and for more examples), see the
//public/perforce/p4jsapi/examples directory in the Perforce Public depot.
Additional information about P4JsAPI can be found in the Perforce Knowledge Base:

http://kb.perforce.com/article/1209

Administering P4V Settings Centrally

By default, P4V users configure performance-related settings (such as the number of
minutes between refresh requests) individually. You can use the JavaScript API to
override individual settings, which is useful if you have a large number of P4V users
connected to the same server and server performance is being affected by the volume of
requests.

To override P4V’s defaults, you define a variable called P4CentralSettingsJSON in the
central settings file, and initialize the variable to the desired settings, using JSON format.
For example:

You can override the following settings:

• RefreshRate: How frequently P4V or P4Admin polls the Perforce server for changes to
displayed information.

• MaxChangelistFileCount: Maximum number of files displayed in changelists and the
Resolve dialog.

• MaxFilePreviewSize: Maximum size of file preview in kilobytes

• MaxSpecListFetchCount: For changelist, branch mappings, jobs and labels, configures
the number of entries to fetch, specified as a multiple of 100.

var P4CentralSettingsJSON =
{

"P4VOverrides" : {
"Connection/RefreshRate" : 3,
"Connection/MaxChangelistFileCount" : 1000,
"Connection/MaxFilePreviewSize" : 100,
"Connection/MaxSpecListFetchCount" : 100

}

};
Perforce 2013.1 JavaScript API for Visual Tools 21

http://kb.perforce.com/article/1209

Security
• DisableJobsColumn: Suppresses display of Perforce jobs in the Submitted Changelist
tab. If you do not use Perforce jobs, enabling this option can improve P4V performance
by reducing job-related queries that are sent to the Perforce server. The following
example shows you how to enable the option.

Note the following:

• Users cannot override the settings.

• The overrides are not displayed in P4V Preferences. To view them, choose
Help>System Info.

• The settings affect only the connection to the server in which they are configured.

• If you change the settings in the central settings file, users must exit and relaunch P4V
to obtain the new settings.

Security

Creating Perforce applets using the Perforce JavaScript API for the Visual Tools is
programming using Web technologies. The Perforce JavaScript API offers a variety of
features for running applets securely:

• Per-user and group administration: Using the Perforce protections table, you have
complete control of who can run applets and which applets can be run from a particular
server

• Safe subset of Perforce commands: The API controls the subset of commands that
applets are permitted to run. No destructive commands can be issued.

• Dynamic data safety: Encoding commands prevent malicious HTML or JavaScript from
being executed.

The JavaScript API disables the following WebKit features:

• Java

• Private browsing

• JavaScript ability to open windows

• JavaScript clipboard access

var P4CentralSettingsJSON =
{

"P4VOverrides" : {
"DisableJobsColumn": true

}

};
22 Perforce 2013.1 JavaScript API for Visual Tools

Security
• Developer extras (to enable use P4JsApi.setWebKitDeveloperExtrasEnabled
method)

• Zoom text only

• Offline storage database

• Offline web application cache

• Local storage

• Local content access to remote URLs

• DNS prefetch

Owing to its architecture, the Perforce JavaScript API is immune to several types of
attacks, as described in the following table.

In general, to ensure security when configuring Perforce applets, observe the following
best practices:

• Secure (write-protect) all applet code files.

• Set protections to ensure that only trusted users have access to the central settings file.

• Instruct users not to accept applets from untrusted servers.

• Monitor your Perforce server for malicious superuser activity.

• Point only to trusted Web servers.

The following sections describe these best practices in more detail.

Type of Attack Description Reason for immunity

SQL injection attack Injecting SQL code to
exploit database
vulnerability

No SQL database.

Malicious file execution Uploading malicious code
files to the Web server

No Web server. (However,
the central settings file can
be configured to point to
untrusted Web servers.)

Cookie theft Using another user’s
cookies to impersonate that
user when authenticating

No session or cookies.

