
Git Fusion Guide

2015.3
August 2015 Update

Git Fusion Guide
2015.3

August 2015 Update

Copyright © 1999-2015 Perforce Software.

All rights reserved.

Perforce software and documentation is available from http://www.perforce.com/. You can download and use Perforce programs, but you
can not sell or redistribute them. You can download, print, copy, edit, and redistribute the documentation, but you can not sell it, or sell any
documentation derived from it. You can not modify or attempt to reverse engineer the programs.

This product is subject to U.S. export control laws and regulations including, but not limited to, the U.S. Export Administration Regulations,
the International Traffic in Arms Regulation requirements, and all applicable end-use, end-user and destination restrictions. Licensee shall not
permit, directly or indirectly, use of any Perforce technology in or by any U.S. embargoed country or otherwise in violation of any U.S. export
control laws and regulations.

Perforce programs and documents are available from our Web site as is. No warranty or support is provided. Warranties and support, along
with higher capacity servers, are sold by Perforce Software.

Perforce Software assumes no responsibility or liability for any errors or inaccuracies that might appear in this book. By downloading and
using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce Software.

All other brands or product names are trademarks or registered trademarks of their respective companies or organizations.

Any additional software included within Perforce software is listed in License Statements on page 129.

Git Fusion Guide iii

Table of Contents

About This Manual ... ix

See also .. ix
Perforce general resources ... ix
Please give us feedback ... ix

Chapter 1 Getting Started ... 1

What is Git Fusion? .. 1
Which installation should I use? ... 2

Chapter 2 Installing Git Fusion using the OVA .. 3

Prerequisites .. 3
Installation steps .. 3
Next Steps ... 4
Connecting the Git Fusion OVA installation to your Perforce service 6

Next steps .. 10
Pointing the Git Fusion HTTPS server to your own SSL certificate ... 10

Chapter 3 Installing Git Fusion using OS-Specific Packages ... 13

Prerequisites ... 13
Installation steps .. 13
Next steps .. 19

Chapter 4 Setting up Users ... 21

How do user permissions work? ... 21
Authentication .. 21
Authorization ... 21

Git Fusion users ... 21
Perforce protections .. 22
Permission groups .. 22
Permissions for git-fusion-user .. 23
Permission validation logic ... 23
Effect of permissions on push requests .. 24

What do I have to do? .. 25
Mapping Git users to Perforce accounts ... 26

Verify email address match ... 26
Use the Git Fusion User Map .. 27
Enable the unknown_git Perforce account .. 27

Git Fusion Guide

iv Git Fusion Guide

Authenticating Git users ... 28
Use existing HTTPS configuration with a different Perforce Service. 29
Validating your HTTP authentication setup ... 30
Logs ... 31

Ubuntu .. 31
CentOS and Red Hat .. 31

Authorizing Git users ... 31
Assign Perforce permissions to Git Fusion users ... 32
Create the permission groups and group p4 key .. 32
Populate the permission groups and set the group default p4 key 33
Enable pushes when Git authors lack Perforce permissions ... 34
Enforce Perforce read permissions on Git pull .. 35

Chapter 5 Setting up Repos .. 37

How does Git Fusion map Perforce depots to Git repos? .. 37
Configuring global defaults for repos .. 38
Configuring repos .. 48

Configure repos with a repo configuration file (p4gf_config) ... 49
Repo configuration file: key definitions and samples .. 50

Sample repo configuration files ... 51
Example 1: ... 51
Example 2: ... 52

Configure repos from a Perforce workspace ... 52
Use a Perforce depot path in a Git remote URL .. 54

Initializing repos on the Git Fusion server ... 55
Importing existing Git repos into Git Fusion .. 55

Creating a repo configuration file for import of existing repo .. 56
Importing an existing repo using a Perforce workspace or repo configuration file 57

Modifying repo configuration files safely ... 58
Converting a lightweight branch into a fully-populated branch ... 59
Enabling Git users to create fully-populated branches ... 59

Create a fully-populated branch only when a Git user explictly chooses to do so 60
Create a fully populated branch every time a Git user pushes a new branch 61
Controlling depot location of pushed branches ... 62

Examples ... 62
Example: project/branch hierarchy in Perforce ... 62
Example: Give each developer their own area in the Perforce depot. 63
Example: {user} without {git_branch_name} ... 63

Working with Perforce streams ... 64
Enabling stream import paths as Git submodules ... 65

Configure and generate submodules from import paths .. 65
Managing and troubleshooting submodules ... 67

What are these new virtual streams that appear in the stream depot? 67
How do I change the submodule URL (ssh-url, http-url)? 67
How do I remove submodules generated from import paths? 67

Adding preflight commits to reject pushes ... 67
Limiting push size and disk usage .. 69

Limits for a single push .. 70

Git Fusion Guide

Git Fusion Guide v

Limit total Git Fusion disk usage .. 70
View current disk usage ... 71

Detecting Git copy/rename and translating to Perforce .. 71
Disconnecting a Git Fusion repo from the Perforce service .. 72
Deleting Git Fusion repos ... 72

Chapter 6 Additional Administrative Tasks ... 75

Configuring logging ... 75
Viewing changelist information ... 75
Managing Git Fusion p4 keys ... 76
Managing Git Fusion server IDs .. 76
Stopping the Git Fusion server .. 76
Backing up and restoring Git Fusion ... 77
Adding Git Fusion and Perforce server components ... 78

Add Git Fusion servers ... 78
Special considerations for P4Broker ... 78
Git Fusion with Proxies, Replicas, and Edge servers ... 79
Delete repos on multiple hosts .. 79

Administering the Git Fusion OVA ... 79
Authentication and the OVA ... 79
Perforce Server and the OVA .. 80
Start and stop scripts .. 80
SSH key management console ... 80

Modify Perforce Server Triggers to Ignore Git Fusion ... 81
p4gf_config2 ... 81
p4gf_environment.cfg ... 81
Environment Variables ... 82

Chapter 7 Tips for Git Users .. 83

Requirements, restrictions, and limitations ... 83
Providing SSH keys for Git Fusion authentication .. 83
Referencing Git Fusion repos .. 84
Sharing new Git branches with Perforce users .. 84
Referencing Perforce jobs in a commit ... 84
Using Git Fusion extension commands .. 85

How permissions affect the @list command ... 87
Using Swarm for code review ... 87

Create a Swarm review ... 87
Amend a Swarm review ... 88
View reviews created by other Git users .. 89
View amendments made by other Git users ... 90
Additional tips ... 90

Chapter 8 Troubleshooting ... 91

Git Fusion Guide

vi Git Fusion Guide

Clone issues ... 91
AppleDouble Header not recognized ... 91
.bashrc source line prevents cloning .. 91
File cannot be converted to specified charset .. 91
Missing @repo section .. 92
Spec depots cannot be mapped ... 92

General usage issues ... 92
Cannot terminate active process .. 92
Connection closed by remote host ... 92
Case sensitivity conflicts ... 92
git-fast-import crash ... 93
Git Fusion submit triggers are not installed .. 93
headType field does not exist .. 94
Locked repo caused by active process termination .. 94
Missing server-id file .. 95
Unicode-enabled client required .. 95

Git Fusion OVA issues ... 95
OVF cannot be parsed .. 95
P4D cannot be started ... 96

Push issues .. 96
Files not in client view ... 96
Files locked by git-fusion-reviews--non-gf .. 96
Merge commit requires rebasing ... 96
Not authorized for Git commit .. 97
Not permitted to commit .. 97
Password invalid or unset .. 97
Pushes prohibited after repo deleted or trigger removed ... 98

Script issues ... 98
Updating authorized keys file of multiple servers fails .. 98

Script Command Reference ... 99

Running the scripts .. 99

Authenticating Git Users using SSH ... 123

Set up SSH authentication ... 123
Use a cron job to copy public keys to Git Fusion .. 124
Set up SSH authentication using the OVA's SSH key management console 124
Troubleshooting SSH key issues .. 126

Key or identity not recognized .. 126
No such Git repo .. 126
PTY request failed .. 126
Repo is not a Git repo ... 126
SSH format issues ... 127

Git Fusion Guide

Git Fusion Guide vii

License Statements ... 129

viii Git Fusion Guide

Git Fusion Guide ix

About This Manual
This guide tells you how to administer and use Perforce Git Fusion.

This guide is intended for people responsible for installing, configuring, and maintaining a Git Fusion
integration with their organization’s Perforce service, and assumes that you have intermediate-
level Perforce administration experience. This guide covers tasks typically performed by a system
administrator (for instance, installing and configuring the software and troubleshooting issues), as well
as tasks performed by a Perforce administrator (like setting up Git Fusion users and configuring Git
Fusion repos).

See also
For more information, see the following resources available at http://www.perforce.com

• Perforce System Administrator’s Guide:

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

• Perforce training courses.

http://www.perforce.com/instructor-led-training-overview

• Video tutorials:

http://www.perforce.com/resources/tutorials

Perforce general resources
To view all Perforce documentation:

• http://www.perforce.com/documentation

To obtain online help from within Perforce client programs:

• Command-line Client: Type p4 help from the command line.

• Graphical client applications: Click Help on the main menu bar.

For more information about consulting and technical support, see these web portals:

• Consulting

http://www.perforce.com/support-services/consulting-overview

• Technical Support

http://www.perforce.com/support-services

Please give us feedback
Please send any comments or corrections to <manual@perforce.com>

http://www.perforce.com
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/instructor-led-training-overview
http://www.perforce.com/resources/tutorials
http://www.perforce.com/documentation
http://www.perforce.com/support-services/consulting-overview
http://www.perforce.com/support-services

x Git Fusion Guide

Git Fusion Guide 1

Chapter 1 Getting Started
This chapter includes the following topics:

• What is Git Fusion?

• Which installation should I use?

What is Git Fusion?
Git Fusion is a Git remote repository service that uses Perforce Server as its back end.

Git users interact with Git Fusion as they do with any other Git remote repository (repo), issuing
standard Git commands to clone repos and transfer data. When a Git user pushes changes, Git Fusion
translates those Git changes into Perforce changes and submits them to the Perforce depot. When a
Git user pulls changes, Git Fusion translates the pull request into Perforce commands to download
changes from the Perforce depot.

Figure 1.1. Git Fusion sits between Perforce and the Git user

Under the hood, a series of Python scripts manages Git user authentication and authorization,
generates remote Git repos, and translates Git transactions into Perforce commands. The Perforce
service is the repository of record not only for the data held in the remote Git repos, but also for the Git
Fusion metadata -- including user authentication keys and repo configuration files, which define access
and data generation rules for the repos.

Figure 1.2. Git Fusion architecture

Chapter 1. Getting Started

2 Git Fusion Guide

For more information about how Git Fusion works, see:

• Setting up Users

• Setting up Repos

Which installation should I use?
There are three ways to install Git Fusion:

• OVA (git-fusion.ova): A virtual machine image in the Open Virtual Appliance (OVA) format. This
image includes both a Git Fusion and a Perforce Server instance. The Perforce Server instance is pre-
loaded with sample data and configured for use with the included Git Fusion instance. There is a
simple set of instructions to turn off this local Perforce service and connect the Git Fusion instance to
your own external Perforce service.

Use the OVA if any of the following apply to you:

• You want to deploy to a virtual environment, and Ubuntu 12.04 LTS is an acceptable platform.

• You are not an experienced Linux administrator; this install method requires the least amount of
Linux expertise

• Operating system-specific packages: OS-specific packages, like RPM, provide a simplified way to
install Git Fusion and its dependencies on a supported platform.

We provide the following packages:

• RPM package for CentOS/Red Hat 6.x.

• Debian package for Ubuntu 12.04

Use an OS-specific package if you want a streamlined, assisted installation on the supported
operating systems.

• Tarball (git-fusion.tgz): A compressed file that includes Git Fusion source and install scripts for
Ubuntu or CentOS/Red Hat.

Use the tarball if the following applies to you:

• You are an experienced linux administrator with deep knowledge of configuring and
troubleshooting services such as apache, ssh, and syslog.

• You cannot use the OVA or OS-specific packages.

• You are required to install and configure dependencies from source.

• You need very fine control over installation paths.

Contact Perforce Support for help with manually installing from the tarball.

Git Fusion Guide 3

Chapter 2 Installing Git Fusion using the OVA
Who is this for? The git-fusion.ova image includes both a Git Fusion and a Perforce Server instance.
The Perforce instance is pre-loaded with sample data and configured for use with the included Git
Fusion instance. There is a simple set of instructions to turn off this local Perforce service and connect
the Git Fusion instance to your own external Perforce service.

Use the OVA if any of the following apply to you:

• You want to deploy to a virtual environment, and Ubuntu 12.04 LTS is an acceptable platform.

• You are not an experienced Linux administrator, as this installation method requires the least
amount of Linux expertise.

Prerequisites
Note See the Git Fusion release notes for the most comprehensive and recent software

and hardware requirements.

• 64-bit operating system on the host computer.

• Virtualization framework that supports the import of .ova files.

Installation steps
1. Download the git-fusion.ova:

http://www.perforce.com/downloads/git-fusion

ftp://ftp.perforce.com/perforce/r15.1/bin.noarch/git-fusion.ova

2. Import the OVA into your virtualization framework.

For production use, we recommend at least 4 cores and 16 GB memory.

Configure as required for your site. Reinitialize the MAC address of all network cards if you are
presented with the option.

3. Start the Git Fusion virtual machine.

4. Set Linux account passwords at the prompts.

• root: root account on the virtual machine

• perforce: service account used by the pre-loaded Perforce service

• git: service account used by Git Fusion

5. Automatic update to the pre-loaded Perforce service.

The Perforce service is installed and updated using a Debian package. At this point, the virtual
machine will attempt to connect to package.perforce.com and check for an update to this package.
If one is available, it will automatically be installed. No user action is required for this step.

http://www.perforce.com/downloads/git-fusion
ftp://ftp.perforce.com/perforce/r15.1/bin.noarch/git-fusion.ova

Chapter 2. Installing Git Fusion using the OVA

4 Git Fusion Guide

You can update the Perforce service package at a later date with the following command:

$ sudo apt-get update && sudo apt-get install perforce-server-base

6. Enter a Git Fusion server ID or accept the default.

Server IDs are required to enable multiple Git Fusion instances to connect to the same Perforce
service.

Note If you want to change your Server ID at a later time, you can run
p4gf_super_init.py with the --id option. For more information, see
“Managing Git Fusion server IDs” on page 76.

When you have entered a server ID or accepted the default, the Git Fusion virtual machine completes
its startup process. You now have a running Git Fusion instance connected to a local, pre-loaded
Perforce service.

Make note of the IP address displayed in the console window. You can use it to perform your first
git clone and to access the online SSH key management console. For information about the SSH key
management console, see SSH key management console.

Next Steps
If you are using the OVA to install Git Fusion against another Perforce service:

• Connect your Git Fusion installation to your Perforce service.

See “Connecting the Git Fusion OVA installation to your Perforce service” on page 6.

• (Optional) Point Git Fusion to your own signed SSL certificate.

We deliver Git Fusion in the OVA with a self-signed SSL certificate. If you will be using this Git
Fusion installation for anything other than testing and evaluation, we recommend that you reference
your own signed SSL certificate in the Apache web server site file. See “Pointing the Git Fusion
HTTPS server to your own SSL certificate” on page 10.

If you want to use the Perforce service included in the OVA, your installation is complete.

Now you can perform a git clone of the Talkhouse sample repo. When Git Fusion receives the clone
request, it will create a new Git repo out of existing files in Perforce, and deliver the resulting repo to
the Git client. For authorization, you'll first need to create a Perforce user.

1. Create a Perforce user.

a. Log into the Git Fusion virtual machine as root (or open a shell on another system that has the
p4 client installed).

b. Create a Perforce user:

Chapter 2. Installing Git Fusion using the OVA

Git Fusion Guide 5

p4 -p ipaddress:1666 -u super user -f username

where ipaddress is the IP address displayed in the VM console window (the one you noted
when you installed the OVA).

Note that super is a pre-configured Perforce super user.

Enter :wq to save the new user.

2. Assign a password.

p4 -p ipaddress:1666 -u username passwd

3. Clone the Talkhouse repo.

You can perform the clone from any computer with a Git installation and network access to the Git
Fusion virtual machine.

a. First tell Git not to verify the SSL certification.

$ export GIT_SSL_NO_VERIFY=true

Note We deliver Git Fusion in the OVA with a self-signed SSL certificate.
Exporting this environment variable tells Git not to verify the SSL
certification in the current shell session only. To tell Git never to verify SSL
certificates, use the following command:

git config --global http.sslVerify false

To point Git Fusion to your own signed SSL certificate (recommended
if you will be using this Git Fusion installation for anything other than
demonstration purposes), see “Pointing the Git Fusion HTTPS server to your
own SSL certificate” on page 10.

b. Perform the clone operation using the IP address (without the port number) displayed in the Git
Fusion VM console window (the one you noted when you installed the OVA.

git clone https://ip_address/Talkhouse

When prompted, enter the user name and password you created in Step 1.

To learn more about adding users and setting up repos see:

• Setting up Users

Chapter 2. Installing Git Fusion using the OVA

6 Git Fusion Guide

• Setting up Repos

To learn more about how to work with the Perforce service included with the OVA, see: “Perforce
Server and the OVA” on page 80

Connecting the Git Fusion OVA installation to your Perforce service
Who is this for? You want to use the Git Fusion instance that you installed with the OVA against
a Perforce service on another machine, such as your existing production Perforce service. For this
installation, you need some Perforce and Linux administration experience.

Prerequisites for the Perforce service:

Note See the Git Fusion release notes for the most comprehensive and recent software
and hardware requirements.

• See the Git Fusion release notes for current Perforce Server (P4D) version requirements.

• You must have root level access to the server(s) that host(s) your Perforce service, as well as Perforce
super user access.

• Python 2.6+, 3.2+, or 3.3+ on the server hosting the Perforce service triggers.

1. Turn off the local Perforce service.

Log into the Git Fusion virtual machine as root and run:

service p4d stop
update-rc.d p4d disable

2. Update the Apache web service site configuration file to add your Perforce service.

Note If you prefer to use SSH rather than HTTPS authentication, skip this step
and see “Set up SSH authentication using the OVA's SSH key management
console” on page 124.

a. Stop the Apache web service.

service apache2 stop

b. Open the git-fusion-ssl Apache site configuration file.

vi /etc/apache2/sites-available/git-fusion-ssl

c. Edit the AddExternalAuth line to include the full hostname, port, and P4CHARSET of your
Perforce service.

Chapter 2. Installing Git Fusion using the OVA

Git Fusion Guide 7

AddExternalAuth p4_auth "/opt/perforce/git-fusion/libexec/
p4auth.sh myperforceserver:port charset"

d. Save your changes and exit vi.

:wq

e. Start the Apache web service.

service apache2 start

3. Run the configure-git-fusion.sh script.

/opt/perforce/git-fusion/libexec/configure-git-fusion.sh

The script prompts you for the following:

• Whether you want to connect to an existing Perforce service or create a new one:

Type remote to use an existing Perforce service on another host.

• How you want to handle the Perforce change owner for git commits authored by non-Perforce
users.

Enter reject to reject push which contains commits authored by non-Perforce users (default)

Enter pusher to accept commits authored by non-Perforce users and set the change owner to the
pusher

Enter unknown to accept commits authored by non-Perforce users and set the change owner to
'unknown_git'. This option will also create 'unknown_git' Perforce user.

Note Note: The actual pusher, author, and committer are always recorded in the
Perforce changelist description.

• Perforce service's hostname and port (P4PORT).

• Perforce super user name and password to enable Git Fusion to run administrative p4
commands.

• Git Fusion time zone, in Olson format.

Set it to your Perforce service time zone or accept the default, which is the Git Fusion host
machine's time zone.

Chapter 2. Installing Git Fusion using the OVA

8 Git Fusion Guide

Git Fusion uses the Olson time zone format, as recognized by pytz (for example, US/Pacific
rather than PST).

• Whether you want to configure HTTPS authentication

Enter no, since HTTPS authentication is already configured on the Git Fusion OVA

• Single password to be shared by any new Perforce users that Git Fusion creates to enable it to
interact with the Perforce service.

The first time you install and configure a Git Fusion instance for use with any given Perforce
service, the script creates the users git-fusion-user, git-fusion-reviews-server-id, git-
fusion-reviews--non-gf, and git-fusion-reviews--all-gf.

Note You can set individual passwords after the configuration script is finished by
issuing the following command:

p4 -p myperforceserver:port -C charset -u user_name passwd

When the script is finished, it congratulates you and suggests that you configure your Perforce
service to use Git Fusion's atomic push triggers.

For detailed information about the functions performed by the configuration script, along with
information about rerunning it to change your initial configuration settings, see configure-git-
fusion.sh on page 100 in the Script Reference.

4. Configure Git Fusion triggers in the Perforce service to support atomic pushes.

Important We recommend that any submit triggers running on your Perforce service
exclude changes that are submitted by git-fusion-user. These include change-
submit, change-commit,and change-content triggers that enforce a local policy,
like requiring jobs, specific content, or specific formatting in the changelist
description. Such triggers can interrupt Git Fusion in the middle of a push,
which will damage the repository as replicated within Perforce.

If you cannot exclude git-fusion-user from these triggers, you can instead
create preflight hooks that reject git pushes based on local policies derived
from your current submit triggers. For more information, see Adding preflight
commits to reject pushes.

a. Copy the p4gf_submit_trigger.py script and the high performance wrapper
p4gf_submit_trigger_wrapper.sh from /opt/perforce/git-fusion/libexec to the server
hosting the Perforce service.

Note The wrapper script is written in Bash, which has a much lower startup
overhead than Python. The wrapper quickly determines if the triggered
event is related to a Git Fusion operation, in which case a call to the Python

Chapter 2. Installing Git Fusion using the OVA

Git Fusion Guide 9

script is avoided entirely. Although the Python script can also be called
directly, this arrangement improves Git Fusion performance.

Note If your Perforce service is hosted on a platform supported by Git Fusion
packages, you can install the helix-git-fusion-trigger package on it to
satisfy this step.

b. Log in to the server hosting the Perforce service as a user with sudo privileges.

c. Run the p4gf_submit_trigger.py script to install and configure the triggers.

$ p4gf_submit_trigger.py --install myperforceserver:port perforce_super_user password

The script does the following:

• Creates login tickets for the Perforce users git-fusion-user, git-fusion-reviews-server-id,
git-fusion-reviews--non-gf, and git-fusion-reviews--all-gf.

• Creates a trigger configuration file, p4gf_submit_trigger.cfg, in the same directory as the
trigger script, that holds your P4PORT and P4CHARSET variables, as well as the path to the P4
binary.

• Adds Git Fusion trigger entries to the Perforce Triggers table. If the high performance Bash
wrapper is present, triggers will be configured to call it, otherwise they will be configured to
call the Python script directly.

• If your Perforce service is SSL-enabled, generates the p4gf_submit_trigger.trust file in the
same directory as the trigger script to manage the trust of the SSL connection.

• Sets the p4 key that verifies that the trigger was installed.

If you are upgrading an existing Git Fusion installation, the script replaces your old Git Fusion
triggers with new ones. It does not touch any other triggers.

For more details about p4gf_submit_trigger.py, see the Script Reference.

For more information about triggers, see the Perforce System Administrator's Guide, "Scripting
Perforce: Triggers and Daemons."

5. Verify the configuration from the Git Fusion server.

Switch to the Git Fusion service account (git) on the Git Fusion server and run
p4gf_super_init.py.

su - git
$ p4gf_super_init.py --user perforce_super_user

The script should report that everything has been created, already exists, or is up to date.

http://www.perforce.com/perforce/doc.current/manuals/p4sag/chapter.scripting.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/chapter.scripting.html

Chapter 2. Installing Git Fusion using the OVA

10 Git Fusion Guide

Next steps
You are now ready to:

• (Optional) Point the Git Fusion HTTPS server to your own SSL certificate. See “Pointing the Git
Fusion HTTPS server to your own SSL certificate” on page 10.

• Set up users. See Chapter 4, “Setting up Users” on page 21.

• Set up repos. See Chapter 5, “Setting up Repos” on page 37.

Pointing the Git Fusion HTTPS server to your own SSL certificate
We deliver Git Fusion in the OVA with a self-signed SSL certificate. If you will be using this Git Fusion
installation for anything other than testing and evaluation, we recommend that you use your own
signed SSL certificate. If you are using SSH for authentication, you can skip this task.

Note If you keep the default self-signed SSL certificate, you must tell Git not to verify
the SSL certification when you perform Git commands against Git Fusion repos,
either on a per-session basis (by running export GIT_SSL_NO_VERIFY=true) or for all
sessions (by running git config --global http.sslVerify false).

To enable Git Fusion to use your own signed SSL certificate:

1. Stop the Apache web service:

Log into the Git Fusion virtual machine as root and run:

service apache2 stop

2. Open the git-fusion-ssl Apache site configuration file.

vi /etc/apache2/sites-available/git-fusion-ssl

3. Edit the lines SSLCertificateFile and SSLCertificateKeyFile to point to your signed SSL
certificate and key.

 SSLCertificateFile /path/to/your_certificate_file
 SSLCertificateKeyFile /path/to/your_private_key_file

4. Save your changes and exit vi.

:wq

5. Start the Apache web service.

Chapter 2. Installing Git Fusion using the OVA

Git Fusion Guide 11

service apache2 start

12 Git Fusion Guide

Git Fusion Guide 13

Chapter 3 Installing Git Fusion using OS-Specific
Packages

Who is this for? Operating system-specific packages provide a simplified way to install Git Fusion and
its dependences on a supported platform.

We provide the following packages:

• RPM packages for CentOS/Red Hat.

• Debian packages for Ubuntu.

Prerequisites

Note See the Git Fusion release notes for the most comprehensive and recent software
and hardware requirements.

