
Using Helix for Distributed
Versioning

2016.1
April 2016

Using Helix for Distributed Versioning
2016.1

April 2016

Copyright © 2015-2016 Perforce Software.

All rights reserved.

Perforce software and documentation is available from http://www.perforce.com/. You can download and use Perforce programs, but you
can not sell or redistribute them. You can download, print, copy, edit, and redistribute the documentation, but you can not sell it, or sell any
documentation derived from it. You can not modify or attempt to reverse engineer the programs.

This product is subject to U.S. export control laws and regulations including, but not limited to, the U.S. Export Administration Regulations,
the International Traffic in Arms Regulation requirements, and all applicable end-use, end-user and destination restrictions. Licensee shall not
permit, directly or indirectly, use of any Perforce technology in or by any U.S. embargoed country or otherwise in violation of any U.S. export
control laws and regulations.

Perforce programs and documents are available from our Web site as is. No warranty or support is provided. Warranties and support, along
with higher capacity servers, are sold by Perforce Software.

Perforce Software assumes no responsibility or liability for any errors or inaccuracies that might appear in this book. By downloading and
using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce Software.

All other brands or product names are trademarks or registered trademarks of their respective companies or organizations.

Any additional software included within Perforce software is listed in License Statements on page 47.

Using Helix for Distributed Versioning iii

Table of Contents

Chapter 1 Preface ... 1

What’s new in this guide for 2016.1 .. 1
Helix documentation .. 1
Syntax conventions .. 2
Please give us feedback .. 3

Chapter 2 Introduction ... 5

Centralized and distributed architecture .. 5
How servers relate to each other ... 8
Putting it all together ... 9

Server-to-server relationships .. 9
Client-to-server relationships ... 10

Command line aliasing ... 10

Chapter 3 Installation ... 11

Installing Helix Versioning Engine 16.1 on Mac OS X ... 11
Installing Helix Versioning Engine 16.1 on Linux ... 11

Without OS-specific packages ... 11
With OS-specific packages .. 11

Installing Helix Versioning Engine 16.1 on Windows .. 12

Chapter 4 Initializing a Server .. 13

Initialize an empty server ... 13
Read this first ... 13
Run p4 init ... 14

Directories and files .. 14
Add files .. 14
Prepare to fetch and push content between servers ... 14

Initialize a server and populate it with files ... 15
Run p4 clone .. 15
P4PORT meaning before and after a clone ... 16

Directories and files .. 16
Get the latest changes ... 16

Chapter 5 Fetching and Pushing ... 17

Configure security for fetching and pushing .. 17
Specify what to copy .. 18

Using Helix for Distributed Versioning

iv Using Helix for Distributed Versioning

Fetch a limited subset of history .. 18
What do fetch and push copy? .. 19

Attribute interoperability with 15.1 .. 19
Fetching, pushing, and changelists .. 19

Fetch and push a shelved changelist .. 20
Track a changelist’s identity from server to server .. 20

Workflow 1: Let Helix generate global changelist IDs ... 20
Workflow 2: Enter global changelist ID manually ... 21

Track who pushed, fetched, or unzipped a changelist ... 21
Fetching and pushing fixes ... 21
Fetching and pushing integration history ... 22
Configure server to limit storage of archive revisions ... 23

ArchiveLimits: entries ... 23
Per-server identities .. 25
When things go wrong ... 25

Access denial ... 25
History does not fit .. 25

Support for exclusive locking in personal servers ... 25
Using triggers with fetch and push ... 26

Chapter 6 Streams and Branching .. 27

List streams .. 27
Create streams .. 27
Switch between streams .. 29

Chapter 7 Understanding Remotes ... 31

Choose a remote .. 32
Create a remote .. 32

Example ... 32
A closer look at a remote spec .. 35

Specify mappings ... 37
Using wildcards in remote specs ... 37
Mapping part of the depot .. 38
Mapping files to different locations on the personal server .. 38
Excluding files and directories .. 38

Forward login to shared server ... 39

Chapter 8 Rewriting History ... 41

The tangent depot .. 41
Resolve conflicts by rewriting local history .. 41
Rewrite history to revise local work .. 42

Scenario 1: You forgot to map a file ... 42
Scenario 2: Combine two changes to remove "noise" from the history 42

Using Helix for Distributed Versioning

Using Helix for Distributed Versioning v

Chapter 9 Git:Helix Command Mappings .. 45

License Statements ... 47

vi Using Helix for Distributed Versioning

Using Helix for Distributed Versioning 1

Chapter 1 Preface
This guide tells you how to use the distributed versioning features of Helix. Distributed versioning
allows you to work disconnected from a shared central server. If you’re new to version management
systems, you don’t know basic Helix concepts, or you’ve never used Helix before, read Introducing
Helix before reading this guide.

What’s new in this guide for 2016.1
This section provides a list of changes to this guide for the Helix Versioning Engine 2016.1 release.
For a list of all new functionality and major bug fixes in Helix Versioning Engine 2016.1, see the Helix
Versioning Engine 2016.1 Release Notes.

Configure server to limit storage
of archive revisions

Using the new ArchiveLimits: field in the remote spec you can
specify how many revisions of file archives you want to store
locally when fetching to a personal server. This allows you to
conserve local storage when fetching digital asset and other
large files.

For more information, see Chapter 5, “Fetching and
Pushing” on page 17.

Fetch, push, and zip a shelved
changelist

You can now fetch, push, and zip a shelved changelist, instead of
one or more submitted changelists.

For more information, see Chapter 5, “Fetching and
Pushing” on page 17.

Support for exclusive locking of
files

You can now enable the support of exclusive file locking in
personal servers for the p4 edit, p4 delete, and p4 revert
commands.

For more information, see Chapter 5, “Fetching and
Pushing” on page 17.

Helix documentation
The following table lists and describes key documents for Helix users, developers, and administrators.
For complete information see the following:

http://www.perforce.com/documentation

For specific information about… See this documentation…

Introduction to version control concepts
and workflows; Helix architecture, and
related products.

Introducing Helix

Using the command-line interface to
perform software version management

Helix Versioning Engine User Guide

http://www.perforce.com/perforce/r16.1/manuals/intro/index.html
http://www.perforce.com/perforce/r16.1/manuals/intro/index.html
http://www.perforce.com/perforce/r16.1/user/relnotes.txt
http://www.perforce.com/perforce/r16.1/user/relnotes.txt
http://www.perforce.com/documentation
http://www.perforce.com/perforce/r16.1/manuals/intro/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4guide/index.html

Chapter 1. Preface

2 Using Helix for Distributed Versioning

For specific information about… See this documentation…

and codeline management; working with
Helix streams; jobs, reporting, scripting,
and more.

Basic workflows using P4V, the cross-
platform Helix desktop client.

P4V User Guide

Working with personal and shared
servers and understanding the distributed
versioning features of the Helix Versioning
engine.

Using Helix for Distributed Versioning

p4 command line (reference). P4 Command Reference, p4 help

Installing and administering the Helix
versioning engine, including user
management, security settings.

Helix Versioning Engine Administrator Guide:
Fundamentals

Installing and configuring Helix servers
(proxies, replicas, and edge servers) in a
distributed environment.

Helix Versioning Engine Administrator Guide: Multi-site
Deployment

Helix plug-ins and integrations. IDEs: Using IDE Plug-ins
Defect trackers: Defect Tracking Gateway Guide
Others: online help from the Helix menu or web site

Developing custom Helix applications
using the Helix C/C++ API.

C/C++ API User Guide

Working with Helix in Ruby, Perl, Python,
and PHP.

APIs for Scripting

Syntax conventions
Helix documentation uses the following syntax conventions to describe command line syntax.

Notation Meaning

literal Monospace font indicates a word or other notation that must be used in
the command exactly as shown.

italics Italics indicate a parameter for which you must supply specific
information. For example, for a serverid parameter, you must supply the id
of the server.

[-f] Square brackets indicate that the enclosed elements are optional. Omit the
brackets when you compose the command.

Elements that are not bracketed are required.

http://www.perforce.com/perforce/r16.1/manuals/p4v/index.html
http://www.perforce.com/perforce/r16.1/manuals/dvcs/index.html
http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4dist/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4dist/index.html
http://www.perforce.com/perforce/r12.1/manuals/p4plugins/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4dtg/index.html
http://www.perforce.com/
http://www.perforce.com/perforce/r16.1/manuals/p4api/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4script/index.html

Chapter 1. Preface

Using Helix for Distributed Versioning 3

Notation Meaning

… Ellipses (…) indicate that the preceding element can be repeated as often
as needed.

element1 | element2 A vertical bar (|) indicates that either element1 or element2 is required.