UTF-7 attacks Using UTF-7 to bypass Web
browser delimiter checking
and inject malicious code

Not possible in the WebKit
engine used in the Perforce
JavaScript API.
Perforce 2013.1 JavaScript API for Visual Tools 23

Security
Secure Your Applet Source Code

Write-protect all HTML and JavaScript files that you use to implement Perforce applets.
Your Perforce administrator can assign the minimum required write access to the central
settings file and to every entry point (JavaScript or HTML file) referenced by the central
settings file. When appropriate, grant write access to developers for specific applet source
code files. To ensure that alterations to that source code do not affect other users, you can
configure the central settings file so that only the developer can execute them.

Restrict Access to the Central Settings File

Ensure that only superusers (and a minimum number of them) have write access to the
central settings file. The central settings file can reside in a Perforce server, in which case
access to it is governed by the same permissions as all other depot files.

Use Only Trusted Perforce Servers

One possible means of attack is a “hostile” Perforce server: a server that has a central
settings file designed to deliver applets that attack the local computer or connected
computers. Applets can perform write operations (using the p4() method) only on
primary connections (servers to which P4Admin or P4V is currently connected), so
trusted servers are safe. However, an applet might be able to run a long- running read-
only command on another server or otherwise disrupt the session.

To prevent this, your users can specify the settings for trusted servers and refuse applets
from any other server. To configure trusted server settings, use the Applets preferences
tab, or connect to the trusted server and, when prompted, choose Always accept applets.
Never connect to an untrusted server with the applet feature turned on, and never accept
applets from an untrusted server if prompted to do so.

Monitor Your Perforce Server Activity

Monitor your Perforce server to detect unauthorized access. (For details, refer to the
discussion of the audit log in the Perforce System Administrators Guide.) If a malicious
user gains superuser access to your server, they can modify the central settings file and
protections table, and can install applets. (A malicious superuser can cause harm in many
other ways, such as obliterating, replaying a journal, creating new superusers, or
manipulating protections to exclude current superusers.)

Configure Only Trusted Web Servers

When configuring an entry in the central settings file that points to a Web server (http:
protocol), ensure that the Web server is a secure one. If the Web server is not secure, the
risk is that a malicious user can change the content on the server to compromise your
installation.
24 Perforce 2013.1 JavaScript API for Visual Tools

Security
Preventing Cross-Site Scripting (XSS) Attacks

Such attacks (also referred to as injection attacks) occur when malicious data or code is
embedded in a seemingly safe Web page. To defend your installation against XSS attacks,
never put dynamic data (that is, data returned by a Perforce Server command, entered by
users, or originating from any uncontrolled source) in a context where it can be executed.
Because the Perforce superuser controls access to the applets that are configured and how
those applets transmit data, XSS vulnerabilities can be effectively minimized.

Some JavaScript frameworks provide utility methods for escaping dynamic data.
However, do not assume that a framework automatically handles XSS issues. Applet
developers might need to implement the logic required to prevent XSS attacks manually.

Types of XSS Issues

There are two main forms of this security issue:

• Unintentional injection: innocent user accidently causes a script to run.

Example: a user pastes some code into a changelist description, submits the changelist,
then creates an applet that displays changelists. If the dynamic data is not escaped
effectively, the code might execute and cause unintended results. This eventuality is
unlikely, because data returned from the Perforce Server to the applet is encoded into a
JavaScript object and the contents can be handled as data.

• Malicious injection: malicious user attempts to attack system

To prevent malicious injection, escape dynamic data (as described in the following
sections). Likewise, escape the HTML and attribute header data according to
established Web security practices.

Escaping Dynamic Data

The Perforce JavaScript API provides three methods for escaping dynamic data:

• encodeForHTML(): Use for general HTML, for example, the JavaScript innerHTML
method (which sets or retrieves the HTML between the start and end tags of an
element).