• Requirements for the Git Fusion server

• Linux Intel x86_64

• Ubuntu 12.04 LTS

• Ubuntu 14.04 LTS

• CentOS or Red Hat 6.x

• CentOS or Red Hat 7.x not recommended: http setup too difficult

• For production use, we recommend at least 4 cores and 16 GB memory.

• You must have root level access to the server that hosts Git Fusion.

• Internet connection.

• Requirements for the Perforce service

• See the Git Fusion release notes for current Perforce Server (P4D) version requirements.

• You must have root level access to the server(s) that host(s) your Perforce service, as well as
Perforce super user access.

• Python 2.6+, 3.2+, or 3.3+ on the server hosting the Perforce service triggers.

Installation steps

Note On CentOS/Red Hat, default SELinux security policies may deny Git Fusion
packages access to resources that they need to install. If your organization's security

Chapter 3. Installing Git Fusion using OS-Specific Packages

14 Git Fusion Guide

policy permits it, disabling SELinux may help to simplify installation. If you require
SELinux, contact Perforce customer support for assistance.

1. Import the Perforce package signing key.

As root (or a user with sudo privileges), run one of the following:

For RPM:

rpm --import http://package.perforce.com/perforce.pubkey

For Debian:

$ wget -q http://package.perforce.com/perforce.pubkey -O- | sudo apt-key add -

For information about how to verify the authenticity of the signing key, see http://
answers.perforce.com/articles/KB_Article/Public-Key-for-Installation-Packages.

2. Add the Perforce package repository.

• For RPM packages, create a file called /etc/yum.repos.d/perforce.repo with the following
content:

[perforce]
name=Perforce
baseurl=http://package.perforce.com/yum/rhel/{version}/x86_64/
enabled=1
gpgcheck=1

Note Replace {version} with the major version of your distribution, either '6' or '7'.
CentOS and Red Hat 7.x. not recommended: http setup too difficult.

• For the Debian package, create a file called /etc/apt/sources.list.d/perforce.list with the
following line:

deb http://package.perforce.com/apt/ubuntu {version} release

Note Replace {version} with the codename of your distribution, either
'precise' (Ubuntu 12.04) or 'trusty' (Ubuntu 14.04).

Update the package repository:

$ sudo apt-get update

3. Install the Git Fusion package.

http://answers.perforce.com/articles/KB_Article/Public-Key-for-Installation-Packages
http://answers.perforce.com/articles/KB_Article/Public-Key-for-Installation-Packages

Chapter 3. Installing Git Fusion using OS-Specific Packages

Git Fusion Guide 15

There are two package files to choose from:

• helix-git-fusion: installs the most recent stable version of Git Fusion and creates a Git Fusion
service account named git. This is the Unix account that Git users will use when they run a Git
command against Git Fusion using SSH. It is also the account that administrators will use to
run Git Fusion utility scripts. The package will create the account with home directory in /opt/
perforce/git-fusion/home/perforce-git-fusion.

After installation, you should immediately set a strong password for this new git user. Your
SSH users will use SSH keys for access, and so they will not need to know this password.

For CentOS and Red Hat, run:

yum install helix-git-fusion
passwd git

For Ubuntu, run:

$ sudo apt-get install helix-git-fusion
$ sudo passwd git

• helix-git-fusion-base: installs the most recent stable version of Git Fusion and does not create
a git user.

This package enables you to configure a Git Fusion service account with whatever name you
want when you run the configure-git-fusion.sh script (in the next step).

For CentOS and Red Hat, run:

yum install helix-git-fusion-base

For Ubuntu, run:

$ sudo apt-get install helix-git-fusion-base

The packages install Git Fusion and its dependencies under /opt/perforce/git-fusion to prevent
conflicts with any system versions of Git and Python.

4. Run the configure-git-fusion.sh script.

/opt/perforce/git-fusion/libexec/configure-git-fusion.sh

The script prompts you for the following:

• Whether you want to connect to an existing Perforce service or create a new one.

Chapter 3. Installing Git Fusion using OS-Specific Packages

16 Git Fusion Guide

Enter new to install and configure a new Perforce service on the machine that hosts Git Fusion.

Enter local to connect to a Perforce service existing on the same machine hosting Git Fusion.

Enter remote to connect to a Perforce service existing on another machine.

• How you want to handle the Perforce change owner for git commits authored by non-Perforce
users.

Enter reject to reject push which contains commits authored by non-Perforce users (default)

Enter pusher to accept commits authored by non-Perforce users and set the change owner to the
pusher

Enter unknown to accept commits authored by non-Perforce users and set the change owner to
'unknown_git'. This option will also create 'unknown_git' Perforce user.

Note Note: The actual pusher, author, and committer are always recorded in the
Perforce changelist description.

• Perforce service's hostname and port (P4PORT).

• Perforce super user name and password to enable Git Fusion to run administrative p4
commands.

• If the script is creating a new Perforce service, the path to your preferred location for the
Perforce Server root directory.

• Git Fusion time zone, in Olson format.

Set it to your Perforce service time zone or accept the default, which is the Git Fusion host
machine's time zone.

Git Fusion uses the Olson time zone format, as recognized by pytz (for example, US/Pacific
rather than PST).

• Whether you want to configure HTTPS authentication

Enter yes if you installed the helix-git-fusion package and satisfy the requirements for HTTPS
configuration.

Enter no if you do not wish to use HTTPS authentication, installed helix-git-fusion-base
package, or do not satisfy any of the requirements for HTTPS configuration.

Note See “Authenticating Git users” on page 28 and Git Fusion release notes for
HTTPS configuration requirements.

• If you installed Git Fusion using the helix-git-fusion-base package, the name and password
of the system account that will run Git commands for Git Fusion (git, by default).

http://www.perforce.com/perforce/doc.current/user/git-fusion-notes.txt

Chapter 3. Installing Git Fusion using OS-Specific Packages

Git Fusion Guide 17

If you installed Git Fusion using the helix-git-fusion package, which creates the Git Fusion
service account git, the script configures that user without prompting you.

• Single password to be shared by any new Perforce users that Git Fusion creates to enable it to
interact with the Perforce service.

The first time you install and configure a Git Fusion instance for use with any given Perforce
service, the script creates the users git-fusion-user, git-fusion-reviews-server-id, git-
fusion-reviews--non-gf, and git-fusion-reviews--all-gf.

Note You can set individual passwords after the configuration script is finished by
issuing the following command:

$ p4 -p myperforceserver:port -C charset -u user_name passwd

When the script is finished, it congratulates you and suggests that you configure your Perforce
service to use Git Fusion's atomic push triggers.

For detailed information about the functions performed by the configuration script, along with
information about rerunning it to change your initial configuration settings, see configure-git-
fusion.sh on page 100 in the Script Reference.

5. Configure Git Fusion triggers in the Perforce service to support atomic pushes.

Important We recommend that any submit triggers running on your Perforce service
exclude changes that are submitted by git-fusion-user. These include change-
submit, change-commit,and change-content triggers that enforce a local policy,
like requiring jobs, specific content, or specific formatting in the changelist
description. Such triggers can interrupt Git Fusion in the middle of a push,
which will damage the repository as replicated within Perforce.

If you cannot exclude git-fusion-user from these triggers, you can instead
create preflight hooks that reject git pushes based on local policies derived
from your current submit triggers. For more information, see Adding preflight
commits to reject pushes.

a. Copy the p4gf_submit_trigger.py script and the high performance wrapper
p4gf_submit_trigger_wrapper.sh from /opt/perforce/git-fusion/libexec to the server
hosting the Perforce service.

Note The wrapper script is written in Bash, which has a much lower startup
overhead than Python. The wrapper quickly determines if the triggered
event is related to a Git Fusion operation, in which case a call to the Python
script is avoided entirely. Although the Python script can also be called
directly, this arrangement improves Git Fusion performance.

Chapter 3. Installing Git Fusion using OS-Specific Packages

18 Git Fusion Guide

Note If your Perforce service and Git Fusion are hosted on the same server, you
don't need to copy the scripts.

Note If your Perforce service is hosted on a platform supported by Git Fusion
packages, you can install the helix-git-fusion-trigger package on it to
satisfy this step.

b. Log in to the server hosting the Perforce service as a user with sudo privileges.

c. Run the p4gf_submit_trigger.py script to install and configure the triggers.

$ p4gf_submit_trigger.py --install myperforceserver:port perforce_super_user password

The script does the following:

• Creates login tickets for the Perforce users git-fusion-user, git-fusion-reviews-server-id,
git-fusion-reviews--non-gf, and git-fusion-reviews--all-gf.

• Creates a trigger configuration file, p4gf_submit_trigger.cfg, in the same directory as the
trigger script, that holds your P4PORT and P4CHARSET variables, as well as the path to the P4
binary.

• Adds Git Fusion trigger entries to the Perforce Triggers table. If the high performance Bash
wrapper is present, triggers will be configured to call it, otherwise they will be configured to
call the Python script directly.

• If your Perforce service is SSL-enabled, generates the p4gf_submit_trigger.trust file in the
same directory as the trigger script to manage the trust of the SSL connection.

• Sets the p4 key that verifies that the trigger was installed.

If you are upgrading an existing Git Fusion installation, the script replaces your old Git Fusion
triggers with new ones. It does not touch any other triggers.

For more details about p4gf_submit_trigger.py, see the Script Reference.

For more information about triggers, see the Perforce System Administrator's Guide, "Scripting
Perforce: Triggers and Daemons."

6. Verify the configuration from the Git Fusion server.

Switch to the Git Fusion service account (git) on the Git Fusion server and run
p4gf_super_init.py.

su - git
$ p4gf_super_init.py --user perforce_super_user

The script should report that everything has been created, already exists, or is up to date.

http://www.perforce.com/perforce/doc.current/manuals/p4sag/chapter.scripting.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/chapter.scripting.html

Chapter 3. Installing Git Fusion using OS-Specific Packages

Git Fusion Guide 19

Next steps
You are now ready to:

• Set up users. See Setting up Users

• Set up repos. See Setting up Repos

20 Git Fusion Guide

Git Fusion Guide 21

Chapter 4 Setting up Users
After you install Git Fusion, you must map your Git users to Perforce accounts and set permissions for
them.

This chapter discusses the following topics:

• How do user permissions work?

• What do I have to do?

• Mapping Git users to Perforce accounts

• Authenticating Git users

• Authorizing Git users

How do user permissions work?
Git Fusion authenticates users through HTTP or SSH and authorizes them for pull and push
transactions through Perforce group membership and permissions.

Authentication
Git Fusion uses HTTP or SSH to authenticate Git client requests (such as git clone, git pull, and
git push). In a standard Git implementation, each Git user connects to a remote repo by establishing
an individual account on the server that hosts the repo. In Git Fusion, all of your organization’s Git
users gain access through a Git Fusion service user UNIX account (git, in the default OVA installation)
on the Git Fusion server, where either a web server or SSH daemon performs the authentication and
invokes a python script that redirects the request to Git Fusion.

Authorization
While authentication to the Git Fusion server is handled by HTTP or SSH, access to Git Fusion repos is
handled by Perforce permissions and groups.

If you are not familiar with Perforce permissions functionality, see the Perforce System Administrator's
Guide, Administering Perforce: Protections.

Git Fusion users

When we discuss Git Fusion permissions, it is helpful to understand the following Git roles -- and to
understand that a single Git user can occupy more than one of these roles in any given Git transaction:

• Git author: A user who changes a file. Typically this is an individual developer or contributor.

• Git committer: A user who checks a change into Git. Usually this is the same user as the Git author,
but in some workflows, a Git author lacks easy network or write access to the main Git repo, so the
author emails a patch or sends the change to a coworker, who then commits that change to the repo
on behalf of the author.

• Git puller: A user who runs git clone, git pull, or git fetch to download data into their own Git repo
from another Git repository such as Git Fusion.

http://www.perforce.com/perforce/doc.current/manuals/p4sag/chapter.protections.html

Chapter 4. Setting up Users

22 Git Fusion Guide

• Git pusher: A user who runs git push to send changes from their own Git repo to a Git remote repo
such as Git Fusion. The changes being pushed are often authored and committed by the same person
doing the pushing, but not always; it is common for Git users to pull changes from coworkers, so the
pushed changes might be authored or committed by anyone.

It is also important to understand that, while Git Fusion maps Git users to Perforce users for
authorization, Git Fusion connects to Perforce as a single user, git-fusion-user, which functions as
P4USER for all Perforce operations.

Perforce protections

Any Git user who pushes changes to a Git Fusion remote repo must have write access to the Perforce
depot locations that comprise the repo. By default, Git pull transactions do not require read access.
Permission to pull from Git Fusion remote repos is handled instead by membership in a Git Fusion
pull group (see Permission groups on page 22). However, there is an option to require that all pull
transactions check that the puller has Perforce read permissions for the depot locations included in the
repo. For more information, see Enforce Perforce read permissions on Git pull .

The git-fusion-user must have write access to all of the Perforce depot locations that include Git
Fusion repo content, as well as the //.git-fusion depot, where Git Fusion metadata is stored.

Permission groups

Git Fusion uses Perforce groups to enforce what the user can push and pull. Each Git puller and pusher
maps to a corresponding Perforce user, and that Perforce user must (with exceptions, noted below)
be a member of a pull or push permissions group. Pushers must also have write access to the Perforce
depot locations included in the repo.

Git Fusion provides three mechanisms for determining pull and push permissions:

• Repo-specific permission groups: grant a Perforce user pull (git-fusion-repo_name-pull) or pull
and push (git-fusion-repo_name-push) permissions for a specific Git Fusion repo view (which
represents a specified set of files in the Perforce depot).

• Global permission groups: grant a Perforce user pull (git-fusion-pull) or pull and push
permissions (git-fusion-push) for all Git Fusion repos.

• Default permissions p4 key: grants all Perforce users the ability to pull or push -- or prohibits users
from doing either action -- by use of a p4 key, (git-fusion-permission-group-default).

If you do not assign a user to either a repo-specific or global group, Git Fusion automatically assigns
the user the permission specified by the p4 key. If you use the p4 key to remove access from all
users, you can restrict users to repo-specific permissions. You can also use it to give access to all
users when you have no need for repo-specific permissions.

Pull groups enable git clone, git fetch, and git pull. Push groups add git push.

When determining a user’s pull and push permissions, Git Fusion iterates through these mechanisms,
from the repo-specific groups to the global groups to the p4 key, continuing until it finds and returns
the first matching permission.

The global groups and the default permissions p4 key are automatically generated by the User and
Client Initialization script (p4gf_init.py). The repo-specific permission groups are automatically

Chapter 4. Setting up Users

Git Fusion Guide 23

generated by the Repo Initialization script (p4gf_init_repo.py). You can run these scripts any time
after Git Fusion has been initialized into your Perforce service with the Super User Initialization
script (p4gf_super_init.py). If p4gf_init.py has not been run, p4gf_init_repo.py will invoke it
automatically. If neither has been run, the first push or clone against the Git Fusion server invokes
them both automatically.

Permissions for git-fusion-user

The Super User Initialization script (p4gf_super_init.py) automatically creates the git-fusion-user
account, which performs all transactions with the Perforce service. The script grants admin privileges to
this account and inserts the git-fusion-user in the bottom row of the protections table. Consequently,
Git users are able to read (pull) and write (push) based on the permissions set for their corresponding
Perforce user and also the permissions assigned to the git-fusion-user.

Note that the git-fusion-user must be the owner of all global and repo-specific permission groups.

Permission validation logic

Git Fusion and the Perforce service validate pull and push requests using the following logic:

1. Prior to processing a pull or push request, the Perforce service verifies that the git-fusion-user has
the appropriate permissions for that action. If not, the Perforce service rejects the request.

2. Git Fusion verifies that the Git user maps to a Perforce user with appropriate pull or push
permission for that Git Fusion repo.

Git Fusion iterates through the repo-specific permission groups, the global permission groups, and
the default permission p4 key until it finds and returns the first matching permission.

3. If the request is a pull (git clone, git fetch, git pull), permission group membership or the
default permission p4 key value determines access to the repo; Git Fusion does not check the
Perforce protections table for the puller's read access to the files in the Perforce depot, unless an
administrator has enabled the option to require a read-access check for all pull transactions. For
more information, see Enforce Perforce read permissions on Git pull .

4. If the request is git push, the Git Fusion server verifies that both the Git author and the Git pusher
have Perforce write permissions set for the files in the depot. If either user does not, the Git Fusion
server rejects the push.

The requirement that the Git author have write permission is subject to some exceptions. The push
can succeed even if the Git author has no associated Perforce user -- or if the Git author's Perforce
user does not have write permission -- if one or more of the following criteria are met:

• The unknown_git user exists and has write permissions.

• The ignore-author-permissions property is set to Yes in the repo configuration file.

• The change-owner property is set to pusher in the repo configuration file.

For more information about unknown_git, ignore-author-permissions, and change-owner, see
Enable pushes when Git authors lack Perforce permissions

Chapter 4. Setting up Users

24 Git Fusion Guide

Effect of permissions on push requests

The following table shows how Git Fusion handles push requests, depending on permissions set for
the Git pusher, the Git author, and the unknown_git user, along with the ignore-author-permissions
property for the repo.

Note that this table does not display the effect of setting the change-owner property to pusher. This
is because that setting makes the other settings irrelevant: as long as the Git pusher has write access
to the correct locations in the Perforce depot, the change will be submitted successfully, with the
Git pusher as changelist owner and the author's, committer's, and pusher's names appearing in the
changelist description.

A dash (-) indicates that the column has no significance in a row where it appears; the value could be
Yes or No.

Table 4.1. Effect of permissions on push requests

Git
pusher
has write
access

P4USER
unknown_
git
exists

P4USER
unknown_
git has
write
access

Git
author is
P4USER

Git
author
has write
access

ignore-
author-
permissions
flag is set

Result

Yes - - Yes Yes - Changelists appear as
submitted by Git author's
Perforce user ID, and the
author's, committer's,
and pusher's names
appear in the changelist.

Yes - - Yes No Yes Changelists appear as
submitted by Git author's
Perforce user ID, and the
author's, committer's,
and pusher's names
appear in the changelist.

Yes Yes Yes No - - Changelists appear
as submitted by
unknown_git, and the
author's, committer's,
and pusher's names
appear in the changelist.

Yes Yes No No - Yes Changelists appear
as submitted by
unknown_git, and the
author's, committer's,
and pusher's names
appear in the changelist.

Chapter 4. Setting up Users

Git Fusion Guide 25

Git
pusher
has write
access

P4USER
unknown_
git
exists

P4USER
unknown_
git has
write
access

Git
author is
P4USER

Git
author
has write
access

ignore-
author-
permissions
flag is set

Result

Yes - - Yes No No Git Fusion prohibits the
push and displays the
following error message:

remote: import failed:
user Git Author's
P4USER not authorized
to submit file(s) in
git commit

Yes Yes No No - No Git Fusion prohibits the
push and displays the
following error message:

remote: import failed:
user unknown_git not
authorized to submit
file(s) in git commit

Yes No - No - - Git Fusion prohibits the
push and displays the
following error message:

remote: import failed:
user Git Author's
email not permitted
to commit

No - - - - - Git Fusion prohibits the
push and displays the
following error message:
remote: import failed:
user Pusher's P4USER
not authorized to
submit file(s) in git
commit

What do I have to do?
To enable Git authors to use Git Fusion, you must:

• Map your Git users to Perforce user accounts. See Mapping Git users to Perforce accounts

• Set up authentication. See Authenticating Git users

Chapter 4. Setting up Users

26 Git Fusion Guide

• Authorize your Git users using Perforce permissions. See Authorizing Git users

Mapping Git users to Perforce accounts
In a standard Git Fusion implementation, each Git author who pushes or pulls Git Fusion repos must
map to a Perforce account. By default, this mapping is made by comparing the email address of the Git
author to the email address associated with the Perforce account, or by looking for the email address in
a Git Fusion User Map file.

Note Configure the Git author's email address to be matched against the Perforce user
account's email address by issuing a git config command on the git client system.

To configure the email address for a single repository issue the following command
from the git repository workspace directory.

git config --local --replace-all user.email jo@example.com

To configure the email address for all repositories issue the following command.

git config --global --replace-all user.email jo@example.com

There are a number of options that enable alternatives to this default:

• The author-source property in the global and repo-specific repo configuration files enables you to
derive the Perforce account from the user.name field in the Git commit or the account portion (the
part that precedes @) of the Git author's email address.

For more information, see Table 5.1, “Global configuration file: keys and default
values” on page 38.

• Git authors who perform commits, but not pushes, do not necessarily need to map to Perforce
accounts.

You can extend the ability to author Git commits to Git users who do not have a Perforce account
by enabling the unknown_git Perforce user. For more information about how unknown_git affects Git
Fusion pushes, see Effect of permissions on push requests.

• If the Git author is not the same as the user who performs the Git push, you can set Git Fusion to
ignore the Git author's Perforce permissions entirely, relying instead on the Perforce permissions of
the Git user who performs the push.

Set the change-owner property in the global or repo-specific repo configuration file to pusher. For
more information, see Table 5.1, “Global configuration file: keys and default values” on page 38.

Verify email address match
Whether you are mapping Git users to existing Perforce accounts or adding new Perforce accounts,
the simplest way to map the users is to ensure that the email address associated with the Git user is
identical to the email address for their Perforce account.

Chapter 4. Setting up Users

Git Fusion Guide 27

Use the Git Fusion User Map
In most implementations, establishing the association between your Git users and their Perforce
accounts will involve no more than verifying that there is a one-to-one correspondence between the Git
account email address and the Perforce account email address. In some cases, however, you may want
to map multiple Git email accounts to a single Perforce user or use generic email accounts to mask
Perforce user names.

For those scenarios, use the Git Fusion User Map (p4gf_usermap), a text file of tuples that enables you
to do the following:

• Map multiple Git email accounts to a single Perforce user.

p4bob bill@sandimas.net "Bill Preston"
p4bob bpreston@corporate.com "Bill S. Preston, Esquire"

• Mask Perforce user names to generic names.

To mask a company’s employee list, run p4 users and edit the results to map each Perforce user
name to a generic email account and name. Add unique identifiers to the email address and name to
ensure that each commit maps to the correct user. Otherwise, commits are attributed only to the first
user in the list.

p4geddy user1@company.com "Company employee 1"
p4alex user2@company.com "Company employee 2"
p4neil user3@company.com "Company employee 3"

The map file is automatically created by the User and Client Initialization script (p4gf_init.py). The
script creates the file in Perforce at //.git-fusion/users/p4gf_usermap. You can run this script any
time after Git Fusion has been initialized into your Perforce service with the Super User Initialization
script (p4gf_super_init.py). If p4gf_init.py has not been run, p4gf_init_repo.py will invoke it
automatically. If neither has been run, the first push or clone against the Git Fusion server invokes
them both automatically.

Enable the unknown_git Perforce account
If you enable the Perforce user unknown_git, commits by Git authors who do not have a Perforce user
account can be pushed to Git Fusion repos. The changelist for the Perforce submit will record the
submitter as unknown_git. For more information about how Git Fusion handles Git authors without
Perforce user accounts, see Effect of permissions on push requests. Note that, regardless of whether or
not unknown_git exists, Git users who perform pushes must have a Perforce account.

To allow commits from Git users without a Perforce account:

1. Run p4 user to create a Perforce account for the user unknown_git.

2. Grant permissions to unknown_git using Git Fusion’s permission groups and Perforce’s p4 protect
table.

Chapter 4. Setting up Users

28 Git Fusion Guide

Authenticating Git users
This guide assumes that you want to use HTTP to authenticate Git users. If you prefer SSH
authentication, see Authenticating Git Users using SSH on page 123.

In HTTP authentication, a web server manages authentication for all git client requests. Instead of
directly running git-http-backend, the standard Common Gateway Interface (CGI) program that
implements server-side Git processes over HTTP, Git Fusion HTTP implementations run a Git Fusion
script, p4gf_http_server.py, that is invoked by CGI. The script does the following:

• Reads the Git Fusion environment to get the P4PORT and other options specified in the Git Fusion
environment configuration file.

• Reads the CGI environment variables to get the user, repo, and request.

• Checks that the user is authenticated by the web server.

• Checks that the user has Git Fusion authorization for the operation.

• If the operation is a push, assigns the associated Perforce user as the pusher.

• Proceeds with the translation of Git and Perforce commands.

• Invokes git-http-backend to manage the rest of the request.

configure-git-fusion.sh will optionally configure HTTPS authentication for you. Please see Git
Fusion release notes for requirements.

Note HTTPS authentication on Centos 7.x or RedHat 7.x is not supported.

Note configure-git-fusion.sh will configure HTTPS authentication with self-signed
SSL certificates.

• If verifiable certificates are available, put them

• on Ubuntu 12.04 or 14.04 in:
/etc/apache2/ssl/apache.crt and /etc/apache2/ssl/apache.key

• on CentOS 6.x or RedHat 6.x in:
/etc/httpd/ssl/apache.crt and /etc/httpd/ssl/apache.key

• If you decide to use self-signed certificates, Git users should not attempt to verify
certificates. Instruct your Git users to do one of the following:

• Tell Git never to verify SSL certificates:

$ git config --global http.sslVerify false

• Tell Git not to verify SSL certification in the current shell session only:

http://www.perforce.com/perforce/doc.current/user/git-fusion-notes.txt
http://www.perforce.com/perforce/doc.current/user/git-fusion-notes.txt

Chapter 4. Setting up Users

Git Fusion Guide 29

$ export GIT_SSL_NO_VERIFY=true

Note If you have attempted to configure HTTPS authentication for Git Fusion before, or if
you have a working HTTPS authentication, configure-git-fusion.sh will not fix or
re-configure your existing setup.