Please give us feedback
We are interested in receiving opinions on this manual from our users. In particular, we’d like to hear
from users who have never used Perforce before. Does this guide teach the topic well? Please let us
know what you think; we can be reached at manual@perforce.com.

If you need assistance, or wish to provide feedback about any of our products, contact
support@perforce.com.

mailto:manual@perforce.com
mailto:support@perforce.com

4 Using Helix for Distributed Versioning

Using Helix for Distributed Versioning 5

Chapter 2 Introduction
This book, Using Helix for Distributed Versioning, covers the following topics:

• Starting up a personal server — either empty or populated with files

• Fetching and pushing files between servers

• Branching

• Understanding remotes

• Rewriting history

• Mapping of Git commands to Helix commands

Centralized and distributed architecture
Before you start to work with distributed versioning, it’s important to understand certain basic
concepts — including distributed versioning architecture and how servers relate to one another in this
architecture.

As discussed in the "Basic Concepts" chapter of Introducing Helix, version control systems can
implement either a centralized model or a distributed model. The Helix Versioning Engine supports
both of these models, as well as configurations that implement a hybrid of the two.

In a centralized model, users interact directly with a shared server, checking out files, working in those
files, and then checking them back in to the shared server.

Note The client is a program — the Helix command line client, P4V, and P4Connect are
some examples — that users interact with. Clients, in turn, interact with servers,
which also interact with each other.

The following diagram illustrates the centralized model:

http://www.perforce.com/perforce/r16.1/manuals/intro/index.html
http://www.perforce.com/perforce/r16.1/manuals/intro/index.html

Chapter 2. Introduction

6 Using Helix for Distributed Versioning

As you can see, some clients access subsets of the files stored on the shared server while others access
all files stored on the server.

The distributed model gives users access to a repository of archived files — and changes to those
files — from a server running on their local machine. This means that the entire history of a file is
contained on each user’s machine. A user can manage versioned content without interacting with
any other Helix server or even connecting to a network, unless desired. A user can also rewrite and
revise history to discard unwanted intermediate changes. The distributed model allows users to work
experimentally, to try out changes and branch new streams, without interfering with others' work, and
without the need for a network connection.

The following diagram illustrates the distributed model:

In the distributed model, a user can work on their individual server — disconnected from the
network — until they’re ready to copy content to a shared server, making the content available to other
users.

Moreover, unlike other version control systems — such as Git — users can copy a subset of the shared
server’s content to the server on their own machine, rather than copying the entire shared server
repository.

In this model, users first submit changes to their personal server and then push changes to a shared
server. A different user can then fetch — that is, copy — those changes from the shared server to their
personal server.

In the diagram below, each user is fetching just a subset of files: the user on the left is fetching just the
blue files, while the user on the right is fetching just the orange files. Each client is submitting changes
to its respective personal server and then pushing changes to and fetching changes from the shared
server.

Chapter 2. Introduction

Using Helix for Distributed Versioning 7

The distributed versioning model also provides a hybrid workflow that includes both centralized and
distributed client-server relationships. The hybrid workflow allows users both to share their work with
each other — by connecting their individual server to a shared server — and to interact directly with a
shared server without an intervening individual server.

The following diagram illustrates a hybrid configuration:

In addition, Helix distributed versioning allows synchronization of content across multiple offices or
teams. You use the p4 fetch and p4 push commands if the servers are networked or the p4 zip and
p4 unzip commands if they’re not. Synchronization of content across sites is covered in the "Managing
Distributed Development" section of the Helix Versioning Engine Administrator Guide: Fundamentals.

http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html

Chapter 2. Introduction

8 Using Helix for Distributed Versioning

How servers relate to each other
There are two ways of thinking about relationships between servers in a distributed versioning
environment; understanding these distinctions is important for using server commands correctly:

1. From the point of view of intended use

2. In the context of client-server architecture

From the point of view of intended use, the servers are either personal servers or shared servers:

• A personal server runs on an individual user’s machine; a shared server is the server in which
individual users store their changes so that other users have access to these changes.

• A personal server is intended to be used by a single user, while a shared server is intended to be
used by multiple users concurrently.

In the next diagram, Client 1 and Client 2 are using the shared server concurrently; both are interacting
with the shared server via their respective personal servers.

Client 1 interacts with Server 1 — a personal server — which in turn interacts with the shared server.
Likewise with Client 2.

In the context of client-server architecture, the servers are either local servers or remote servers:

• A local server is a server running on the same machine as your client.

• A remote server is a server your local server is talking to in order to do what it needs to do.

In the next diagram, Client 1 and Server 1 are running on the same machine.

From the point of the view of Client 1, Server 1 is a local server and Server 2 is a remote server.

Chapter 2. Introduction

Using Helix for Distributed Versioning 9

Throughout this guide, the name we use to refer to a server depends on which name makes sense in
the context of the discussion.

Putting it all together
In the following diagram, Client 1 and Server 1 are running on the same machine and Client 2 and
Server 2 are running on the same machine:

Server-to-server relationships

Server 1 and Server 2 are personal servers. Server 3 and Server 4 are shared servers.

Chapter 2. Introduction

10 Using Helix for Distributed Versioning

Server 1 pushes changes to and fetches changes from Server 4. So does Server 2. Server 2 could fetch
the changes Server 1 pushed, enabling the two personal servers to share content.

Shared servers 3 and 4 fetch and push changes from and to each other.

Client-to-server relationships
From the point of view of Client 1, Server 1 is a local server and Servers 3 and 4 are remote servers.

From the point of view of Client 2, Server 2 is a local server and Server 4 is a remote server.

Client 3 is interacting with Server 4 without an intervening personal server; the two servers are relating
within a centralized architecture, rather than a distributed architecture.

Command line aliasing
Note As with classic Helix server commands, you have the option of applying aliases to

personal server commands, to do such things as:

• abbreviation

• creating more complex commands

• automating simple multi-command sequences

• providing alternate syntax for difficult-to-remember commands

For more information, see the " Introduction" chapter of P4 Command Reference.

http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html
http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

Using Helix for Distributed Versioning 11

Chapter 3 Installation

Installing Helix Versioning Engine 16.1 on Mac OS X
1. Open a web browser.

2. Navigate to http://www.perforce.com/downloads.

3. Download the helix-versioning-engine-{x86,64}.{tgz,zip} file.

4. Extract the Helix Versioning Engine (p4d) and Helix Command Line (p4) from the tgz/zip file.

5. Open a Terminal window.

6. Make the downloaded files executable:

$ chmod +x Downloads/p4*

7. Move the files into a common execution path:

$ sudo mv Downloads/p4* /usr/local/bin/

Installing Helix Versioning Engine 16.1 on Linux

Without OS-specific packages
1. Open a web browser.

2. Navigate to http://www.perforce.com/downloads.

3. Download the helix-versioning-engine-{x86,64}.{tgz,zip} file.

4. Extract the Helix Versioning Engine (p4d) and Helix Command Line (p4) from the tgz/zip file.

5. Open a Terminal window.

6. Make the downloaded files executable:

$ chmod +x Downloads/p4*

7. Move the files into a common execution path:

$ sudo mv Downloads/p4* /usr/local/bin/

With OS-specific packages
1. Open a web browser.

http://www.perforce.com/downloads
http://www.perforce.com/downloads

Chapter 3. Installation

12 Using Helix for Distributed Versioning

2. Navigate to http://package.perforce.com

3. Follow the instructions to configure a package repository and install OS-specific packages.

Installing Helix Versioning Engine 16.1 on Windows
Note You need administrator privileges to install the server.

1. Open a web browser.

2. Navigate to http://www.perforce.com/downloads.

3. Download the Helix Command Line installer.

4. Run the installer you downloaded.

5. Accept all of the defaults.

This gives you the p4d executable (Helix Versioning Engine) and the p4 executable (Helix Command
Line).

http://package.perforce.com
http://www.perforce.com/downloads

Using Helix for Distributed Versioning 13

Chapter 4 Initializing a Server
This section describes how to start up a personal server, presenting two different approaches.

1. The first approach initializes an empty server. Choose this if you want to work in isolation on a
personal server, developing and possibly branching code, and versioning locally. See “Run p4
init” on page 14.

2. The second approach copies content from another (shared) server to populate the newly initialized
server with files and history; this is known as cloning. This approach is best when working
collectively on an existing project; users work on a set of project files that are managed on a shared
server. The users make changes to the files on their personal server and then push the changes to a
shared server, which then makes these changes available to other project users. At any given time,
users can fetch the latest content from the shared server. See “Run p4 clone” on page 15.

Initialize an empty server
Use this approach if you want to work in isolation on a personal server, developing and possibly
branching code.

In this workflow, you invoke the p4 init command in your working directory to initialize a personal
server and set it up with everything needed to start versioning files.

