
www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (1020CK20)

Introduction
This guide is designed to help users familiar with SVN more quickly adopt Perforce Helix Core version control.

Use this guide to:

• Learn the similarities and differences between SVN and Helix Core.

• Discover new workflow capabilities with Helix Core that are not present in SVN.

• Adapt development processes to use Helix Core to its full potential.

While this guide is quite comprehensive, it shouldn’t be considered technical documentation for the
functionality described.

This information in this guide is based on SVN 1.9 and Helix Core 2018.1

WHITE PAPER

Helix Core for Subversion
(SVN) Users

WHITE PAPER

2 Helix Core for Subversion (SVN) Users

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (1020CK20)

Contents
Conceptual Differences Between
SVN and Helix Core .. 3

Repos vs. Depots ...3

Authentication ..3

Workspaces ..3

Why Workspaces? ..4

Files Under Souce Control ..4

Pending Changes and Shelves ...5

Storing a Change ...5

Labels ..5

Identifying File Revisions ...6

Branching and Merging ..7

Access Permissions ..8

Replication ..8

Code Reviews with Helix Swarm ..9

Adapting Development Processes 9
Choosing Client Software ...9

Setting up the Environment ..9

Getting Help .. 10

Creating and Using a Client Workspace 10

Why Explicit Checkouts? .. 12

Changelists .. 12

Migrating SVN Data ..13
Helix Core to SVN Conversion Tool .. 13

WHITE PAPER

3 Helix Core for Subversion (SVN) Users

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (1020CK20)

Conceptual Differences Between
SVN and Helix Core

REPOS VS. DEPOTS

In many situations, an SVN server contains a set of

isolated repositories. A client connects to one repository

at a time, but it can reference other repositories through

svn-externals.

The Helix Core server does not have isolated storage.

There is no technical restriction in accessing files across

depots. Files can be branched and integrated (or

merged) from one depot to another, and users can access

files from several depots at the same time. Depots are all

managed as a collection in the Helix Core server.

With Helix Core, there are several depot types. We

won’t discuss them all in detail here. By default, there is

a primary depot named depot on every Helix Core instal-

lation. Other import-ant types of depots include Stream,

remote, spec, unload, archive, tangent, and graph. Each

has a specific purpose in building workflows.

Assets being used in active development are managed in

three kinds of depots: classic depots, Stream depots, and

graph depots. Stream depots are the most commonly

used type of depot today. More about Streams later in

this document.

Graph depots are depots in which Git files and whole Git

repos are managed inside the Helix Core server.

Classic depots provide compatibility with older (pre-

2011) versions of Helix Core, and they are a useful store

for assets that require minimal workflow.

AUTHENTICATION

Both SVN and Helix Core require named user accounts

for all operations.

In Helix Core, users first log in to the server and are issued

tickets that are valid for a certain amount of time – 12

hours by default.

Passwords in Helix Core are either administer-

ed and stored within the server itself or via an authenti-

cation agent such as LDAP or Active Directory (AD). Helix

Core also integrates with your preferred Identity Provider

(IdP) using Helix Authentication Service.

WORKSPACES

To make a change to a file under source control, SVN

users check out a working copy of a repo, or part of a

repo, onto their local machine. In SVN, this working copy

contains an administrative directory called “.svn” that

holds the connection information and state and a pristine

copy of all workspace files. The SVN working copy has

the same structure of folders and files as the repository.

Helix Core uses a concept called the “client workspace.”

From a user perspective, it is used to map files in the

server depot to files on the workstation. A client work-

space is sometimes interchangeably called a client or

a workspace in Helix Core. In fact, the command-line

client, P4, allows both names. Both “p4 client” and “p4

workspace” are aliases.

