
www.perforce.com © Copyright Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners.

Introduction
This document provides information to plan your migration from an existing ClearCase system to Helix Core, the version control system
(VCS) from Perforce. Migration projects from ClearCase to Helix Core vary greatly in scale and complexity. Small, simple environments
with basic migration requirements are typically migrated in about eight business days. This includes setting up Helix Core, migrating, and
training users and administrators. Large, complex ClearCase environments may perform a series of migrations over the course of several
months (or more), as teams migrate at times convenient for them.

We discuss preliminary planning, corresponding Helix Core concepts and terminology, and review three history import strategies:
• Starting over
• Detailed history import (DHI)
• Baseline & branch import (BBI)

The Professional Services team at Perforce has experience guiding teams through complex migrations. We can assess your environment
and help create your custom migration strategy.

MIGRATION GUIDE

IBM ClearCase to
Helix Core Migration Guide

v3, February 2019

MIGRATION GUIDE

IBM ClearCase to Helix Core Migration Guide

www.perforce.com © Copyright Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners.

2. Preliminary Migration Preparation... 1
2.1. Review Existing Branching Strategy ... 1
2.2. Perforce Directory Standard (PDS) .. 1
2.3. Release Processes and the PDS ... 1
2.4. Perforce Streams .. 2
2.5. Addressing Intellectual Property Concerns .. 2
2.6. Training ... 2

2.7. Helix Core Transition Team ... 2

3. Import Strategies ... 3
3.1. Tips – Starting Over ... 3
3.2. Detailed History Import .. 4
 3.2.1. ClearCase Detailed Import History Preparation ... 5

 3.2.4. Detailed History Import – Pros .. 5

 3.2.5. Detailed History Import – Cons... 6

3.3. Baseline & Branch Import ... 6
 3.3.1. Baseline & Branch Import – Pros ... 7

 3.3.2. Baseline & Branch Import – Cons ... 8

 3.3.3. Warnings ... 8

4. Terminology and Concepts .. 8
 4.1. VOBs and Depots ... 8
 4.2. ClearCase Regions ... 9
 4.3. VOB Servers vs. “The Server” .. 9

 4.3.1. Operating System Selection .. 9

4.4. Registry and License Servers ..10
4.5. Release Servers and Installation ..10
4.6. View Servers, Protecting Unversioned and Checked Out Files10
4.7. ClearCase MultiSite vs. Perforce Federated Architecture ...11
4.8. Replacing ClearCase Views with Perforce Workspaces ..11
4.9. Rethink Label Strategies ...12

4.10. Unified Change Management (UCM) ...12

4.11. Migration Technical Details ..12
 4.11.1. Evil Twins ... 12

 4.11.2. Symlinks on Windows .. 13

 4.11.3. File Type Mappings and Limitations .. 14

5. Conclusion ..14

MIGRATION GUIDE

1 | IBM ClearCase to Helix Core Migration Guide

www.perforce.com © Copyright Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners.

2. Preliminary Migration Preparation
2.1. REVIEW EXISTING BRANCHING STRATEGY

Early in your migration planning, determine
whether your current branching strategy used in
ClearCase is appropriate to use going forward. If
not, adjust your strategy as needed.

Creating an initial branching strategy is a best
practice when getting started in Helix Core.
Perforce Streams can model your branching
strategy and indicate the intended flow of change.

2.2. PERFORCE DIRECTORY STANDARD (PDS)

With Helix Core, the directory structure and
branching strategy are related. A well-designed
directory structure is critical because it:

• Conveys branching patterns for everything in
Helix Core.

• Maps change propagation paths for the
various flows of change. For example, the life
of a bug discovered in maintenance, or the
life of a new feature.

• Conveys the stage in the life cycle of any
particular piece of code: experimental,
development, or released.

It’s a best practice to create a Perforce Directory
Standard (PDS) to establish the directory struc-
ture and corresponding branching strategy in
Helix Core.

2.3. RELEASE PROCESSES AND THE PDS

The directory structure in Helix Core can be
thought of in “low” and “high” levels. Low levels
represent your software products, and can vary
for each software product. High levels of a
Perforce directory structure convey branching

structure, project management, and software
lifecycle information. A well-designed, high-level
directory structure is intuitive for developers and
lends itself well to project management metrics,
policy enforcement by branch type, and various
kinds of automation.

Migrating to Helix Core typically involves
defining a Perforce Directory Standard (PDS) for
each product that is imported into Helix Core.
In some cases, it can be used across the entire
organization. A PDS encourages consistency in
release processes for various software products.
It can be as flexible as needed to account for the
different release processes and branching patterns
for various software products in Helix Core.

For example, one software product might be
licensed, which might have a release process
that defines how to maintain old releases and
deliver patches. A web-based software product,
in contrast, might not require maintenance of
old releases, but must support rapid updates.
Still another product could have a set of generic
components that are delivered to customers then
heavily customized, perhaps by your own organization.

Release processes for different software products
may also vary due to the number of contributors
and the structure of QA processes. Software
products can follow the same release process,
even though they might have very different
release schedules.