Read this first
In order to fetch from or push to a shared server, the case sensitivity of your personal server must
match that of your shared server. When you run p4 init, Helix attempts to set the case sensitivity of
your personal server to match that of the shared server specified in your current P4PORT setting.

If you know which shared server your personal server will be fetching from and pushing to, run p4
init -p, passing in the address of the shared server. This tells the Helix Versioning Engine to discover
the shared server’s case sensitivity and Unicode support settings and apply them to your personal
server; this makes the two servers compatible.

If Helix can’t discover a shared server, the p4 init command will fail. You must then run this
command:

$ p4 init -Cx

where C0 sets the server to case-sensitive and C1 sets it to case-insensitive; set the option to match the
case sensitivity of the shared server with which you’re communicating.

Similarly, in order to fetch from or push to a shared server, the Unicode support of your personal
server must match that of the shared server. When you run p4 init, Helix attempts to set the Unicode
support of your personal server to match that of the shared server specified in your current P4PORT
setting. If Helix can’t discover a shared server, Unicode support defaults to off. If you later want to
turn Unicode support on, you can run this command:

$ p4d -xi -r /users/username/dvcsdir/.p4root

Chapter 4. Initializing a Server

14 Using Helix for Distributed Versioning

Run p4 init
Here is the p4 init command syntax:

p4 [-u user] [-d dir] [-c client] init [-h -q] [-c stream] [-Cx] [-xi -n] [-p]

p4 init includes a number of command-line arguments:

• To configure your personal server without Unicode support, pass the -n option.

• To have Helix create the personal server’s files in a directory other than the current directory, specify
the directory with the -d option.

• Use the -q option to suppress informational messages.

• Use the -c [stream] option to create the specified stream as the mainline stream rather than the
default //stream/main.

Directories and files

The p4 init command creates the following directories and files in the directory in which the
command is invoked:

• .p4root - A directory containing the database files that will contain the metadata about files checked
into Helix.

• .p4ignore - A list of files Helix shouldn’t add or reconcile.

• .p4config - A file containing configuration parameters for the client-server connection.

In addition, the p4 init command does the following:

• Creates a P4CLIENT workspace. Note that the client option allwrite is set by default, making files
writable without the need to check them out with p4 edit first. You must, however, issue a p4
reconcile command before shelving or submitting files.

• Creates a stream depot.

• Creates an initial stream, called main.

Add files
At this point, you are ready to add files to your server. You can create them, copy them and then run
p4 reconcile — or p4 rec for short — to mark all of your source files to be added to Helix and then p4
submit to submit them. If you are new to Helix, see the "Managing Files and Changelists" chapter of
the Helix Versioning Engine User Guide.

Prepare to fetch and push content between servers
If you subsequently want to push your work to a shared server or fetch files from a shared
server, you must create a remote spec with the p4 remote command. See Chapter 5, “Fetching

http://www.perforce.com/perforce/r16.1/manuals/p4guide/index.html

Chapter 4. Initializing a Server

Using Helix for Distributed Versioning 15

and Pushing” on page 17 and Chapter 7, “Understanding Remotes” on page 31 for more
information.

Initialize a server and populate it with files
This approach is best when working collectively on an existing project; users work on a set of project
files that are managed on a shared server.

To start this process, users invoke the p4 clone command to obtain from the shared server a copy of
the files associated with the project. This is a convenient way to ensure that users receive the set of files
they need to participate in the project.

The user can then work on these files and periodically push changes back to the shared server from
which the files were cloned. They can also periodically fetch to get the latest changes made by others to
the shared server files.

Run p4 clone
Here is the p4 clone command syntax:

p4 [-u user] [-d dir] [-c client] clone [-m depth] [-v] -p port -r remote
p4 [-u user] [-d dir] [-c client] clone [-m depth] [-v] -p port -f filespec

p4 clone includes a number of command-line arguments:

• The -d option specifies the directory where you want to create the server’s files. If you don’t specify
this option, the files are created in the current directory.

• The -p option specifies the address of the shared server you wish to clone from. The -p preceding
P4PORT is optional. If not specified, p4 clone uses the shared server specified by the P4PORT
environment variable. See “P4PORT meaning before and after a clone” on page 16 for a
discussion of how P4PORT has a different meaning before and after a clone.

• The -m option performs a shallow fetch; only the last number of specified revisions of each file are
fetched.

• The -r option specifies the remote spec installed on the shared server to use as a template for
the clone and stream setup. You can obtain the name of the desired remote from the shared
server administrator or run the p4 remotes command against the shared server to obtain a list
of candidates to choose from. At the time of cloning, Helix will copy the remote from the shared
server to the personal server and name it origin. For more information on remotes, see Chapter 7,
“Understanding Remotes” on page 31.

• The -f option specifies a filespec in the shared server to use as the path to clone; this path will also
be used to determine the stream setup in the personal server. You can specify the -f option or the -r
option but not both.

It is optional to specify the `-f` string on the command line. Instead, you can
simply follow *`p4 clone`* with _filespec_.

Chapter 4. Initializing a Server

16 Using Helix for Distributed Versioning

• The -v option specifies verbose mode.

• The -c option lets you customize the name of the stream that p4 clone creates.

P4PORT meaning before and after a clone
When you clone from a shared server to create a personal server, the P4PORT argument you pass to
the p4 clone command specifies the address of the shared server you wish to clone from. If you don’t
pass a P4PORT value via the -p option, Helix uses the value of P4PORT set in the current command
environment to identify the address of the shared server you wish to clone from.

After a clone, P4PORT refers to the personal server’s P4PORT setting in its P4CONFIG file.

Directories and files

The p4 clone command creates all the directories and files that the p4 init command creates. In
addition, p4 clone creates a remote called origin on the personal server. A remote is a mapping of
files on a personal server to files on a shared server and is required for fetching, pushing, and cloning;
it describes exactly which files should be copied from a personal server to a shared server or vice-
versa. It is described in detail in Chapter 7, “Understanding Remotes” on page 31.

Get the latest changes
To update your personal server with the latest changes from the shared server, run p4 fetch. See
Chapter 5, “Fetching and Pushing” on page 17 for more information.

Using Helix for Distributed Versioning 17

Chapter 5 Fetching and Pushing
Fetching and pushing lie at the heart of a collaborative distributed workflow; they enable users to
perform a number of major tasks:

• To copy changelists from a personal server to a shared server

• To fetch changelists from a shared server that were pushed there by other personal servers

• To obtain and work with a subset of a shared server’s entire repository.

• To copy work between two personal servers

Administrators can also use fetching and pushing to copy changelists between shared servers.

Fetch and push are to the distributed versioning model what sync and submit are to classic Helix’s
central server model.

The p4 fetch command copies the specified set of files and their history from a remote server into a
local server. The p4 push command copies the specified set of files, and their history from a local server
to a remote server. Both commands are atomic: either all the specified files are fetched or pushed or
none of them are.

If a p4 push command fails after it has begun transferring files to the remote server, it will leave those
files locked on the remote server. The p4 opened command will display locked, and the files cannot
be submitted by any other user. If the p4 push command cannot be quickly retried, you can use the p4
unlock -r command to unlock the files on the remote server.

The p4 push command is not allowed if there are unsubmitted changes in the server from which
you’re pushing; use p4 resubmit to resubmit those changes first, or discard the shelves with p4 shelve
-d if they are not wanted. For more information on p4 unsubmit and p4 resubmit, see Chapter 8,
“Rewriting History” on page 41.

To monitor the progress of the fetch or push, pass the -I option to the command:

$ p4 -I fetch
$ p4 -I push

Configure security for fetching and pushing
In order to fetch and push between servers, the respective servers must have authentication and access
permissions configured correctly:

• The user name on the remote server must be the same as the user name on the local server. This will
be the case by default unless you have specified the RemoteUser field in the remote server’s remote
spec.

• The user must exist on the remote server.

• The user must have read (fetch) and write (push) permission on the remote server.

Chapter 5. Fetching and Pushing

18 Using Helix for Distributed Versioning

• The server.allowpush and server.allowfetch configuration settings must be set to on (they’re off by
default) on both the remote server and the local server. See the command p4 help configurables for
more information.

• The user must be logged into the remote server via p4 login -r.

Specify what to copy
As described in Chapter 7, “Understanding Remotes” on page 31, you typically specify which
files will be pushed or fetched by listing depot paths in the DepotMap field of the remote spec. You can
further narrow the set of files to be fetched or pushed with one of two command-line arguments: one
specifying a filespec pattern and the other specifying a stream (with the -S option).

If a filespec or stream name is provided, and the remote spec uses differing patterns for the local
and remote sides of the DepotMap, the filespec argument or stream name must specify the files
using the local server’s depot syntax. Note that the filespec must always be provided using depot
syntax, not client syntax nor filesystem syntax. For more information, see Chapter 7, “Understanding
Remotes” on page 31.