Helix Core doesn’t use hidden files to manage local

assets. Instead, the state of each workspace is kept on the

server. A client workspace consists of a:

• Unique name

• Root directory

• Set of options

• View

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (1020CK20)

WHITE PAPER

4 Helix Core for Subversion (SVN) Users

The workspace view specifies the set of files in the depot

that should be mapped to the local machine, because no

one wants all the files that are available on the server. This

selects just the desired set of files. Note that content can

be mapped from multiple depots into a workspace.

In addition, the structure of the workspace can be quite

different to the structure of the repository if required.

For example, files or folders can be mapped to different

levels in the workspace. This flexibility can be very useful

in practice. For example, this allows artists and software

developers to work on their own separate content for a

game, and a build workspace can have everything.

Many teams use a branching feature of Helix Core called

Streams (discussed later in this document) for develop-

ment. This can automatically generate a workspace view,

or you can generate the view using scripts or template

workspaces. Others let their users generate their own

workspaces.

Workspaces are a powerful tool for automation, in addi-

tion to being used by developers creating code. There

are two special types of workspaces:

• Partitioned workspaces

• Read-only workspaces

Both are designed to enhance performance of CI/CD

automation processes by streamlining the handling of

files in the DevOps pipeline. This also helps maintain

optimal performance by preventing database table

fragmentation.

WHY WORKSPACES?

Workspaces are a powerful concept. They are flexible

enough to allow different types of users to define the

layout of files from depots to suit their working needs.

For example, developers, designers, QA automation

engineers, and DevOps pros can define their own views

for their own unique needs.

Workspaces in Helix Core are not only used to map the set

of files a user wants to work with; the server can also track

exactly which revisions of each file the user has synced.

This approach allows the system to send the correct set of

files to the user when syncing without having to scan the

file system first to see which files need to be updated. With

a large number of files, this can be a huge performance

win. This is also very popular in industries that have very

strict auditing rules. Helix Core admins can easily track and

log who has synced which files.

A powerful productivity advantage of being able

to map an assortment of modules to one workspace is the

ability to easily modify multiple code

modules in one check-in, guaranteeing that any-

one with a similar client view who syncs to a check-in will

have all the code in the correct state.

FILES UNDER SOURCE CONTROL

SVN stores text and binary files, as well as empty

directories.

Helix Core also stores text and binary files, but

the server does not version empty directories directly. If

coding practices require empty direct-ories in the repos-

itory, place an empty hidden file into it (e.g., “.dir” or

“.p4ignore”).

Helix Core distinguishes among text, binary, and Uni-

code-encoded files as well as symbolic links. Additionally,

each version of a file can have extra attributes such as

executable or exclusive checkout.

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (1020CK20)

WHITE PAPER

5 Helix Core for Subversion (SVN) Users

PENDING CHANGES AND SHELVES

SVN (since version 1.5) has the concept of a local change-

list attached to a working copy that allows users to group

changes under an arbitrarily named change.

Helix Core stores changelists on the server. It has the

concept of a default pending change to which all

changes in a workspace are attached. Each file operation

such as adding, editing, or deleting a file is automatically

attached to the pending changelist.

A pending change can also be explicitly saved; it is then

given a unique change number. Each work-space can

have unlimited number of pending changes.

Similar to SVN, a file can be in only one changelist at a

time on the client.

But Helix Core also has a feature called “shelve.” This

transfers the changed content to a central server where it

can be inspected, compared, and reviewed by all users.

For example, when a developer believes they have com-

pleted a change, but is submitting it to a code review.

She doesn’t want to submit it to the server (i.e., commit

it) prior to the reviewers approving her changes.

Another great use for shelving is to keep several states of

a file in the same workspace at the same time, since each

file can only be opened once in a pending change for a

workspace.

STORING A CHANGE

A change in SVN is committed with a change comment

and is then visible to all other users. It is possible to only

commit a single named changelist. Once committed, the

change is given a repository-unique, strictly increasing

number called a revision.

The Helix Core operation to commit a change is called a

submit. In most cases, users will submit all changes in their

current pending changelist. As in SVN, each submitted

change is assigned a unique, strictly increasing number,

but it is called a change or changelist.