• encodeForHTMLAttribute(): Use in HTML attribute tag, for example
setAttribute()

• encodeForJavaScript(): Use for JavaScript, for example
onLoadAttr.setAttribute()

Properties such as innerHTML are not safe, because the text being added is executed. Best
practice is to add the HTML as an object. For example:

var textNode = document.createTextNode(text_to_be_displayed);
document.getElementById("htmlElement").appendChild(textNode);
Perforce 2013.1 JavaScript API for Visual Tools 25

Security
If you must use innerHTML, escape the data that you are adding. For example:

The following example illustrates how you escape methods.

function escapeHTML(html) {
var div = document.createElement('div');
var text = document.createTextNode(html);
div.appendChild(text);
return div.innerHTML;

}

<div id="displayText">
</div>

<input type="text" id="textBox" value="my text"/>

<img id="errorImg" src=""
style="display: none;"
onError="alert('no image found');"/>

<script type="text/javascript">
var result = P4JsApi.p4("some_p4_command");
var data = result.data[0]; // data is a string

// Example data that can cause attacks
var data1 = '<img src="" style="display: none;"

onError="alert(\'victim file obliterated\');"/>';
var data2 = "test data here" ;
var data3 = "alert('victim file obliterated')";

// Rule: 1
var displayTextDiv=document.getElementById("display text");
displayTextDiv.innerHTML = data1; // insecure
displayTextDiv.innerHTML = P4JsApi.encodeForHtml(data1); // secure

// Rule: 2
var inputTag = document.getElementById("textBox");
inputTag.setAttribute("value", data2); // insecure
inputTag.setAttribute("value",

P4JsApi.encodeForHTMLAttribute(data2)); // secure

// Rule: 3
var errorImgTag = document.getElementById("errorImg");
errorImgTag.setAttribute("onError", data3); // insecure
errorImgTag.setAttribute("onError",

P4JsApi.encodeForJavaScript(data3)); // secure

</script>
26 Perforce 2013.1 JavaScript API for Visual Tools

Troubleshooting
Troubleshooting

The following pointers can help you solve applet-related problems.

• If you or your users cannot see a new customization and you are sure that the
customization is correctly coded and configured, exit and relaunch P4V or P4Admin.
Some settings are read only once, when the application is launched.

• To view a list of applets and any errors that occur when the central settings file is
loaded and executed, display the System Info dialog from the Help menu.

• To debug JavaScript applets, you can use Firebug. Add this line of code to your applet:

<script type='text/javascript'
src='https://getfirebug.com/firebug-lite.js'>
</script>

• If your P4V users say that they cannot view custom tabs, make sure the tabs are listed in
their View menu.

• p4 commands issued by applets are indicated in the server log (flagged as “jsapi”
commands).
Perforce 2013.1 JavaScript API for Visual Tools 27

Troubleshooting
28 Perforce 2013.1 JavaScript API for Visual Tools

Appendix A Method and Command
Reference
JavaScript API Methods

You can use the following methods to code the logic in your central settings files. These
methods are contained by the P4JsApi object (so be sure to prefix all method calls with
"P4JsApi.").

Central Settings Logic Methods

Alert Methods

Method Description

centralSettingsKey() Returns a string containing the key that was
specified when the central settings file was
executed.

refreshAll() Forces a refresh of P4V or P4Admin.

Method Description

addAlert(msg [,image]) Adds an alert to the P4Admin Alerts widget.

msg: Text or HTML to be rendered in the alert. If
you specify a link (), the target is
displayed by launching the default Web
browser on the client machine.

image: Specifies an image to be displayed to the
left of the alert text. Use the HTML img tag. By
default, the image is displayed as 18 x 18 pixels.
To override this default, specify height and
width attributes in the img tag.