Low levels of the directory structure are left
untouched by the migration. This minimizes the
difficulty of performing the migration and the
impact of the migration to your environment (e.g.
build scripts, release processes and tools, etc.).

https://www.perforce.com/sites/default/files/pdfs/perforce-streams-adoption-guide.pdf
http://info.perforce.com/rs/173-DTI-322/images/pds_template.zip
http://info.perforce.com/rs/173-DTI-322/images/pds_template.zip

MIGRATION GUIDE

2 | IBM ClearCase to Helix Core Migration Guide

www.perforce.com © Copyright Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners.

MIGRATION GUIDE

IBM ClearCase to Helix Core Migration Guide

www.perforce.com © Copyright Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners.

2.4. PERFORCE STREAMS

Perforce Streams models branches at a higher
level. A stream defines multiple things:

• What related files are included in a set.

• Where those files came from (the parent
stream).

• How change flows to other streams.

• How parts of a stream are treated in the
workspace.

Streams is an attractive framework for new
projects in Helix Core. The tools and workflow
improvements simplify work for end users based
on industry best practices. It also makes project
and release management easier.

The detailed history import (DHI) tool used by
Helix Core currently does not support ClearCase
data being imported directly into Streams. How-
ever, ClearCase data can be imported into “clas-
sic” Helix Core branches and then migrated to
Streams for future work. Alternatively, the base-
line & branch import (BBI) method can be used
to import ClearCase data directly into Streams.

2.5. ADDRESSING INTELLECTUAL PROPERTY
CONCERNS

Maintaining IP provenance (i.e., knowing where
your source code came from and knowing what
legal rights you have to it) can be made a priority
during the migration. When looking at the migra-
tion process, your goal should be to ensure that
IP provenance is not negatively impacted. Your
migration processes should provide a clear audit
trail so that all imported files can be traced back
to the original ClearCase repository.

VCS systems inherently store valuable intellec-
tual property. If sensitive information is being
migrated, both the migration process and the
resulting Helix Core environment should ensure
that access is controlled to the same degree as it
was in ClearCase.

Migrations also provide an opportunity to
review access control policies. This process can
help expose particularly weak access controls,
and highlight where controls have gone too far.
In some cases, ensuring strong IP protections
requires extra effort. It is important to consider if
strong access controls really benefit your organi-
zation.

The powerful and flexible access control capabil-
ities available in Helix Core provide a straightfor-
ward means of guarding IP with relative ease.

2.6. TRAINING

Training for Helix Core users and administrators
is essential to help a migration go smoothly. We
find it most effective to train the bulk of users a
few days to a few weeks prior to the migration to
Helix Core.

Perforce provides a variety of training options
including in-person and online instructor-led
training. It is most effective to provide instruc-
tor-led training to a core set of administrators and
key users (e.g., “train the trainers”).

2.7. HELIX CORE TRANSITION TEAM

We recommend establishing a transition team
during your migration process. This core group
may include application administrators, system
administrators, and other influential users. You

http://www.perforce.com/sites/default/files/pdf/streams-adoption-guide.pdf
http://www.perforce.com/sites/default/files/pdf/streams-adoption-guide.pdf
http://www.perforce.com/training

MIGRATION GUIDE

IBM ClearCase to Helix Core Migration Guide

www.perforce.com © Copyright Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners.

might consider engaging Perforce Consulting to
be a part of your transition team.

The transition team defines how Helix Core will
be used in your organization:

• How it will tie into your various processes
and workflows?

• How should it will be integrated with other
systems?

For larger and more complex migrations, training
for this team should occur early in the planning
process. This allows best practices established
by the team to evolve, be documented, and be
communicated to the larger user community.

3. Import Strategies
There are three supported approaches for import-
ing files:

• Starting over (Tips)

• Detailed history import (DHI)

• Baseline & branch import (BBI)

The following is an overview of the strengths and
limitations of each import strategy.

3.1. STARTING OVER STRATEGY - TIPS

Starting over really isn’t really a conversion
strategy. This approach uses the “tips” — the /
main/LATEST file versions from ClearCase – and
simply adds them to Helix Core without any
history.

Based on your organization’s Perforce Directory
Standard, a high-level directory is identified in
which the files will be stored. For example:
//Janus/main/src

In this example, Janus is a product name. Main
indicates files in the main stream of development.
Src is the root of the low-level directory tree. The
low-level directory tree is copied verbatim into
Helix Core.

The “Tips approach” is sometimes appropriate for
specific parts of a project. For example:

• Documentation VOBs

• VOBs for shelved but not terminated
projects.

This approach is usually not appropriate for
source code, except for prototype and demo code.

Even in simple Tips migrations, care must be
taken to ensure that file types are mapped
correctly. Text, binary, and Unicode files should
be reviewed. Also file type modifiers should be
applied when migrating, such as ‘+x’ for execut-
ables and ‘+F’ for compressed binary formats like
*.gz or *.mpg, etc.