In Helix Core, a changelist can include a description and,

optionally, a list of jobs that the change fixes. Helix Core

has a built-in system for handling work items and tracking

status milestones. Jobs are often used to allow developers

to get tasks from Jira, Helix ALM, and other issue manage-

ment systems, and then to report the status of developer’s

progress back to such systems, automatically.

SVN’s revision and Helix Core’s change both identify the

state of all files in the repository at a given time, not just a

particular change.

LABELS

Labels in SVN are called tags. They are represented as a

file path, and by convention only, stored in a subdirectory

called “tags.”

Helix Core’s label feature assigns a name (label) to a set of

files using the file specifiers described below. Labels are

commonly used for automation tasks, supporting CI/CD

build, and release workflows. They are also popular with

development teams sharing libraries and artifacts. teams

sharing libraries and artifacts.

Helix Core stores labels as metadata on the server. There

are three kinds of labels:

• Static labels resemble SVN’s tags in

flexibility

• Automatic labels are aliases for changes

and fixes and have minimal impact on

the repository metadata

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (1020CK20)

WHITE PAPER

6 Helix Core for Subversion (SVN) Users

• Unloaded labels act like static labels but

store their data in a single file

For example, to access files at a label, a Helix Core user

syncs “files/…@labelname”.

There are several commands to create and act upon

labels, that are discussed extensively in the Helix Core

documentation.

IDENTIFYING FILE REVISIONS

SVN identifies file revisions only through its global revi-

sion number, or HEAD. A particular file might have been

modified only in revisions 1, 15, 31, and 73.

Files in SVN are only identified through their local path.

Recursion can be defined through a specified depth.

Helix Core provides users with a comprehensive,

cross-platform-capable approach to specifying files,

whether employed at the command line, or via scripting.

Helix Core users specify a file in three ways:

1. Depot syntax — an absolute path including the

depot root: //depot/dir/file

2. Client syntax — an absolute path including the client

root: //client/dir/file

3. Local syntax — a relative or absolute path

of the operating system

In Helix Core, any file can be specified within any com-

mand in client syntax, depot syntax, or local syntax with

the latter two options being most commonly used.

Depot names and client workspace names share the

same namespace; there is no way for the Helix Core

server to confuse a client name with a depot name.

Helix Core server’s own method of file specification,

using Depot syntax, remains unchanged across operating

systems.

If a file is specified relative to a client root, it is said to be

in client syntax. If it is specified relative to the top of the

depot, it is said to be in depot syntax. A file specified

in either manner can be said to have been specified in

Perforce syntax.

Local syntax refers to filenames as specified by the local

shell or operating system. Filenames referred to in local

syntax can be specified by their absolute paths or relative

to the current working directory. (Relative path compo-

nents can only appear at the beginning of a file specifier.)

Helix Core file specifiers always begin with two slashes

(//), followed by the client or depot name, followed by

the full pathname of the file relative to the client or depot

root directory.

Path components in client and depot syntax are always

separated by slashes (/), regardless of the component

separator used by the local operating system or shell.

SYNTAX EXAMPLE

Local syntax

/staff/user/usercws/file.c
usercws/file.c (if current directo-
ry is /staff/user)
../usercws/file.c (if current direc-
tory is /staff/user/project)

Depot syntax //depot/source/module/file.c

Client syntax //usercws/file.c

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (1020CK20)

Wildcards can also be used to specify files:

Revision specifiers can be used to operate on many files

at once, as the name implies: p4 sync //myclient/...#4

copies the fourth revision of all non-open files into the

client workspace.

Table: File Specifier Modifiers

BRANCHING AND MERGING

SVN by convention stores its branches in a directory called

“branches” parallel to the “trunk” directory that contains

the mainline. SVN does not keep track of the relationships

among branches; it’s up to the team to do so, with a

naming scheme or with external documentation.