• To specify a remote you pass the -r option and the name of the remote to the p4 fetch or p4 push
command. If -r is not specified, the default is -r origin:

$ p4 fetch -r markm-remote

• To specify a filespec you pass a filespec pattern to the p4 fetch or p4 push command.

$ p4 fetch //depot/projectx/...

• To specify a stream you pass the -S option to the p4 fetch or p4 push command. Note that the
stream must be listed in a depot mapping in your remote spec.

$ p4 fetch -S //stream/dev

where dev is the name of the stream on your local server

Note that when you specify a filespec or a stream, the Helix Versioning Engine cannot use the
performance optimization provided by the remote spec.

Unlike other versioning engines such as Git, you do not have to fetch or push the entire contents of the
remote server’s repository; rather, you can fetch or push whatever subset of the repository you like.
You specify this subset in the remote spec or at the command line of the fetch or push command.

Fetch a limited subset of history
If you have a server with a lot of history you may only want to fetch the latest few revisions to save on
local storage. To do so, use the -m N option:

Chapter 5. Fetching and Pushing

Using Helix for Distributed Versioning 19

$ p4 fetch -m 5

This specifies that the server perform a shallow fetch, fetching only the last 5 revisions of each file. You
can also take a slice of your history as noted above.

What do fetch and push copy?
In addition to the specified set of files, the changelists that submitted those files, and integration
records, fetching and pushing to a server also copies the following:

• attributes

• any fixes associated with the changelists, but only if the job that is linked by the fix is already present
in the local server

Note Zipping and unzipping files also copies attributes and fix records.

Attribute interoperability with 15.1
2015.1 DVCS servers don’t support fetching and pushing of attributes. If you try to push files with
attributes from a 2015.1 server to a 2016.1 server, the 2016.1 server will detect that the attribute data
was not provided and not include any attributes on the pushed files.

If a 2016.1 server tries to push files with attributes to a 2015.1 server, the 2015.1 server quietly ignores
the attributes data.

Fetching, pushing, and changelists
When changelists are added to the target server during a fetch or a push, they are given new change
numbers but they retain the same description, user, date, type, workspace and set of files.

When the files are added to the target server during a fetch or a push, they are kept in their same
changelists, as new revisions starting after the current head. The new revisions retain the same revision
number, file type, action, date, timestamp, digest, and file size.

Although the changelists are new submitted changelists in the target server for a fetch or a push, none
of the submit triggers are run in the target server. For more information about submit triggers, see the
"Scripting Perforce" chapter in the Helix Versioning Engine Administrator Guide: Fundamentals.

If a particular changelist includes some files that match the filespec or stream restriction, and other files
that do not, then only the matching files are included in the fetch or push. Note that if a remote spec is
also provided, only the files that match the restriction and are mapped by the remote spec are included
in the fetch or push. In other words, not all files in the changelist will necessarily be fetched or pushed.
For example, consider the following DepotMap in a remote spec:

//stream/main/p4/... //depot/main/p4/...

Suppose you have a changelist with the following files:

http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html

Chapter 5. Fetching and Pushing

20 Using Helix for Distributed Versioning

//stream/main/p4/foo
//stream/jam/bar

Only //stream/main/p4/foo will be pushed or fetched, as it matches the remote spec mapping.

Fetch and push a shelved changelist
The Helix Versioning Engine allows you to fetch, push (and zip) a shelved changelist instead of one
or more submitted changelists. This gives you more flexibility if your workflow typically involves
shelved changelists.

Note Both the local and the remote server must be version 2016.1 or higher to support
copying a shelved changelist.

Copying a shelf always results in the creation of a new shelf in the destination server; existing shelves,
even if similar, are not overwritten.

There are two key differences between copying a submitted changelist and copying a shelved
changelist:

• To copy a submitted changelist, you must have write access to the changelist’s files; by contrast,
need to have open access to the shelf’s files in the target server. As a reminder, open access means the
user can open add, edit, delete, or integrate the files.

• The resulting new shelf is owned by the user who issued the push, fetch, or zip command, even if
the shelf copied was owned by a different user.

Track a changelist’s identity from server to server
As described earlier, a changelist gets renumbered each time it gets fetched, pushed, or unzipped; as
a result, it quickly becomes difficult to determine which changelist is which across a series of servers.
Changelist 12 on one server may not be the same as changelist 12 on another server.

The Helix Versioning Engine includes a global changelist ID feature which allows you to assign to
a changelist a permanent ID that remains the same from server to server. This is an opt-in feature.
There are two workflows for enabling global changelist IDs. They are summarized in the following
subsections:

Workflow 1: Let Helix generate global changelist IDs

The majority of Helix users will likely choose to have global changelist IDs system-generated.

To have Helix generate the IDs for you, follow these steps:

On a personal server:

1. Run the p4 configure command to set submit.identity to whichever of the three possible
formats you prefer:

• uuid: a universally-unique identifier

Chapter 5. Fetching and Pushing

Using Helix for Distributed Versioning 21

• checksum: a checksum

• serverid: a combination of the serverid + changelist number

This causes Helix to generate a global changelist ID and write it to the Identity field of the change
spec for the changelist in question, each time a change is submitted. For more information, see the
description of the submit.identity configurable in the "Configurables" chapter of the P4 Command
Reference.

2. Run p4 submit to submit the changelist. Once you’ve done this, the changelist ID appears in the
Identity field of the change spec.

3. Run p4 describe changelistnumber to find out what changelist ID was generated.

Workflow 2: Enter global changelist ID manually

Choose this workflow if you want to customize your global changelist ID names. For example, you
may want to name a changelist according to the bug it corresponds to in your bug database.

On a personal server:

1. Run p4 submit to submit your changelist.

2. Edit the change spec to set the value of the Identity field to the desired value.

3. Run the p4 push, p4 fetch, or p4 unzip command.

On the shared server:

1. Run p4 describe -I changelistID to retrieve the changelist number of the changelist that was
pushed, fetched, or unzipped.

Track who pushed, fetched, or unzipped a changelist
The Helix Versioning Engine includes a feature — relevant only for users of the Helix’s distributed
versioning features (DVCS) — that lets you distinguish between who created a particular changelist
and who pushed, fetched, or unzipped it later. This gives you more visibility into scenarios in which
one user pushes, fetches, or unzips another user’s work.

You use the change spec’s ImportedBy field — via the p4 change command — to specify the name of
the user who ran the p4 fetch, p4 push, or p4 unzip command that imported this changelist into the
shared server.

The ImportedBy field is filled in at the point when Helix stores the changelist in the target shared
server.

Fetching and pushing fixes
If you plan to share fixes — that is, jobs associated with changelists — between servers when fetching
and pushing (as well as zipping and unzipping) you must ensure that:

http://www.perforce.com/perforce/r16.1/manuals/cmdref/appendix.configurables.html
http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html
http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

Chapter 5. Fetching and Pushing

22 Using Helix for Distributed Versioning

• The two servers have identical job specs

• You have manually copied the jobs you plan to push, fetch, zip, or unzip from one server to the
other. You do this with the p4 job command.

In the example below, p_server is pushing a job to s_server: You generate the job output by running
p4 job -o and specifying the s_server name and port number and then pass the job form into
s_server by running p4 job -i.

$ p4 -p s_server:1667 job -o JobName | p4 job -i

Fetching and pushing integration history
When you merge from one stream to another, you must have both streams mapped in the remote spec
in order to push or fetch integration history.

Consider the following example:

1. You clone from a shared server to create a personal server and the following remote spec, called
origin:

A Helix Remote Specification.

RemoteID: origin

Address: p4demo:1666

Owner: jschaffer

Options: unlocked nocompress

Update: 2015/06/29 13:14:26

Access: 2015/06/29 13:14:57

Description:
 Created by Joe_Coder.

LastFetch: default

LastPush: 12305

DepotMap:

 //talkhouse/main/... //depot/Talkhouse/main-dev/...
 //talkhouse/release1.0/... //depot/Talkhouse/rel1.0/...

2. In the personal server, branch a development stream (dev), make changes to some files in that
stream and submit them.

3. Merge changes from the dev stream to the main stream.

Chapter 5. Fetching and Pushing

Using Helix for Distributed Versioning 23

4. Run p4 push.

You will observe that although the files were pushed to the shared server, the integration history was
not.

To ensure that integration files are pushed or fetched, both the merge source and the merge target
must be included in the remote spec.