Starting over offers some benefits. First, it can be
easy. You define target directories in Helix Core,
and then add the files. Because there is less to
migrate, it is also faster.

But for organizations that need to remain in com-
pliance, this approach does not move historical
information into Helix Core. If multiple branches
are imported, Helix Core won’t be able to sim-
plify first-time merges between them. In order to
easily perform these merges, Helix Core needs to
understand the historical relationship between
the branches.

http://www.perforce.com/services/consulting_overview

MIGRATION GUIDE

4 | IBM ClearCase to Helix Core Migration Guide

www.perforce.com © Copyright Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners.

3.2. DETAILED HISTORY IMPORT (DHI)

Detailed history import (DHI) is the logical
extreme migration case. The goal with this
approach is to capture as much detailed branch/
merge information and migrate it into Helix
Core. This ensures that comprehensive historical
research can be done in the new system, without
the benefit of the old.

Perforce has a sophisticated tool and process that
enables conversion of very detailed historical data
from ClearCase to Helix Core. The tool has been
successfully used for performing detailed history
conversions from fairly large ClearCase data sets
(about 100 GB) to Helix Core. Due to licensing
restrictions and operational complexity, the DHI
conversion tool is only available through Perforce
Consulting services.

Detailed history migrations from ClearCase can
be selective. You can select only a subset of VOBs
to be imported. Within each imported VOB, a
subset of all available files and labels are typically
targeted for import.

Conversion includes file contents for each revi-
sion. Details include the metadata associated with
each check-in, file renames, and detailed branch-
ing and merging history. ClearCase’s representa-
tion of branching activity is translated into Helix
Core as “integration records.”

The import process groups ClearCase “check-ins”
into Helix Core “changelists.” For example, if a
given user checked in a set of files at the same
time (+/- a few minutes) with the same check-in
comment, those would be grouped together as a
single Helix Core changelist. UCM metadata, if

available, also factors into changelist grouping.

Our migration process starts by scanning reposi-
tories for various issues that need to be resolved
in ClearCase prior to migration. Examples
include:

• “Evil twin” files and directories.

• File types such as “block special devices” that
are supported only in ClearCase.

• File types (such as hard links) that can be
imported, but require special emulation in
Helix Core.

• Architectural and conceptual differences
between ClearCase and Helix Core. For
example, mapping ClearCase labels into
Helix Core proves rather difficult, because
typical usage of labels varies between the
systems.

• Certain rare “circular merge” activities that
are not easily translated into Helix Core.

• ClearCase repositories that have mild data
corruption that might not be visible to
normal users, but would be exposed when a
detailed conversion history tool runs specific
commands.

DHI has a more involved undertaking with Clear-
Case than with other VCS systems. Concepts
from UCM and RUP that depend on ClearCase
attributes and triggers are not handled by import
tools. They require manual importing.

Depending on the amount of data being migrated
and the speed of ClearCase in your environment,
a complex migration strategy using imports
running in parallel may be required. Extracting
all information from ClearCase – with years of

MIGRATION GUIDE

5 | IBM ClearCase to Helix Core Migration Guide

www.perforce.com © Copyright Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners.

history – might take a full week to perform the
mechanical extraction/import.

3.2.1. CLEARCASE DHI PREPARATION

If you plan to engage Perforce to help you plan a
detailed history migration from ClearCase, there
are a few things to be aware of early in your
planning process.

You’ll first need to establish a replica of your
ClearCase environment, including all VOBs
targeted for import. This instance should be
provisioned on hardware separate from your
production environment. This allows dry runs to
be completed without taxing a production server.

The migration will also require a powerful, dedi-
cated migration server. This can be the new Helix
Core server, but it does not have to be. It must be
a Linux server, even if the production and replica
servers are Windows. A fast network connection
between the ClearCase replica machine, the
migration server, and the Helix Core server
(which can be the same machine) is essential.

Migration is a very resource-intensive process,
and can potentially be very demanding in terms
of disk space and RAM resources. It is more
demanding than actual Helix Core server opera-
tions, as the equivalent of years of work done in
ClearCase is compressed into hours or days to get
it into Helix Core.

Detailed migration often involves custom script-
ing due to differences in ClearCase usage, oddities
in a particular data set, and custom requirements.
This is why it is important to review all your
requirements prior to migration.

3.2.2. DETAILED HISTORY IMPORT – PROS

Using a DHI strategy gives you the ability to
view file history using powerful visualization
tools from Helix Core, such as Time Lapse View.
This can shed new light on the evolution of your
source code, and give you a better understanding
of changes over time.

There is also an increased benefit for systems
integrated with version control. For example, the
meaning of the linkage between a set of files orig-
inally modified in ClearCase, and an issue from
your issue tracking system, can be maintained.
Plus with code review tools like Helix Swarm,
you can continue to provide greater context to
future changes.

Unlike Helix Core, ClearCase does not have a
way to validate the integrity of versioned file
contents using checksums. Corruption of file
contents – e.g. due to disk failures – can go unde-
tected1. Once historical data is in Helix Core, it
will benefit from checksum verification, which
will improve IP provenance. This allows your
teams to access a file’s history that before might
have been impossible.