The real difference between SVN and Helix Core is the way

merges are treated. Helix Core uses a separate database

table to keep track of every merge and the choice a user

made when resolving a conflict on the server. This feature

allows Helix Core to make an accurate choice of which file

revision still requires merging and the common base of

a merge. This minimizes any merge conflicts, even if the

merge across branches is only indirectly related.

There are references to “Classic” depots and branching

in Helix Core documentation, but one of the most excit-

ing innovations developed by Perforce is the concept/

technology of Streams.

SVN has no concept of a relationship between branches

beyond a naming convention.

In contrast, Perforce Streams have workflows and

relationships that makes complex tasks simple, and

it minimizes the need for developers to hand process

management tasks such integrating bug fixes from a dev

or QA branch to multiple production codelines.

Perforce Streams have several benefits to the user:

• Streams defines the purpose of each branch: main-

line, development, task, or release. Streams follow

the mainline model — all changes flow toward the

mainline, similar to an SVN trunk.

• Each Stream (except the mainline, which is the root)

has a parent Stream that defines a clear hierarchy

along which changes flow.

• The Stream graph identifies changes that

still need to be propagated.

• Client workspaces are locked to a Stream, elimi-

nating the need to set up the view manually. Client

workspaces can be switched from one related

WHITE PAPER

7 Helix Core for Subversion (SVN) Users

WILDCARD MEANING

* Matches all characters except slashes
within one directory.

...

Matches all files under the current
working directory and all subdirectories.
(matches anything, including slashes,
and does so across subdirectories)

%%1 -
%%9

Positional specifiers for substring
rearrangement in filenames, when
used in views.

IDENTIFIER SYMBOL USED EXAMPLES

Change @ README.
txt@rel2.2

Revision # README.txt#14

Label @ README.txt@
rel2.2

Head Revisions #head README.
txt#head

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (1020CK20)

WHITE PAPER

8 Helix Core for Subversion (SVN) Users

Stream to another; only the files that differ between

these Streams will be updated.

Mainline: A Stream with no parent. Expects merging

down from more stable child Streams. Expects copying

up from less stable child Streams. Used as the stable

trunk of a Stream system.

Release: A Stream that is more stable than its parent.

Expects merging down from more stable child Streams.

Does not expect copying up from its parent Stream.

Useful for ongoing stabilization, bug fixing, and release

maintenance.

Development: A Stream that is less stable than its parent.

Expects merging down from its parent Stream. Expects

copying up from its less stable child Streams. Does not

expect to have more stable child Streams. Useful for long-

term projects and major new features.

There are two additional Stream types with special

characteristics:

Task Streams are lightweight, short-term branches that can

be used for work that affects a small portion of a full project

branch. Task Streams enable work to be done privately,

let developers switch contexts quickly, and reduce the

amount of metadata managed by the Helix Core server.

Virtual Streams provide users with the ability to restrict

the workspace view of a real Stream. Virtual Streams act

as a filter. They are used to sync a particular set of files,

rather than all the files in the Stream view to a workspace.

ACCESS PERMISSIONS

SVN sets its access permissions through an Apache

module at the repository or directory level with either full

or no access.

Helix Core has a more fine-grained approach. Access

permissions are stored in the server’s protections table

and define list, read, open, and write access. Access

permissions are typically defined for a group of users and

can be restricted to an individual.

Helix Core has several ways to identify a file revision. A

concept similar to an SVN revision is a change, an integer

number that is unique to the entire server. Each individual

file has its own revision number that starts with 1 when

the file is added to the repository. Additionally, a label

may also be used to identify a file revision. also be used

to identify a file revision.

REPLICATION

SVN has the svnsync command, which creates and main-

tains read-only mirrors (copies) of its repositories. It works

by replaying commits that occurred in one repository and

committing it into another. The primary use case for this

command is to enable backups for the SVN server.