Returns an int identifier that can be passed to
updateAlert() or deleteAlert().

deleteAlert(ID) Deletes the specified alert from the Alerts
widget on the P4Admin Home tab. Returns
false if the specified alert is not found.

openUrlInBrowser(url) Launches the default web browser and displays
the specified URL.
Perforce 2013.1 JavaScript API for Visual Tools 29

JavaScript API Methods
Server Data Methods

startAlertRefreshTimer(int) Directs P4Admin or P4V to issue a refresh
request to the server after the specified number
of seconds (one or more) has elapsed instead of
refreshing automatically.

updateAlert(int, str [, image]) For the specified alert ID, replaces the currently-
displayed text with the specified message. To
update the image that is displayed with the
alert, specify the optional image parameter
using the HTML img tag, as described for the
addAlert method.

Method Description

getApiVersion() Returns a string containing the version (level) of
the JavaScript API.

getCharset() For Unicode-mode servers, returns a string
containing the character set in use (P4CHARSET).

getClient() Returns a string containing the client workspace
name. (P4V only)

getPermission(name, isUser,
depotPath [, host])

Returns a string containing the level of access to
the specified depot path for the specified user or
group. (P4Admin only)

If the name parameter specifies a user, set
isUser to true. If name specifies a group, set
isUser to false.

To further qualify the calculation of
permissions, specify the host parameter using
the same syntax that is used to specify host in
the Perforce permissions table. For details, see
the Perforce System Administrator’s Guide.

Return values are: super, admin, write, open,
read, list, no access.

getPort() Returns a string containing the Perforce server
connection setting.

getServerRootDirectory() Returns a string containing the directory on the
host machine where the Perforce server stores
its metadata files.

Method Description
30 Perforce 2013.1 JavaScript API for Visual Tools

JavaScript API Methods
getServerSecurityLevel() Returns a string containing the server security
level.

getServerVersion() Returns a string containing the server version
number.

getSubmitChange() Returns an integer containing the changelist
number passed to a replacement Submit dialog

getUser() Returns a string containing the current user.

isServerCaseSensitive() Returns a string containing "true" or "false,"
indicating whether the server is case-sensitive.

isServerUnicode() Returns a string containing "true" or "false,"
indicating whether the server is running in
Unicode mode

p4(command [,form] [,callback]) Runs the specified Perforce p4 command. Runs
asynchronously if the callback function
parameter is specified. Command results are
returned as JavaScript objects containing data in
JSON format, composed of the following
properties.

To pass form data to a command, you can
specify the form as a string or a JSON data
object. For details, see “Issuing Perforce
Commands” on page 10.

If run asynchronously, command results are
returned to the specified callback function and
an empty object is returned by the p4 method.
The following JSON data structure is returned:

{

[str] data: when tagged data returned,
array of tag/value pairs.

int size: number of members in data
array

str error: server error text, if any

str info: server info text, if any

str text: text returned only by diff2
command

}

Method Description
Perforce 2013.1 JavaScript API for Visual Tools 31

JavaScript API Methods
Utility Functions
Method Description

encodeForHTML(str)

encodeForHTMLAttribute(str)

encodeForJavaScript(str)

Encodes characters to prevent XSS
attacks injected into dynamic data. For
details, see “Preventing Cross-Site
Scripting (XSS) Attacks” on page 25.

setWebKitDeveloperExtrasEnabled(bool) Enables or disables the Inspect item in
the context menu, which displays the
WebKit WebInspector for debugging.

getImage(imagename) Returns a string containing the
specified P4V image in HTML
embedded format. Use the names
returned by getImageNames().

getImageNames() Returns a string array containing a list
of images used by P4V to indicate file
type and status. For consistency with
P4V, use these images in your
applications.

getSelection Returns a list of the folders and files
that are currently selected in the depot
pane.

setP4VErrorDialogEnabled(true|false) Enable/disable display of server
errors in popups. (By default, server
errors are displayed in popups.

Specify true to enable, false to
disable.

setSelection(selList[,function(callback)] Given a list of paths and files, selects
them in the depot pane and, if
specified, executes the optional
callback function.