After the migration, comprehensive historical
research and “merge forensics” can be done in
Helix Core without the need for going back into
ClearCase. Although, if possible, it is recom-
mended you keep ClearCase as a backup with
one user license for a few years.

3.2.3. DETAILED HISTORY IMPORT – CONS

Detailed import tools have a variety of technical
limitations. Some of these limitations are due
to differences in the way ClearCase and Helix

1 ClearCase does have a ‘checkvob’ utility that can detect and fix some forms of metadata corruption. However, this utility does not detect data container corruption,
and thus the contents of versioned files cannot be audited.

http://www.perforce.com/collaboration

MIGRATION GUIDE

6 | IBM ClearCase to Helix Core Migration Guide

www.perforce.com © Copyright Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners.

Core work. Others are due to the potential
complexity of ClearCase environments, including
unusual patterns (or even corruption) in the data.
So-called “evil twin” elements and certain circular
branching patterns created by misconfigured
config specs can be difficult to follow.

Existing detailed history import tools may require
development to work on your data prior to
migrating. The likelihood of this scenario depends
on your data. It is typically necessary if a full-con-
text migration is attempted. Added complexity
translates into potential schedule and budget risks
for your migration project.

3.3. BASELINE & BRANCH IMPORT

The baseline & branch import (BBI) strategy
provides a lightweight migration alternative.
It is more sophisticated than the simple Tips
approach, yet without the technical complexity
involved in detailed history import (DHI).

The BBI process is generic and can be done from
any other version control system to Helix Core.
Customers have used it to migrate from a variety
systems – IBM ClearCase®, Borland StarTeam®,
Merant PVCS®, Subversion, Mercurial, CVS,
Microsoft Visual Source Safe, and AccuRev. It has
even been used to migrate from a set of network
drives with directories named to indicate releases.

With the BBI approach, only certain points in
your history are imported. The branch diagram
shows the baselines – snapshots of a directory
structure at a point in time – and major branching
operations.

Sample Baseline & Branch Diagram

Figure 1: Sample Baseline & Branch Diagram

The baselines (blue dots) indicate what “inter-
esting versions” are to be imported. The arrows
indicate major branching operations that affect an
entire branch. In this scenario, a 2.0-Rel branch
has been created along with four patches on that
branch. When migrating to Helix Core, we can
see only two of those four patches have been
merged back to MAIN. The BBI process:

• Imports all the baselines.

• Records the fact that two merges were
completed with updates added to MAIN.

• Tracks the two unmerged patches remaining
on the release branch.

Once all this information is available in Helix
Core, it can be used to complete new merges.
Importing the branching operations allows Helix
Core to select common ancestors for merge work.
After the migration, your teams can pick up right
where they left off with branching activities.

The BBI process imports branching operations
at a high level, capturing the sum of merge
operations. For example, in Figure 1, the arrow
representing the merge of p2 back to MAIN
would likely have occurred as a series of merges

MIGRATION GUIDE

7 | IBM ClearCase to Helix Core Migration Guide

www.perforce.com © Copyright Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners.

carried out by several developers. The individual
file merges are not tracked, but the sum of the
results of the merge – file adds, edits, and deletes
– are tracked. The imported baseline represents a
point in time when the merge of p2 is considered
complete.

The goal with BBI is to bring over just enough
branching history to answer key questions. For
example:

• What did release 2.0 look like?

• Where was this file branched from?

• What files do I need in my workspace to
start maintenance work on release 2.3?

Because the BBI approach preserves file contents
at key points, the cutover to Helix Core can
happen at any point in the release cycle.

After conversion, Helix Core would show history
of your software product in its Revision Graph
tool. This view will look like the product was
developed in Helix Core from the beginning.
Although detailed data is lost, you will know
what the state of your product looked like at each
release. But the hundreds of check-ins between
those baselines are discarded, as are user-ids,
dates, times, and check-in comments.

Accurate diagrams are essential for planning a BBI
migration. Ideally, release engineers should draw a
branch history picture for each software product
to be imported. This information can also be
manually found in ClearCase. Once the diagram
is drawn and vetted, it is translated into a set of
Perforce commands that recreate the baselines in
Helix Core.

The first baseline will appear as an initial addition
of the entire product directory tree. Subsequent
baselines result in Perforce changelists that show
only certain changes like files added, deleted, or
modified. Branching operations are translated into
Helix Core equivalents. Merges done in Clear-
Case are recorded in Helix Core as the results of
the merges.

If your organization will still need access to
detailed historical research, ClearCase can be
kept running with a single license. It is a good
idea to keep this ClearCase license around at least
for a year or two after a BBI migration.

3.3.1. BASELINE & BRANCH IMPORT – PROS

When implementing a BBI strategy, ideally you
would want the flexibility to do a multisystem
migration for different teams. Each team could
potentially migrate into Helix Core on their own
schedule and without impacting others. Because
the BBI approach works against a live, running
Helix Core server (rather than generating sepa-
rate server instances like some detailed history
import tools) the project planning for each team
does not require coordination.