Helix Core replication is different from other version

control solutions, and it’s been steadily evolving since

2012. With Perforce federated architecture, also known

as “Commit/Edge” servers, each location can have its

own server.It features lightweight, intelligent replication,

which offers a sharp contrast to copying.

A commit server stores the canonical archives

and permanent metadata. This goes in a data center in,

for example, a corporate headquarters or in a private

cloud. Then, an edge server contains replicated copies

of the commit server data and a unique, local copy of

some workspace and work-in-progress information. To

achieve high performance, edge servers process read-

only operations and operations that only write to the

local data. Multiple edge servers may be connected to a

commit server.

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (1020CK20)

WHITE PAPER

9 Helix Core for Subversion (SVN) Users

The edge server offloads a significant amount of pro-

cessing work from the commit server. It also reduces

data transmission between commit and edge servers.

As workloads grow, additional CPUs and memory can

be added, and performance continues to improve in a

linear fashion. There’s virtually no ceiling to performance

improvements.

From a developer perspective, most typical operations

(until the point of submit) are handled by the edge server.

Read operations, such as obtaining a list of files or view-

ing file history, are performed locally. In addition, with an

edge server, syncing, checking out, merging, resolving,

and reverting files are also local operations. Developers

don’t even know there are multiple servers. To them, it’s

all transparent so they can focus on creating great code.

CODE REVIEWS WITH HELIX SWARM

SVN does not provide an integrated code review tool,

but instead works with tools like Atlassian Crucible,

SmartBear Collaborator, and others.

Helix Swarm, which is included with Helix Core, is a

scalable code review and collaboration tool for all types

of intellectual property. Swarm seamlessly handles 100s

or 1000s of reviews at once, regardless of file type or size.

Contributors share files, comment, suggest tasks, vote up

or down, and submit final work directly within its web-

based interface. Swarm automates the entire process via

notifications and makes it easy to monitor progress.

Large, distributed teams use Swarm to support Agile

methodologies and CI/CD workflows requiring multiple

iterations, incremental delivery, and build automation.

Adapting Development Processes

CHOOSING CLIENT SOFTWARE

SVN itself does not provide an official GUI, but Tor-

toiseSVN, which adds SVN commands to Windows

File Explorer and is maintained by the community, is a

popular choice. There are also add-ons for IDEs such as

Visual Studio and Eclipse.also add-ons for IDEs such as

Visual Studio and Eclipse.

Perforce supplies an official GUI client for Helix Core

called P4V that is available on Windows, Mac OS X, and

Linux. Perforce also has a Helix Core plugin for Windows

10 File Explorer, that lets users access version control

functionality from “right-click” menus in Windows.

Helix Core plugins can be used by designers from

within applications on Windows such as Photoshop CC,

Autodesk 3DS, and Maya. Additionally, numerous third-

party integrations and clients exist.

Both SVN and Helix Core provide rich command-line

interfaces (“svn” and “p4,” respectively) that offer access

to all functions.

SETTING UP THE ENVIRONMENT

SVN stores its connection information in a hidden “.svn”

file. This directory is created when a user checks out files

from an SVN server for the first time, and it contains the

connection parameters needed to commit changes back.

In Helix Core, users specify the connection parameters

directly in any tool such as P4V, the desktop client, or an

IDE. From the command line, the connection information

is typically defined in the environment or, on Windows, in

the registry.

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (1020CK20)

WHITE PAPER

10 Helix Core for Subversion (SVN) Users

The important variables are:

• P4PORT=my-Helix-server:1666

• P4USER=my-user-name

• P4CLIENT=my-client-workspace-name

If the client machine has only one client

workspace, then these three variables are all a user needs.

If a workstation has more than one workspace, the envi-

ronment variable P4CONFIG can be defined to point to a

file usually named “.p4” or “p4config.txt”. Place a text file

with this name containing the connection parameters into

the workspace root. This technique is closest to how SVN

works.