Use existing HTTPS configuration with a different Perforce Service.
If you have an existing working HTTPS configuration, but would like to use it with a different Perforce
Service, please follow these steps:

• On Ubuntu 12.04 or Ubuntu 14.04:

a. Stop the Apache web service.

service apache2 stop

b. Open the git-fusion-ssl or git-fusion-ssl.conf Apache site configuration file.

vi /etc/apache2/sites-available/git-fusion-ssl

Or

vi /etc/apache2/sites-available/git-fusion-ssl.conf

c. Edit the AddExternalAuth line to include the full hostname, port and P4CHARSET of your
Perforce service.

AddExternalAuth p4_auth "/opt/perforce/git-fusion/libexec/
p4auth.sh myperforceserver:port charset"

d. Save your changes and exit vi.

:wq

e. Start the Apache web service.

service apache2 start

• On CentOS 6.x or RedHat 6.x:

Chapter 4. Setting up Users

30 Git Fusion Guide

a. Stop the Apache web service.

service httpd stop

b. Open the git-fusion-ssl.conf Apache site configuration file.

vi /etc/httpd/conf.d/git-fusion-ssl.conf

c. Edit the AddExternalAuth line to include the full hostname, port, and P4CHARSET of your
Perforce service.

AddExternalAuth p4_auth "/opt/perforce/git-fusion/libexec/
p4auth.sh myperforceserver:port charset"

d. Save your changes and exit vi.

:wq

e. Start the Apache web service.

service httpd start

• Run configure-git-fusion.sh to re-configure Git Fusion to run against a different Perforce Service,
and select no when prompted to set up HTTPS configuration.

Validating your HTTP authentication setup

Note Before verifying HTTPS authentication make sure Git Fusion submit triggers are
updated on your Perforce Server.

There are multiple ways to validate that your HTTP setup succeeded:

• From the command line, run:

curl -k --user perforce_user:perforce_user_password https://mygitfusionserver/@info

• From a browser: go to https://mygitfusionserver/@info and log in as a Perforce user.

The page displays your server information:

Chapter 4. Setting up Users

Git Fusion Guide 31

Perforce - The Fast Software Configuration Management System.
Copyright 2014 Perforce Software. All rights reserved.
Rev. Git Fusion/2014.2/896875 (2014/07/23).
SHA1: 19786d97b2de1ace6e3694a6937aecf076455e89
Git: git version 1.8.2.3
Python: 3.3.2
P4Python: Rev. P4PYTHON/LINUX35X86_64/2014.1/895961 (2014.1/821990 API) (2014/07/21).
Server address: ssl:1666

• From a machine other than the Git Fusion server, clone a repo using HTTP authentication.

$ export GIT_SSL_NO_VERIFY=true
$ git clone https://mygitfusionserver/repo_name

The system prompts you to log in as a Perforce user.

Logs
The following logs can be helpful when you need to troubleshoot your HTTP configuration:

Ubuntu

• /var/log/apache2/error.log

• /var/log/apache2/gf-error.log

• /var/log/syslog (default Git Fusion log)

CentOS and Red Hat

• /var/log/httpd/error_log

• /var/log/httpd/gf-error.log

• /var/log/messages (default Git Fusion log)

• /var/log/audit/audit.log (for SELinux denials)

Authorizing Git users
To authorize Git users to perform transactions with Git Fusion, you use the p4 protect table, Git
Fusion repo-specific and global permission groups, and the default group p4 key.

For more information, see How do user permissions work?

To set up authorization:

• Assign Perforce permissions to Git Fusion users

Chapter 4. Setting up Users

32 Git Fusion Guide

• Create the permission groups and group p4 key

• Populate the permission groups and set the group default p4 key

• (Optional) Enable pushes when Git authors lack Perforce permissions

• (Optional) Enforce Perforce read permissions on Git pull

Assign Perforce permissions to Git Fusion users
Run p4 protect to verify or add write permissions for all Perforce users associated with the Git users
who will push changes to the Git Fusion repos.

To successfully perform a push, the Git pusher's Perforce user must have write permissions to the
affected files. The Git author must also have write permissions, unless you use the unknown_git
user, the ignore_author_permissions property, or the change-owner property to circumvent that
requirement (for more information, see Enable pushes when Git authors lack Perforce permissions).

Note As of the first 2014.1 patch, you can also configure a branch to be read-only,
regardless of a user's Perforce permissions. See Repo configuration file: key
definitions and samples.

Git Fusion does not check the p4 protect table for pull transactions, unless you enable the global
p4gf_config property to require a read-access check for all pull transactions (see Enforce Perforce read
permissions on Git pull). If you do not enable this option, you do not need to assign permissions in the
p4 protect table for users who are only performing pulls.

Create the permission groups and group p4 key
1. Run the User and Client Initialization script (p4gf_init.py).

The global groups and the default permission p4 key are automatically generated by the User and
Client Initialization script (p4gf_init.py). By default, the group owner is set as git-fusion-user.
Do not change the owner.

You can run this script any time after Git Fusion has been initialized in your Perforce service
with the Super User Initialization script (p4gf_super_init.py). If p4gf_init.py has not been run,
p4gf_init_repo.py will invoke it automatically. If neither has been run, the first push or clone
against this Git Fusion server will invoke them both automatically.

Important The default setting for the git-fusion-permission-group-default p4 key is
push. Change this setting to none or pull, using p4 key, if you want to prevent
authenticated users who are not members of a permission group from having
push access to all Git Fusion repos by default. Note that 0 (zero) has the same
effect as setting it to push.

If you set the p4 key to none, you must run p4gf_init_repo.py.

2. Run the Repo Initialization script (p4gf_init_repo.py) for each repo.

Chapter 4. Setting up Users

Git Fusion Guide 33

p4gf_init_repo.py repo_name

This script creates the Git Fusion push and pull permission groups for each repo you run it for. By
default, the group owner is set as git-fusion-user. Do not change the owner.

You can run this script any time after Git Fusion has been initialized in your Perforce service
with the Super User Initialization script (p4gf_super_init.py). If p4gf_init.py has not been run,
p4gf_init_repo.py will invoke it automatically. If neither has been run, the first push or clone
against this Git Fusion server will invoke them both automatically.

For more information about the p4gf_init_repo.py script and options, see the Script Command
Reference and Setting up Repos.

Populate the permission groups and set the group default p4 key
The way you use the Perforce permission groups and the group default p4 key depends on your needs.

Important By default, pull requests only check the p4 protects table to confirm that the
git-fusion-user has access to the Perforce depot location; the Git puller's read
access to the Perforce location is not checked unless you have enabled the global
p4gf_config property to require a read-access check for all pull transactions (see
Enforce Perforce read permissions on Git pull). Therefore, if you have not enabled
this option, you must do one of the following to prevent authenticated Git Fusion
users from pulling from a particular Perforce depot location, :

• Add all Git Fusion users to repo-specific pull and push permission groups and set
the git-fusion-permission-group-default p4 key to none.

• Use p4 protects to deny the git-fusion-user (and therefore all Git Fusion users)
access to that depot location.

The following are some options:

• Restrict access strictly by repo.

a. Enable users to push by adding them to the git-fusion-repo_name-push group for each repo
they need to push to. Membership in this group also grants pull permission. Ensure that these
group members also have write access to the Perforce depot locations associated with the repo
being pushed.

b. Enable users to pull by adding them to each git-fusion-repo_name-pull group they need to pull
from.

c. To prevent the global pull and push groups (git-fusion-pull and git-fusion-push) from
granting access to users who are not in a repo-specific group, keep these groups empty.

d. To prevent the git-fusion-permission-group-default p4 key from giving access to users who
are not in a repo-specific group, set it to none.

• Provide pull access to all repos, restricting push access.

Chapter 4. Setting up Users

34 Git Fusion Guide

a. Add users to the git-fusion-repo_name-push group for each repo they need to push to. Ensure
that these group members also have write access to the Perforce depot locations associated with
the repo being pushed.

b. Add all users to the global git-fusion-pull group or set the git-fusion-permission-group-
default p4 key to pull.

• Open push access to all Git Fusion repos for all authenticated users.

Add all users to the global git-fusion-push group or set the git-fusion-permission-group-default
p4 key to push. If you want to enable all members to pushes to all repos, ensure that these group
members also have write access to the Perforce depot locations associated with all Git Fusion repos.

Git Fusion creates global groups git-fusion-pull and git-fusion-push as part of its configuration
script, configure-git-fusion.sh. It creates repo groups git-fusion-repo_name-pull and git-
fusion-repo_name-push during the first push or pull for that repo.

For more information about setting group permissions and p4 keys in Perforce, see the Perforce System
Administrator’s Guide, Administering Perforce: Protections.

Enable pushes when Git authors lack Perforce permissions
The Git pusher is not always the same Git user as the author and committer of the changes being
pushed. While the pusher must always be a licensed Perforce user with write permission for the
depot locations being pushed to, you may not need all of your Git authors to be mapped to a licensed
Perforce user. Git Fusion provides the following tools to enable pushes when the Git author is not a
Perforce user:

• unknown_git user

Create this Perforce user and give it Perforce write permission for the depot locations associated
with all repos for which you want to allow pushes when the Git author has no Perforce account. If
your git-fusion-permission-group-default p4 key is set to pull or none, add unknown_git to the
global git-fusion-push group or the relevant repo-specific push groups.

When a Git push request is made, Git Fusion checks to see if the Git author has a mapped Perforce
account. If not, and unknown_git has write permissions, the push goes through. If the author exists,
the author is still recorded as the submitter in the Perforce changelist description. If the author does
not exist, the submitter is recorded as unknown_git.

• ignore-author-permissions property

Set this configuration property to Yes in a repo-specific configuration file to enable pushes to go
through even when the Git author does not have write (push) permissions for the depot locations
associated with the repo.

• change-owner property

Set this configuration property to pusher to make the changelist owner (submitter) the Git pusher
rather than the Git author (which is the default). Regardless of which user is set as the changelist
submitter, the full information from the Git commit is logged in the changelist description field,

Chapter 4. Setting up Users

Git Fusion Guide 35

including information about the Git committer, Git author, and Git pusher. You can set this
configuration property in the global configuration file or a repo-specific configuration file.

For more information about repo configuration files, see Setting up Repos

Enforce Perforce read permissions on Git pull
By default, Git Fusion checks Perforce permissions only for Git push transactions, relying on user
authentication to the Git Fusion server and membership in git-fusion-pull permission groups to
control Git pull (read) access to Git Fusion repos. However, if you want to enforce the permissions that
you have set up in the Perforce protects table on all Git pull transactions as well, you can do so by
setting the read-permission-check property in the global p4gf_config file. See Global configuration
file: keys and default values

36 Git Fusion Guide

Git Fusion Guide 37

Chapter 5 Setting up Repos
After you install Git Fusion, you must configure your repos.

This chapter discusses the following topics:

• “How does Git Fusion map Perforce depots to Git repos?” on page 37

• “Configuring global defaults for repos” on page 38

• “Configuring repos” on page 48

• “Initializing repos on the Git Fusion server” on page 55

• “Importing existing Git repos into Git Fusion” on page 55

• “Modifying repo configuration files safely” on page 58

• “Converting a lightweight branch into a fully-populated branch” on page 59

• “Enabling Git users to create fully-populated branches” on page 59

• “Working with Perforce streams” on page 64

• “Enabling stream import paths as Git submodules” on page 65

• “Adding preflight commits to reject pushes” on page 67

• “Limiting push size and disk usage” on page 69

• “Detecting Git copy/rename and translating to Perforce” on page 71

• “Disconnecting a Git Fusion repo from the Perforce service” on page 72

• “Deleting Git Fusion repos” on page 72

How does Git Fusion map Perforce depots to Git repos?
To populate a repo hosted by Git Fusion, a Perforce administrator creates a configuration file
(p4gf_config) that identifies the scope of Perforce depot data contained in the repo, along with
character encoding and branching directions. The map of the Perforce depot location to the Git repo
uses the same syntax as standard workspace (client) views, and is referred to in this guide as the view
or repo view. In the following repo view, the path to the left represents a Perforce depot location, and
the path to the right represents the Git repo work tree:

//depot/main/your_project/foo/... foo/...

In this case, the contents of Perforce depot directory //depot/main/your_project/foo/maps to the foo/
directory in the Git repo.

You can also represent the top level of the Git repo work tree with an ellipsis:

//depot/main/your_project/foo/... ...

Repo configuration files enable you to define multiple branch mappings. Git users can push commits
that have linear history or merged history, including two-parent merges and octopus (3+ parent-)
merges.

Chapter 5. Setting up Repos

38 Git Fusion Guide

Git Fusion uses two types of repo configuration files:

• The global configuration file, which is generated automatically and stored in the top level of the
//.git-fusion depot in Perforce.

You edit this file to provide global defaults, specifically character set preferences, branch
enablement, pre-flight commit scripts to enforce local policy, and author permissions requirements.

• Repo-specific configuration files, which the administrator creates from templates provided in the
OVA or distribution package, and which are stored in repo-specific directories in the //.git-fusion
depot in Perforce.

Any preferences that you do not specify in a repo-specific configuration file default to those in the
global configuration file.

Note You can choose not to create a repo configuration file, and instead map your repo to
Peforce depot locations by creating a Perforce workspace specification and letting
Git Fusion create the configuration file.

For more information, see Configuring repos.

Configuring global defaults for repos
The User and Client Initialization script (p4gf_init.py) creates the global configuration file and stores
it in Perforce at //.git-fusion/p4gf_config. You can edit any of its key values that you want repo
configuration files to inherit by default.

Note You can run this script any time after Git Fusion has been initialized in your
Perforce service with the Super User Initialization script (p4gf_super_init.py). If
p4gf_init.py has not been run, p4gf_init_repo.py will invoke it automatically.
If neither has been run, the first push or clone against this Git Fusion server will
invoke them both automatically.

View the file header comments or see the table below for details.

Table 5.1. Global configuration file: keys and default values

Section
Headers or
Keys

Definition Default
Value

Valid Values

[repo-
creation]

Section header for settings that
control how Git Fusion creates
new repos.

NA Enter the section header exactly as shown.

charset Defines the default Unicode
setting that Git Fusion applies
to new repos. This setting is
valid only when Git Fusion
interacts with a Unicode-
enabled Perforce server.

charset:
UTF-8

Any P4CHARSET value; run p4 help
charset for a list of valid values.

Chapter 5. Setting up Repos

Git Fusion Guide 39

Section
Headers or
Keys

Definition Default
Value

Valid Values

depot-
path-
repo-
creation-
enable

Allow Git users to create new
repos by pushing/pulling a git
url which specifies a Perforce
depot path. This is similar
to creating a repo from a p4
client.

no Yes equivalent (Yes, On, 1, True) or No
equivalent (No, Off, 0, False).

No: Automatic repo creation from a depot
path is disallowed.

Yes: Automatic repo creation from a depot
path is allowed. Under the following
conditions a new repo will be created:

• The repo name is formated as:
depotname/reponame/branchname

• depotname is a defined Perforce depot of
type='local'

• No p4gf_config nor p4 client
exists with the translated name:
depotname_0xS_reponame_0xS_branchname

If the conditions are not met, the push/
pull will fail with the expected error
message reporting the repo is not defined.

The newly created repo p4gf_config will
contain:

[@repo] description = Created from
 'depotname_0xS_reponame_0xS_branchname'

[Hzb5rdffTRGEsjotvTLoHg==]
git-branch-name = master
view = //depotname/reponame/
branchname/... ...

For a clone/pull situation, any files under
//depotname/repo/branch will be imported
into a new Git repo's master branch.

For a push situation, any files in the
pushed Git branch will be imported into a
new Perforce depot path.

depot-
path-
repo-

Restrict which authenticated
Git pushers are allowed to
create new repos when depot-
path-repo-creation-enable is
enabled.

Unset/
None

Unset/None: No restriction: all Git pushers
can create new repos from depot paths
if depot-path-repo-creation-enable is
enabled.

Chapter 5. Setting up Repos

40 Git Fusion Guide

Section
Headers or
Keys

Definition Default
Value

Valid Values

creation-
p4group

Set this to the name of an existing
Perforce p4 group to restrict this feature to
members of that group.

You can also use p4 protect to grant/
deny write permission to areas of the
Perforce depot.

[git-to-
perforce]

Section header for settings that
define how Git commits are
converted to Perforce changes
(submits).

NA Enter the section header exactly as shown.

change-
owner

Defines whether Git Fusion
assigns either the Git commit
author or the Git pusher as
the owner of a pushed change
(submit).

author Either author or pusher.

enable-
git-
branch-
creation

Defines whether Git Fusion
creates a new branch of
Perforce depot file hierarchy
for each copied branch of Git
workspace history, including
Git task branches as Git Fusion
anonymous branches. See Git
branch and merge: effect of
configuration key values for
more information about setting
this key.

Yes Yes equivalent (Yes, On, 1, True) or No
equivalent (No, Off, 0, False). When set
to No, Git Fusion prohibits the copy of any
new Git branches to Perforce that are not
defined in the repo’s configuration file,
and also translates Perforce file hierarchy
merges to Git as file edits, not as Git merge
commits. However, Git Fusion will still
copy Git merge commits between Perforce
branches that are defined in the repo's
configuration file.

To permit Git Fusion to create new
branches for Swarm reviews, you must
also enable enable-swarm-reviews.

enable-
swarm-
reviews

Permits branch creation for
Swarm reviews, even when
enable-git-branch-creation
is disabled. See Using Swarm
for code review for more
information about Swarm
reviews.

Yes Yes equivalent (Yes, On, 1, True) or
No equivalent (No, Off, 0, False). Yes
enables Git Fusion to create a new branch
of Perforce depot file hierarchy for each
new Swarm review and permits merge
commits in the review history, which
become anonymous branches in Perforce.

This setting overrides enable-git-branch-
creation and enable-git-merge-commits
for Swarm reviews.

Chapter 5. Setting up Repos

Git Fusion Guide 41

Section
Headers or
Keys

Definition Default
Value

Valid Values

No disables the creation of branches for
Swarm reviews, effectively disabling the
ability to push Swarm reviews from Git.

enable-
git-
merge-
commits

Defines whether Git Fusion
copies merge commits and
displays them in Perforce
as integrations between
Perforce branches. See Git
branch and merge: effect of
configuration key values for
more information about setting
this key.

Yes Yes equivalent (Yes, On, 1, True) or
No equivalent (No, Off, 0, False). No
means that Git Fusion rejects all merge
commits; integrations and merges between
Perforce branches must be performed
using Perforce.

enable-
git-
submodules

Defines whether Git Fusion
allows Git submodules to be
pushed to Perforce.

Yes Yes equivalent (Yes, On, 1, True) or
No equivalent (No, Off, 0, False). No
prevents Git submodules from being
introduced into Git Fusion. If any
submodules have already been pushed to
Git Fusion, they will be left intact and be
reproduced through clone/pull.

ignore-
author-
permissions

Defines whether Git Fusion
evaluates both the author's
and pusher's Perforce write
permissions during a push or
evaluates only the pusher's
permissions.

No Yes equivalent (Yes, On, 1, True) or No
equivalent (No, Off, 0, False). When
set to yes, Git Fusion evaluates only the
pusher’s permissions.

preflight-
commit

Enables you to trigger pre-
flight commit scripts that
enforce local policy for Git
pushes. This can be especially
useful if you have Perforce
submit triggers that could
reject a push and damage
the repository. For more
information about setting
this key, see Adding preflight
commits to reject pushes.

none Pass passes all pushes that Git Fusion
would otherwise permit, and Fail rejects
all pushes; these values are primarily
intended for temporarily disabling a
preflight commit. You can add a path to a
message as an argument to either of these
values.

To enable a preflight commit script, use
the syntax command argument, where
command is the path to the script.
Arguments can include Git Fusion and
Perforce trigger variables, as in the
following example:

preflight-commit = /home/git/
myscript.sh %repo% %sha1%

Chapter 5. Setting up Repos

42 Git Fusion Guide

Section
Headers or
Keys

Definition Default
Value

Valid Values

read-
permission-
check

Enables you to require that Git
clone, pull, or fetch requests
check the Perforce protections
table for the puller's read
permission on the files being
pulled.

group Group bypasses a Perforce permissions
check on pull transactions, relying
on membership in a Git Fusion pull
permission group for access to the files.
User enables a check that the puller's
Perforce user has Perforce read permission
for all files within the repo. For more
information, see Enforce Perforce read
permissions on Git pull

git-
merge-
avoidance-
after-
change-
num

If the Perforce service includes
any changelists submitted
by Git Fusion 13.2 or earlier,
you can prevent unnecessary
merge commits by setting this
key to the number of the last
changelist submitted before
your site upgraded to a later
version of Git Fusion.

p4
counter
change

Keep the default value, p4 counter
change, if you have no commits from
earlier instances of Git Fusion (13.2
or earlier). At the first initialization of
a Git Fusion repo, Git Fusion writes
the changelist number to the global
configuration file.

If you do have commits from Git Fusion
13.2 or earlier, provide the number of the
the last changelist submitted before your
site upgraded to a later version of Git
Fusion.

job-
lookup

Set the format for entering
Perforce jobs in Git commit
descriptions so that they are
recognized by Git Fusion
and appear in Perforce
changelists as fixes. By default,
job IDs whose string starts
with "job" (as in job123456)
are passed through to the
changelist description and job
field. Use this option if you
want Git Fusion to recognize
additional expressions, such as
JIRA issue IDs.

For more information
about including jobs in Git
commit descriptions, see
“Referencing Perforce jobs in a
commit” on page 84.

none Enter an expression that Git Fusion will
pass to p4 jobs -e to look for matching
jobs. You can add multiple fields, one per
line.

For example, let's say your job
specification includes the field
DTG_DTISSUE for JIRA issue IDs. If you
set job-lookup: DTG_DTISSUE={jobval},
then Git Fusion runs p4 jobs -e
DTG_DTISSUE=XY-1234 when it sees a Git
commit message that includes Jobs:
XY-1234.

You do not need to add a value for
standard Job IDs, stored in the job spec's
Job field, whose string starts with "job" (as
in job123456). These are passed through
by default.

For more information about the p4 jobs
command and the expressions that

Chapter 5. Setting up Repos

Git Fusion Guide 43

Section
Headers or
Keys

Definition Default
Value

Valid Values

you can pass using -e, see the Perforce
Command Reference.

depot-
branch-
creation-
enable

Allow Git users to create
new fully-populated depot
branches within Perforce.

For more information,
see “Enabling Git users
to create fully-populated
branches” on page 59

no no: Any new branches pushed by Git
users go into //.git-fusion/branches/ as
lightweight depot branches.

explicit: Push to special remote branch
reference depot-branch/branch_name.
This creates a new fully-populated depot
branch in Perforce. For example, git push
origin mybranch:depot-branch/research
creates a new Perforce depot branch under
//depot/myrepo/research/.

all: Each new Git branch pushed by Git
users goes into a new fully-populated
depot branch in Perforce. For example, git
push origin mybranch:research creates a
new Perforce depot branch under //depot/
myrepo/research/.

depot-
branch-
creation-
p4group

Restrict the authenticated Git
pushers who are allowed to
create new fully-populated
depot branches, if depot-
branch-creation-enable is
enabled.

For more information,
see “Enabling Git users
to create fully-populated
branches” on page 59

None Set to the name of an existing Perforce p4
group to restrict this feature to members of
that group.

Unset/None: No restriction. All Git pushers
can create new fully-populated depot
branches if depot-branch-creation-enable
is enabled. You can unset this property
and use the p4 protect command to fine-
tune Perforce user and group access to
specific areas of the Perforce depot.

depot-
branch-
creation-
depot-
path

Tell Git Fusion where to create
new fully-populated depot
branches, if depot-branch-
creation-enable is enabled.

Default path is //depot/
{repo}/{git_branch_name}

For more information,
see “Enabling Git users
to create fully-populated
branches” on page 59

(at left) Use the following string substitutions to
set the location of new branches:

{repo}: returns the name of the Git Fusion
repo receiving this push.

{git_branch_name} : returns the name of
the pushed branch reference, such as, for
example, myfeature in the command git
push master:depot-branch/myfeature.
Perforce path rules apply: @, #, %, * , //,
... are prohibited; / is permitted. This
substitution must be included somewhere

http://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_jobs.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_jobs.html

Chapter 5. Setting up Repos

44 Git Fusion Guide

Section
Headers or
Keys

Definition Default
Value

Valid Values

in the string, or it becomes impossible for
Git users to create more than one branch to
a single repo.

{user}: returns the Perforce user ID of the
pusher.

depot-
branch-
creation-
view

Set how the depot-path set
in depot-branch-creation-
depot-pathshould appear in
Git.

For more information,
see “Enabling Git users
to create fully-populated
branches” on page 59

... ... Enter a Perforce view specification that
maps Perforce depot paths (left side) to Git
work tree paths (right side). Perforce depot
paths are relative to the root set in depot-
branch-creation-depot-path.

The default "... ..." maps every file
under the depot-branch-creation-depot-
path root to Git. Right side paths must
match the right side for every other branch
already defined within a repo.

enable-
git-find-
copies

When Git reports a copy file
action, store that action in
Perforce as a p4 integ. Often
set in tandem with enable-
git-find-renames.

For more information,
see “Detecting Git copy/
rename and translating to
Perforce” on page 71

No No/Off/0%: Do not use Git's copy detection.
Treat all possible file copy actions as p4
add actions.

1%-100%: Use Git's copy detection.
Value passed to git diff-tree --find-
copies=n.

Git Fusion also adds --find-copies-
harder whenever adding --find-copies.

enable-
git-find-
renames

When Git reports a rename
(also called move) file action,
store that in Perforce as a p4
move. Often set in tandem with
enable-git-find-copies.

For more information,
see “Detecting Git copy/
rename and translating to
Perforce” on page 71

No No/Off/0%: Do not use Git's rename
detection. Treat all possible file rename
actions as independent p4 delete and p4
add actions.