Once your “interesting history” is available in
Helix Core, you can use powerful file and direc-
tory diff tools – Revision Graph and Time Lapse
View – to view your old files in a new light.
Unlike the detailed imports, you won’t be able
to tell exactly who changed what, when, and
why. But you can tell how the software product
evolved from baseline to baseline.

The BBI process is fairly straightforward, and has
little risk of technical snags. Compared to detailed
options, this approach makes migration partic-

MIGRATION GUIDE

8 | IBM ClearCase to Helix Core Migration Guide

www.perforce.com © Copyright Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners.

ularly easy. All the historical information can be
loaded into Helix Core prior to migrating teams.
Then, on the day of cutover, only the baselines
representing the latest state of development on
active branches needs to be brought in.

BBI also runs very quickly. Because of this, dry
runs can easily be done to test changes that may
need to be part of the migration, such as updates
to build scripts or makefiles. And the amount of
metadata resulting from BBI is negligible and does
not unduly impact performance or initial capacity
planning.

Migrating to a new VCS tool gives you the
opportunity to normalize past history into a new
PDS. This allows you to create consistency across
activities, such as the creation of branches. In
cases where branching strategies evolved over
time with ClearCase, you can simplify historical
research of the imported baselines. With the BBI
approach, common concepts such as “software
product X went to production” can be indicated
the same way for each of the imported software
products.

3.3.2. BASELINE & BRANCH IMPORT – CONS

In cases where files were renamed or directory
structures were reorganized between releases, the
historical connection between files’ names can
be difficult to capture. For example, file hello.c in
v1.0 of your software product was renamed greet-
ings.c in v1.1. The fact that greetings.c used to be
hello.c requires analysis of your data to detect.

Both ClearCase and Helix Core track renames,
but each in their own way. But in BBI migrations,
that historical linkage of the renaming is some-

times forgone. Renaming can be easily captured
– as opposed to showing a delete of one file and
the adding another – without the connection that
the two are related.

ClearCase allows versioning of some uncommon,
low-level file types on some platforms. These
block special devices and character special devices
are not supported in Helix Core. Such files will
not be imported with BBI or any migration strat-
egy. Symbolic links can be imported, however.

3.3.3. WARNINGS WITH BBI STRATEGY

If version control best practices were not followed
with ClearCase, reproducing the baselines may
be difficult2. For example, if branches were made
from /main/LATEST rather than from a label
on MAIN, getting a config spec to represent the
baseline from which a branch was created may
involve some guesswork. You may need to use /
main/LATEST with a ‘–time’ clause and select a
“bestguess time“ to represent the point on MAIN
at which a branch was created.

4. Terminology and Concepts
In this section, we will review the Helix Core
equivalents of basic ClearCase concepts. Consider
these when planning your migration.

4.1. VOBS AND DEPOTS

A Helix Core depot is roughly equivalent to a
ClearCase VOB (Versioned Object Base). VOBs
and depots both display as top-level directories to
users, and store a set of files. At least one VOB or
depot must exist before any file can be versioned.

A VOB is a container for versioned file contents
and metadata related to those versioned files. A

2 Unfortunately, this is a common scenario with ClearCase.

MIGRATION GUIDE

9 | IBM ClearCase to Helix Core Migration Guide

www.perforce.com © Copyright Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners.

Helix Core depot contains only the contents of
versioned files. All metadata is stored in a central
database on the Helix Core server.

When mapping VOBs to depots, consider the
following:

• Unlike files in ClearCase VOBs, files can
be branched across depots in Helix Core.
Depots are more transparent (barring any
special access controls).

• In Helix Core, you can manage all digital
assets – including binary files. Most custom-
ers do not manage binaries in ClearCase
due to performance considerations. When
mapping, you can create a depot for source
code and other various components of
software products. For example, a depot
might be assigned fore each, e.g. //gizmo, //
gizmo-build, and //gizmo-release.

• Depots can be created in seconds, but can
last a lifetime. Choose their names wisely.
Names should be kept short to allow them
to be referenced easier. For example: //Engi-
neering is OK, but //Eng is better.

• Path names are primary keys in many Helix
Core databases. Character limits are platform
dependent and no less than 1024 characters.

4.2. CLEARCASE REGIONS

In ClearCase, network registry regions can be
employed to segregate VOBs. These regions
restrict a user to see only a subset of all VOBs.

To achieve similar segregation in Helix Core,
the P4 Protections Table can be used. Users who
were in different regions in ClearCase would be
assigned to different user groups in Helix Core.
Access to different depots would then be man-
aged at the group level.

4.3. VOB SERVERS VS. HELIX CORE SERVER

In ClearCase environments, there may be multi-
ple VOB server processes potentially distributed
across multiple VOB server machines. With
Helix Core, a single server may be adequate for
any given installation3. The process easily runs
on a single machine and is frugal with system
resources when compared to ClearCase. One
Helix Core server can scale to support extremely
large environments (e.g. 10,000+ users) using
enterprise-grade server machines.