GETTING HELP

Need help understanding a command? Helix Core provides

a comprehensive help system, invoked via “p4 help.”

CREATING AND USING A CLIENT WORKSPACE

After connecting to the Helix Core server, the first step is

to create a client workspace. This must be done before

uploading and submitting any files.

A client workspace has a name, a root directory, a view,

and a set of options.

Client Workspace Name

The client workspace name is unique to the Helix Core

server. By default, the name matches the hostname of the

user’s workstation because each workspace is locked to a

host.

Most organizations have an established naming conven-

tion for client workspaces (which can be enforced through

automation, i.e., triggers). A useful convention could be

user.host.project (e.g., myname. macbook.p4python).

Set the P4CLIENT value to whatever name is chosen.

Creating a Client Workspace

To create a client, run the command:

p4 client

…from the command line after P4CLIENT is set. An editor

will open that presents the client workspace informa-

tion to be edited. Make changes (and save and close

the editor). The server will create or update the client

workspace.

Alternatively, create the client workspace through a GUI

tool such as P4V.

Root

he root of the client workspace is the directory under

which all files under Helix Core control will be placed.

This is similar to the root of an SVN working copy.

View

The view maps files from Helix Core server to the local

drive (and the other way around for new files). Usually,

the layout of the files on the server and the client work-

space match, but this does not always have to be the

case.

In general, a workspace view maps a depot path to a

client workspace path. When the server is first created,

the first workspace path will most likely look like this:

//depot/... //workspace_name/...

Here “workspace_name” is replaced with the

client workspace name. The three dots are a wildcard to

match all files and directories below the specified path.

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (1020CK20)

WHITE PAPER

11 Helix Core for Subversion (SVN) Users

Because Helix Core often stores many projects, this

wide open view that maps every single file on the server

can download many more files than desired, unless it is

changed to something like the following (depending on

the depot layout):

//depot/project/branch/... //workspace_name/...

…where “project” is the project name and “branch” is the

current branch where work is in progress.

The client workspace mapping is somewhat similar to

specifying a subdirectory in the URL when checking out a

working copy from an SVN server.

Options

There are several options for configuring a client work-

space. For those most familiar with the functionality of

SVN, the significant option is noallwrite. More details on

workspace options can be found in the P4 User Guide.

WORKING WITH FILES

Active development with SVN has similarities to Helix Core

in basic operations working with files. Retrieve a local copy

of the files, then edit, build, and test in this environment,

and ultimately commit the changes back to the server.

In SVN, all files are always writable in the workspace.

Edit the files, and when the changes are committed, SVN

determines which files have changed and offers to include

them in the commit.

In Helix Core, there is a choice. By default, the files in the

workspace are read-only to begin with. The command “p4

edit” explicitly checks out the files. This has several effects:

• The file is made writable in the workspace.

• The file is marked for edit on the Helix Core. This

step makes it clear to team members that the file is

being editing by another developer.

• If the file has the file type “exclusive checkout,”

no other user can edit the file until it is committed

or reverted. This is useful for files that cannot be

merged (e.g., most binary files).

When the changes are submitted, Helix Core does not

have to search the entire workspace for changed files.

Instead, it simply looks up changes in the database.

If the SVN mode of working is preferable, a workspace

can be set to allwrite by modifying its options. With this

setting, all files synced to the workspace are now writable

by default and can be modified without checking them

out explicitly first, just like with SVN. If an existing work-

space is switched to allwrite, keep in mind that previously

synced files need to be resynced or use OS methods to

make them writable.

Helix Core offers two commands to identify which files

have changed: “p4 status” shows which files have been

edited, added, or deleted, and “p4 reconcile” adds the

changed files to the pending changelist (“p4 status” is an

alias for “p4 reconcile n”).