1. Modify the remote spec to add a line under DepotMap for development stream //talkhouse/
dev/...:

DepotMap:
 //talkhouse/main/... //depot/Talkhouse/main-dev/...
 //talkhouse/dev/... //depot/Talkhouse/jschaffer-dev/...
 //talkhouse/release1.0/... //depot/Talkhouse/rel1.0/...

2. Run p4 push.

3. Observe that both files and integration history were pushed to the shared server.

Configure server to limit storage of archive revisions
Recall that server files have two portions: the file data itself — known as the archive or archive
file — and the file’s metadata — information describing the file, such as its size and its owner.

Because digital asset archives take up substantial storage space, it would be convenient to control
how many revisions of the archive you store locally when you fetch the digital asset files to your
personal server. Moreover, because source code doesn’t impose this same storage burden, it would be
equally helpful to control the source code archive files separately from the digital assets when fetching
quantities of archives.

The ArchiveLimits: field in the personal server’s remote spec allows you to do just this. Using
ArchiveLimits:, you specify how many revisions of a file or files archive(s) you want to store locally
with a fetch. This is regulated at the level of one or more files, so if you store your digital asset files
in separate subdirectories from source code files, you can impose the archive limits on just the digital
asset files, leaving source code files unaffected.

ArchiveLimits: does not affect the fetched files' metadata; the fetch stores metadata for the entire
history of the files.

If you don’t set ArchiveLimits: the server defaults to storing all archive revisions.

Note ArchiveLimits: are applied during the p4 fetch operation only. However, since
they apply to p4 fetch, they also affect p4 clone, if they are set in the remote spec
invoked by p4 clone.

ArchiveLimits: entries
An ArchiveLimits: entry consists of a sequence of one or more lines of the form filespec depth,
where:

Chapter 5. Fetching and Pushing

24 Using Helix for Distributed Versioning

• filespec is a file or subdirectory of files

• depth dictates how many relative revisions of the archive files to store

The depth field can be a non-negative integer, or the special word all, which tells the server to store
all revisions of the file or files specified in that line’s filespec. Setting depth to 0 tells the server not to
store any archives for files specified in this line’s filespec.

The integer value 0 means that a fetch will not store any archive files, just metadata, for the files
specified in the filespec entry on this line.

A positive integer N means that no more than N archives should be stored for each file in this section
of your repo. For example, suppose you have a file whose latest revision is 17 and the depth setting for
the ArchiveLimits: entry governing this file is 2. This means that when the file is fetched, the server
will store the archive for revisions 17 and 16 only.

Recall that since ArchiveLimits: behavior operates at the level of a filespec, you can separate what the
server does with digital assets files from what it does with source code simply by:

1. storing the digital assets files in a distinct folder from the source code files

2. describing ArchiveLimits: behavior for each of these folders on separate lines

Consider the following sample ArchiveLimits: entry:

ArchiveLimits:
 //.../*.zip 1
 //.../*.iso 0
 //.../*.rpm 0
 //depot/main/.../*.zip 3
 //depot/rel*/.../*.zip all
 //depot/.../*.mp4 2

This would result in the server behavior summarized in the following table:

File or files Server behavior

//depot/main/my/proj/component/MyClass.java All revisions of the archive file are stored on the
server

//artifacts/Windows/Windows10.iso No archive is ever stored for this file

//depot/main/my/proj/builds/myProj.zip The three most recent revisions of the archives
are stored on the server

//depot/dev/my/proj/builds/myProj.zip Only the most recent revision of the archive is
stored on the server

//depot/rel1.0/my/proj/builds/myProj.zip All revisions of archives are stored on the server

Chapter 5. Fetching and Pushing

Using Helix for Distributed Versioning 25

Per-server identities
There are distributed versioning scenarios in which you want to fetch and push from/to multiple
shared servers and you need to use a different Helix identity for each server. You can specify the
identity Helix should use for a particular shared server in the RemoteUser field of that shared server’s
spec. The p4 fetch and p4 push command then use that identity for authentication against that shared
server.

When things go wrong
Fetch and push have a couple of failure scenarios that require action on the part of the user or shared
server administrator.

Access denial
If there are permissions or authentication problems for any of the reasons outlined in the section
“Configure security for fetching and pushing” on page 17, the fetch or push will fail with a
message from the shared server. The user or shared server administrator must then address the
problem before the user can attempt the fetch or push again.

History does not fit
A fetch is only allowed if the files being fetched fit cleanly into the personal server, building precisely
on a shared common history. If there are any conflicts or gaps, the fetch is rejected. Otherwise, the
changelists from the shared server become new submitted changelists in the personal server.

If the fetch fails, this is probably because you have attempted to fetch revisions from the shared server
to your personal server that are in conflict with revisions you’ve submitted to your personal server.

Chapter 8, “Rewriting History” on page 41 explains what to do to resolve this situation.

Note As a best practice, you should generate a report of conflicts before attempting a
fetch, with the -n command-line option.

Support for exclusive locking in personal servers
There are certain types of files that cannot be merged and therefore must only be changed by one user
at a time. Examples include binary files, Microsoft Word files, and digital assets such as 3D models. In
Helix, to ensure that only one user at a time writes changes to a file, you assign the file the filetype +l.
This gives the user a global exclusive lock on the file when they open it for edit.

You can enable the support of exclusive locking in personal servers for the p4 edit, p4 delete, and
p4 revert commands. To do this, pass the --remote=remote option, where remote specifies the shared
server from which you cloned the locked file. The lock is held in the shared server. All personal servers
which cloned the file from the shared server must observe this lock restriction.

Note For exclusive locking to work, the shared server must be configured as a commit
server. For instructions on how to do this, see "Create commit and edge server

http://www.perforce.com/perforce/r16.1/manuals/p4dist/chapter.distributed.html#distributed.setup.config

Chapter 5. Fetching and Pushing

26 Using Helix for Distributed Versioning

configurations" in the "Commit-edge Architecture" chapter of the Helix Versioning
Engine Administrator Guide: Multi-site Deployment.

Once you have the locked file in the shared server:

• you can safely change the file, submit your changes, and push to the shared server; your lock
releases automatically at the end of the push

• no other user is allowed to either edit that file or push it from their personal server

Exclusive locking works as follows for each of the three commands:

• For p4 edit, the --remote=remote option opens the file for edit in your personal server, and
additionally — if the file is of type +l — takes a global exclusive lock on the file in the shared server
from which you cloned the file. That global exclusive lock is retained until you push the updated file
to the shared server, or until you use p4 revert --remote=remote to revert the file.

• For p4 delete, the --remote=remote option opens the file for delete in your personal server, and
additionally — if the file is of type +l — takes a global exclusive lock on the file in the shared server
from which which you cloned the file. That global exclusive lock is retained until you push the
deleted file to the shared server, or until you use p4 revert --remote=remote filename to revert the
file.

• For p4 revert, the --remote=remote option reverts the named file in your personal server, and
additionally — if the file is of type +l — releases the global exclusive lock on the file in the shared
server from which you cloned the file.

Using triggers with fetch and push
Helix triggers are user-written programs called by a Helix Versioning Engine when certain operations
are performed. You use triggers to extend or customize Helix functionality. Triggers are of different
types, depending on the event that causes the trigger to execute.

The trigger types in the list below have been defined to help you customize the processing done in
committing changes in a distributed versioning environment. These three types may be invoked
during the execution of the p4 push, p4 fetch, or p4 unzip commands.

• Use push-submit triggers to customize processing during that phase of the push/fetch/unzip
command when metadata has been transferred but files have not yet been transferred.

• Use push-content triggers to customize processing during that phase of the push/fetch/unzip
command when files have been transferred but their contents have not yet been committed.

• Use push-commit triggers to do any clean up work or other post processing work after changes have
been committed.

Note Push triggers are disabled by default for the p4 unzip command. See the p4 unzip
command in the P4 Command Reference for instructions on how to enable push
triggers.

For more information, see "Triggering on pushes and fetches" in the "Scripting Perforce: Triggers and
Daemons" chapter of the Helix Versioning Engine Administrator Guide: Fundamentals.

http://www.perforce.com/perforce/r16.1/manuals/p4dist/chapter.distributed.html#distributed.setup.config
http://www.perforce.com/perforce/r16.1/manuals/p4dist/chapter.distributed.html
http://www.perforce.com/perforce/r16.1/manuals/p4dist/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4dist/index.html
http://www.perforce.com/perforce/r16.1/manuals/cmdref/p4_unzip.html
http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html
http://www.perforce.com/perforce/r16.1/manuals/p4sag/chapter.scripting.html#scripting.triggers.push
http://www.perforce.com/perforce/r16.1/manuals/p4sag/chapter.scripting.html
http://www.perforce.com/perforce/r16.1/manuals/p4sag/chapter.scripting.html
http://www.perforce.com/perforce/r16.1/manuals/p4sag/index.html

Using Helix for Distributed Versioning 27

Chapter 6 Streams and Branching
Streams are the Helix term for branches. They are variant versions of a body of code. You can read
more about them in the "Streams" chapter of the Helix Versioning Engine User Guide.