One of the first steps in any migration is to setup
Helix Core hardware in a data center. See the
General Performance Recommendations for
information useful in capacity planning for your
primary server.

It is also common to allocate two or three iden-
tical server machines to Helix Core to achieve
High Availability and Disaster Recovery (HA/
DR) goals. A typical configuration has two servers
(a primary and a hot spare) in a primary data cen-
ter, and a third server (warm spare) in another data
center located far from the primary data center.

4.3.1. OPERATING SYSTEM SELECTION

Just as with ClearCase, the primary factor in
selecting an operating platform for Helix Core is
the platform that IT is most comfortable supporting.

3 Deploying multiple Helix Core server instances within an enterprise is common. For purposes of this paper we consider only the single-server-per-enterprise approach,
as that best suits most ClearCase migration scenarios.

https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/protections.set.html
http://answers.perforce.com/articles/KB/3128

MIGRATION GUIDE

10 | IBM ClearCase to Helix Core Migration Guide

www.perforce.com © Copyright Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners.

In mixed Windows/Linux environments, Linux
platforms are almost invariably selected for
ClearCase. This is primarily due to case sensitivity
reasons and ClearCase’s reliance on a monodirec-
tional filesystem. VOB data is then accessible to
clients on both Linux and Windows.

With Helix Core, only a Transmission Control
Protocol (TCP) connection is needed between
clients and servers. Further, the case sensitivity
behavior of Helix Core can be configured inde-
pendently of the platform. Thus, with Helix Core,
the server can be configured on Windows or
Linux in multi-platform environments.

4.4. REGISTRY AND LICENSE SERVERS

Helix Core does not require license or registry
server processes or additional hardware. A simple
0.5 KB license file on the Helix Core server
machine drives the license mechanism.

4.5. RELEASE SERVERS AND INSTALLATION

With ClearCase, it is important to carefully
manage server and client versions. Ensuring users
run client software that is compatible with the
current version of the server is important to
ClearCase. To ensure consistency, some ClearCase
installations deploy a separate release server. This
defined network resource allows users to down-
load correct versions of client software.

With Helix Core, all server and client compo-
nents install in minutes over the web. More
importantly, Helix Core clients and the server
have a very loose forward and backward compat-
ibility relationship. Users can generally run client
versions that are older or newer than the server.
Client programs simply hide or disable those
features that require newer versions of the server,

and new server versions rarely require client
upgrades.

Helix Core supports a centrally configured,
automatically deployed client for large Windows
sites (see Automated Deployment of Perforce).
Such sites can be used to ensure that users down-
load consistent, trusted versions of software that
are supported by IT and/or release engineers. The
ease of installation and enhanced compatibility
makes maintaining clients less of an administra-
tive priority than in ClearCase environments.

4.6. VIEW SERVERS, PROTECTING UNVER-
SIONED AND CHECKED OUT FILES

Helix Core stores all metadata in databases
located on the central server4. There is no equiv-
alent of a ClearCase view server process. Because
of this, there is no need for administrators to
allocate and configure view server machines in
Helix Core. Users also do not need to start or stop
view server processes.

When dynamic views are used, view server
machines contain the contents of checked-out
and unversioned private files. Some organizations
back up view storage areas regularly to protect
against loss. If protecting checked-out and unver-
sioned files is a priority, you will need to address
this when migrating to Helix Core. In Helix Core,
unversioned and checked-out files are not avail-
able to the server, and are not backed up.

Some organizations devise infrastructure to help
protect unversioned and checked-out workspace
files in Helix Core. They might require users
to store workspaces on network drives that are
backed up. More often, you can addresses these
processes and users during training, and encour-

4 Some GUI programs temporarily cache metadata in running processes, but such information is not persisted.

https://www.perforce.com/downloads
http://answers.perforce.com/articles/KB/2456

MIGRATION GUIDE

11 | IBM ClearCase to Helix Core Migration Guide

www.perforce.com © Copyright Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners.

age them to avoid keeping files checked out for
too long.

4.7. CLEARCASE MULTISITE VS. PERFORCE FED-
ERATED ARCHITECTURE

If your ClearCase environment relies on
MultiSite, Perforce Federated Architecture
provides flexible and superior support for
remote development.

Helix Core proxy servers are both simple and
effective. Helix Core proxies cache the contents
of versioned files at remote sites, greatly reducing
the dependency on WAN networks. Proxies do
not cache any metadata. This ensures one single
source truth and eliminates the need for special-
ized and administration-intensive concepts like
branch mastership, scheduling batch replication,
etc. Once hardware is available, Helix Core proxy
servers can be setup in minutes and require
virtually no maintenance.

Helix Core replicas are more capable than proxy
servers and have a small administrative footprint.
One popular replica configuration could provide
read-only access to all data (file content and
metadata). This improves performance for remote
teams and automated processes like CI/CD. Build
performance is enhanced because all read-only
data is serviced locally. Data consistency is still
maintained because there is still one canonical
representation of important data on the central
server.