1%-100%: Use Git's rename detection.
Value passed to git diff-tree --find-
renames=n.

[perforce-
to-git]

Section header for settings that
define how Perforce changes
(submits) are converted to Git
commits.

NA Enter the section header exactly as shown.

Chapter 5. Setting up Repos

Git Fusion Guide 45

Section
Headers or
Keys

Definition Default
Value

Valid Values

enable-
stream-
imports

Enables you to convert
Perforce stream import paths
to Git submodules when you
clone a Git Fusion repository.
If set to Yes, you must also set
either http-url or ssh-url.

For more information,
see “Enabling stream
import paths as Git
submodules” on page 65.

No Set to Yes equivalent (Yes, On, 1, True)
to enable Git Fusion to convert compatible
stream import paths to Git submodules.
Set to No equivalent (No, Off, 0, False)
to have import paths and their history
incorporated in the Git repo for the stream.

http-url The URL used by Git to clone
a repository from Git Fusion
over HTTP. This property is
required if you want to use
Perforce stream import paths
as git submodules and you use
HTTP(S).

none You can enter the full host and repo
name that you use to clone a repo from
Git Fusion, or you can include variable
placeholders that will be replaced by
values from the Git Fusion environment:

{host}: returns the fully qualified
hostname of the Git Fusion host computer,
as fetched by the Linux function
gethostname(). If this does not resolve to
a value that is recognized by the client (a
hostname that can be used to perform Git
commands against the Git Fusion repos),
then use the actual, full hostname rather
than the variable.

{repo}: returns the name of the Git Fusion
repository.

Example with only variable placeholders:
http://{host}/{repo}

Example with hostname provided:
http://p4gf.company.com/{repo}

For HTTPS installations, use the https://
prefix.

ssh-url The "URL" used by Git to clone
a repository from Git Fusion
using SSH. This property is
required if you want to use
Perforce stream import paths
as git submodules and you use
SSH.

none You can use the following variable
placeholders that will be replaced by
values from the Git Fusion environment:

{user}: returns the SSH user performing
the Git clone. If a user name is not found,
this value defaults to git.

Chapter 5. Setting up Repos

46 Git Fusion Guide

Section
Headers or
Keys

Definition Default
Value

Valid Values

{host}: returns the fully qualified
hostname of the Git Fusion host computer,
as fetched by the Linux function
gethostname(). If this does not resolve to
a value that is recognized by the client (a
hostname that can be used to perform Git
commands against the Git Fusion repos),
then use the actual, full hostname rather
than the variable.

{repo}: returns the name of the Git Fusion
repository.

Example with only variable placeholders:
{user}@{host}:{repo}

Example with hostname provided:
{user}@p4gf.company.com:{repo}

[authentication]Section header for settings that
define authentication options.

NA Enter the section header exactly as shown.

email-
case-
sensitivity

Defines whether Git Fusion
pays attention to case when
matching Git user email
addresses to Perforce user
account email addresses
during the authorization
check. For more information
about how Git Fusion uses
email addresses to authorize
users, see Mapping Git users to
Perforce accounts.

no Yes equivalent (Yes, On, 1, True) or
No equivalent (No, Off, 0, False). Yes
enforces email address case sensitivity.

author-
source

Defines the source that Git
Fusion uses to identify the
Perforce user associated
with a Git push. For more
information about how Git
Fusion associates Git authors
with Perforce users, see
Mapping Git users to Perforce
accounts.

git-
email

Use any one of the following values:

• git-email: Use the email address of the
Git author to look for a Perforce user
account with the same email address.
Git Fusion consults the p4gf_usermap file
first, and if that fails to produce a match,
it scans the Perforce user table.

• git-user: Use the user.name field in the
Git commit. This is the part of the author
field before the email address.

Chapter 5. Setting up Repos

Git Fusion Guide 47

Section
Headers or
Keys

Definition Default
Value

Valid Values

• git-email-account: Use the account
portion of the Git author's email
address. If the Git author's email value
is <samwise@the_shire.com>, Git Fusion
uses the Perforce account samwise.

You can also tell Git Fusion to iterate
through multiple source types until it
finds a matching Perforce account. Specify
the source types in order of precedence,
separated by commas. For example: git-
user, git-email-account, git-email.

[quota] Section header for settings that
define push limit options.

NA Enter the section header exactly as shown.

limit_space_mbNatural number representing
the number of megabytes
of disk space that can be
consumed by any single repo.
This value does not include
the spaced consumed on the
Perforce server.

0 If the value is zero or less, the limit is not
enforced.

limit_commits_receivedNatural number representing
the maximum number of
commits allowed in a single
push.

0 If the value is zero or less, the limit is not
enforced.

limit_files_receivedNatural number representing
the maximum number of files
allowed in a single push.

0 If the value is zero or less, the limit is not
enforced.

limit_megabytes_receivedNatural number representing
the maximum number of
megabytes allowed in a single
push.

0 If the value is zero or less, the limit is not
enforced.

The table below shows how the values you select for the enable-git-branch-creation and enable-
git-merge-commits keys affect Git users' ability to perform branches and merges. Inform your Git
users if you implement Scenarios 2, 3, or 4, because these scenarios will restrict their normal use of
Git's branch and merge functionality.

Chapter 5. Setting up Repos

48 Git Fusion Guide

Table 5.2. Git branch and merge: effect of configuration key values

Scenario enable-
git-branch-
creation Value

enable-git-
merge-commits
Value

Result

1 Yes Yes This scenario has the least impact on Git
users' usual workflow. Any Git user with a
corresponding valid Perforce user (either his or
her own user or unknown_git) can create and push
branches and merge commits as they normally do
in Git.

2 No No This is the most restrictive scenario for Git users.
They cannot push any new Git branches that are
not expressly defined in a repo's configuration file,
and also must ensure that they push commits that
have a linear history.

3 Yes No This scenario has a moderate impact on Git users.
They can push new Git branches to Perforce but
they must ensure that all commits have a linear
history. If they attempt to push a merge commit,
Git Fusion displays the error message: remote:
Merge commits are not enabled for this repo.
Only Perforce users can perform merge and
integration work using a Perforce workspace.

4 No Yes This scenario has a moderate impact on Git users.
They can push merge commits between Perforce
branches that are defined in a repo's configuration
file, but cannot push new Git branches to Perforce.
If they attempt to push a new Git branch, Git
Fusion displays the error message: remote: Git
branch creation is prohibited for this repo.

Configuring repos
To specify the parts of a Perforce depot that are accessible to a Git Fusion repo, you can use any of the
following:

• “Configure repos with a repo configuration file (p4gf_config)” on page 49

Repo configuration files let you define an unlimited number of branches, and repo-specific options
including Unicode character sets.

• “Configure repos from a Perforce workspace” on page 52

This approach can be convenient if you already have workspace definitions that you want to use as
Git repos. You use an existing a workspace or create a new one, and Git Fusion generates the repo
configuration file using the workspace view. The global configuration file file provides the default

Chapter 5. Setting up Repos

Git Fusion Guide 49

options such as branching preferences and charset definitions. This approach does not allow you to
define branches when the configuration file is first created, but you can edit the file later to set repo-
specific options and add branch definitions (within certain limitations).

• “Use a Perforce depot path in a Git remote URL” on page 54

If enabled, this approach lets some or all Git users define repo configurations by simply supplying
a Perforce depot path as part of the remote URL to git clone, pull, or push commands. Git Fusion
will generate the repo configuration file using the path supplied. The global configuration file file
provides the default options such as branching preferences and charset definitions. This approach
does not allow you to define branches when the configuration file is first created, but you can edit
the file later to set repo-specific options and add branch definitions (within certain limitations).

Important Git Fusion does not automatically handle changes to repo definitions throughout
the system. Once a repo has been cloned from Git Fusion, only limited
modifications should be made to the repo configuration file. For more information
about how to modify repos safely, see Modifying repo configuration files safely.

Configure repos with a repo configuration file (p4gf_config)
1. Copy the repo configuration file template, p4gf_config.repo.txt, to create a new config file.

If you installed Git Fusion using the OVA or operating system specific packages, the template is in
the /opt/perforce/git-fusion/libexec directory. If you installed using the distribution tarball,
the location is the directory where you elected to install Git Fusion.

2. Enter the key values and Perforce-to-Git mapping (view) for your repo.

Ensure that the Git work tree path notation on the view field's right side matches for all branches.

Note Views can include overlay and exclusionary mappings, but note that the Git
Fusion submit triggers (which enable atomic pushes) ignore exclusionary
mappings, because the scope of submit triggers is limited to areas that are
potentially of interest to Git Fusion. Exclusionary mappings are ignored for
the calculation of areas of interest, because one repo's exclusions could conflict
with another's inclusion.

Note If in a given repo configuration, there is Perforce path that is mapped to two or
more Git branches, then that path is a "shared" path and thus read-only from
the Git perspective.

For detailed information about the repo configuration keys and view syntax, see the repo
configuration file’s detailed header comments and Repo configuration file: key definitions and
samples.

3. Submit the repo configuration file to Perforce.

Save the file as p4gf_config.

Submit the file to //.git-fusion/repos/repo_name/p4gf_config

Chapter 5. Setting up Repos

50 Git Fusion Guide

The repo_name can include the forward slash (/) and colon (:) characters, but these characters must
be encoded as _0xS_ and _0xC_

Note For example: repo name foo/bar:zee is created by submitting the following
p4gf_config

//.git-fusion/repos/foo_0xS_bar_0xC_zee/p4gf_config

4. Initialize (populate) the repo.

See Initializing repos on the Git Fusion server

Repo configuration file: key definitions and samples

A repo-specific configuration file can include (and override) any property included in the global
configuration file, in addition to the following.

Table 5.3. Repo-specific configuration files: keys and default values

Section
Headers or
Keys

Definition Default Value Valid Values

[@repo] Section header for the repo
configuration file. You
can override any global
configuration property by
adding it to this section.

NA Enter the section header exactly
as shown.

description Repo description returned by
the @list command

NA Enter a concise repo
description.

[git-fusion-
branch-id]

Section header to define a
unique Git Fusion branch.

NA Each branch must have a
unique ID in the form of an
alphanumeric string. Do not edit
this value after you clone the repo.

git-branch-
name

Defines a name specified in a
local repo for a Git branch.

NA A valid Git branch name. Do
not edit this value after you clone
the repo.

view Defines a Perforce workspace
view mapping that maps
Perforce depot paths (left side)
to Git work tree paths (right
side).

NA Correctly formed mapping
syntax; must not include any
Perforce stream or spec depots,
and all depot paths on the right
side must match exactly across
all branch definitions. You can
add and remove only certain types
of Perforce branches from this
view after you clone the repo. See

Chapter 5. Setting up Repos

Git Fusion Guide 51

Section
Headers or
Keys

Definition Default Value Valid Values

Modifying repo configuration
files safely

stream Defines a Perforce stream that
maps to the Git branch.

NA Provide a stream
name using the syntax
//streamdepot/mystream. A Git
Fusion branch can be defined as
a view or a stream but not both.
If your branch is defined as
stream, it can include only one
stream. For more information,
see Working with Perforce
streams.

read-only Prohibit git pushes that
introduce commits to the
branch.

No Yes equivalent (Yes, On, 1,
True) or No equivalent (No,
Off, 0, False). Yes makes the
branch read-only and prevents
users from committing changes.

Sample repo configuration files

Here are two examples of repo configuration files:

Important The Git work tree path notation on the view field's right side must match exactly
for all branches defined in a repo configuration file to enable merge commits.
Otherwise, Git Fusion will fail during a merge between the branches and report the
error file(s) not in client view.

Example 1:

[@repo]
description = A repo configuration file that maps two branches, master and release, into the top
 level of the Git repo.

[master]
git-branch-name = master
view = //depot/main/your_project/... ...

[release]
git-branch-name = release
view = //depot/release/your_project/... ...

Chapter 5. Setting up Repos

52 Git Fusion Guide

Example 2:

[@repo]
description = A repo configuration file that maps portions of two branches, master and release,
 into subdirectories in the Git repo
charset = utf8

[master]
git-branch-name = master
view = //depot/main/your_project/foo1/... foo1/...
 //depot/main/your_project/bar1/... bar1/...

[release]
git-branch-name = release
view = //depot/release/your_project/foo1/... foo1/...
 //depot/release/your_project/bar1/... bar1/...

Configure repos from a Perforce workspace

You can use a Perforce workspace (client) to map a single fully-populated Perforce branch to a Git
Fusion repo and let Git Fusion generate the repo configuration file for you. The global configuration
file file provides the default options such as branching preferences and charset definitions. This
approach does not allow you to define branches when the configuration file is first created, but if your
global default is to enable branching, you can edit the file later to add branch definitions. For more
information, see Modifying repo configuration files safely.

This approach can be convenient if you already have workspace definitions that you want to use as Git
repos.

1. Create a Perforce workspace.

The workspace name becomes the repo name.

Note that the Client name can include the forward slash (/) and colon (:) characters. However
slash (/) must be encoded as _0xS_. The resulting internal Git Fusion repo name will also encode
the colon (:) as _0xC_. The public git repo name will retain any slash (/) and colon (:) characters.

Note For example: Client foo_0xS_bar:zee will result in the internal repo
p4gf_config //.git-fusion/repos/foo_0xS_bar_0xC_zee/p4gf_config.

The public git url will use the repo name foo/bar:zee.

Use the View field to define a single branch mapping. The mappings determine what portions of
the Perforce depot are translated into Git repo branches and vice versa.

You can create simple and complex mappings that have the following:

• Exclusionary and overlay mappings.

Chapter 5. Setting up Repos

Git Fusion Guide 53

• Different permissions for each depot path; for example, one depot path that includes files
with read and write permissions, and another depot path that includes files with only read
permissions.

The example below shows a workspace view with the key fields defined: Client, Owner, Root, and
View. Note that only the Client and View fields are meaningful to Git Fusion.

Client: project_repo
Owner: p4bob
Root: /home/bob

View that maps into the top level of the Git repo
View:
 //depot/main/your_project/... //project_repo/...

View that maps into a sub directory in the Git repo
View:
 //depot/main/your_project/foo1/... //project_repo/foo1/...

2. Save the workspace.

3. Initialize (populate) the repo using either of these methods:

• If you issue a Git command like git clone using the Perforce workspace name for the repo
name, Git Fusion will automatically initialize the new repo, and then pass it off to Git for
transfer to the Git client.

$ git clone https://gfserver/Jam
Cloning into 'Jam'...
Perforce: Copying files: 84
Perforce: 100% (23/23) Copying changelists...
Perforce: Submitting new Git commit objects to Perforce: 24
remote: Counting objects: 125, done.
remote: Compressing objects: 100% (69/69), done.
remote: Total 125 (delta 51), reused 89 (delta 33)
Receiving objects: 100% (125/125), 174.80 KiB, done.
Resolving deltas: 100% (51/51), done.
$ cd Jam

• Administrators can also initialize the new repo explicitly. This is often useful for large
workspace views that take some time to be turned into Git repos. See Initializing repos on
the Git Fusion server.

Git Fusion uses the workspace view only once, using defaults from the global configuration file, to
create a p4gf_config file for the repo that it automatically stores in //.git-fusion/repos/repo_name/
p4gf_config. Because Git Fusion only uses the workspace view once to generate a p4gf_config file,
you can delete it from the Perforce depot after repo initialization.

For more information about how to define Perforce workspace views, see the P4 User's Guide,
"Configuring P4."

http://www.perforce.com/perforce/doc.current/manuals/p4guide/02_config.html#1073398

Chapter 5. Setting up Repos

54 Git Fusion Guide

To delete invalid or outdated repo views, see p4gf_delete_repo.py.

Use a Perforce depot path in a Git remote URL
If enabled, this approach lets some or all Git users define repo configurations by simply supplying a
Perforce depot path as part of the remote URL to git clone, pull, or push commands. Git repos can be
created from existing Perforce depot paths, and Perforce depot paths can be populated from existing
Git repos.

• You can instruct Git Fusion to create a new Git repo simply by running git clone, or git pull with
a URL that matches an existing Perforce depot path. For example, if your Perforce depot is organized
with the main branch of the Jam project in //depot/Jam/MAIN, then you can quickly create a Git repo
for that branch of the project by supplying the depot path to git clone:

$ git clone https://gfserver/depot/Jam/MAIN
Cloning into 'MAIN'...
remote: Counting objects: 2070, done.
remote: Compressing objects: 100% (1379/1379), done.
remote: Total 2070 (delta 1218), reused 1074 (delta 325)
Receiving objects: 100% (2070/2070), 600.52 KiB, done.
Resolving deltas: 100% (1218/1218), done.
$
$ cd MAIN
$ git branch
* master
$ ls
src
$
$ p4 dirs //depot/Jam/MAIN
//depot/Jam/MAIN/src

• The depot path supplied will be automatically mapped to Git branch master, with all files and
history for that path immediately available in the new repo.

• You can also push an existing Git repo's branch to a particular Perforce depot path:

$ cd myrepo
$ git push https://gfserver/depot/myproject/main master
$
$ p4 dirs //depot/*/*
//depot/myproject/main

• Git Fusion uses the supplied Perforce depot path, along with defaults from the global configuration
file, to create a p4gf_config file for the repo that it automatically stores in:

//.git-fusion/repos/depotname_0xS_reponame_0xS_branchname/p4gf_config.

• While the above examples use HTTPS, SSH URLs are also supported.

• This functionality must be enabled with the Git Fusion configuration option, depot-path-repo-
creation-enable.

Chapter 5. Setting up Repos

Git Fusion Guide 55

• You can restrict this functionality to a specific group of Perforce users by setting depot-path-repo-
creation-p4group equal to a Perforce group name.

• Stream depots are not supported.

• Like most options, these can be set in either the global or repo config file. For detailed usage
of the above configuration options, see Table 5.1, “Global configuration file: keys and default
values” on page 38.

Initializing repos on the Git Fusion server
Once you have created a repo configuration file or workspace that maps Perforce depot locations to
your repo, you or your Git users can perform the initial clone that populates the Git Fusion server:

• If you, the administrator, perform the initial clone, you can absorb the time cost of initializing large
repos and fix any repo configuration issues.

The time the initial clone takes to complete depends on many factors, like the amount of Perforce
data Git Fusion must translate into Git data and the amount of network traffic. For large depots, the
initial clone can take several hours.

• If you choose to let your Git users initialize new repos, simply distribute the Git repo URLs to your
users; the first git clone transaction will populate the repo on the Git Fusion server.

For administrators, the Repo Initialization script (p4gf_init_repo.py) provides a convenient means of
initializing new repos.

p4gf_init_repo.py --start n repo_name

Use --start n to copy history as of a particular changelist. The repo_name can be either the
subdirectory name in //.git-fusion/repos/repo_name/p4gf_config or the name of a workspace.

The example below initializes a repo named "winston" with history starting at changelist 144656:

$ p4gf_init_repo.py --start 144656 winston

For information about additional options available when you run this script, see the Script Command
Reference.

Importing existing Git repos into Git Fusion
There are three approaches to importing existing Git repos into Git Fusion. All result in Git branches
being available to Perforce users.

Two approaches can generally be executed by end users without administrative intervention (beyond
initial configuration). These methods offer simplified steps when only a single branch needs to be
imported.

Chapter 5. Setting up Repos

56 Git Fusion Guide

• Use Git itself to push a single branch of a repo to a specified Perforce depot path by supplying a
Perforce depot path as part of the remote URL to git push. This method is not enabled by default. It
may be enabled by an administrator for some or all Git users. For information and examples for how
to use this method, see “Use a Perforce depot path in a Git remote URL” on page 54.

• Create a Perforce workspace (client) to map a single branch of a repo to a specified Perforce depot
path, then run git push using the workspace name as the repo name. For information and examples
for how to create a Perforce workspace for this purpose, see “Configure repos from a Perforce
workspace” on page 52. Once you've created a workspace, see “Importing an existing repo using
a Perforce workspace or repo configuration file” on page 57.

A third approach generally requires an administrator, but offers the most configuration options.

• Define a new repo configuration file (p4gf_config). This approach allows importing multiple
Git branches into Git Fusion. To use this approach, follow the example steps in “Creating a repo
configuration file for import of existing repo” on page 56 and “Importing an existing repo using
a Perforce workspace or repo configuration file” on page 57

Creating a repo configuration file for import of existing repo
The following example is a repo configuration file with a view mapping that defines a repo that
does not currently exist in Perforce. It should be submitted to //.git-fusion/repos/git_project/
p4gf_config. Based on this path, the Git Fusion repo will be named git_project. When the Git user
pushes their project's master branch to this Git Fusion repo for the first time, Git Fusion will populate
the Perforce depot at //depot/vperry/git_project/. When the Git user pushes other branches, Git
Fusion will store changes on lightweight branches, under //.git-fusion/branches/.

Additional notes about creating such repo configuration files:

• The right-side view mapping should contain only a workspace root or an ellipsis (…). Do not specify
any subdirectories. Git Fusion will create the appropriate subdirectories in the Perforce depot upon
initialization.

• If the existing Git repo contains multiple branches, you have the option to map each one to a
Perforce depot path, although it is not required.

Assuming that you have configured your repo configuration file to allow for pushing branches,
any unmapped branches that are pushed to Git Fusion will automatically be stored on lightweight
branches, under //.git-fusion/branches/. At least one branch (for example, master) should be
mapped to a Perforce depot path.

[@repo]
description = Git Fusion repo created from git_project
charset = utf8
enable-git-branch-creation = yes
ignore-author-permissions = no

[master]
git-branch-name = master
view = //depot/vperry/git_project/... ...

Chapter 5. Setting up Repos

Git Fusion Guide 57

For more information about configuring repos, see “Configuring repos” on page 48.

Importing an existing repo using a Perforce workspace or repo
configuration file
1. Push the original existing Git repo to Git Fusion.

a. Clone the existing repo and cd into the resulting local repo directory.

b. Retain a link to the upstream repo to enable updates.

git remote rename origin upstream

c. Ensure that you check out all branches of the repo locally.

git checkout -b branch upstream/branch

d. Establish remote tracking between the local repo and Git Fusion.

Note For the repo_name, subtitute either a workspace name if using a Perforce
workspace, or the p4gf_config parent folder name if you defined a new
repo configuration file (git_project in the example above).

git remote add origin https://Git_Fusion_Server/repo_name

Note For really huge repos avoid an HTML timeout by configuring the remote
origin using the SSH protocol.

git remote add origin unixacct@Git_Fusion_Server:repo_name

For more information about SSH authentication , see Authenticating Git
Users using SSH on page 123.

e. Push the local repo's branches to Git Fusion individually, or all at once as in the command
below.

git push -u --all origin

2. Verify the imported data.

a. Log in to the Git Fusion server and remove the repo_name directory from the P4GF_HOME/views
directory (if you installed using the configure-git-fusion.sh script and accepted all defaults,
this would be ~git/.git-fusion/views/repo_name).

This step forces Git Fusion to rebuild the Git repo from data stored in Perforce, and is only
necessary during this verification.

b. Clone the repo back from Git Fusion.

Be sure to save the repo in a different directory with a different name than the original local
repo.

Chapter 5. Setting up Repos

58 Git Fusion Guide

git clone unixacct@Git_Fusion_Server:repo_name newdir

c. Run git log --stat > log.new in the clone you created in the previous step.

d. Run git log --stat > log.orig in your original local repo.

e. Compare the two logs for any data differences.

If the logs do not match, email the data to Perforce Support (<support@perforce.com>) for
assistance.

Modifying repo configuration files safely
Once a Git repo has been cloned, any changes to that repo configuration can invalidate its history in
ways that prevent an identical rebuild of the Git repo after deleting it.

The following changes, however, are safe:

• Add a Perforce branch that has no impact on Git history; that is, a Perforce branch that does not
merge into a Perforce branch already mapped to a Git branch.

You can add a Perforce branch that merges into a Perforce branch that is already mapped to a Git
branch, as long as you do not delete the Git repo and try to recreate it.

The history reflected in the Git repo will not match what is in Perforce: any merges into the pre-
existing branch will have been recorded as edits. That said, the content in the Git repo will match
what is in Perforce, and Git Fusion will record any future merge actions correctly. If you delete the
Git repo (using p4gf_delete_repo.py) and then recreate it using the repo configuration, then these
edit commits will become merge commits and result in a new Git repo that is not compatible with
the previous version.

Example Let's say you have //depot/main and //depot/dev. There is history between the
two, with changes originating in //depot/dev and merges into //depot/main. If
you map //depot/main to master and initialize a new Git Fusion repo, then the
merges from //depot/dev to //depot/main are recorded as edits in Git history. If
you go on to add a new mapping for //depot/dev, you will get Git history for //
depot/dev but it will not change those edit commits in any way. If you delete and
recreate this Git repo, it will be incompatible with the original generated Git repo,
because the edit commits will be regenerated as merge commits.

• Remove a Perforce branch that touches no other Git history; that is, a Perforce branch that never
merges into another surviving branch.

A Perforce branch that merges into any surviving branch is a parent to Git merge commits.
Removing it would break history: a rebuild of history would convert merges into edits.

Note that a push from a clone of this repo that contains additional commits on the deleted branch
would recreate the Perforce branch as a lightweight branch.

Any other edits to a repo configuration file -- including changes to branch mappings -- require that you
create a new repo configuration, distribute the new repo to the affected users, and delete the original.

Chapter 5. Setting up Repos

Git Fusion Guide 59

Ensure that all affected Git users push any pending commits to the original repo before you create its
replacement.

Important Whenever you remove a branch from a repo configuration file, you should also run
p4gf_submit_trigger.py --rebuild-all-gf myperforceserver:port [super].