When using a personal server created by p4 init or p4 clone, Helix uses streams as containers for
your code. Helix will create a stream named main to contain the content created or cloned. If, in
working with your personal server, you need to create new streams — also known as branching — you
can do so with the p4 switch command. You can then use merge and copy as normal to move
individual changes between streams.

Note Although you can switch between streams on a shared server, you cannot use p4
switch to create new streams on shared servers.

List streams
To display the current stream, issue p4 switch with no options.

$ p4 switch
main

main is the default stream created by the p4 clone command.

Pass the -l option to p4 switch to list all known streams.

$ p4 switch -l
main *

The asterisk indicates the current stream. As we haven’t yet created any other streams, main is the only
one listed and is the current stream.

Create streams
p4 switch -c stream creates a new stream and populates it with a copy of all the files in the current
stream.

$ p4 switch -c dev
dev

A quick comparison reveals that the two streams contain identical files:

$ p4 diff2 //stream/main/... //stream/dev/...
==== //stream/main/a/test1.txt#1 (text) - //stream/dev/a/test1.txt#1 (text) ==== identical
==== //stream/main/a/test2.txt#1 (text) - //stream/dev/a/test2.txt#1 (text) ==== identical

http://www.perforce.com/perforce/r16.1/manuals/p4guide/index.html

Chapter 6. Streams and Branching

28 Using Helix for Distributed Versioning

The -P parent option specifies that p4 switch -c should create a new stream with the specified stream
as its parent, rather than the default of the current stream; thus the new stream will be populated with
the files from the specified parent stream, rather than the files from the current stream.

$ p4 switch -P main -c child_of_main
child_of_main

As the following output demonstrates, //stream/main is the parent of //stream/child_of_main:

$ p4 stream -o //stream/child_of_main
A Helix Stream Specification.
#
Stream: The stream field is unique and specifies the depot path.
Update: The date the specification was last changed.
Access: The date the specification was originally created.
Owner: The user who created this stream.
Name: A short title which may be updated.
Parent: The parent of this stream, or 'none' if Type is mainline.
Type: Type of stream provides clues for commands run
between stream and parent. Five types include 'mainline',
'release', 'development' (default), 'virtual' and 'task'.
Description: A short description of the stream (optional).
Options: Stream Options:
allsubmit/ownersubmit [un]locked
[no]toparent [no]fromparent mergedown/mergeany
Paths: Identify paths in the stream and how they are to be
generated in resulting clients of this stream.
Path types are share/isolate/import/import+/exclude.
Remapped: Remap a stream path in the resulting client view.
Ignored: Ignore a stream path in the resulting client view.
#
Use *'p4 help stream'* to see more about stream specifications and command.

Stream: //stream/child_of_main

Update: 2015/02/06 10:57:04

Access: 2015/02/06 10:57:04

Owner: jschaffer

Name: //stream/child_of_main (created by switch command)

Parent: //stream/main

Type: development

Options: allsubmit unlocked toparent fromparent mergeany

Paths:
 share ...

Chapter 6. Streams and Branching

Using Helix for Distributed Versioning 29

Switch between streams
To switch between streams issue this command:

$ p4 switch other_stream

When switching to a different stream, the p4 switch command first runs p4 reconcile to determine
which files have been modified in the current stream. It then shelves any changed files for safekeeping.

After switching to a new stream, p4 switch syncs your client workspace to the head of the new stream,
and unshelves any files that were open in the default changelist the last time you used that stream.

Note You cannot switch to a new stream if files are open in a numbered changelist. If
files are open in the default changelist, they will be shelved and reverted prior to
switching to the new stream, and will be automatically unshelved when switching
back to this stream.

The shelving process stores files in the depot from a pending changelist without submitting them. If
you decide that the change you were making in a particular stream, actually belongs in a different
stream, you can run p4 switch -r stream_name to apply the changes on the current stream to the
stream specified in the switch command.

$ p4 switch -r stream_name

Here’s the list of all of our streams:

$ p4 switch -l
child_of_main
dev *
gui
main

Here’s the stream we’re currently in:

$ p4 switch
dev

Here are the files currently in //stream/dev:

Chapter 6. Streams and Branching

30 Using Helix for Distributed Versioning

$ p4 files //stream/dev/...
//stream/dev/dvcs_commands/remote.xml#1 - branch change 43 (text)
//stream/dev/dvcs_commands/remotes.xml#1 - branch change 43 (text)
//stream/dev/dvcs_commands/resubmit.xml#1 - branch change 43 (text)
//stream/dev/dvcs_commands/switch.xml#1 - branch change 43 (text)
//stream/dev/dvcs_commands/unsubmit.xml#1 - branch change 43 (text)
//stream/dev/dvcs_commands/unzip.xml#1 - add change 44 (text)
//stream/dev/dvcs_commands/zip.xml#1 - edit change 45 (text)
//stream/dev/dvcs_user_guide/00_preface.xml#1 - edit change 46 (text)

Now we open new files in dev:

$ p4 add a b c

If we then issue the following command, we switch to the gui stream but bring over the content that
was changed in dev:

$ p4 switch -r gui
$ ls
a b c remote.xml remotes.xml switch.xml zip.xml

Using Helix for Distributed Versioning 31

Chapter 7 Understanding Remotes
A remote describes how depot files are mapped between a personal server and a shared server. A
remote spec — which describes a remote — is created by the user and has a unique name. A remote is
used with the p4 push, p4 fetch, and p4 clone commands to describe source and target directories.
The following picture illustrates mapping depot files between a personal and a shared server:

As depicted in the figure above, a remote holds file mappings between depot paths on the shared
server and depot paths on the personal server.

• For fetch and clone operations, it defines the files from the remote server that you want in your
personal server and specifies where you want them to reside.

• For a push operation, it defines the files from the personal server that you want in the shared server
and specifies where you want them to reside.

Remotes provide a convenient way to give you the exact files you need to work on a particular project.
You can simply clone from a shared server, specifying the remote id of the remote that maps the
desired files. These files are then copied to your personal server. Once they’ve cloned, you can use p4
fetch to refresh the files initially obtained with the p4 clone command. Over time, you can edit remote
specs to account for the addition of new streams or the removal or old streams.

Using remotes allows you to fetch a subset of all the files on the shared server. This is in contrast to
other distributed versioning systems, such as Git, which require that you fetch all files.

Note that when you clone a set of files from a shared server by specifying a remote, Helix creates a
new remote named origin and copies the remote into your local system. Future invocations of p4
fetch do not need to pass in -r remote, as origin is now assumed to be the remote.

There are two different scenarios in which remotes are created:

• You create a remote on a shared server so that other users can clone from this server and obtain
the files they need to work on a project. Note that to create a remote on a shared server, you must
have an access privilege of open or greater. While this task typically falls in the domain of an
administrator, it does not require administrator privileges.

• You — an individual user — create one or more remotes on your personal server so that you can
eventually push your work to and fetch files from one or more shared servers.

Chapter 7. Understanding Remotes

32 Using Helix for Distributed Versioning

You would create a remote on a shared server to dictate which subset of the shared server’s repository
a personal server retrieves when it clones from the shared server. After cloning, you use the origin
remote on your personal server. You can then either edit the origin remote or create a different remote
to control which streams the personal server fetches and pushes when using that remote.

Choose a remote
How you choose a remote depends on whether you’re doing your initial clone or your daily fetching
and pushing.

If you’re cloning, run the p4 remotes command on the shared server from which you’re cloning and
choose the remote you want to work with. To look at the details of each remote, run p4 remote -o.
Alternatively, you can obtain the id of the remote from a shared server administrator or project leader.

If you want the content of just one depot path, pass the filespec of the path by running p4 clone -f.

In a typical use case, you’ve cloned from a shared server and the remote has been copied to your
personal server and named origin. Because origin is the default remote, you don’t have to pass a
remote id during subsequent fetches and pushes.

In the more complicated case, you’re pushing to or fetching from multiple shared servers, in which
case you would run p4 remotes on your personal server and choose from among the remotes based on
which shared server you’re fetching from or pushing to. Again, you can use p4 remote -o to get the
details of each remote.

Create a remote
Remotes are described by remote specifications or remote specs for short. To create a remote, run the
p4 remote command. This puts the remote specification or spec into a temporary file and invokes
the editor configured by the environment variable P4EDITOR. You then edit the file to specify depot
mappings and other information. Saving the file creates the remote spec.

To modify the remote, invoke p4 remote with the remoteID of the remote you want to modify; make
changes in the editor to the remote spec and then save the file.