Replicated VOB servers generally run on server
machines equivalent to the primary server. It
requires the support from a similar tiered data
center. Due to the significant investment in
licenses, hardware, and administrative overhead,

MultiSite installations are used only in cases
where major development centers exist. There are
rarely implemented where many small teams are
spread out.

By contrast, Helix Core proxy servers are light-
weight programs that can run on desktop-grade
hardware, even in enterprise environments. Proxy
servers are so lightweight in terms of hardware
resource demands that they can be deployed
anywhere that even a few developers gather. In
some cases, individual users deploy a Helix Core
proxy instance in small office without IT support.

Helix Core replicas require more powerful
hardware than a proxy server, but have a small
administrative footprint. They can be useful for
small or medium sized teams, as well as larger
sites. There is no additional cost or license issues
to deal with when deploying a Helix Core proxy
or replica servers.

4.8. REPLACING CLEARCASE VIEWS WITH PER-
FORCE WORKSPACES

The term workspace is familiar to both ClearCase
and Helix Core users. In both systems, it refers to
what developers use to manage files under ver-
sion control on their local machines.

With ClearCase, it is typical for a developer to
maintain several workspaces, or views. Developers
working on multiple branches typically use a
different view for each activity. They work in one
view at a time. For example, a developer might
maintain a liz_user_main_dev view with a config
spec selecting /main/LATEST versions, and a
separate liz_user_rel_2.3 view selecting /main/
REL2.3/LATEST5 versions.

5 This is an oversimplification. A typical config spec consists of several lines or more.

https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/intro.architecture.html?TocPath=Overview%7C_____1
https://www.perforce.com/perforce/doc.current/manuals/p4dist/Content/P4Dist/chapter.proxy.html

MIGRATION GUIDE

12 | IBM ClearCase to Helix Core Migration Guide

www.perforce.com © Copyright Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners.

changelist, even though it affects only a small
subset of the files, can be used to describe the
state of every file in the depot.

Branches in Helix Core are represented as direc-
tories, making it easy to use a combination of
branches and changelist numbers to represent
a baseline. Alternately, labels can reference
changelist numbers limited to an identified scope
in Helix Core, where the scope is typically the
directory representing a particular branch.

4.10. UNIFIED CHANGE MANAGEMENT (UCM)

UCM adds a layer of process to base ClearCase.
We strongly recommend reviewing our Streams
Adoption Guide.

Perforce Streams provides a flexible workflow
and guidance for release management. When used
in conjunction with other ALM tools, like Helix
ALM, it can replace ClearCase UCM.

4.11. MIGRATION TECHNICAL DETAILS

Perforce is not ClearCase. ClearCase and Helix
Core think very differently. They have very
different internal representations and modeling
of parallel development, branching, and merging.
The net result to the user is that both provide
good model of what you need to do to achieve
parallel development – but one should be aware
of the differences.

4.11.1. EVIL TWINS

An “evil twin” is a scenario where two elements
with the same name appear in different branches.
For example, say you have a MAIN, DEV_A and
DEV_B branches, with each of the DEV branches
parented directly from MAIN. In DEV_A branch,

A Perforce client spec – a form controlling the
definition of a workspace – determines the subset
of Helix Core files visible in a workspace. To
users, branches in Helix Core display as fully
populated directory trees. There will typically
be a directory on the server named MAIN, and
another directory named for a specific release.
For example, REL2.3. A developer might have
a liz_user_dev workspace, which could include
both MAIN and REL2.3 directories. Liz could
easily work in both activities at the same time.

In Helix Core, only user files are stored on the
local disk. All metadata – including information
about the name and contents of a user’s work-
space – is maintained on the Helix Core server.
If your teams are using Perforce Streams, they
have the capability to specify which modules are
actively in use in a branch, and import dependen-
cies from other projects.

4.9. RETHINK LABEL STRATEGIES

Both ClearCase and Helix Core provide labels,
which can be used to identify the versions of files
that constitute a baseline. For many ClearCase
users, the use of labels is mandatory. But applying
labels can be time-consuming. This task could
account for 30% or more of the time associated
with official builds.

In Helix Core, labels are just one way of repro-
ducing baselines. Labels certainly do the job of
identifying a baseline, but other approaches are
available. You can accomplish the same thing
without the taxing build process. Alternatives
to labeling take advantage of Perforce change-
lists. Each Perforce check-in generates a unique
changelist number that reflects the state of the
entire repository at a point in time. Any given

https://www.perforce.com/sites/default/files/pdfs/perforce-streams-adoption-guide.pdf
https://www.perforce.com/sites/default/files/pdfs/perforce-streams-adoption-guide.pdf
https://www.perforce.com/products/helix-alm/
https://www.perforce.com/products/helix-alm/

MIGRATION GUIDE

13 | IBM ClearCase to Helix Core Migration Guide

www.perforce.com © Copyright Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners.