Converting a lightweight branch into a fully-populated branch
When you push a new Git branch that is not mapped to a Perforce branch in a repo configuration file,
that new branch is submitted to Perforce as a lightweight branch, under //.git-fusion/branches/.
For efficiency, such branches only contain the minimal set of integrations and changes required to
represent the pushed history. These branches are transparent to Git users, but their sparse nature may
hinder collaboration with Perforce users.

A Git branch that is mapped to a Perforce branch in a repo configuration file will be fully-populated at
the depot path specified. Again, the choice of branch treatment is transparent to Git users. When Git
users and Perforce users need to share a persistent branch, it is ususally best to use a fully-populated
branch. This can be accomplished in one of two ways:

• Use Git to merge changes from an unmapped branch (lightweight in Perforce) to a mapped branch
(fully-populated in Perforce), and push.

• Convert a lightweight branch to a fully-populated branch, using the steps below.

1. Add the new, as-yet unpopulated target branch to the repo's p4gf_config file.

[my_new_branch]
git-branch-name : my_new_branch
view : //depot/my_project/my_new_branch/... ...

2. In Git, create the new branch, pointing to the branch reference where you want to start commit
history.

$ git branch my_new_branch <branch ref or commit sha1>

3. Push the new branch through Git Fusion to Perforce.

$ git push origin my_new_branch

The branch is now fully populated in Perforce, and both Perforce and Git users can work in it.

Enabling Git users to create fully-populated branches
As discussed in “Converting a lightweight branch into a fully-populated branch” on page 59, fully-
populated Perforce branches are the best choice when Git and Perforce users need to collaborate on the
same branch.

Chapter 5. Setting up Repos

60 Git Fusion Guide

An administrator or user with access may add a new branch mapping to the repo-specific p4gf_config
file, so that when a Git user pushes to the new branch, it is fully-populated in Perforce. For more
information on adding new branches, see “Modifying repo configuration files safely” on page 58

The two approaches below let Git users push fully-populated branches without administrative
intervention (apart from initial configuration).

Create a fully-populated branch only when a Git user explictly chooses to do
so
You can enable Git users to push some branches as fully-populated branches, for sharing with Perforce
users, while letting others be pushed as lightweight branches:

1. Enable depot branch creation in the global or repo-specific p4gf_config file with the explicit
value.

Use the global configuration file to enable this option for all repos:

[git-to-perforce]
depot-branch-creation-enable = explicit

Alternatively, use a repo-specific configuration file to enable it repo-by-repo:

[@repo]
depot-branch-creation-enable = explicit

For additional configuration options, see the depot-branch-creation-* keys in Table 5.1, “Global
configuration file: keys and default values” on page 38

2. In Git, create a new branch.

$ git checkout -b new_git_branch

3. Explicitly push the new branch using the following syntax to create and map a fully-populated
branch in Perforce:

$ git push origin new_git_branch:depot-branch/new_p4_branch

This creates a new fully-populated branch in the Perforce depot and maps it to the Git branch,
new_git_branch:

//depot/my_project/new_p4_branch/...

In the command above, depot-branch is a keyword which instructs Git Fusion to create a new
fully populated branch and map it to the Git branch being pushed. Similar to pushing a Swarm

Chapter 5. Setting up Repos

Git Fusion Guide 61

review, the remote branch reference depot-branch/new_p4_branch is never created on the remote
Git Fusion server. Instead, a new remote reference is created for new_git_branch. After using this
method, it is necessary to fetch the new remote reference, and remove the non-existent depot-
branch reference. This can be accomplished in one step:

4. Fetch the newly created Git branch reference, and remove local remnants from the previous
operation:

$ git fetch --prune origin

Note A typical git push will continue to create a lightweight branch in Perforce. In
this case, no pruning is necessary.

5. Review the repo-specific p4gf_config file to see the new branch mapping created by Git
Fusion.

Create a fully populated branch every time a Git user pushes a new branch
If you want Perforce users to be able to instantly use all new branches pushed by Git users, you can
elect to create fully-populated branches in Perforce whenever Git users push a new branch.

1. Enable depot branch creation in the global or repo-specific p4gf_config file with the all value.

Use the global configuration file to enable this option for all repos or a repo-specific configuration
file to enable it repo-by-repo.

[git-to-perforce]
depot-branch-creation-enable = all

For additional configuration options, see the depot-branch-creation-* keys in Table 5.1, “Global
configuration file: keys and default values” on page 38

2. In Git, create a new branch.

$ git checkout -b new_branch

3. Push the new branch as usual to create a fully-populated branch in Perforce:

$ git push [--set-upstream] origin new_branch

This creates a new fully-populated branch in the Perforce depot and maps it to the Git branch,
new_branch:

//depot/my_project/new_branch/...

Chapter 5. Setting up Repos

62 Git Fusion Guide

The optional --set-upstream connects local branch reference new_branch to remote new_branch to
reduce the amount of typing required for future pulls or pushes.

A push to a branch name that already exists must be a fast-forward push, the same as pushes to
master or any other branch. Otherwise the push is rejected. A Git user who unknowningly pushes
a branch name that already exists must choose a different name, or rebase their new history on top
of the existing branch’s head.

Note Lightweight branches may still be created where needed for accurate
representation and recreation of Git merge commits.

4. Review the repo-specific p4gf_config file to see the new branch mapping created by Git
Fusion.

Controlling depot location of pushed branches

Git Fusion uses depot-branch-creation-depot-path to determine where within Perforce to create the
new branch. Git Fusion takes the value for this setting, performs string substitutions, and uses the
result as the root to hold the pushed files.

There are three string substitutions:

• {repo}: The name of the Git Fusion repo receiving this push.

• {git_branch_name}: The name of the pushed branch reference.

• {user}: The Perforce user ID of the pusher.

Examples

Example: project/branch hierarchy in Perforce

The common and default path omits user, uses the project name as the container for all branches on
that project:

depot-branch-creation-depot-path = //depot/{repo}/{git_branch_name}

dirk@syrinx$ git push https://syrinx/project task:dirks_task
^^^^ ^^^^^^^ ^^^^^^^^^^^
user repo git_branch_name

... creates ...

[pjfda2uh4rgzdixseowlk4zfki]
git-branch-name = dirks_task
view = //depot/project/dirks_task/... ...
 ^^^^^^^ ^^^^^^^^^^
 repo git_branch_name

Chapter 5. Setting up Repos

Git Fusion Guide 63

Example: Give each developer their own area in the Perforce depot.

Let each Git user have their own area under //dev/{user}/... to hold their own branches:

depot-branch-creation-depot-path = //dev/{user}/{repo}/{git_branch_name}

dirk@syrinx$ git push https://syrinx/project task:dirks_task
^^^^ ^^^^^^^ ^^^^^^^^^^^
user repo git_branch_name

... creates ...

[bzkrk5p3yvcjzjxo6ikfajzoaq]
git-branch-name = dirks_task
view = //dev/dirk/project/dirks_task/... ...
 ^^^^ ^^^^^^^ ^^^^^^^^^^
 user repo git_branch_name

Creates a new branch dirks_task in the Git Fusion repo, visible to all Git users, and mapped to
Perforce location //dev/dirk/project/dirks_task/....

Example: {user} without {git_branch_name}

It is possible, but highly unlikely, that you want depot paths to include the user who created them, but
not the Git branch name:

depot-branch-creation-depot-path = //depot/{repo}/{user}

dirk@syrinx$ git push https://syrinx/project task:dirks_task
^^^^ ^^^^^^^ ^^^^^^^^^^^
user repo git_branch_name

... creates ...

[tk5kurabcfeovhkadywgdxv6xq]
git-branch-name = dirks_task
view = //depot/project/dirk/... ...
 ^^^^^^^ ^^^^
 repo git_branch_name

The lack of {git_branch_name} limits each user to a single branch per repo, because any attempt
to create a second branch will map to the same path as the first, and Git Fusion will reject the push
because Perforce already has files on that path:

Chapter 5. Setting up Repos

64 Git Fusion Guide

$ git push https://syrinx/project task2:dirks_task2
Username for 'https://syrinx': dirk
Password for 'https://dirk@syrinx':
Counting objects: 3, done.
Writing objects: 100% (3/3), 226 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
remote: Perforce: Cannot create new depot branch for ref 'refs/heads/dirks_task2':
 Git depot root '//depot/project/dirk' already contains Perforce changelists.
To https://syrinx/project
 ! [remote rejected] task2 -> dirks_task2 (pre-receive hook declined)
error: failed to push some refs to 'https://syrinx/project'

Working with Perforce streams
You can expose a Perforce stream as a branch view within a Git Fusion repo, allowing Git users to
work with that branch and have that work submitted to Perforce as work within that stream. There are
two ways to map a Git Fusion repo to a stream:

• Clone using the stream name as the repo name.

git clone https://git_fusion_server/stream_name

If there is no Git Fusion repo with the name stream_name, Git Fusion searches for:

• An existing Perforce workspace (client) with the name stream_name.

• An existing Perforce stream with the name //stream_name.

If Git Fusion finds a workspace, and that workspace is a stream workspace, then Git Fusion creates a
repo with a single branch that maps that stream.

If Git Fusion finds a stream, then Git Fusion creates a repo with a single branch that maps that
stream.

Note that Git would be confused by the // stream name prefix, so you must omit it from the clone
command. Git can handle the internal /, but it will be translated to _0xS_ when the repo name is
constructed. For example, if you clone using stream //flow/mainline, you use git clone https://
gfserver/flow/mainline and get a repo named flow_0xs_mainline.

• Add a stream to the branch definition in a repo's p4gf_config file.

[my_new_branch]
git-branch-name : my_new_branch
stream : //streamdepot/my_stream

Chapter 5. Setting up Repos

Git Fusion Guide 65

Note that a stream branch does not include a view (there is no path on the "right hand side"),
because the view is determined by the stream. A branch definition containing both stream and view
will be rejected by the config file validator.

You must consider the following when you use streams with Git Fusion:

• You can include only one stream per branch (although you can use a stream that imports other
streams).

• You can include both standard view-based branches and stream-based branches in the same repo.

• You cannot base a git branch on a task stream.

• You cannot change the stream view of a stream that is mapped to a Git branch.

Git Fusion rejects pushes to Git branches whose stream view has changed since the repo was
initialized.

• Git users can merge between standard view-based branches and stream-based branches.

This means that you can "drive through the hedges," merging and copying between streams that do
not have a parent-child relationship.

• Every branch mapping in Git Fusion must have the same right-hand side. Streams (other than
mainline) with exclusionary lines or other remapping operations tend to produce different right-
hand sides.

Enabling stream import paths as Git submodules
Git Fusion lets you represent stream import paths as Git submodules. In Perforce streams, import
paths enable you to source files into a stream from different locations in the Perforce repository. Files
included by import can be synced but not submitted, merged, or copied. Import paths are intended
for situations when you want to include external libraries that you do not need to edit, such as those
required for builds. Git submodules fill a similar role, allowing foreign repositories to be embedded
within a dedicated subdirectory of the source tree.

Some considerations:

• Submodules generated from import paths are read-only; you cannot push changes to them.

• The process does not work in reverse: adding a submodule to a stream-based branch in Git does not
add an import path to the stream.

• For environments with multiple Git Fusion instances, be aware that submodules generated from
import paths use a single Git Fusion instance as their remote.

Ensure that users of a repo containing such a submodule can access the Git Fusion instance that is set
as the submodule's remote.

Configure and generate submodules from import paths
To enable the conversion of stream import paths to Git submodules:

Chapter 5. Setting up Repos

66 Git Fusion Guide

1. Set the enable-git-submodules option to Yes in the repo configuration file.

To enable import paths as submodules for all Git Fusion repos, set the option in the global
configuration file. For individual repos, set the option in the repo-specific file.

For more information, see “Configuring global defaults for repos” on page 38 and“Configure
repos with a repo configuration file (p4gf_config)” on page 49.

2. Add the SSH or HTTP address you use to clone Git Fusion repos to the repo configuration file.

Set the ssh-url or http-url property in the global configuration file if you are enabling
submodules for all Git Fusion repos. For individual repos, set the property in the repo-specific file.

Important • For any given repo, you can select only one protocol (SSH or HTTP) at a
time.

If at any point you need to switch from one protocol to another, you can
update this configuration, but you must also edit the .gitmodules_stream-
name file in the Perforce depot.

• If you use the {host} variable in the URL property, submodule processing
will use the hostname returned by the Linux function gethostname().
Verify that the value returned is the correct URL for running Git commands
against the Git Fusion repo. Some network topologies can result in the
return of unexpected values. Use the full hostname rather than the variable
placeholder if you are not confident that the value returned will be correct.

3. Define a repo branch using a stream with an import path.

The stream must observe the following rules:

• It must include a share... path.

• It cannot include nested or overlapping import paths.

If the stream imports from another stream that itself includes an import path or includes
multiple import paths that share the same directories, Git Fusion treats these nested or
overlapping paths as ordinary stream paths and does not convert them into submodules.

• The stream depot path must be populated and end with /... .

• You cannot change the stream root after the Git repo is initialized.

For more information about defining repo branches using streams, see “Working with Perforce
streams” on page 64.

4. To generate the submodules, clone the repo you created in the previous step.

The repo will include submodules with names derived from the depot path. The naming
convention is to drop the depot path's initial // and terminal /... and replace any internal slashes
with _0xS_. For example, a submodule generated from the import path //foo/bar/... would have
the name foo_0xS_bar.

Chapter 5. Setting up Repos

Git Fusion Guide 67

Managing and troubleshooting submodules

What are these new virtual streams that appear in the stream depot?

Git Fusion uses virtual streams as an intermediary in the creation of submodules from import paths.
The virtual stream is created with the same name as its parent, with the addition of a _p4gfv suffix. Do
not remove these virtual streams from the stream depot.

How do I change the submodule URL (ssh-url, http-url)?

If the value of ssh-url or http-url in the repo configuration file returns the wrong URL, Git Fusion
cannot create submodules that work.

To fix the URL:

1. Set ssh-url or http-url in the repo configuration file to the correct URL.

If you are having issues generating submodules from stream import paths, it is often because the
{host} variable placeholder is returning the wrong hostname. Use the full hostname rather than
the variable placeholder.

For more information, see “Configure and generate submodules from import
paths” on page 65.

2. Edit the .gitmodules file to update the submodule URL.

The .gitmodules file is located in the top-level directory of your Git working tree and at the
stream root in the Perforce. In Perforce, the file is stored with the suffix _stream-name.

3. Update your clone by pulling and running git submodule update.

Perform this command for each Git client that has attempted to clone the repo.

How do I remove submodules generated from import paths?

If an import path is removed from the stream definition, Git Fusion removes the associated submodule
from the Git repo the next time a user pulls from that repo.

Adding preflight commits to reject pushes
If your Perforce service is configured with submit triggers that enforce a local policy, like requiring
jobs, specific content, or specific formatting in the changelist description, these triggers can interrupt
Git Fusion in the middle of a push, which will damage the repository as replicated within Perforce.
You could simply exclude changes that are submitted by git-fusion-user from these submit triggers,
but you can also create preflight commits (scripts that fire when a user attempts to push a commit to
a Git Fusion repo) that reject git pushes before they have a chance to set off a potentially damaging
submit trigger.

Preflight commit scripts can be written much the same way as Perforce trigger scripts, which gives you
the option to reuse trigger scripts (or revise them minimally) to enforce local policy before Git Fusion
submits the push to Perforce.

Chapter 5. Setting up Repos

68 Git Fusion Guide

To enable a pre-flight commit:

1. Create the script and save it to the server that hosts Git Fusion.

Guidelines include the following:

• Exit code 0 = pass (the push goes through), 1 = fail (reject the push)

• The script must be run by the same UNIX account that runs Git Fusion (the Git Fusion service
account), under the same environment.

• The script is not invoked with a full shell, but it has access to the following environment
variables:

CWD Git work tree directory (parent of .git directory)

P4PORT Perforce service (myperforceserver:port)

P4USER git-fusion-user

P4CLIENT git-fusion-repo_name

• The script can consume the following Git Fusion variables:

repo Name of the pushed repo

sha1 Full 40-character hexadecimal sha1 of a single commit

branch_id Unique identifier for the Git Fusion branch view receiving
this commit

git-branch-name Git branch ref (if any) associated with above branch view

• The script can consume the following standard Perforce trigger variables:

client The client issuing the command. Always git-fusion-repo.

clienthost Hostname of the client. Always the SSH client connection.

serverport IP address:port of the server. Always the P4PORT that Git
Fusion uses.

quote A double quote character

user User issuing the command. This is the P4USER associated
with the commit's changelist owner: either Git author or Git
pusher, depending on the repo configuration options.

formfile Path to temp file containing form.

formname The form's name (branch name, etc). Always new.

formtype The type of form (branch, etc) Always change.

Chapter 5. Setting up Repos

Git Fusion Guide 69

jobs List of job names for fix triggers.

See the preflight-commit-require-job.py and preflight-commit-require-case.py sample
scripts in your libexec directory for examples.

For more information about Perforce trigger scripts and variables, see the Perforce System
Administrator's Guide, "Scripting Perforce: Triggers and Daemons".

2. Add the script to the global configuration file or a repo-specific file, using the preflight-
commit key.

Use the syntax command argument, where command is the path to the script. Arguments can
include any of the variables listed above, using the convention %variable%, as in the following
example:

 [@repo]
 preflight-commit = /home/git/myscript.sh %repo% %sha1%

Multiple scripts may be run in the configured order. All scripts must pass or the commit is
rejected.

 [@repo]
 preflight-commit = /home/git/myscript1.sh %repo% %sha1%
 /home/git/myscript2.sh %repo% %sha1% %git-branch-name%

For more information about global and repo-specific configuration files, see Configuring global
defaults for repos and Configure repos with a repo configuration file (p4gf_config).

Limiting push size and disk usage
In certain cases, large pushes from Git to Git Fusion can have undesireable effects.

• Pushes to Git Fusion are immediately stored in Perforce, where history is purposely immutable.
Extensive history can be easily added, but difficult to back out.

• A large push can impact performance of the Git Fusion server and Perforce server, that possibly
affects other users.

• A large push can consume a significant amount of disk space on the Git Fusion server and Perforce
server, and lead to longer backup, data replication, and maintenance times.

• In a SaaS environment, extra resource usage can incur direct costs.

To curtail these effects, an administrator may wish to constrain the amount of data that can be pushed
from Git to Git Fusion at any one time, or in total.

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html#chapter.scripting.html

Chapter 5. Setting up Repos

70 Git Fusion Guide

Limits for a single push
Git Fusion offers the ability to restrict pushes which exceed various quotas defined in Git Fusion
configuration files.

• These quotas are set by using the following configuration options, under the [quota] category:

• limit_space_mb

• limit_commits_received

• limit_files_received

• limit_megabytes_received

• Any combination of these configuration options is allowed, however each additional metric requires
some additional processing time.

• The defaults for all quotas are zero, effectively disabling quota enforcement.

• Like most options, these can be set in either the global or repo config file. For detailed usage
of the above configuration options, see Table 5.1, “Global configuration file: keys and default
values” on page 38.

Limit total Git Fusion disk usage
It is also possible to limit the total size of all repos managed by Git Fusion. To facilitate this limitation,
an administrator sets, and Git Fusion respects, a Perforce p4 key named git-fusion-space-remaining-
mb that defines the remaining number of megabytes permitted to be pushed to Git Fusion.

• The format of the value may be either a natural number or a decimal fraction. That is, the
administrator may set this to a natural number, and as Git Fusion processes push operations,
fractional amounts will be subtracted from this value.

• This value is only ever decreased by Git Fusion, and only when a push has been successfully
completed.

• Note that Git Fusion only measures the Git repository usage, and not the disk usage in the Perforce
server. There are simply too many factors involved to permit making any reasonable estimate, and
as such, only an administrator will have the necessary information to determine and set any usage
limit.

To set a value for the git-fusion-space-remaining-mb key:

1. Disable new Git Fusion sessions

$ p4 key -i git-fusion-prevent-new-sessions

2. Wait for all pending pull/push operations to finish (i.e. no keys are returned by the command
below)

$ p4 keys -e git-fusion-view-*-lock

Chapter 5. Setting up Repos

Git Fusion Guide 71

3. Set the git-fusion-space-remaining-mb key to the desired overall space limit (measured in
megabytes)

$ p4 key git-fusion-space-remaining-mb 1000

4. Re-enable new Git Fusion sessions

$ p4 key -d git-fusion-prevent-new-sessions

View current disk usage
In addition to standard shell and Git commands already available to administrators, Git Fusion offers
two convenient ways to view repo disk usage.

• Perforce p4 keys store the current size in megabytes of each repo that Git Fusion manages, as well as
the size of any push which is currently going on. To view these sizes, run the following commands
from any host with access, substituting the desired repo name:

$ p4 key git-fusion-view-repo-total-mb
$ p4 key git-fusion-view-repo-pending-mb

• The script p4gf_push_limits.py can be run interactively on any Git Fusion server to display what
is known about the available Git Fusion repositories, including the values in the total and pending
keys as well as the disk usage of the repo on the Git Fusion host on which the script is currently
running. Additionally, this script can be used to update the total and pending keys to reflect the
current reality.

Detecting Git copy/rename and translating to Perforce
You can elect to honor Git's reported file actions for copy and rename when pushing repos into Perforce
via Git Fusion.

By default Git Fusion does not detect Git copy/rename.

• A file copied in Git will result in a p4 add in Perforce.

• A file renamed in Git will result in a p4 delete and a p4 add in Perforce.

Git itself does not record copy/rename actions.

• Git records file state, not file actions to change that state.

• To report file actions, Git compares before/after states, then deduces file actions.

• To detect copy/rename actions, Git scans before/after file lists looking for matching content, and if
found, reports as a copy or rename.

Git copy/rename detection and translation into Perforce is enabled by two configuration options.

• With these options enabled, Git Fusion uses Git’s --find-copies and --find-renames.

Chapter 5. Setting up Repos

72 Git Fusion Guide

• Git provides detection of copy/rename for less than identical files by setting the options to values <
100% and Git Fusion translates the results into the corresponding Perforce actions.

• Perforce retains file history across depot branches. Copy or rename actions remain recorded in the
branch where they occurred.

• These options are disabled by default.

• Like most options, these can be set in either the global or repo config file. For additional
configuration options, see the enable-git-find-copies and enable-git-find-renames keys in
Table 5.1, “Global configuration file: keys and default values” on page 38.

What happens when Git guesses incorrectly?

• False Negative: Git misses a copy or rename action. The intention is lost. No integration between
associated files is added to Perforce.

• Copy is recorded as p4 add.

• Rename is downgraded to a p4 delete and p4 add pair.

• False Positive: Git reports a copy or rename where none was intended. An association is inferred
where none was intended. Perforce records an integration between two files that are similar in
content.

• Copy creates a p4 copy link between a new file and a similar existing file.

• Rename creates a p4 move link between a new file and a similar existing file that is deleted in the
same commit.

• Guesses cannot be backed out. Perforce history is purposely immutable. Once Git Fusion records
a commit with Git's bad guess, the erroneous integration (or lack of integration) is part of history
forever. Editing past history in Perforce is difficult: p4 obliterate, checkpoint surgery, and/or a call
to Perforce Support is required.

Disconnecting a Git Fusion repo from the Perforce service
You can sever a Git Fusion repo's connection to Perforce and retain the repo.

To sever the repo’s connection:

1. Copy the Git Fusion repo directory from ~/.git-fusion/views/repo_name/git to a location
outside of .git-fusion.

2. Delete .git/hooks/pre-receive from the repo copy.

After you copy the Git Fusion repo directory, you can delete the original repo from Git Fusion by
running the Git Fusion Delete Repo script (p4gf_delete_repo.py).

Deleting Git Fusion repos
To delete Git Fusion repos from Perforce, use the Git Fusion Delete Repo script (p4gf_delete_repo.py).

Chapter 5. Setting up Repos

Git Fusion Guide 73

Important Whenever you run p4gf_delete_repo.py, you should also run
p4gf_submit_trigger.py --reset myperforceserver:port.

74 Git Fusion Guide

Git Fusion Guide 75

Chapter 6 Additional Administrative Tasks
This chapter discusses the following administrative tasks:

• Configuring logging

• Viewing changelist information

• Managing Git Fusion p4 keys

• Managing Git Fusion server IDs

• Stopping the Git Fusion server

• Backing up and restoring Git Fusion

• Adding Git Fusion and Perforce server components

• Administering the Git Fusion OVA

Configuring logging
Git Fusion provides a logging configuration file, git-fusion.log.conf, that contains preset defaults
and comprehensive information on establishing logs.

The configure-git-fusion.sh script puts this logging configuration file in the /etc directory,
configures syslog, and configures automatic log rotation.

If you do not want to use the default logging configuration, you can customize your logging options
using the git-fusion.log.conf file. For additional logging configuration information, see http://
answers.perforce.com/articles/KB_Article/Configuring-Git-Fusion-Logging

Viewing changelist information
Git Fusion stores pushed Git commits in the Perforce service as Perforce changelists. Perforce users can
view Git users’ changes using Perforce tools. Note that a single Git push can contain multiple commits,
and therefore can spawn multiple changelists.

Each changelist resulting from a Git commit includes the author's name as the changelist owner (if you
used the default value for change-owner in your repo configuration), in addition to the following Git
commit information, which appears in the Description field of the Perforce changelist:

• The Git commit message text.

• The phrase Imported by Git.

• Git author, Git committer, and SHA1 information.

• The pusher’s name, if the Git user who pushed the change is not the author.

The pusher is always the user who authenticated with HTTP or SSH.

• A push-state field with a value of complete or incomplete.

http://answers.perforce.com/articles/KB_Article/Configuring-Git-Fusion-Logging
http://answers.perforce.com/articles/KB_Article/Configuring-Git-Fusion-Logging

Chapter 6. Additional Administrative Tasks

76 Git Fusion Guide

• Branch information.