Example
In the following example, we get a list of remotes from a shared server, clone from the shared server
using one of those remotes, show the resulting remote in the personal server — with the p4 remotes
command — and then demonstrate that the path listed in the remote spec corresponds to the path
passed to the clone command:

1. First, we query a shared server for a list of remotes:

$ p4 -p perforce:1666 remotes
bpendleton-dev 'To clone bpendleton's dev branch, use this remote spec. '
h_dev localhost:1666 'Created by hmackiernan. '
markm-remote2 'Created by markm. '
mw-dvcs localhost:1666 '[dvcs] Map main server components. Created by mwittenberg. '
p4-client localhost:1666 'Created by cmclouth. '

Chapter 7. Understanding Remotes

Using Helix for Distributed Versioning 33

2. Then we choose a remote and pass it to the clone command:

$ p4 clone -p perforce:1666 -r markm-remote2
Helix db files in '/Users/jschaffer/.p4root' will be created if missing...
Helix Versioning Engine info:
 Server initialized and ready to use.
Remote origin saved.
main

Changes were successfully fetched.
Remote origin saved.
Server jschaffer-dvcs-1422657971 saved.

3. Next we run p4 remotes against the personal server to show that we now have a remote called
"origin," which is the renamed remote we cloned from the shared server:

$ p4 remotes
origin perforce:1666 'Description '

4. Next, we write the contents of the remote we passed to p4 clone to standard output to show the
depot paths it specified in the DepotMap field:

Chapter 7. Understanding Remotes

34 Using Helix for Distributed Versioning

$ p4 -p perforce:1666 remote -o markm-remote2
A Helix Remote Specification.
#
RemoteID: The remote identifier.
Address: The P4PORT used by the shared server.
Owner: The user who created this remote.
RemoteUser: The user to use when connecting to the shared server.
Options: Remote options: [un]locked, [no]compress.
Update: The date this specification was last modified.
Access: The date of the last 'push/fetch' on this remote.
Description: A short description of the shared server (optional).
LastFetch: The last changelist that was fetched.
LastPush: The last changelist that was pushed.
DepotMap: Lines to map local files to remote files.
ArchiveLimits: Limits on the number of files fetched (optional).

RemoteID: markm-remote2

Owner: markm

Options: unlocked compress

Update: 2014/12/11 11:15:15

Description:
 Created by markm.

LastFetch: default

LastPush: default

DepotMap:
 //depot/main/p4/msgs/... //depot/main/p4/msgs/...

5. Finally, we write the contents of the origin remote spec to standard out to demonstrate that the
depot paths it specifies in the DepotMap field are identical to those of markm-remote2:

Chapter 7. Understanding Remotes

Using Helix for Distributed Versioning 35

$ p4 remote -o origin
A Helix Remote Specification.
#
RemoteID: The remote identifier.
Address: The P4PORT used by the shared server.
Owner: The user who created this remote.
Options: Remote options: [un]locked, [no]compress.
Update: The date this specification was last modified.
Access: The date of the last 'push/fetch' on this remote.
Description: A short description of the shared server (optional).
LastFetch: The last changelist that was fetched.
LastPush: The last changelist that was pushed.
DepotMap: Lines to map local files to remote files.

RemoteID: origin

Address: perforce:1666

Owner: jschaffer

Options: unlocked nocompress

Update: 2015/01/30 14:46:51

Description:
 Description

LastFetch: 996270

LastPush: 4024

DepotMap:
 //depot/main/p4/msgs/... //depot/main/p4/msgs/...

Notice that the LastFetch and LastPush values have changed to non-zero numbers to reflect the
highest changelist numbers most recently fetched and pushed.

A closer look at a remote spec

The following is a sample remote spec, describing a remote named server-main-darwin:

Chapter 7. Understanding Remotes

36 Using Helix for Distributed Versioning

A Helix Remote Specification.

RemoteID: server-main-darwin

Owner: bruno

Options: unlocked compress

Update: 2014/11/21 08:21:32

Description:
 A fairly complete set of the mainline code for the widget, with the
 test harness limited to the darwin platform. Fetch or clone from
 this remote spec if you want to build and work with the mainline
 widget code on a darwin machine.

LastFetch: default

LastPush: default

DepotMap:
 //stream/main/widget/... //depot/main/widget/...
 //stream/main/widget-test/server/... //depot/main/widget-test/server/...
 //stream/main/widget-test/bin/... //depot/main/widget-test/bin/...
 -//stream/main/widget-test/bin/arch/... //depot/main/widget-test/bin/arch/...
 //stream/main/widget-test/bin/arch/darwin90x86_64/... //depot/main/widget-test/bin/arch/
darwin90x86_64/...
 //stream/main/widget-doc/code/... //depot/main/widget-doc/code/...

The following table describes the remote spec in more detail:

Entry Meaning

RemoteID The remote identifier.

Address The P4PORT used by the shared server.

Owner The user who created this remote.

Options
([un]locked, [no]compress)

The unlocked option setting means people other than the owner
can update the spec. The compress option setting means that when
files are fetched or pushed they’re compressed, as a performance
optimization. You would only set this option to uncompress if
you were fetching or pushing binary files that were already in a
compressed format.

Update The date this specification was last modified.

Access The date of the last push or fetch on this remote.

Description A short description of the shared server (optional).

Chapter 7. Understanding Remotes

Using Helix for Distributed Versioning 37

Entry Meaning

LastFetch The last changelist that was fetched. If set to default, means no
fetches have yet occurred.

LastPush The last changelist that was pushed. If set to default, means no
pushes have yet occurred.

DepotMap The lines to map local files to remote files. The file paths on the
left-hand side are on the personal server. The file paths on the
right-hand side are on the shared server.

Remote specs give you the full power of Helix client view syntax. For details, see the section "Defining
client workspaces" in the chapter Configuring P4 in the Helix Versioning Engine User Guide. Below is
some basic information about creating a remote spec.

Specify mappings
Remote specs consist of one or more mappings. Each mapping has two parts:

1. The left-hand side specifies one or more files on the personal server.

2. The right-hand side specifies one or more files on the shared server.

Although the two sides don’t have to name identical paths, they can.

Enclose paths with spaces in quotation marks.

Using wildcards in remote specs
To map groups of files in remote specs, you use Helix wildcards (*, ...). Any wildcard used on the
remote side of a mapping must be matched with an identical wildcard in the mapping’s local side. You
can use the following wildcards to specify mappings in your remote spec:

Wildcard Description

* Matches anything except slashes. Matches only within a single directory. Case sensitivity
depends on your platform.

... Matches anything including slashes. Matches recursively (everything in and below the
specified directory).

Now consider another remote spec’s simple depot path:

//stream/main/... //depot/main/...

All files in the shared server’s depot path are mapped to the corresponding locations on the personal
server. For example, the shared server file //depot/main/widget-test/server.txt is mapped to the
personal server file //stream/main/widget-test/servert.txt.

http://www.perforce.com/perforce/r16.1/manuals/p4guide/chapter.configuration.html
http://www.perforce.com/perforce/r16.1/manuals/p4guide/index.html

Chapter 7. Understanding Remotes

38 Using Helix for Distributed Versioning

Mapping part of the depot

If you are interested only in a subset of the depot files on the shared server, map only that
portion. Reducing the scope of the personal server’s files also ensures that your commands do not
inadvertently affect the entire depot. To restrict the personal server scope, map only part of the shared
server depot to the personal server.

Example 7.1. Mapping part of the shared server depot to the personal server.

Remote Spec:
 //stream/main/... //depot/main/widget-doc/code/...

In this case, Helix will map only the shared server files under the code subdirectory to the personal
server’s //stream/main directory.

Mapping files to different locations on the personal server

Remote specs can consist of multiple mappings; these map portions of the shared server file tree
to different parts of the personal server. If there is a conflict in the mappings, later mappings have
precedence over earlier ones.

Example 7.2. Multiple mappings in a single personal server

The following remote spec ensures that release notes in the remote p4-doc folder reside in the personal
server in a top-level folder called doc:

Remote Spec:
 //stream/main/src/... //depot/main/p4/...
 //stream/main/doc/... //depot/main/p4-doc/relnotes/...

Excluding files and directories

Exclusionary mappings enable you to exclude files and directories from being mapped to a personal
server. To exclude a file or directory, precede the mapping with a minus sign (-). Whitespace is not
allowed between the minus sign and the mapping.

Example 7.3. Using a remote spec to exclude files from a personal server.

Suppose you’re working on a game project and you don’t need the art files to be local:

Remote Spec:
 //stream/main/... //my_game/...
 -//stream/main/art/... //my_game/art/...