Map Enables you to construct an optimized
workspace mapping for a client
workspace specification that your
application creates or modifies.
32 Perforce 2013.1 JavaScript API for Visual Tools

JavaScript API Methods
The Map Function: Details

The P4JsApi.Map function enables your application to manipulate Perforce client view
mappings. Client view mappings define which depot files are accessible for a specified
workspace, and where they reside on the local disk. For detailed information about client
view mappings, refer to the P4 User’s Guide and the Perforce Command Reference Manual
discussion of the p4 client command.

Class level methods

P4JsApi.Map.join(map1, map2): Returns the map that results from joining the two
input maps.

Properties

map: A list of mapping lines.

Instance methods

Method Description

clear() Clears the mapping lines

count() Returns the number of mapping lines

empty() Returns true if the map is empty

includes(path) Returns true if path is mapped

insert(left, [right]) Inserts a mapping line into the map. If right is
provided, left and right are the left and right hand sides
of the mapping line. If right is not provided, left is
assumed to contain both sides of the map. Any spaces
in the mapping strings must be quoted

join(map) Returns a new map of this object joined with map.

left() Returns a list of the left side of the mapping

new([s]) Constructs a new Map object. s can be a single
mapping line string or a list containing mapping line
strings

reverse() Returns a new P4JsApi.Map object with the left and
right sides of the mapping swapped

right() Returns a list of the right side of the mapping

translate(path, reverse) Translates path through the map and return the result.
If reverse is true, translate from right to left
Perforce 2013.1 JavaScript API for Visual Tools 33

Supported p4 Commands
Example

The following code maps the mainline in the depot to a directory on Tony’s local machine,
then requests the local path for the Web site home page.

Supported p4 Commands

For security purposes, the JavaScript API controls the p4 commands that can be executed
in each context (that is, in custom tabs, alerts, and the central settings file). Applets cannot
run any command that alters the state of a server other than the currently-connected
server.

The following table lists the p4 commands that can be issued in various types of applets.

m = new P4JsApi.Map();
m.insert("//depot/main/...", "//tonyclient/...");
m2 = new P4JsApi.Map("//tonyclient/... /home/tony/workspace/...");
localPath =

P4JsApi.Map.join(m,m2).translate("//depot/main/www/index.html");

// Preceding call returns the following path:
// /home/tonyclient/workspace/www/index.html

Command Central Settings
and Alerts

P4V and P4Admin Tab Submit Dialog

add Yes

add -n Yes Yes

annotate Yes Yes Yes

archive Yes

attribute Yes

branch Yes

branch -o Yes Yes

branches Yes Yes Yes

broker Yes Yes Yes

change Yes Yes

change -o Yes

changelist Yes Yes Yes

changelists Yes Yes Yes

changes Yes Yes Yes

client Yes

client -o Yes Yes

clients Yes Yes Yes
34 Perforce 2013.1 JavaScript API for Visual Tools

Supported p4 Commands
configure Yes

copy Yes

copy -n Yes Yes

counter1 Yes Yes Yes

counters Yes Yes Yes

cstat Yes Yes

dbschema Yes

dbstat Yes Yes Yes

delete Yes

delete -n Yes Yes

depot Yes

depot -o Yes Yes

depots Yes Yes Yes

describe Yes Yes Yes

diff Yes Yes Yes

diff2 Yes Yes Yes

dirs Yes Yes Yes

edit Yes

edit -n Yes Yes

export Yes

filelog Yes Yes Yes

files Yes Yes Yes

fix Yes Yes

fixes Yes Yes Yes

fstat Yes Yes Yes

grep Yes Yes Yes

group Yes

group -o Yes Yes

groups Yes Yes Yes

have Yes Yes Yes

help Yes Yes Yes

info Yes Yes Yes

Command Central Settings
and Alerts

P4V and P4Admin Tab Submit Dialog
Perforce 2013.1 JavaScript API for Visual Tools 35