• Perforce Jobs information, if the Git user includes a job number with the commit.

If you are using P4V, also see the changelist’s Job field.

To determine which Git Fusion repo pushed a change to Git Fusion, refer to the Client field
(Workspace field in P4V) of the appropriate Perforce changelist.

The Date field (Date submitted field in P4V) includes a date and timestamp of when the Git commit
was successfully pushed to Git Fusion. This is not the date the author or committer pushed the commit
to his or her local Git repo; you must use Git to review this information.

Managing Git Fusion p4 keys
All Git Fusion p4 keys start with git-fusion-. To find all Git Fusion p4 keys on a Perforce service, run:

• All Git Fusion p4 keys: p4 keys -e git-fusion-*

• Submit Triggers: p4 keys -e git-fusion-*-submit-*

Managing Git Fusion server IDs
Each Git Fusion instance must have its own unique server ID. Git Fusion uses the computer's
hostname as a default ID value; however, sites where multiple Git Fusion instances run on the same
host must specify a unique server ID for each instance.

To change the server ID, log in as the Git Fusion service account and run:

p4gf_super_init.py --id new_server_ID

Git Fusion stores the server ID under P4GF_HOME/server-id, where P4GF_HOME is the Git
Fusion working directory specified in the Git Fusion environment configuration file (~/
p4gf_environment.cfg).

For more information, run:

p4gf_super_init.py -h

Important Do not change a server ID while Git Fusion is processing a Git request.

Stopping the Git Fusion server
Git Fusion runs only when your users access it through SSH or HTTP(S). If you are using HTTP(S)
authentication, you must stop the web server to stop Git Fusion. If you are using SSH authentication,
you must disable the authorized keys update process to stop Git Fusion.

1. Log into the Git Fusion UNIX service account.

Chapter 6. Additional Administrative Tasks

Git Fusion Guide 77

2. Disable the update authorized keys process.

• Move the ~/.ssh/authorized_keys or ~/.ssh2/authorized keys file (or both, if applicable to
your implementation) to another location to prevent users from activating Git Fusion.

• Disable any cron jobs or triggers that automatically run the Update Authorized Keys script
(p4gf_auth_update_authorized_keys.py).

See Use a cron job to copy public keys to Git Fusion

Backing up and restoring Git Fusion
Git Fusion can restore Git history from Perforce using the standard Perforce backup and recovery
process—as long as that Git history was stored in Perforce. You cannot restore commits and branches
that have not been pushed, since they exist only in a Git user’s local repo.

To back up Git Fusion, use standard Perforce backup procedure to take a checkpoint and back up the
//.git-fusion depot and the depot locations that map to your Git Fusion repos.

To recover from a backup:

1. Reinstall Git Fusion.

When you reach the installation step in which you run p4gf_super_init.py, you have the option
to set the Git Fusion server ID to be the same as the original Git Fusion server or set a new Git
Fusion server ID.

To use the same Git Fusion server ID:

a. Get the server ID of the original server (in this example, 'gf'):

$ p4gf_super_init.py --user perforce_super_user --showid
Git Fusion server IDs [('gf.example.com', 'gf')]

b. Set the server ID:

$ p4gf_super_init.py --user perforce_super_user --id gf

To specify a different server ID (in this example, 'gf2'), run:

$ p4gf_super_init.py --user perforce_super_user --id gf2

If you use a new server ID, you must remove any unused service users, clients, or p4 keys that
belong to the original, failed Git Fusion server ID.

2. Copy your users' public SSH keys from Perforce to the authorized_keys file.

As the Git Fusion service account (git), run p4gf_auth_update_authorized_keys.py.

Chapter 6. Additional Administrative Tasks

78 Git Fusion Guide

3. Initialize the Git Fusion repos.

See Initializing repos on the Git Fusion server

For more information about backing up and restoring a Perforce service, see the Perforce System
Administrator’s Guide, Supporting Perforce: Backup and Recovery.

Adding Git Fusion and Perforce server components
You can incorporate multiple Git Fusion servers into your implementation.

For optimal performance, Git Fusion instances should generally be connected directly to the Perforce
Master or Commit server.

• A low-latency connection is always recommended between Git Fusion instances and the Perforce
server.

• WAN connections should be avoided, and co-location is strongly advised.

• Git users at remote sites should push across the WAN to a Git Fusion server co-located and directly
connected to the Master or Commit server.

In Perforce Clusters, the Router must be configured to direct all Git Fusion instance requests directly to
the Depot server.

Add Git Fusion servers
You can implement Git Fusion on multiple hosts that connect to a single Perforce service. Simply
repeat installation for each Git Fusion instance. Functionality within Git Fusion handles the
coordination among the instances. You do need to be aware of the following:

• Each Git Fusion instance has a unique server ID.

The server ID is set during installation by running either of configure-git-fusion.sh or
p4gf_super_init.py.

For more information about how the Super Initialization script (p4gf_super_init.py) handles Git
Fusion server IDs see the Script Reference.

• Each Git Fusion instance has a separate Perforce workspace (client) with the name git-
fusion--server-id.

• Each Git Fusion instance has a separate Git Fusion service user with the name git-fusion-
reviews-server-id.

• Multiple Git Fusion instances can act as the remote for the same Git repo.

Special considerations for P4Broker
P4Broker may interfere with Git Fusion operations by rewriting commands. If Git Fusion is
connected to a P4Broker, the broker must not alter the semantics of any commands issued by

Chapter 6. Additional Administrative Tasks

Git Fusion Guide 79

Git Fusion. For assistance using Git Fusion with P4Broker, contact Perforce Technical Support at
<support@perforce.com>.

For more information, see Distributing Perforce Guide, The Perforce Broker.

Git Fusion with Proxies, Replicas, and Edge servers
In certain topologies, Git Fusion instances may also be connected to P4Proxy, Replica, and Edge
servers. Please contact Perforce Technical Support at <support@perforce.com> for or assistance and
considerations with such server components. The following guidelines apply:

• The Git Fusion Atomic Push submit triggers must always be implemented on the Master or Commit
server.

• All git push operations should still be done against a Git Fusion server co-located and directly
connected to the Master or Commit server.

Once Git changes have been translated into Perforce, they can be replicated and distributed in the
same way as changes that originated in Perforce.

Delete repos on multiple hosts
Invoke the Delete Repo script (p4gf_delete_repo.py) on each Git Fusion host to remove local files and
the associated object cache client.

Note Avoid running the Delete Repo script on multiple hosts simultaneously.

Administering the Git Fusion OVA
This section discusses administration tasks specific to the Git Fusion OVA.

Authentication and the OVA
The OVA installation of Git Fusion supports both HTTPS and SSH authentication. If you want to use
SSH authentication, note the following:

• You cannot log into the Git Fusion virtual machine as git using SSH, because the SSH configuration
will try to invoke Git Fusion.

• There is a cron job for the git user that polls for new SSH public key information every minute.

For more information about using HTTP(S) and SSH authentication for Git Fusion, see:

• Chapter 4, “Setting up Users” on page 21

• “Referencing Git Fusion repos” on page 84

• “Providing SSH keys for Git Fusion authentication” on page 83

Chapter 6. Additional Administrative Tasks

80 Git Fusion Guide

Perforce Server and the OVA
You have the option of using the Perforce service included with the OVA or your own external
Perforce service. If you are using the included Perforce service, note the following:

• The included Perforce service is running in the 20/20 license mode. The system is limited to 20
clients once the number of files exceeds 1000.

• The pre-configured Perforce accounts (admin, super, and git-fusion-user) have not been assigned
passwords.

• The Perforce service is running on port 1666.

For information about using an external Perforce service, see “Connecting the Git Fusion OVA
installation to your Perforce service” on page 6.

Start and stop scripts
The Git Fusion OVA includes the following shell scripts to simplify maintenance of its internal
Perforce service:

• /etc/init.d/p4d: This initialization script enables you to start, stop, restart, and get the status of the
Perforce Server.

• /etc/p4d.conf: This configuration script stores and sets environment variables that are used by the /
etc/init.d/p4d initialization script.

You can use the standard wrapper script (/usr/sbin/service) to invoke these scripts:

• $ sudo service p4d start

• $ sudo service p4d stop

SSH key management console
The OVA supports both SSH and HTTPS authentication. If you choose to use SSH, the OVA's online
SSH key management console enables you to do the following:

• Upload user SSH keys using the Git Fusion Config: Upload User Key File page.

For more information, see Set up SSH authentication using the OVA's SSH key management console

• If you are using Git Fusion with your own external Perforce service, rather than the one included
with the OVA, change the Perforce service connection using the Git Fusion Config: Perforce Server
page.

• View system information using the System tab.

• Shut down and reboot the Git Fusion service using the System tab.

• Configure time zone settings using the System tab.

Chapter 6. Additional Administrative Tasks

Git Fusion Guide 81

• View and refresh network status information using the Network tab.

• Change network address settings using the Network tab.

• Set a network proxy server using the Network tab.

To access the SSH key management console, go to the the IP address displayed in the window that
appears when you start the OVA VM and log in as root, using the password you assigned during
installation. For more information, see Installation steps in the chapter, Installing Git Fusion using the
OVA.

Modify Perforce Server Triggers to Ignore Git Fusion
If your Perforce service is configured with triggers that enforce a local policy, these triggers must be
modified to allow Git Fusion to operate freely.

The easiest check for Git Fusion operations is to look for git-fusion-user.

Some operations that Git Fusion performs which your triggers must not prevent:

• Submit changelists whose descriptions fail formatting or content policies.

See Adding preflight commits to reject pushes for how you can configure Git Fusion to enforce these
policies on Git users.

• Create clients with wide-open views.

p4gf_config2
For most repos, Git Fusion creates a second configuration file p4gf_config2.

This file holds Git Fusion internal data:

• branch defintions to hold Git commits that do not fit into any of the branches defined in p4gf_config

• original view mappings of stream-based branches so that Git Fusion can detect changes to stream
views.

Git Fusion controls this file. Do not edit this file.

p4gf_environment.cfg
Git Fusion loads many environment variables from the Git Fusion environment configuration file ~/
p4gf_environment.cfg.

Typically this file is created or written by configure-git-fusion.sh as part of initial setup. You can
edit this file with additional customizations.

This file contains settings that tell Git Fusion

• where to find Git Fusion's home directory: P4GF_HOME

Chapter 6. Additional Administrative Tasks

82 Git Fusion Guide

• how to talk to Perforce, such as P4PORT and P4CHARSET

• where within Perforce to find data, such as P4GF_DEPOT

• where to find Git itself: GIT_BIN.

• Git Fusion server-specific configuration such as READ_ONLY and MAX_TEMP_CLIENTS

How Git Fusion loads its environment:

1. Git Fusion reads environment variable P4GF_ENV if defined. This is the path to
p4gf_environment.cfg. The file can have any name, not just p4gf_environment.cfg.

This is rare. Most installations leave P4GF_ENV undefined.

2. Git Fusion reads ~/p4gf_environment.cfg

3. Git Fusion loads the environment variables defined in the above environment config file.

Environment Variables
Git Fusion uses several environment variables. Both the OVA and OS package installs configure
these automatically for you and set them in the Git Fusion environment configuration file (~/
p4gf_environment.cfg).

• TMP or TMPDIR: where Git Fusion temporarily stores files as it extracts them from one versioning
system and adds them to the other. Usually /tmp. Translation tends to run faster if TMP or TMPDIR
point to the same disk as the Git Fusion working directory P4GF_HOME. The OVA already points TMP
and P4GF_HOME to the same disk.

Git Fusion Guide 83

Chapter 7 Tips for Git Users
This chapter provides information to help Git users who are working with Git Fusion repos.

• “Requirements, restrictions, and limitations” on page 83

• “Providing SSH keys for Git Fusion authentication” on page 83

• “Referencing Git Fusion repos” on page 84

• “Sharing new Git branches with Perforce users” on page 84

• “Referencing Perforce jobs in a commit” on page 84

• “Using Git Fusion extension commands” on page 85

• “Using Swarm for code review” on page 87

Requirements, restrictions, and limitations
The Git client version must be able to connect to a Git 1.8.2.3 server.

Git Fusion does not support:

• Localized messages.

Git Fusion messages appear in US English only.

• Perforce file types apple and resource.

• Perforce Labels functionality.

Git users of Git Fusion do not have the ability to read or edit any project-related Perforce Labels
maintained by Perforce team members. Git commit tags are supported (and stored in Perforce at
//.git-fusion/objects/repos/repo_name/tags/) but are not translated into Perforce Labels.

• Renaming detection functionality.

Git Fusion does not use the -M, -C, and --find-copies-harder flags when copying from Git to
Perforce. Instead, it handles and logs file renaming as a file add and delete.

• Perforce file locks on files that Git users might also edit.

Git Fusion cannot copy pushed commits into Perforce if those commits modify Perforce files that are
locked by 'p4 lock' or exclusive open filetype +l. If Git Fusion encounters a file that was locked after
a git push has started, Git Fusion unlocks the file and submits Git content on top of the previously
locked file.

Providing SSH keys for Git Fusion authentication
To enable SSH authentication to the Git Fusion server, users generate SSH private-public key pairs
locally and provide their public key to Git Fusion. This must be done either by sending the public key

Chapter 7. Tips for Git Users

84 Git Fusion Guide

to a Git Fusion administrator or by using a Perforce client application to submit the public key file
directly to //.git-fusion/users/user_name/keys/ in Perforce.

For more information about how Git Fusion uses SSH authentication, see Authentication.

Referencing Git Fusion repos
The Git Fusion repo URL follows the standard Git command convention to access a remote repo,
except that the repo is referenced by repo name, rather than a directory that holds the repo.

Using HTTP(S) authentication, the syntax is https://git-fusion.example.com/repo_name, where
repo_name is the name of the Git Fusion repo.

A command to clone the repo "winston" using HTTP(S) authentication therefore might look like this:

$ git clone https://git-fusion.example.com/winston

Using SSH authentication, the syntax is unixacct@hostname:repo_name:

• unixacct is the UNIX account that runs Git Fusion on the host server.

• hostname is the IP address or host name of the server that hosts Git Fusion.

• repo_name is the name of the Git Fusion repo.

For example: git@git-fusion.example.com:winston or fusion@ub:bltwub.

A git clone command using SSH authentication therefore might look like this:

$ git clone git@git-fusion.example.com:winston

Sharing new Git branches with Perforce users
Git users can interact with Git Fusion just like they would with any other Git server. When new
branches are pushed to Git Fusion, they are immediately available for use by other Git users. To see
how Git users can create new branches to share with Perforce users, see “Enabling Git users to create
fully-populated branches” on page 59.

Referencing Perforce jobs in a commit
If Git users receive Perforce job information from team members, they can include the job’s
alphanumeric identifier in a commit. Git Fusion adds the Perforce jobs to the Perforce changelist in the
Description and Job fields, recording the job as fixed.

To include Perforce jobs in a commit message, enter the field Jobs: followed by the job’s alphanumeric
identifier. You can include or omit a space before the identifier. If you are noting multiple jobs in the
commit, enter each job on a separate line. For example:

Chapter 7. Tips for Git Users

Git Fusion Guide 85

Jobs: jobA00876B
 jobA00923C

By default, Git Fusion expects the values you enter to be in the format "jobnnnnn"as defined in the
Job field in the Perforce job specification, but your administrator can enable other field values to be
recognized and passed to the changelist description.

For example, if your organization uses the DTG-DTISSUE field in the job specification to associate jobs
with JIRA issues, you administrator can enable Git Fusion to recognize JIRA issue identifiers, and you
can enter JIRA issue IDs in your Git commits, like this:

Jobs: TPUB-1888
 TPUB-1912

For more information, see the description of the job-lookup option in Table 5.1, “Global configuration
file: keys and default values” on page 38.

Using Git Fusion extension commands
Git Fusion includes the following commands that extend Git command functionality:

• @help: Shows Git Fusion Git extension command help.

• @info: Shows Git Fusion version information.

• @list: Shows repos and actions available to you, depending on your group permissions.

For more information about how permissions determine what you can view using @list, see “How
permissions affect the @list command” on page 87.

• @status@repo: Reports a message indicating the status of the push operation for a particular
repository.

Note If a push failure occurs very early in Git Fusion's process, the failure may not be
recorded by @status. In this case, @status will report the status of the previous
push.

• @status@repo@pushID: Reports a message indicating the status of a particular push operation,
identified by the push ID number, for a particular repository.

The push ID is displayed in the output of the client when performing a push to Git Fusion.

• @wait@repo: Reports a message when all push operations have completed for a particular repository.

Note The @wait command will attempt to acquire the lock for the repository, which
will cause it to wait for any push operation to complete before returning control
to the client.

Chapter 7. Tips for Git Users

86 Git Fusion Guide

• @wait@repo@pushID: Reports a message when a particular push operation, identified by the push ID
number, has completed for a particular repository.

The push ID is displayed in the output of the client when performing a push to Git Fusion.

To use a Git Fusion extension command with SSH authentication, run git clone with the command in
place of the repo name. For example:

$ git clone git@git-fusion.example.com:@info
Cloning into '@info'...
Perforce - The Fast Software Configuration Management System.
Copyright 2012-2015 Perforce Software. All rights reserved.
Rev. Git Fusion/2015.1/997473 (2015/02/02).
SHA1: 12b9e102a892e0fd3cb6be246af4da2626ff1b24
Git: git version 1.8.2.3
Python: 3.3.2
P4Python: Rev. P4PYTHON/LINUX32X86_64/2014.1/925900 (2014.1/821990 API) (2014/08/26).
...
fatal: Could not read from remote repository.

Because a Git Fusion extension command is not a valid repo, Git terminates with the sentence: fatal:
The remote end hung up unexpectedly.

If you are using HTTP authentication, extra output from Git Fusion is discarded by the Git client,
which means that these special commands fail to return the information you want.

$ git clone https://git-fusion.example.com/@info

Cloning into '@info'...
fatal: https://git-fusion.example.com/@info/info/refs not valid: is this a git repository?

You can use your web browser to view Git Fusion output, or use curl, as in the following example:

Note Git Fusion is not installed with curl. You will need to run the following command
on another machine or install curl on the Git Fusion machine.

$ curl --user p4bob https://git-fusion.example.com/@info

Enter host password for user'p4bob':
Perforce - The Fast Software Configuration Management System.
Copyright 2012-2015 Perforce Software. All rights reserved.
Rev. Git Fusion/2015.1/997473 (2015/02/02).
SHA1: 12b9e102a892e0fd3cb6be246af4da2626ff1b24
Git: git version 1.8.2.3
Python: 3.3.2
P4Python: Rev. P4PYTHON/LINUX32X86_64/2014.1/925900 (2014.1/821990 API) (2014/08/26).
...

Chapter 7. Tips for Git Users

Git Fusion Guide 87

How permissions affect the @list command

The repos returned by the @list command are determined by your repo permissions. You must have
at least pull permissions, granted by membership in a repo-specific pull or push group, the global
push or pull group, or the git-fusion-permission-group-default key, to return repos with the @list
command:

• If you have pull permissions for the repo, the repo will be listed with the note, "pull."

• If you have push permissions for the repo, the repo will be listed with the note, "push."

• If you have neither pull nor push permissions, the repo does not appear in the list.

If the read-permission-check property is set to user in the global configuration file, then you must
have pull access (through membership in a repo's pull or push group, the global pull or push group,
or by virtue of the git-fusion-permission-group-default key setting) and have read access in the
Perforce Protects table to all of the depot locations that map to that repo's branch definition.

Note that if the git-fusion-permission-group-default key is set to pull or push, all users can list all
repos using the @list command.

For more information about how Git Fusion permissions work, see “Authorization” on page 21.

Using Swarm for code review
If your organization's Perforce implementation includes Swarm 2014.1 or above and you are licensed
to use Swarm, Git Fusion lets you initiate and amend pre-commit Swarm code reviews using Git.

For additional information about how to use Swarm, see the Swarm help.

Create a Swarm review

To create a Swarm review branch:

1. Create the new review branch using the following syntax:

$ git push origin task1:review/master/new

Task1 is the current Git task branch and master is the target branch.

Note The target branch must be mapped to a named Perforce branch in the Git
Fusion repo configuration.

When the command completes, the output indicates the new review id (in this case 1234):

http://www.perforce.com/perforce/doc.current/manuals/swarm/index.html

Chapter 7. Tips for Git Users

88 Git Fusion Guide

Counting objects: 11, done.
Delta compression using up to 24 threads.
Compressing objects: 100% (6/6), done.
Writing objects: 100% (6/6), 1.76 KiB, done.
Total 6 (delta 5), reused 0 (delta 0)
remote: Perforce: 100% (1870/1870) Loading commit tree into memory...
remote: Perforce: 100% (1870/1870) Finding child commits...
remote: Perforce: Running git fast-export...
remote: Perforce: 100% (2/2) Checking commits...
remote: Processing will continue even if connection is closed.
remote: Perforce: 100% (2/2) Copying changelists...
remote: Perforce: Swarm review assigned: review/master/1234
remote:
remote: Perforce: Submitting new Git commit objects to Perforce: 3
To https://gfprod.perforce.com/gfmain
 * [new branch] task1 -> review/master/new

The process of initiating a Swarm review creates a new pending changelist in Perforce, with a
changelist number identical to the review ID. This changelist contains shelved file integrations to
the depot files in the branch view.

Note While the Git Fusion output reports the new review ID, Git itself does not
know about this review branch, so it reports task1 -> review/master/new
instead of task1 -> review/master/1234. To get the review branch ID, use git
fetch --prune, followed by branch -a or -r to view the branch list.

2. View the review in Swarm.

Go to Swarm and browse the activity stream to find the review.

Note If the target Git branch maps to a Perforce branch that is included in a Swarm
project, all members of that project receive a notification email when you create
a review. The email includes a link to the review in Swarm.

Use Swarm to approve, reject, or comment on reviews.

Amend a Swarm review

You can amend an existing review using git fetch and git checkout. You must follow these steps
even if you are the Git user who initiated the review.

1. Fetch the review head.

In the following example, the target branch is master, the review ID is 1234, the Git Fusion server
hostname is gfserver, and the remote repo name is p4gf_repo:

Chapter 7. Tips for Git Users

Git Fusion Guide 89

$ git fetch --prune origin
From gfserver:p4gf_repo
 * [new branch] review/master/1234 -> origin/review/master/1234
 x [deleted] (none) -> origin/review/master/new

The --prune option lets the local Git repo delete the unwanted review/master/new reference
created by the initial git push origin task1:review/master/new command.

2. Check out the review head.

$ git checkout review/master/1234

3. Make your changes.

4. Push your changes to the review.

$ git push origin review/master/1234

Note If you get review feedback that is better expressed as a git rebase and cleaned up
history, you can make your changes and push them as a new review.

You cannot rebase, clean up history, and then push your changes to the same review.

View reviews created by other Git users
You can view all reviews that were initiated in Git. First you need to fetch the existing branches in the
current Git Fusion repo:

$ git fetch --prune origin

Then you can list all branches, including review branches, for the current Git Fusion repo:

$ git branch -a
 dev
* master
 remotes/origin/master
 remotes/origin/task1
 remotes/origin/review/master/1234
 remotes/origin/review/master/1236
 remotes/origin/review/master/1358
 remotes/origin/review/task1/1235
 remotes/origin/review/task1/1244
 remotes/origin/review/task1/1347

Note Git users cannot see Swarm reviews initiated in Perforce.

Chapter 7. Tips for Git Users

90 Git Fusion Guide

View amendments made by other Git users
To view review amendments made by other Git users, fetch the Git reference for the review. If you
want to work with the review, assign it to a local reference.

$ git fetch origin review/master/1234:myreview
From mac-bob:myrepo
 * [new branch] review/master/1234 -> myreview

$ git checkout myreview
Switched to branch 'myreview'

Note Git users cannot see amendments to Git-initiated reviews if those amendments were
made in Perforce.

Indeed, a Perforce user should not amend a Swarm review initiated in Git, because
if a Git user attempts to make an amendment after the Perforce user does, the Git
user's new file actions could overwrite ("clobber") the shelved file actions performed
by the Perforce user.

Additional tips
Be aware of the following when you create Swarm reviews with Git Fusion:

• You should not create Swarm reviews targeted for lightweight branches.

The target branch must be mapped to a named Perforce branch in the Git Fusion repo configuration.

• You cannot delete a Swarm review.

• You can delete the remote Git branch mapped to the Swarm review from the Git Fusion repo.

$ git push origin :review/master/1234

• You cannot approve, reject, or comment on reviews using Git; you perform the review itself in
Swarm.

You can effectively accept and submit a review using Git by merging the review into its destination
branch and pushing that merge. Swarm, however, will not know about what you have done. You
can close the review in Swarm by manually marking the review as approved.

• Git Fusion reviews do not display the individual task branch commits that make up the review; only
the merged commit diffs are shown.

Git Fusion Guide 91

Chapter 8 Troubleshooting
This chapter provides solutions to some common error messages and issues you may encounter when
administering or using Git Fusion; however, it does not provide a definitive listing of all possible error
scenarios.

For help with using Git Fusion, contact your Perforce Technical Support representative at
<support@perforce.com>.

Clone issues

AppleDouble Header not recognized
During a clone, the following message appears:

Unable to read AppleDouble Header

The client view contains Perforce-specific file types not supported by Git Fusion, like apple and
resource. Update the view to exclude the files and run the Git Fusion Delete Repo script to delete the
outdated repos; see p4gf_delete_repo.py.

.bashrc source line prevents cloning
During a clone, the following message appears:

git clone git@server:@info Cloning into @info bash: p4gf_auth_server.py: command not found
fatal: could not read from remote repository

This error may indicate that, if you are using a .git-fusion-profile file, the line source .git-fusion-
profile cannot be read or found within the .bashrc file. We recommend putting this line at the top of
the .bashrc file so that it can be correctly parsed during setup.