The typical work flow is then:

p4 sync # update a workspace

vi hello.c # change a file locally

p4 reconcile # update the pending changelist

p4 submit # submit the changes

“p4 reconcile” can also discover renamed and moved

files even if their content has slightly changed. This

is particularly important when refactoring Java code

because the class name inside the file and the file name

https://www.perforce.com/perforce/doc.current/manuals/p4guide/

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (1020CK20)

WHITE PAPER

12 Helix Core for Subversion (SVN) Users

itself are linked. In SVN, the lack of this functionality can

lead to frustration and loss and productivity tracking down

files and changes.

To prevent “p4 reconcile” from adding unwanted or

unnecessary files to the server (such as generated object

or class files), add these files to an ignore list in a file

specified by the environment variable P4IGNORE (e.g.,

“p4ignore”).

Before switching workspace options, keep in mind that

most IDEs and editors integrated with Helix Core will

check out the file automatically when the developer starts

typing.

WHY EXPLICIT CHECKOUTS?

One reason for using explicit checkouts is that it removes

the need to scan files for content changes.

With smaller projects, calculating hashes for each file

is fairly cheap. However, many Helix Core teams have

millions of files in a workspace and/or have individual

files larger than 100MB. Calculating all the hashes in those

cases is extr-emely time consuming.

Explicit checkouts let Helix Core know exactly which files

it needs to work with. This behavior is one of the reasons

Perforce is so popular in industries that use large files like

game studios, movie producers, and hardware.

Another benefit: Explicit checkouts provide a form of

asynchronous communication that lets everyone know

which files are being worked on, and by whom. It can let

team members avoid working in a certain area to prevent a

needless conflict, or it can alert an admin or manager to

the fact that a new developer on the team has wandered

into code that perhaps doesn’t need to be edited.

Explicit checkouts also play nicely with the Helix Core

concept of pending changelists. Pending changelists are

buckets that hold open files, to organize work. Branches

are great, but sometimes it is nice to be able to organize

work into multiple named changes before actually

submitting to the server.

With the Helix Core model of potentially mapping

multiple branches or multiple projects into one work-

space, pending changelists make it easy to keep separate

changes organized.

CHANGELISTS

In SVN, changes can be grouped into local changelists

and committed individually. However, in most cases,

developers will have simply committed all changed files

in the working copy together.

In Helix Core, a changelist is a global object on the server

that has several states described next.

Default Pending Changelist

Each workspace always has a default changelist associated

with it; there is no need to create it. When a file is checked

out without specifying an explicit change, it is automati-

cally assigned to that associated default changelist.

Default changelists are not numbered, but they can be

accessed with the name “default.”

Numbered Pending Changelist

A numbered pending changelist can be created and can

have zero or one or more open files associated with it.

The server sets the changelist number when it is created.

Helix Core uses a single atomic counter for all changes:

submitted, pending, and shelved. When a new num-

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (1020CK20)

WHITE PAPER

13 Helix Core for Subversion (SVN) Users

bered pending change is created, it receives the next

available number, just like a submitted change.

In Helix Core, submitted changes are ordered by time — a

higher change number implies the change was submit-

ted later. It is likely that other users will have submitted

changes after the creation of a pending change and before

this change is submitted, so the pending change will prob-

ably be renumbered when it is submitted. This is expected

behavior. The pending change number is simply there for

convenience to be able to update the pending change.

There can be an arbitrary number of pending changes

associated with a workspace, and open files can be moved

between numbered pending changes and from and to the

default changelist. Note that each file can only be opened

once in a pending change for a workspace because the file

content is still stored on the local disk. If there is a need to

keep several states of a file in the same workspace at the

same time, the file can be shelved.

Shelved Changes

Numbered pending changes can be shelved, that is, the

content of the open files can be saved on the Helix Core

server for safekeeping and sharing. This feature can be

used to:

• Backup a change if it is not ready for

a submit.

• Stash (as in the Git command) changes temporarily to

work on something else.

• Share changes for review or transport between

workspaces.