From the perspective of migrating data from
ClearCase, this “evil twin” history is murky and
not something to bring forward into Helix Core.
The process for dealing with evil twins in Helix
Core is to detect instances of them, manually
select the “correct” element from the pair, and use
ct rmelem to eliminate the evil twin.

In Helix Core, it is possible for a similar scenario
to occur. A file with the same name could be
created independently in two branches. However,
unlike in ClearCase, Helix Core detects and
encourages you to resolve the situation the first
time they are merged together. The histories of
the two files can be combined in Helix Core,
and their revision histories united. You are not
required to kill off an evil twin. Therefore you do
not lose any history. Instead you can simply unite
the trees.

4.11.2. SYMLINKS ON WINDOWS

Using Multi-Version File System (MVFS) with
ClearCase enables support for symlinks on Win-
dows in dynamic views. Helix Core has no equiv-
alent of a custom filesystem, and does not support
symlinks on non-supported platforms. Symlinks
are supported on Windows Vista, Windows 7, and
Windows Server 2008, but not on earlier versions
of Windows. If there is a reliance on using sym-
links on earlier versions of Windows, this must be
accounted for during migration planning.

Helix Core does allow symlinks to be versioned.
When a file of type ‘symlink’ is brought into a
Helix Core workspace on a Windows machine
without symlink support, it displays as a text file.
The contents are the target path of the symlink.
For example, say in a Linux workspace you did ‘ln

a developer runs ct mkelem to create a new file
element, foo.c. Independently in DEV_B branch,
a developer runs the same command to create a
new file element, foo.c.

Then another developer runs ct findmerge to
make files that originated on DEV_A appear
on MAIN. Later, someone does another ct find-
merge intending to merge changes from MAIN
to DEV_B, including the new foo.c merged to
MAIN earlier from DEV_A.

Which is the real “foo.c” in DEV_B? The one that
originated in DEV_A, or the one that originated
in DEV_B? To ClearCase, it is unclear. One is
identified as the correct file, and the other is
dubbed the evil twin. Although one would expect
them to be branch-relations of the same element,
in ClearCase they are not related. They are identi-
fied as completely independent elements, refer-
enced in its database by different OID (object
identifiers).

If the findmerge command completes success-
fully, you would have two foo.cs in the MAIN
branch. But only one foo.c would display in the
directory. It is not obvious to users which file
is being referenced. ClearCase doesn’t provide
any sort of warning. Situations are even worse
when there turn out to be “evil twin” directory
elements.

“Evil twin” directory elements are one of the
more insidious complexities of ClearCase. Clear-
Case admins that are aware of this potentially
confusing scenario sometimes put in “evil twin
detection” and “evil twin prevention” triggers.

MIGRATION GUIDE

IBM ClearCase to Helix Core Migration Guide

About Perforce

Perforce powers innovation at unrivaled scale. With a portfolio of scalable DevOps solutions, we help modern enterprises overcome complex
product development challenges by improving productivity, visibility, and security throughout the product lifecycle. Our portfolio includes solu-
tions for Agile planning & ALM, API management, automated mobile and web testing, embeddable analytics, open source support, repository
management, static & dynamic code analysis, version control, and more. With over 9,000 customers, Perforce is trusted by the world’s leading
brands, including NVIDIA, Pixar, Scania, Ubisoft, and VMware. For more information, visit www.perforce.com

www.perforce.com © Copyright Perforce Software, Inc. All trademarks and registered
trademarks are the property of their respective owners.

account for that in your migration planning.

5. Conclusion
After reviewing our guide, use our ClearCase to
Helix Core Migration Planning Checklist to start
preparing for your move.

Not sure where to start?

The Professional Services team at Perforce has
extensive experience migrating complex Clear-
Care environments to Helix Core. They can
ensure your migration goes smoothly. For more
information, visit
https://www.perforce.com/support/consulting
or email consulting@perforce.com.

–s hello.hpp hello.h’. The file hello.h would be a
symlink pointing to hellol.hpp.

In Helix Core, if you sync the hello.h symlink to
a Windows workspace without symlink support,
you get a file with the contents being “hello.hpp”,
the path to the target of the symlink. You would
not get the content of the pointed-to file, as
would occur in a ClearCase snapshot view.

4.11.3. FILE TYPE MAPPINGS AND LIMITATIONS

When migrating from ClearCase to Helix Core,
the ‘typemap’, which defines file types based
on Helix Core pathname heuristics, will help
ensure that files are added with the correct file
type mapping. This is especially important for
Unicode files.

ClearCase allows versioning of some file special
filesystem objects, such as block special devices,
character special devices and hard links. These
have no equivalent in Helix Core. If such objects
are versioned in ClearCase, you will need to

https://www.perforce.com/sites/default/files/pdfs/clearcase-migration-checklist.pdf
https://www.perforce.com/sites/default/files/pdfs/clearcase-migration-checklist.pdf
https://www.perforce.com/support/consulting
mailto: consulting@perforce.com