For more information, see Connecting the Git Fusion OVA installation to your Perforce service .

File cannot be converted to specified charset
During a clone, a message similar to the following appears:

error: failed winansi conversion for //depot_path/file_name

This error indicates that one or more files cannot be converted to the Unicode charset value specified
for the repo, which prevents the repo from being cloned.

To correct this issue, you must do one of the following:

• Use exclusionary mappings in the repo's p4gf_config file to omit nonconvertible files from the clone
request.

• Change the charset value of the repo's p4gf_config file to a value that enables all files to be
converted.

For more information, see Repo configuration file: key definitions and samples.

Chapter 8. Troubleshooting

92 Git Fusion Guide

Missing @repo section
During a clone, the following message appears:

No section: '@repo'

This error indicates either an undefined @repo section or a typographical error in the @repo section
header of configuration file, like @repos instead of @repo. Review the configuration file and correct any
errors; see Repo configuration file: key definitions and samples.

Spec depots cannot be mapped
During a clone, the following message appears:

spec depots cannot be mapped in client view fatal: The remote end hung up unexpectedly

The client view maps to at least one spec depot; however, spec depots are not supported in Git Fusion.
Update the client view to remove all spec depots. You do not need to run the Git Fusion Delete Repo
script (p4gf_delete_repo.py) because Git Fusion did not allow the clone to complete.

General usage issues

Cannot terminate active process
You issued a Ctrl+C or similar command to terminate an active process (like git clone) and the SSH
connection, and the following message appears:

Processing will continue even if connection is closed.

During an active process, Git Fusion reaches a point where interruptions will cause data corruption in
Perforce. Consequently, Git Fusion will continue processing even if you attempt to terminate it or the
SSH connection.

Connection closed by remote host
The remote host abruptly closes the connection and displays the following message:

ssh_exchange_identification: Connection closed by remote host

This message indicates that the load on Git Fusion exceeds the MaxStartups value set in the
sshd_config file. Adjust this setting to resolve this issue; we recommend a minimum value of at least
100.

MaxStartups 100

The sshd_config file is normally located in the directory /etc/ssh/sshd_config.

Case sensitivity conflicts
To resolve case sensitivity conflicts when you are operating Git Fusion in a mixed OS environment, do
one or all of the following:

Chapter 8. Troubleshooting

Git Fusion Guide 93

• Convert the Perforce server to run in case-sensitive mode.

• If users are on a case-insensitive platform like Windows, instruct them to configure their Git clients
with the core.ignorecase option of the git configure command to prevent case inconsistencies.

• Configure Git Fusion with a preflight commit check to reject uppercase. See Adding preflight
commits to reject pushes and preflight-commit-require-case.py

Resolving case sensitivity conflicts is beyond the scope of this documentation. Contact Technical
Support at <support@perforce.com> for help.

Combining Git and a case-insensitive Perforce server can lead to trouble that is difficult to work
around or repair. You can end up with Git histories that can never be pushed into Perforce.

Note A Git user can create a history where two different files exist simultaneously, paths
differing solely by case. Pushing that history into Perforce will either merge the two
files into one, or fail.

Git is case-sensitive at its core, regardless of core.ignorecase.

• git log and other commands ignore core.ignorecase, remain case-senstive: git log FILE reports
entirely different results than git log file.

• A single file in Perforce can split into two separate files in Git, path differing solely by case.

git-fast-import crash
When a git-fast-import crash occurs, Git Fusion records the resulting crash report to its logs as an
error. To locate these errors, search the logs for the following text strings that appear at the beginning
of the report:

date/time stamp p4gf_fastimport ERROR git fast_import_crash_process identifier value

fast-import crash report:

If a git-import-crash occurs during the initial clone of a repo, Git Fusion recovers from the import
failure by deleting the entire working files directory for this repo. If the crash occurs during a push or
pull request for an existing repo, Git Fusion deletes only the working files for the specific request. In
either case, because Git Fusion automatically deletes its working files, you must redo the request.

Git Fusion submit triggers are not installed
The remote host abruptly closes the connection and displays the following message:

Git Fusion submit triggers are not installed.

This message indicates one or more errors in your implementation of submit triggers in the Perforce
service for the Atomic Push feature, which is necessary for the correct operation of the branching
functionality. Inform all Git users to discontinue their use of Git Fusion, and do the following:

• Review the installation procedure and verify that you have correctly implemented this functionality;
see Step 4 on page 8 of installation steps.

Chapter 8. Troubleshooting

94 Git Fusion Guide

• Run p4gf_submit_trigger.py --set-version-p4key serverportto set the P4PORT value; see
p4gf_submit_trigger.py.

headType field does not exist
The following error message appears:

Field headType doesn't exist.

This error may occur when a commit contains added and deleted files that have similar names.

Look for the file noted in the directory path after the following phrase, and revise the client view to
exclude the file:

[P4#run] Errors during command execution ("p4 fstat -TheadType path/.../filename”)

Locked repo caused by active process termination
Issuing Ctrl+C or a similar command to abort an active client-side process (like a git clone) to the Git
Fusion service may permanently disable further use of the repo; the following message (or similar)
may appear:

git-upload-pack: Perforce gi-copy-p2g failed. Stopping

fatal: The remote end hung up unexpectedly

Git Fusion may not always receive terminate signals that are run in a Git client. This has two
consequences:

• Any active server-side Git processes may continue to run.

• The Git Fusion repo will become locked and unusable.

To correct this situation and unlock the repo, do the following:

1. Wait one minute to allow Git Fusion time to delete the locked repo.

2. Delete the key that Perforce uses as a mutex. Git Fusion regenerates the key at the next Git
command (clone, fetch, pull, or push) to this repo.

Any user that has at least Perforce review access permission can run the following command from
a workstation:

p4 key -d git_fusion_ repo_name _lock

If (for any reason) you cannot delete the key, you can also correct this issue by doing the following:

1. End the active server-side processes.

2. Delete the locked Git Fusion repo.

Run the Git Fusion Delete Repo script (p4gf_delete_repo.py) to delete the locked repo.

Chapter 8. Troubleshooting

Git Fusion Guide 95

3. Recreate the repo.

4. Inform users that they need to reclone the repo.

We recommend that you delete the key, because this does not require users of the affected repo to
reclone. See the Perforce Command Reference, p4 key, and p4 protect for review permission information.

Missing server-id file
The following message appears:

Git Fusion is missing server-id file /home/git/.git-fusion/server-id. Please contact your
administrator.

This error indicates that the server-id file is missing or has been deleted. Run p4gf_super_init.py
with the --id option to rebuild this file; see p4gf_super_init.py.

Unicode-enabled client required
The following message appears:

Unicode server permits only unicode enabled clients

This message indicates that the repo is interacting with a Unicode-enabled Perforce service but the
Unicode setting in .bashrc or the repo configuration file is missing or invalid.

1. Verify that you have correctly set the P4CHARSET environment variable in your .bashrc file.

For example, for a Perforce service using UTF-8, .bashrc should include the line export
P4CHARSET=utf8.

If you installed Git Fusion using the OVA, this setting should be in ~/.git-fusion-profile. For
more information about setting Git Fusion environment variables, see Installing Git Fusion using
OS-Specific Packages or Installing Git Fusion using the OVA.

2. If the P4CHARSET environment variable is set correctly in your environment, check the p4gf_config
file for the repo.

The charset value should be set to the correct P4CHARSET for your Perforce service.

If charset is incorrect, you must delete the existing repo and recreate it with the correct value. See
Setting up Repos

Git Fusion OVA issues

OVF cannot be parsed
When attempting to convert the Git Fusion OVA image, the following message appears:

The OVF descriptor file could not be parsed.

Chapter 8. Troubleshooting

96 Git Fusion Guide

You are trying to convert the OVA image with an unsupported virtual machine version. See the release
notes for the supported versions of Oracle VM VirtualBox and VMWare.

P4D cannot be started
The Perforce service in the OVA does not start.

Run either of the following commands to reboot the Perforce service:

• sudo service p4d start

• sudo /etc/init.d/p4d start

Push issues

Files not in client view
When you or a Git user attempts to push a new file or a merge commit to Git Fusion, the push fails and
the following error message appears:

File(s) not in client view.

This message appears for the following two scenarios:

• When the Git repo includes files that are not in the client view.

• When a Git work tree path notation does not match the notation of all other Git work tree paths in
the repo configuration file.

To resolve this error, recreate the repo definition with a broader view, and ensure that the Git
work tree paths in the view field are formatted correctly for all branch definitions. See Sample repo
configuration files for examples of correct Git work tree path notation.

Files locked by git-fusion-reviews--non-gf
When a user attempts to push to Git Fusion or submit to Perforce, the push or submit fails and the
following error message appears:

Files in the push are locked by [git-fusion-reviews--non-gf]

This indicates the Atomic Push functionality is active and preventing other users from performing an
action that currently conflicts with another user’s push. Instruct the user to wait a few minutes and
attempt the push or submit again.

Merge commit requires rebasing
When a Git user attempts a push, the following message appears:

Merge commit <SHA1> not permitted. Rebase to create a linear history.

Chapter 8. Troubleshooting

Git Fusion Guide 97

This indicates that you have implemented a Git Fusion repo without Perforce branching functionality,
and that the user is attempting to push a commit that has non-linear history. You must do the
following:

• Instruct the user to run git rebase and verify that the commit has a linear history with a single
parent before attempting another push.

• Review the Git Fusion repo configuration files’ definition, determine if you need to enable
Perforce branch support, and contact your Perforce Technical Support representative at
<support@perforce.com> for help with this conversion.

Not authorized for Git commit
When you or a Git user attempts a push, the following error message appears:

user name not authorized to submit file(s) in git commit

The Perforce service enforces read and write permissions on files. Review the read and write
permissions you have assigned to the user and determine if there are any errors.

To resolve the user’s issue, instruct the user to do the following

1. Run git filter-branch to remove prohibited files from the local Git repo.

2. Attempt the push again.

To minimize this issue, provide your users with a list of their specific directory and file permissions.

Not permitted to commit
When you or a Git user attempts a push, the following error message appears:

User 'email_address' not not permitted to commit

This indicates that the Git author does not map to any Perforce user. Git Fusion is unable to assign a
changelist owner to the changelist for such a commit.

To allow this push to go through, either:

• See Mapping Git users to Perforce accounts.

• See Enable the unknown_git Perforce account.

Password invalid or unset
When you or a Git user attempts a push, the following error message appears:

[Error]: Perforce password (P4PASSWD) invalid or unset

Please make sure you have the correct access rights and the repository exists.

This indicates one of the following two scenarios:

Chapter 8. Troubleshooting

98 Git Fusion Guide

• You have not set a password for git-fusion-user as required by your Perforce service.

Set a password and repeat the login procedure.

• You have not logged Git Fusion into the Perforce service.

To log the Git Fusion server into the Perforce service:

1. Log into the Git Fusion service account (git) on the Git Fusion server.

2. Run p4 login git-fusion-user

3. Run p4 login git-fusion-reviews-serverid

The serverid is the Git Fusion server’s ID. Git Fusion sets this ID when you run
p4gf_super_init.py and also records the ID in ~git/.git-fusion/server-id.

Pushes prohibited after repo deleted or trigger removed
After you delete a repo, remove a branch from a repo config file, or remove a trigger that affects a Git
Fusion implementation, Git users cannot push commits.

To resolve this situation, run the Submit Trigger script p4gf_submit_trigger.py against the Perforce
Server. This resets data and re-enables users to perform pushes. See p4gf_submit_trigger.py

Script issues

Updating authorized keys file of multiple servers fails
You run the p4gf_auth_update_authorized_keys.py on a series of Git Fusion servers, but some or most
of the servers still do not have updated key information.

To successfully run this script on multiple Git Fusion servers, each server must have a unique server
ID. Use the p4gf_super_init.py script with --showids to view existing IDs and --id to assign new IDs.

Git Fusion Guide 99

Appendix Script Command Reference
This apppendix provides command reference information for the Git Fusion configuration script,
configure-git-fusion.sh, and the Git Fusion Python scripts that can be run manually:

• configure-git-fusion.sh

• p4gf_auth_update_authorized_keys.py

• p4gf_convert_v12_2.py

• p4gf_delete_repo.py

• p4gf_init.py

• p4gf_init_repo.py

• p4gf_poll.py

• p4gf_push_limits.py

• p4gf_submit_trigger.py

• p4gf_super_init.py

• p4gf_version.py

• General options

Running the scripts
Run the configure-git-fusion.sh script as root or a user with sudo privileges on the machine that hosts
Git Fusion.

Run p4gf_submit_trigger.py as root or a user with sudo privileges on the machine that hosts your
Perforce service.

Run all other p4gf_* python scripts as the Git Fusion service account (git) on the machine that hosts
Git Fusion.

Script Command Reference

100 Git Fusion Guide

Name
configure-git-fusion.sh — Performs post-installation configuration of Git Fusion.

Synopsis
configure-git-fusion.sh --help

configure-git-fusion.sh [-n] [-m] [--server [new|local|remote]] [--unknownuser [reject|pusher|
unknown]] [--super username]
[--superpassword password] [--gfp4password password] [--gfsysuser username] [--id server-id]
[--p4port P4PORT] [--p4root P4ROOT] [--timezone timezone] [--https]

Description

When you run the configure-git-fusion.sh script interactively, without options, it performs some or
all of the following tasks, depending on your specific configuration and your responses to its prompts:

• If you requested a new Perforce service at the prompt, it installs and configures Perforce Server
(p4d) using the perforce-server package for your platform.

• Sets configurable on how you want to handle the Perforce change owner for git commits authored
by non-Perforce users. If you selected 'unknown', it creates 'unknown_git' Peforce user.

• Sets the Git Fusion time zone.

At the prompt, you can set it to your Perforce service time zone or accept the default, which is the
Git Fusion host machine's time zone.

Git Fusion uses the Olson time zone format, as recognized by pytz (for example, US/Pacific rather
than PST).

• Creates the Git Fusion service account unless it already exists.

Unless you specify another account name at the prompt, it creates the user git.

It also creates a home directory and working directory (~git/.git-fusion/) for this account and
configures its PATH variable.

• Updates the Git Fusion environment configuration file (~git/p4gf_environment.cfg) with your
Perforce service's hostname and port (P4PORT) and, if your Perforce service is Unicode-enabled, sets
the P4CHARSET value.

This configuration file is referenced by the environment variable P4GF_ENV in .bashrc for the
Git Fusion service account (git) on the server that hosts Git Fusion. For more information about
additional environment variables that you can set, see the comments in the file itself.

• For SSL-enabled Perforce services, runs the p4 trust command to trust the Perforce service.

• Runs p4gf_super_init.py to create the Perforce users that Git Fusion requires for interacting with
your Perforce service (git-fusion-user, git-fusion-reviews-server-id, git-fusion-reviews--non-
gf, and git-fusion-reviews--all-gf).

Script Command Reference

Git Fusion Guide 101

This python script also does the following:

• Assigns these users the password you provide at the prompt.

• Creates the Perforce group that includes these users

• Creates non-expiring login tickets for these users.

• Sets Perforce permissions for these users.

• Creates a //.git-fusion Perforce depot to store Git Fusion metadata.

• Gives Perforce admin users the ability to list Perforce group, user, and host address permissions (sets
dm.protects.allow.admin to 1).

• Configures Git Fusion logging to use syslog.

• Configures a cron job that polls for new SSH public key information every minute.

• Optionally configures HTTPS authentication, see “Authenticating Git users” on page 28.

You can also run the script non-interactively, using the options listed below. This can be useful when
you want to rerun the script to do the following:

• Connect Git Fusion to a different Perforce service.

• Create new login tickets for git-fusion-user and the Perforce service users.

• Change the Git Fusion service account (git, by default).

• Change the Git Fusion server time zone.

Options

Option Meaning

--help Display usage and exit.

-n Run script in non-interactive mode.

-m Set terminal display to monochrome.

--server [new|local|remote] Choose to install a new Perforce Server instance
or use an existing local or existing remote one.

--unknownuser [reject|pusher|unknown] Choose how to handle the Perforce change
owner for git commits authored by non-Perforce
users.

--super username Perforce super user.

--superpassword password Perforce super user's password.

Script Command Reference

102 Git Fusion Guide

Option Meaning

--gfp4password password Password set for any new Git Fusion Perforce
users created when configure-git-fusion.sh
calls p4gf_super_init.py. These could be one
or more of the following: git-fusion-user,
git-fusion-reviews-server-id, git-fusion-
reviews--non-gf, and git-fusion-reviews--
all-gf.

--gfsysuser username The Linux system account that runs Git
commands for Git Fusion. If the account does
not exist, the script creates it, defaulting to user
name git.

--id server-ID Server ID used to identify the Git Fusion
instance. Also used as the service name if
the script is installing a new Perforce Server
instance. If not specified, defaults to the current
hostname. For more information, see “Managing
Git Fusion server IDs” on page 76.

--p4port protocol: myperforceserver:port The P4PORT for your Perforce service.

--p4root /path/to/perforce/root The Perforce Server root directory (P4ROOT),
where the Perforce service will store user-
submitted files and system-generated metadata.

--timezone timezone The Perforce Server's time zone in Olson format.
If not specified, defaults to the Git Fusion host
operating system's time zone setting.

--https Configure HTTPS authentication using Apache.

Usage Notes

• Run the script as root or a user with sudo privileges on the machine that hosts Git Fusion.

• Run the script interactively when first configuring Git Fusion after installation.

• You can run it interactively or non-interactively with arguments, if you are rerunning it to update
your configuration.

Script Command Reference

Git Fusion Guide 103

Name
p4gf_auth_update_authorized_keys.py — Copies SSH public keys from the Perforce depot to the
appropriate SSH configuration file.

Synopsis
p4gf_auth_update_authorized_keys.py [g-opts]

p4gf_auth_update_authorized_keys.py [-r|--rebuild] [-v|--verbose]

p4gf_auth_update_authorized_keys.py [-2|--ssh2] [-v|--verbose]

p4gf_auth_update_authorized_keys.py [-f file|--file file] [-v|--verbose]

Description

If you do not specify the --ssh2 option, this script does the following:

1. Copies SSH public keys from //.git-fusion/users/p4user/keys/*

2. Converts all incoming keys to the OpenSSH format

3. Adds the keys to the ~git/.ssh/authorized_keys file (or the file specified by --file), one key per
line.

If you do specify the --ssh2 option, this script adds keys to the ~git/.ssh2/authorization file (or the
file specified by --file), one key per line.

Options

Option Meaning

-r, --rebuild Rebuild keys file.

This option clears the authorized_keys or
authorization file and recreates the file with all
of the SSH keys that are stored in the Perforce
depot, ignoring the p4 key that would otherwise
tell the script whether it needs to run.

-v, --verbose Print details of deletion process.

-2, --ssh2 Perform the following tasks:

• Analyze the SSH2 authorization file that
contains SSH2 key pair information.

• Convert incoming OpenSSH-formatted keys to
the SSH2 format.

• Write an SSH2 public key to ~git/.ssh2/git-
user-keys/user/fingerprint.pub.

http://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_key.html

Script Command Reference

104 Git Fusion Guide

Option Meaning

• Update the SSH2 authorization file with
added and removed key pair information.

-f file, --file file Specify the path and file name of the SSH
configuration file.

• For OpenSSH-formatted keys, defaults to
~git/.ssh/authorized_keys.

• For SSH2-formatted keys, defaults to
~git/.ssh2/authorization.

[g-opts] See the General Options section.

Script Command Reference

Git Fusion Guide 105

Name
p4gf_convert_v12_2.py — Permanently converts version 2012.2 Git Fusion Perforce Servers for use
with 2013.1 Git Fusion.

Synopsis
p4gf_convert_v12_2.py [g-opts]

p4gf_convert_v12_2.py [-y|--convert]

p4gf_convert_v12_2.py [-d|--delete]

Description

This script does the following:

1. Deletes the client git-fusion-name workspace files.

2. Deletes the object client workspace files.

3. Creates the Git Fusion configuration files (p4gf_config) for the previously created repos.

4. Obliterates the //.git-fusion/objects/... directory.

Options

Option Meaning

-y, --convert Perform the obliterates and the conversion.

-d, --delete Perform the deletes and the conversion, but do
not obliterate the //.git-fusion/objects/...
directory.

[g-opts] See the General Options section.

Usage Notes

• Because you cannot reverse this conversion, perform an initial test run of this script without the -y,
--convert option and review the output for errors and messages. Contact Technical Support with
any questions or issues before running this script with either option.

• Use the delete option (-d, --delete) if your organization has policies that prohibit permanently
deleting (p4 obliterate) Perforce server data.

Script Command Reference

106 Git Fusion Guide

Name
p4gf_delete_repo.py — Deletes a Git Fusion repository and associated workspaces.

Synopsis
p4gf_delete_repo.py [g-opts]

p4gf_delete_repo.py [-y|--delete] [-v|--verbose] [view [repo_name ...]]

p4gf_delete_repo.py [-a|all] [-N|--no-obliterate] [-y|--delete] [-v|--verbose]

Description

This script deletes the following:

• Files in git-fusion-serverID-repo_name workspace.

• The git-fusion-serverID-repo_name workspace.

• The repo configuration file located in the Perforce depot location //.git-fusion/repos/repo/
p4gf_config.

When you include the -a or --all option, Git Fusion finds and deletes the following for all repos in the
current Git Fusion instance, disregarding any repos specified with the view argument:

• All git-fusion-serverID-repo_name workspaces (clients).

• All git-fusion-serverID-repo_name workspace files.

• Objects in //.git-fusion/objects/...

When successful, the output displays the deleted entities; for example:

$ p4gf_delete_repo.py -y winston_job0662509
Deleted 0 files, 2 groups, 1 clients, and 0 counters.
Successfully deleted repos: winston_job0662509

Positional Arguments

Option Meaning

view repo_name Name of the Perforce workspace view (Git
Fusion repo) to be deleted.

Options

Option Meaning

-a, --all Obliterate all repos in the current Git Fusion
instance, including all repo metadata stored

Script Command Reference

Git Fusion Guide 107

Option Meaning

in the Perforce service in the //.git-fusion/
objects/... directory. Remove all known Git
mirrors.

-y, --delete Perform the deletion.

-v, --verbose Print details of deletion process.

-N, --no-obliterate Only available with the -a, --all option.
Deletes all repo files for the current Git Fusion
instance except the repo objects in the Perforce
//.git-fusion/objects/... directory.

[g-opts] See the General Options section.

Usage Notes

• We recommend that you run p4gf_delete_repo.py without the -y, --delete flag to preview the
changes that will be made to the depot before you use the -y, --delete flag to perform the actual
deletion.

• Use -a, --all to permanently delete all data for all repos on the current Git Fusion instance,
including all metadata stored in the Perforce service in the //.git-fusion/objects/... directory.
Be aware that this may take some time, depending on the number and size of the objects. Use -N,
--no-obliterate to quickly delete most of the repo's data and continue working. This minimizes
performance impact.

• Whenever you run p4gf_delete_repo.py, you should also run p4gf_submit_trigger.py --reset
myperforceserver:port.

Script Command Reference

108 Git Fusion Guide

Name
p4gf_init.py — Creates the user and client that Git Fusion uses when communicating with Perforce.

Synopsis
p4gf_init.py [g-opts]

p4gf_init.py [-v [level]|--verbose [level]]

p4gf_init.py [-q|--quiet]

Description

Uses the current environment’s P4PORT and P4USER to connect to Perforce.

The current P4USER must have permission to create a user and client; however, super user privileges
are not required.

This script creates the following:

• Client: git-fusion--serverID

• Depot file://.git-fusion/users/p4gf_usermap

• P4 keys:

• git-fusion-init-started

• git-fusion-init-complete

• Permission groups:

• git-fusion-permission-group-default

• git-fusion-pull

• git-fusion-push

This script also creates the global configuration file (//.git-fusion/p4gf_config), if it does not already
exist.

Options

Option Meaning

-v [level], --verbose [level] Define a verbosity level for output. Valid levels
are: QUIET, ERROR, WARNING, INFO, and DEBUG.

-quiet, --q Report only errors. This option is the same as
defining -v QUIET.

[g-opts] See the General Options section.

Script Command Reference

Git Fusion Guide 109

Usage Notes

When this script runs on an initialized implementation, the script either performs any needed repairs
or takes no action, as appropriate.

Related Script

p4gf_init_repo.py

Script Command Reference

110 Git Fusion Guide

Name
p4gf_init_repo.py — Initializes a Git Fusion repository.

Synopsis
p4gf_init_repo.py [g-opts]

p4gf_init_repo.py [--config file] [--start n] [--noclone] repo-name

p4gf_init_repo.py [--p4client client] [--start n] [--noclone] [--charset charset] repo-name

p4gf_init_repo.py [--start n] [--config file] [--p4client client] [--charset charset] repo-name

p4gf_init_repo.py [--noclone] [--config file] [--p4client client] [--charset charset] repo-name

p4gf_init_repo.py [--charset charset] [--config file] [--p4client client] [--start n] [--noclone]
 repo-name

Description

To clone data from the Perforce Server to a Git Fusion repo, run the script from a Git Fusion server and
include the --start n and name arguments:

p4gf_init_repo.py --start n repo-name

This script creates the following:

• Repo-specific permission groups:

• git-fusion-repo-name-pull

• git-fusion-repo-name-push

Options

Option Meaning

repo-name The name of the Git Fusion repo to be initialized.
Repo names can include the forward slash (/)
and colon (:) characters.

This repo must not contain a Perforce stream
client specification.

The script initializes the repo using the
p4gf_config file located in Perforce at //.git-
fusion/repos/repo_name/p4gf_config. If no
repo configuration file exists at that location, the
script looks for a Perforce workspace with the
same name.

--config file Specify a Git Fusion repo configuration file.