Shelved changes are visible to other team members and

can be unshelved in different workspaces, by different

users, and even different branches or Streams. Shelves are

temporary — they need to be deleted when the change

they are associated with is submitted.

Submitted Changes

When submitting a default pending change, a descrip-

tion should be provided. For numbered pending

changes, the description already stored will be sug-

gested. Once a change is submitted, its contents cannot

be modified further. It is possible, however, to update its

description and any associated fixes for jobs.

Migrating SVN Data
All migrations from one version control system

to another offer two basic choices:

1. Keep the old repository in read-only mode for refer-

ence and only import the head revision into the new

tool. This is certainly the fastest and easiest way to

migrate data, but it is not applicable if the migration

is happening in the middle an existing project or

if there are long-running releases that need to be

supported.

2. Migrate some or all history into the new tool.

There will always be a mismatch between different

version control systems because storage and usage

are often very different. SVN and Helix Core have

enough basic similarities to make a full migration

possible and the outcome acceptable.

HELIX CORE TO SVN CONVERSION TOOL

Perforce provides a conversion tool for SVN repositories,

which can be found here:

https://swarm.workshop.perforce.com/projects/

perforce-software-p4convert/files/main/release

This tool supports two modes:

• Full import into a new Helix Core Server.

• Incremental import into an existing Helix Core

Server.

https://swarm.workshop.perforce.com/projects/perforce-software-p4convert/files/main/release
https://swarm.workshop.perforce.com/projects/perforce-software-p4convert/files/main/release

WHITE PAPER

14 | Helix Core for Subversion (SVN) Users

About Perforce

Enterprises across the globe rely on Perforce to build and deliver complex digital products faster and with higher quality. Perforce is best known
for its highly scalable version management and collaboration platform that securely manages change across all digital content – source code,
art files, video files, images, libraries - while supporting the developer and build tools your teams need to be productive, such as Git, Visual Stu-
dio, Jenkins, Adobe, Maya and many others. Perforce also offers complete project lifecycle management tools to accelerate a project’s delivery
cycle by linking the requirements, test plans, source code, and helpdesk in an integrated platform. Perforce is trusted by the world’s most inno-
vative brands, including Pixar, NVIDIA, Scania, Ubisoft, and VMware. The company has offices in the US, the United Kingdom, Germany, Canada
and Australia, and sales partners around the globe. For more information, please visit www.perforce.com

www.perforce.com © Perforce Software, Inc. All trademarks and registered trademarks
are the property of their respective owners. (1020CK20)

Please refer to the documentation for more information. For assistance with migration requirements, please

contact Perforce Professional Services.

Learn More

Perforce has technical documentation, video tutorials, and many other resources an available to help teams

get more familiar with Helix Core and use this powerful tool more effectively.

SELF-SERVICE
A home base for all support resources

https://www.perforce.com/support

INTRODUCTION TO PERFORCE
Get step-by-step instructions for everything

http://www.perforce.com/perforce/doc.current/manuals/intro/index.html

P4 USER’S GUIDE
Learn to use Helix Core

http://www.perforce.com/perforce/doc.current/manuals/p4guide/index.html

PERFORCE SYSTEM ADMINISTRATOR’S GUIDE
Your role as a system administrator

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

PERFORCE DIRECTORY STANDARD
Establish a formal, documented Perforce Directory Standard

http://info.perforce.com/PDS.html

https://swarm.workshop.perforce.com/projects/perforce-software-p4convert/files/main/release
https://www.perforce.com/support/request-support
https://www.perforce.com/support
http://www.perforce.com/perforce/doc.current/manuals/intro/index.html
http://www.perforce.com/perforce/doc.current/manuals/intro/ index.html
https://www.perforce.com/perforce/doc.current/manuals/p4guide/
http://www.perforce.com/perforce/doc.current/manuals/ p4guide/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/ p4sag/index.html
http://info.perforce.com/PDS.html
http://info.perforce.com/PDS.html