Supported p4 Commands
integrate Yes

integrate -n Yes Yes Yes

integrated Yes Yes Yes

interchanges Yes Yes Yes

istat Yes

istat none Yes Yes

job Yes Yes

job -o Yes

jobs Yes Yes Yes

label Yes

label -o Yes Yes

labels Yes Yes Yes

license Yes

license -o Yes Yes

lock Yes

lockstat Yes Yes Yes

logger Yes Yes

login2 Yes

logout Yes

logstat Yes Yes Yes

logtail Yes Yes Yes

merge Yes

merge -n Yes Yes

monitor3 Yes

move Yes

move -n Yes Yes

obliterate4 Yes Yes Yes

opened Yes Yes Yes

passwd Yes

print Yes Yes Yes

protect Yes

protect -o Yes Yes

Command Central Settings
and Alerts

P4V and P4Admin Tab Submit Dialog
36 Perforce 2013.1 JavaScript API for Visual Tools

Supported p4 Commands
protects Yes Yes Yes

reopen Yes

replicate Yes

resolve Yes

resolve -n Yes Yes

resolved Yes Yes Yes

restore Yes

revert Yes

revert -n Yes Yes

review Yes

reviews Yes Yes Yes

shelve Yes

sizes Yes Yes

sizes Yes Yes

spec Yes

spec -o Yes Yes

stream Yes

stream -o Yes Yes

streams Yes

streams -o Yes Yes

submit Yes Yes

sync Yes

sync -n Yes Yes

tag Yes

tag -o Yes Yes

triggers Yes

triggers -o Yes Yes

typemap Yes

typemap -o Yes Yes

unlock Yes

unshelve Yes

unshelve -n Yes Yes

Command Central Settings
and Alerts

P4V and P4Admin Tab Submit Dialog
Perforce 2013.1 JavaScript API for Visual Tools 37

Supported p4 Commands
user Yes

user -o Yes Yes

users Yes Yes Yes

verify Yes

where Yes Yes Yes

workspace Yes

workspace -o Yes Yes

workspaces Yes Yes Yes

1. Only returns value of a specified counter
2. Supports only -p and -s flags
3. Supports only the show parameter
4. All flags except -y permitted

Command Central Settings
and Alerts

P4V and P4Admin Tab Submit Dialog
38 Perforce 2013.1 JavaScript API for Visual Tools

Index
A
Adding tabs 17
Alerts 15, 29
Applets

paths in central settings file 8
C
Central settings file 7
Central settings keys 9
Cross-site scripting (XSS) attacks 25
Custom Submit Dialog 21
E
Escaping dynamic data 25
P
P4JsApi object 29
P4V Settings 21
P4Web 15
Permissions table 7
R
Role-based configuration 7, 8, 22
Running p4 commands 10
S
Security 15
Server log 27
W
WebKit features disabled 22
Perforce 2013.1 JavaScript API for Visual Tools 39

Index
40 Perforce 2013.1 JavaScript API for Visual Tools

	Table of Contents
	Chapter 1 Perforce JavaScript API for Visual Tools
	Overview
	Architecture
	Enabling Applets
	The Permissions Table Entry
	The Central Settings File
	Coding the Central Settings File
	Configuring Applets for Specific Users and Groups
	Central Settings Keys

	Programming Applets
	Issuing Perforce Commands
	Processing Command Results and Handling Server Errors
	Using P4Web URLs

	Extending P4Admin and P4V
	Raising Alerts in P4Admin
	Adding Main Tabs to P4Admin and P4V
	Implementing a Custom Submit Dialog in P4V

	Administering P4V Settings Centrally
	Security
	Secure Your Applet Source Code
	Restrict Access to the Central Settings File
	Use Only Trusted Perforce Servers
	Monitor Your Perforce Server Activity
	Configure Only Trusted Web Servers
	Preventing Cross-Site Scripting (XSS) Attacks

	Troubleshooting

	Appendix A Method and Command Reference
	JavaScript API Methods
	Central Settings Logic Methods
	Alert Methods
	Server Data Methods
	Utility Functions
	The Map Function: Details

	Supported p4 Commands

	Index