Chapter 7. Understanding Remotes

Using Helix for Distributed Versioning 39

Forward login to shared server
You can log into a shared server from a personal server without needing to know the shared server’s
P4PORT setting.

To do this, issue the following command:

$ p4 login -r remotespec

where remotespec is the spec corresponding to the server you want to log into.

If RemoteUser is specified in the remote spec, the login is performed for that user.

40 Using Helix for Distributed Versioning

Using Helix for Distributed Versioning 41

Chapter 8 Rewriting History
Helix allows you to rewrite the history of the changes in your server. There are two reasons why you
would want to rewrite history:

1. To resolve conflicts between a personal server’s file history and a shared server’s file history that
arise when fetching or pushing.

2. To revise local work: correcting mistakes, clarifying intent, and streamlining the local commit
history by consolidating intermediate changes.

The tangent depot
As part of rewriting history, the Helix Versioning Engine makes use of the tangent depot; the tangent
depot is a system-generated, read-only location in which the p4 fetch -t command stores conflicting
changes. The p4 fetch -t command automatically creates the tangent depot named tangent if one
does not already exist. This is further explained in the next section, “Resolve conflicts by rewriting
local history” on page 41.

For more information on the various kinds of depots, including the tangent depot, see the p4 depot
chapter in the P4 Command Reference.

Resolve conflicts by rewriting local history
If there are conflicts between a personal server’s file history and a shared server’s file history, a fetch
will fail and report the conflict. This happens when you’ve changed some files in your personal server
at the same time that someone else has changed those files in the shared server.

In this situation, you run p4 fetch -t. This does the following:

1. Relocates conflicting changelists to the tangent depot.

2. Fetches the remote work from the shared server.

You then run p4 resubmit -m to resubmit and automatically merge the conflicting local changes.

If your conflict(s) involved the same line or lines then p4 resubmit -m fails and you need to:

1. Run p4 resolve to resolve the conflict(s).

2. Run p4 resubmit -Rm to resume the resubmit.

Consider the following example:

1. User A clones from a shared server, bringing down revision 4 of //stream/main/foo.c (//stream/
main/foo.c#4).

2. User A edits foo.c and then submits it, creating //stream/main/foo.c#5.

3. In the meantime, User B, has made two edits to //stream/main/foo.c and pushed them to the
shared server. The shared server is now at revision 6 (//stream/main/foo.c#6).

http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

Chapter 8. Rewriting History

42 Using Helix for Distributed Versioning

4. User A attempts to push their change to the shared server, but the push fails because the file
version history doesn’t fit.

5. User A must now run fetch -t, which relocates User A’s revision 5 to the tangent depot, and
fetches revisions 5 and 6 from the shared server.

6. User A now runs resubmit -m. User A’s change, originally numbered 5, is submitted as revision 7.

7. User A pushes their change to the shared server. The push succeeds.

Rewrite history to revise local work
This section examines two scenarios in which you might want to revise local work by rewriting
history.

Scenario 1: You forgot to map a file
Suppose you wrote a new class in C++: src/module/UserUtils.cpp and it uses the header file inc/
UserUtils.h. You then issue this command:

$ p4 submit UserUtils.cpp

Your build script complains about the missing include file UserUtils.h. To fix this, you would issue
the following commands:

$ p4 unsubmit UserUtils.cpp
$ p4 resubmit -e

Now UserUtils.cpp is open. You would then run:

$ p4 add -c NNN UserUtils.h
$ p4 resubmit -Re

Where NNN is a changelist number.

Now the permanent history shows that your change contains both UserUtils.cpp and UserUtils.h.

Scenario 2: Combine two changes to remove "noise" from the history
Suppose you add a feature in change NNN. A reviewer finds a problem with it, so you make another
change to fix the problem. Then you realize that the second change is just adding noise to the history.

To fix this, you would do the following:

(We assume your first change is NNN and your second change is MMM)

1. Unsubmit both changes:

Chapter 8. Rewriting History

Using Helix for Distributed Versioning 43

$ p4 unsubmit //...@NNN,@MMM
Change MMM unsubmitted and shelved
Change NNN unsubmitted and shelved

2. Start the partially-interactive resubmit process:

$ p4 resubmit -e

Now change NNN is open for edit.

3. Make the change you originally made in changelist NNN.

4. Update the change description:

$ p4 change NNN

5. Resume the resubmit process:

$ p4 resubmit -Re

Now the second change is open for edit but you don’t need it. You can demonstrate this to yourself
by running p4 resolve, p4 diff, and p4 revert -a to see that nothing is changed by the second
change.

6. Delete the second change:

$ p4 shelve -d -c MMM
$ p4 change -d -c MMM

Alternatively, to delete the second change you could run p4 resubmit -i and choose d.

44 Using Helix for Distributed Versioning

Using Helix for Distributed Versioning 45

Chapter 9 Git:Helix Command Mappings
The following table maps Git commands to their corresponding Helix commands:

Git Command Helix Command

git add p4 reconcile

git branch p4 switch -l

git checkout --orphan new_branch p4 switch -cm new_stream

git checkout branch p4 switch stream

git clone repository p4 clone -p host:port -r remote

git commit p4 submit

git init p4 init

git merge branch p4 merge --from stream

git pull p4 fetch -t -r remote -S stream

git pull --all p4 fetch -t

git push p4 push -r remote -S stream

git push --all p4 push

git rebase p4 unsubmit followed by p4 resubmit

git remote p4 remotes

git remote add new_remote repository p4 remote new_remote

git status p4 status

git checkout -b new-branch p4 switch -c new-branch

For more details on Helix commands, see the P4 Command Reference.

http://www.perforce.com/perforce/r16.1/manuals/cmdref/index.html

46 Using Helix for Distributed Versioning

Using Helix for Distributed Versioning 47

Appendix License Statements
Perforce software includes software developed by the University of California, Berkeley and its
contributors. This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/).

Perforce software includes software from the Apache ZooKeeper project, developed by the Apache
Software Foundation and its contributors. (http://zookeeper.apache.org/)

Perforce software includes software developed by the OpenLDAP Foundation (http://
www.openldap.org/).

Perforce software includes software developed Computing Services at Carnegie Mellon University:
Cyrus SASL (http://www.cmu.edu/computing/).

http://www.openssl.org/
http://zookeeper.apache.org/
http://www.openldap.org/
http://www.openldap.org/
http://www.cmu.edu/computing/

48 Using Helix for Distributed Versioning

	Using Helix for Distributed Versioning
	Table of Contents
	Chapter 1. Preface
	What’s new in this guide for 2016.1
	Helix documentation
	Syntax conventions
	Please give us feedback

	Chapter 2. Introduction
	Centralized and distributed architecture
	How servers relate to each other
	Putting it all together
	Server-to-server relationships
	Client-to-server relationships

	Command line aliasing

	Chapter 3. Installation
	Installing Helix Versioning Engine 16.1 on Mac OS X
	Installing Helix Versioning Engine 16.1 on Linux
	Without OS-specific packages
	With OS-specific packages

	Installing Helix Versioning Engine 16.1 on Windows

	Chapter 4. Initializing a Server
	Initialize an empty server
	Read this first
	Run p4 init
	Directories and files

	Add files
	Prepare to fetch and push content between servers

	Initialize a server and populate it with files
	Run p4 clone
	P4PORT meaning before and after a clone
	Directories and files

	Get the latest changes

	Chapter 5. Fetching and Pushing
	Configure security for fetching and pushing
	Specify what to copy
	Fetch a limited subset of history

	What do fetch and push copy?
	Attribute interoperability with 15.1

	Fetching, pushing, and changelists
	Fetch and push a shelved changelist
	Track a changelist’s identity from server to server
	Workflow 1: Let Helix generate global changelist IDs
	Workflow 2: Enter global changelist ID manually

	Track who pushed, fetched, or unzipped a changelist

	Fetching and pushing fixes
	Fetching and pushing integration history
	Configure server to limit storage of archive revisions
	ArchiveLimits: entries

	Per-server identities
	When things go wrong
	Access denial
	History does not fit

	Support for exclusive locking in personal servers
	Using triggers with fetch and push

	Chapter 6. Streams and Branching
	List streams
	Create streams
	Switch between streams

	Chapter 7. Understanding Remotes
	Choose a remote
	Create a remote
	Example
	A closer look at a remote spec

	Specify mappings
	Using wildcards in remote specs
	Mapping part of the depot
	Mapping files to different locations on the personal server
	Excluding files and directories

	Forward login to shared server

	Chapter 8. Rewriting History
	The tangent depot
	Resolve conflicts by rewriting local history
	Rewrite history to revise local work
	Scenario 1: You forgot to map a file
	Scenario 2: Combine two changes to remove "noise" from the history

	Chapter 9. Git:Helix Command Mappings
	License Statements