Script Command Reference

Git Fusion Guide 111

Option Meaning

Use a configuration file on your Git Fusion
server to initialize the Git Fusion repo.

You cannot use this option with --charset
charset or --p4client client.

--p4client client Specify a Perforce client specification as a
template for creating the repo.

Use this option to specify a Perforce client as
a template for creating the repo definition. If
you do not set this option, Git Fusion creates
a basic repo definition that includes a single
branch named master that is set to the View of
the specified repo-name.

You cannot use this option with --config file.

--start n Start Git history at changelist n.

If you omit a changelist start number, Git history
starts with the first changelist in this repo’s view
of Perforce.

You cannot use this option with --noclone file.

--noclone Do not immediately populate the Git repo with
content from Perforce.

If you omit this option, p4gf_init_repo.py
copies history from Perforce to Git, which can
take some time for large histories.

You cannot use this option with --start n.

--charset charset Specify a Perforce Unicode value (P4CHARSET) for
the repo. When you do not specify this option,
Git Fusion uses the P4CHARSET value of the global
configuration file, or the configuration file that
you specify with --config file.

[g-opts] See the General Options section.

Usage Notes

• When this script runs on an initialized implementation, the script either performs any needed
repairs or takes no action, as appropriate.

• After p4gf_init_repo.py completes, Git Fusion no longer uses or needs the Perforce client
specification. You may delete it or use it for other purposes.

Script Command Reference

112 Git Fusion Guide

Note Because Git Fusion uses the Perforce client specification only once to create the
repo definition, later changes to that specification are not automatically copied to
Git Fusion.

Related Script

p4gf_init.py

Script Command Reference

Git Fusion Guide 113

Name
p4gf_poll.py — Updates the object cache of a Git Fusion repo.

Synopsis
p4gf_poll.py [g-opts]

p4gf_poll.py [-a|--all]

p4gf_poll.py [view [repo_name]]

Description

This script improves the performance of Git users' pull requests. It updates the cached objects of a Git
Fusion repo with any recent changes from the Perforce service, which reduces the duration of any
subsequent pull requests.

Positional Arguments

Option Meaning

view repo_name Name of a specific internal Git Fusion repo to be
updated

Options

Option Meaning

-a, --all Update all internal repos.

[g-opts] See the General Options section.

Usage Notes

We recommend that you use a cron job to run this script automatically.

Script Command Reference

114 Git Fusion Guide

Name
p4gf_push_limits.py — View and update the values of p4 keys which store repo disk usage.

Synopsis
p4gf_push_limits.py [g-opts]

p4gf_push_limits.py [-a|--all] [-y|--reset]

p4gf_push_limits.py [repo_name] [-y|--reset]

Description

This script displays or updates the values of the p4 keys which store repo disk usage: git-fusion-
view-repo-total-mb and git-fusion-view-repo-pending-mb. For more information, see “Limiting
push size and disk usage” on page 69.

Positional Arguments

Option Meaning

repo_name Name of a specific internal Git Fusion repo.

Options

Option Meaning

-a, --all Process all known Git Fusion repositories.

-y, --reset Perform the reset of the p4 keys.

[g-opts] See the General Options section.

Usage Notes

Disk usage is automatically updated whenever a given repo is pushed to Git Fusion.

Script Command Reference

Git Fusion Guide 115

Name
p4gf_submit_trigger.py — Updates submit triggers required by the atomic push functionality.

Synopsis
p4gf_submit_trigger.py [g-opts]

p4gf_submit_trigger.py [--generate-trigger-entries "/absolute/path/to/python3" "/absolute/path/to/
p4gf_submit_trigger.py" P4PORT]

p4gf_submit_trigger.py [--install-trigger-entries "/absolute/path/to/python3" "/absolute/path/to/
p4gf_submit_trigger.py" P4PORT perforce_superuser]

p4gf_submit_trigger.py [--generate-tickets P4PORT perforce_superuser]

p4gf_submit_trigger.py [--install P4PORT perforce_superuser password]

p4gf_submit_trigger.py [--set-version-p4key P4PORT]

p4gf_submit_trigger.py [--reset P4PORT [perforce_superuser]]

p4gf_submit_trigger.py [--rebuild-all-gf-reviews P4PORT [perforce_superuser]]

p4gf_submit_trigger.py [--show config]

Description

Manages Git Fusion’s Atomic Push Submit Trigger functionality:

• Generates and installs change-content, change-commit, and change-failed triggers (for Perforce
Server 14.1+ instances) or change-submit, change-content, and change-commit triggers (for pre-14.1
Perforce Server instances).

• Creates a trigger configuration file, p4gf_submit_trigger.cfg, in the same directory as the trigger
script, that holds your P4PORT andP4CHARSET variables, as well as the path to the P4 binary.

• Generates and updates p4 keys, including the trigger version p4 key.

• If your Perforce service is SSL-enabled, generates the p4gf_submit_trigger.trust file in the same
directory as the trigger script, to manage the trust of the SSL connection.

• Creates login tickets for git-fusion-user and the Git Fusion service users: git-fusion-user, git-
fusion-reviews-server-id, git-fusion-reviews--non-gf, and git-fusion-reviews--all-gf.

The login tickets are generated in the p4gf_submit_trigger.tickets file and placed in the same
directory as the trigger script.

• Rebuilds the list of Perforce depot paths of all Git Fusion repos.

Important Run this script on the machine that hosts your Perforce service, as a user with sudo
privileges.

Script Command Reference

116 Git Fusion Guide

For more information about triggers, see the Perforce System Administrator's Guide, "Scripting Perforce:
Triggers and Daemons."

Options

Option Meaning

--generate-trigger-entries "/absolute/
path/to/python3" "/absolute/path/to/
p4gf_submit_trigger.py" P4PORT

Generate trigger entries that you can manually
add to the Perforce Triggers table.

--install-trigger-entries "/absolute/
path/to/python3" "/absolute/path/
to/p4gf_submit_trigger.py" P4PORT
perforce_superuser

Generate trigger entries and install them to the
Perforce Triggers table.

--generate-tickets P4PORT
perforce_superuser

Create login tickets in
p4gf_submit_trigger.tickets for the Perforce
users required to run Git Fusion (git-fusion-
user, git-fusion-reviews-server-id, git-
fusion-reviews--non-gf, and git-fusion-
reviews--all-gf).

--install P4PORT perforce_superuser
password

Perform all tasks required to install and
configure the triggers required for Git Fusion:

• Create a trigger configuration file,
p4gf_submit_trigger.cfg in the same
directory as the trigger script.

• If your Perforce service is SSL-enabled,
generate p4gf_submit_trigger.trust file
in the same directory as the trigger script to
manage the trust of the SSL connection

• Generate trigger entries and install them to the
Perforce Triggers table.

• Create login tickets in
p4gf_submit_trigger.tickets for the Perforce
users required to run Git Fusion

• Set the trigger version p4 key.

--set-version-p4key P4PORT Enter the P4PORT of server to set the trigger
version p4 key. This tells Git Fusion that triggers
are installed.

--reset P4PORT Enter the P4PORT of the server to clear any locks
created by previous executions of these triggers
or of Git Fusion. This removes all p4 reviews

http://www.perforce.com/perforce/doc.current/manuals/p4sag/chapter.scripting.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/chapter.scripting.html

Script Command Reference

Git Fusion Guide 117

Option Meaning

and p4 keys stored by the triggers and Git
Fusion to provide atomic locking.

--rebuid-all-gf-reviews P4PORT
perforce_superuser

Rebuild the list of Perforce depot paths of all Git
Fusion repos. By default, this command runs as
Perforce user git-fusion-reviews--all-gf, but
optionally you can use a Perforce super user.

--show-config Display the settings being used by the trigger
script. If the p4gf_submit_trigger.cfg file exists,
it displays the contents of that file. If not, it
displays the settings set within the script itself.

g-opts See the General Options section.

Usage Notes

• If you remove a trigger that affects a Git Fusion implementation, you must rerun this script with the
--reset P4PORT option against the Perforce service.

• For most purposes, it is easiest to run this trigger using the --install option.

Script Command Reference

118 Git Fusion Guide

Name
p4gf_super_init.py — Initializes Git Fusion with a Perforce Server instance.

Synopsis
p4gf_super_init.py [g-opts]

p4gf_super_init.py [-p P4PORT|--port P4PORT] [-v level|--verbose level]

p4gf_super_init.py [-p P4PORT|--port P4PORT] [-q|--quiet]

p4gf_super_init.py [-u P4USER|--user P4USER] [-v level|--verbose level]

p4gf_super_init.py [-u P4USER|--user P4USER] [-q|--quiet]

p4gf_super_init.py [--id ID]

p4gf_super_init.py [--showids]

p4gf_super_init.py [--ignore-case]

p4gf_super_init.py [--passwd PASSWD|--no-passwd]

Description

Must be run with the current P4USER set to a super user or with the --user flag. For example:

p4gf_super_init.py --user superuser

Creates the following Git Fusion data in a Perforce Server:

• Creates the Perforce user that Git Fusion uses when connecting to Perforce: git-fusion-user.

• Creates the following Perforce service user used with the Atomic Push functionality:

• git-fusion-reviews--all-gf

• git-fusion-reviews--non-gf

• git-fusion-reviews-serverid

• Creates a Perforce group (git-fusion-group) that is defined with an unlimited ticket and adds git-
fusion-user and the Perforce service users to this group.

• Creates a depot //.git-fusion.

• Grants administrator-level permissions to the git-fusion-user in the Perforce protections table.

Options

Option Meaning

-p P4PORT, --port P4PORT P4PORT of server.

-u P4USER, --user P4USER P4USER of user with super permissions.

Script Command Reference

Git Fusion Guide 119

Option Meaning

-v [level], --verbose [level] Define a verbosity level for output. Valid levels
are: QUIET, ERROR, WARNING, INFO, and DEBUG.

-q, --quiet Report only errors. Same as --verbose QUIET.

--id ID Specify a new or change an existing ID for the
Git Fusion server.

Git Fusion uses the computer's hostname as a
default value for this ID. When you set an ID,
Git Fusion assigns an ID to the server and writes
it to P4GF_HOME/server-id, where P4GF_HOME is
the Git Fusion working directory specified in
the Git Fusion environment configuration file
(p4gf_environment.cfg). Git Fusion does not
alter the original hostname value in the hostname
and hosts files.

--showids Display all Git Fusion server IDs that are
associated with the specified Perforce service.

--ignore-case Do not check for Perforce service's case-handling
policy.

--passwd PASSWD Password for git-fusion-user and git-fusion-
reviews-* Perforce accounts.

--no-passwd Do not prompt for or set password for git-
fusion-user and git-fusion-reviews-* Perforce
accounts.

[g-opts] See the General Options section.

Usage Notes

Warning • Do not change the permissions set for the git-fusion-user as this will inhibit the
Git Fusion server's functionality.

• Do not change a server's ID while Git Fusion is processing a Git request (like a
clone, fetch, pull, or push).

Important • You must assign passwords to the git-fusion-user and all service users and log
them into the Perforce server. Otherwise, the Perforce server returns the error:
Password must be set before access can be granted.

• Sites where multiple Git Fusion instances run on the same host must specify a
unique server ID for each instance.

Script Command Reference

120 Git Fusion Guide

The following are general usage notes:

• When this script runs on an initialized implementation, the script either performs any needed
repairs or takes no action, as appropriate.

• Service users do not consume a Perforce license. For more information, see the description of the
three user types in the Perforce Command Reference, p4 user.

Script Command Reference

Git Fusion Guide 121

Name
p4gf_version.py — Provides the Perforce version string.

Synopsis
p4gf_version.py

Description

Displays a Perforce version string:

Perforce - The Fast Software Configuration Management System.
Copyright 2014 Perforce Software. All rights reserved.
Rev. Git Fusion/2014.2/929080 (2014/09/04).
SHA1: 763654fe5067y1f3d4e9ec7f55dba44f71bf8b1g
Git: git version 1.8.2.3
Python: 3.2.3
P4Python: Rev. P4PYTHON/LINUX26X86_64/2014.1/925900 (2014.1/821990 API) (2014/08/26).

Script Command Reference

122 Git Fusion Guide

Name
General options — General options that can be supplied on the command line for most Git Fusion
Python scripts.

Synopsis
p4gf_script_name.py [-h|--help]

p4gf_script_name.py [-V]

Options

Option Meaning

-h, --help Show this help message and exit.

-V Displays version information and exits.

Git Fusion Guide 123

Appendix Authenticating Git Users using SSH
SSH uses public and private key pairs to perform authentication. Git Fusion provides a method for
managing SSH keys, wherin each user’s public key is versioned in the Perforce depot under //.git-
fusion/users/p4user/keys. Users either send the Git Fusion administrator their public keys to submit
to Perforce, or users submit them directly to the Perforce depot, depending on your organization’s
workflow preferences.

The Git Fusion Update Authorized Keys script (p4gf_auth_update_authorized_keys.py) copies the
public keys from the Perforce depot to the Git Fusion server and performs the following tasks:

• Inserts a call to p4gf_auth_server.py in the key.

When a user issues a Git command against the Git Fusion server, the embedded command in that
user’s public key invokes the p4gf_auth_server.py script, which authenticates the user and routes
the request to Git Fusion.

• Writes the modified key to the Git Fusion service user account’s authorized keys file (or SSH2
authorization files).

Git Fusion supports the following SSH implementations:

• OpenSSH and other SSH implementations that use the same public key and ~/.ssh/
authorized_keys format.

• SSH2 implementations that use RFC 4716-style SSH2 key files and ~/.ssh2/authorization files.

Git Fusion can work with SSH2 keys that have been converted from OpenSSH keys.

Set up SSH authentication
Note You can use any SSH key management method that you like, as long as SSH

keys are modified to call p4gf_auth_server.py. For more information about the
p4gf_auth_server.py script, run p4gf_auth_server.py -h as the Git Fusion service
account (git).

To manage SSH keys using the method provided by Git Fusion:

1. Create a workspace (client) for submitting public keys to Perforce.

The workspace view should map //.git-fusion/users/... to your workspace root.

2. Add users' public keys to Perforce.

a. Obtain the user’s public key.

Key files can have any name. Be sure to store only public keys in Perforce.

b. Submit the user's public key to the //.git-fusion Perforce depot.

$ p4 -u user_name -c client add //.git-fusion/users/p4user/keys/keyname
$ p4 submit -d “add new keyname”

Authenticating Git Users using SSH

124 Git Fusion Guide

3. Run the Git Fusion Update Authorized Keys script (p4gf_auth_update_authorized_keys.py).

You must run it as the Git Fusion service account (git).

You can run the script manually, but it is better to use a cron job to run the script automatically.
The configure-git-fusion.sh script creates this cron job for you. For more information, see Use a
cron job to copy public keys to Git Fusion.

Note If you want to let Git users administer their own keys in the Perforce service, you
must give them write permissions on their //.git-fusion/users/p4user/keys
directory.

When you add a permissions row to the p4 protect form, enter the Git Fusion
server’s IP address as the host value. You can represent this IP address as an
asterisk (*), unless you are using CIDR notation:

$ p4 protect Protections:
...
 write user p4joe * //.git-fusion/users/p4joe/keys/...

Note Git Fusion supports multiple keys for the same user and stores them in the user’s
keys directory. If users are maintaining multiple keys, ensure that they do not store
them in separate subdirectories for each key. These keys are shared across all Git
Fusion instances.

Use a cron job to copy public keys to Git Fusion
Git Fusion uses the Git Fusion Update Authorized Keys script
(p4gf_auth_update_authorized_keys.py) to identify new SSH keys in Perforce, modify them, and
copy them to Git Fusion. The configure-git-fusion.sh script creates a cron job to run the script every
minute, letting you avoid having to run the script manually every time a user adds or changes their
public key.

The configure-git-fusion.sh script creates the cron job in /etc/cron.d/perforce-git-fusion.

You can modify this cron job to add p4gf_auth_update_authorized_keys.py script options, such
as --file or --ssh2, as needed. For more information, see p4gf_auth_update_authorized_keys.py
 on page 103.

Set up SSH authentication using the OVA's SSH key management
console

If you implement Git Fusion using the OVA, the OVA’s SSH key management console simplifies the
authentication setup process for you. When you upload a key using the online management console,
Git Fusion automatically places the key in the correct directory and runs the Git Fusion Update
Authorized Keys script (p4gf_auth_update_authorized_keys.py).

Authenticating Git Users using SSH

Git Fusion Guide 125

Note The SSH key management console works out-of-the-box when you use the Perforce
Server instance that was installed with the OVA. If you are connecting to an
existing, external Perforce service from the Git Fusion OVA, you must provide your
Perforce service's hostname and port ($P4PORT) on the Git Fusion Config: Perforce
Server page.

Important If you have assigned a password to git-fusion-user, you must update this
password in the SSH key managment console before you can upload SSH keys:

1. Go to the Perforce Server tab in the online management console.

2. Enter the password you set for git-fusion-user and click Apply.

To add a new public SSH key using the online management console:

1. On the Git Fusion online management console, go to the Git Fusion Config tab and click the User
Key Management button to access the Upload User Key File page.

2. Enter a Perforce User ID and browse to select its public SSH key.

3. The Authentication Required window displays.

Enter root and the password you established for root.

4. Click Upload File.

This adds the key to the correct directory location and runs the Git Fusion Update Authorized Keys
script (p4gf_auth_update_authorized_keys.py), which copies the key to enable the Git user’s access
to Git Fusion. On the Upload User Key File page, the Git user’s information displays without the
question mark icon and with an email account:

Adding a Git user’s SSH public key does not automatically add that user as a Perforce user. A Git
user’s name that displays with a question mark icon and without an email account does not yet
exist in the Perforce service. You must create a Perforce user account for the Git user, then click the
Refresh button on the Upload User Key File page.

To remove a key:

1. Mouse over the public key file.

The Delete icon displays on the left side of the public key file name.

2. Click the Delete icon and click OK.

The following confirmation message appears: File filename.pub was deleted.

Authenticating Git Users using SSH

126 Git Fusion Guide

Troubleshooting SSH key issues

Key or identity not recognized
Git user's new or changed keys do not seem to be working, or when you use the identity file (-i)
option with the ssh command, the following message appears:

Too few arguments.

To resolve the issue:

• Wait a few minutes for Git Fusion to update the authorized keys directory automatically.

• Run ssh-add -D to clear your computer’s authentication cache and force SSH (or git-over-ssh) to
honor your keys for the next command.

The authentication software on your computer maintains a small cache of keys and identities for
you. However, note that if you regularly switch between different SSH keys, the cache occasionally
uses an older key for an SSH session even if you specify a different or newer key by running ssh -i
identity_file

No such Git repo
When a Git user connects to Git Fusion using SSH, it prompts the user for a password and then
displays the following error message:

There’s no such Git repository.

Logging into Git Fusion using SSH does not require a password. This issue usually indicates an error
in the SSH key configuration, like Git Fusion having an incorrect key pair.

PTY request failed
The following error message appears:

PTY allocation request failed on channel 0.

You used an SSH key associated with Git Fusion when attempting to perform a non-Git operation such
as SSH or SCP.

Keys checked into //.git-fusion/users/p4user/keys/filename are reserved solely for Git Fusion
operations like git clone and git push. You cannot use these keys for SSH, SCP, or other operations.

Repo is not a Git repo
The following error message appears:

repo does not appear to be a git repository.

You used an SSH key that is not associated with Git Fusion when attempting to perform a Git
operation such as git clone or git push.

Authenticating Git Users using SSH

Git Fusion Guide 127

SSH format issues
If you encounter key issues, verify that the key is in a supported format and stored in the correct
directory. Git Fusion supports keys formatted and stored as follows:

• OpenSSH, stored in ~/.ssh

• SSH2, stored in ~/.ssh2

128 Git Fusion Guide

Git Fusion Guide 129

Appendix License Statements
Perforce software includes software developed by the University of California, Berkeley and its
contributors. This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/).

Perforce software includes software from the Apache ZooKeeper project, developed by the Apache
Software Foundation and its contributors. (http://zookeeper.apache.org/)

130 Git Fusion Guide

	Git Fusion Guide
	Table of Contents
	About This Manual
	See also
	Perforce general resources
	Please give us feedback

	Chapter 1. Getting Started
	What is Git Fusion?
	Which installation should I use?

	Chapter 2. Installing Git Fusion using the OVA
	Prerequisites
	Installation steps
	Next Steps
	Connecting the Git Fusion OVA installation to your Perforce service
	Next steps

	Pointing the Git Fusion HTTPS server to your own SSL certificate

	Chapter 3. Installing Git Fusion using OS-Specific Packages
	Prerequisites
	Installation steps
	Next steps

	Chapter 4. Setting up Users
	How do user permissions work?
	Authentication
	Authorization
	Git Fusion users
	Perforce protections
	Permission groups
	Permissions for git-fusion-user
	Permission validation logic
	Effect of permissions on push requests

	What do I have to do?
	Mapping Git users to Perforce accounts
	Verify email address match
	Use the Git Fusion User Map
	Enable the unknown_git Perforce account

	Authenticating Git users
	Use existing HTTPS configuration with a different Perforce Service.
	Validating your HTTP authentication setup
	Logs
	Ubuntu
	CentOS and Red Hat

	Authorizing Git users
	Assign Perforce permissions to Git Fusion users
	Create the permission groups and group p4 key
	Populate the permission groups and set the group default p4 key
	Enable pushes when Git authors lack Perforce permissions
	Enforce Perforce read permissions on Git pull

	Chapter 5. Setting up Repos
	How does Git Fusion map Perforce depots to Git repos?
	Configuring global defaults for repos
	Configuring repos
	Configure repos with a repo configuration file (p4gf_config)
	Repo configuration file: key definitions and samples
	Sample repo configuration files
	Example 1:
	Example 2:

	Configure repos from a Perforce workspace
	Use a Perforce depot path in a Git remote URL

	Initializing repos on the Git Fusion server
	Importing existing Git repos into Git Fusion
	Creating a repo configuration file for import of existing repo
	Importing an existing repo using a Perforce workspace or repo configuration file

	Modifying repo configuration files safely
	Converting a lightweight branch into a fully-populated branch
	Enabling Git users to create fully-populated branches
	Create a fully-populated branch only when a Git user explictly chooses to do so
	Create a fully populated branch every time a Git user pushes a new branch
	Controlling depot location of pushed branches
	Examples
	Example: project/branch hierarchy in Perforce
	Example: Give each developer their own area in the Perforce depot.
	Example: {user} without {git_branch_name}

	Working with Perforce streams
	Enabling stream import paths as Git submodules
	Configure and generate submodules from import paths
	Managing and troubleshooting submodules
	What are these new virtual streams that appear in the stream depot?
	How do I change the submodule URL (ssh-url, http-url)?
	How do I remove submodules generated from import paths?

	Adding preflight commits to reject pushes
	Limiting push size and disk usage
	Limits for a single push
	Limit total Git Fusion disk usage
	View current disk usage

	Detecting Git copy/rename and translating to Perforce
	Disconnecting a Git Fusion repo from the Perforce service
	Deleting Git Fusion repos

	Chapter 6. Additional Administrative Tasks
	Configuring logging
	Viewing changelist information
	Managing Git Fusion p4 keys
	Managing Git Fusion server IDs
	Stopping the Git Fusion server
	Backing up and restoring Git Fusion
	Adding Git Fusion and Perforce server components
	Add Git Fusion servers
	Special considerations for P4Broker
	Git Fusion with Proxies, Replicas, and Edge servers
	Delete repos on multiple hosts

	Administering the Git Fusion OVA
	Authentication and the OVA
	Perforce Server and the OVA
	Start and stop scripts
	SSH key management console

	Modify Perforce Server Triggers to Ignore Git Fusion
	p4gf_config2
	p4gf_environment.cfg
	Environment Variables

	Chapter 7. Tips for Git Users
	Requirements, restrictions, and limitations
	Providing SSH keys for Git Fusion authentication
	Referencing Git Fusion repos
	Sharing new Git branches with Perforce users
	Referencing Perforce jobs in a commit
	Using Git Fusion extension commands
	How permissions affect the @list command

	Using Swarm for code review
	Create a Swarm review
	Amend a Swarm review
	View reviews created by other Git users
	View amendments made by other Git users
	Additional tips

	Chapter 8. Troubleshooting
	Clone issues
	AppleDouble Header not recognized
	.bashrc source line prevents cloning
	File cannot be converted to specified charset
	Missing @repo section
	Spec depots cannot be mapped

	General usage issues
	Cannot terminate active process
	Connection closed by remote host
	Case sensitivity conflicts
	git-fast-import crash
	Git Fusion submit triggers are not installed
	headType field does not exist
	Locked repo caused by active process termination
	Missing server-id file
	Unicode-enabled client required

	Git Fusion OVA issues
	OVF cannot be parsed
	P4D cannot be started

	Push issues
	Files not in client view
	Files locked by git-fusion-reviews--non-gf
	Merge commit requires rebasing
	Not authorized for Git commit
	Not permitted to commit
	Password invalid or unset
	Pushes prohibited after repo deleted or trigger removed

	Script issues
	Updating authorized keys file of multiple servers fails

	Script Command Reference
	Running the scripts
	configure-git-fusion.sh
	p4gf_auth_update_authorized_keys.py
	p4gf_convert_v12_2.py
	p4gf_delete_repo.py
	p4gf_init.py
	p4gf_init_repo.py
	p4gf_poll.py
	p4gf_push_limits.py
	p4gf_submit_trigger.py
	p4gf_super_init.py
	p4gf_version.py
	General options

	Authenticating Git Users using SSH
	Set up SSH authentication
	Use a cron job to copy public keys to Git Fusion
	Set up SSH authentication using the OVA's SSH key management console
	Troubleshooting SSH key issues
	Key or identity not recognized
	No such Git repo
	PTY request failed
	Repo is not a Git repo
	SSH format issues

	License Statements

