
Scripting with Perforce

J. Bowles
S. Vance

April 2005

Abstract

This paper follows the arc that starts withcontext, which is the environment in which a script will
run. It then continues by showing examples of specifictechniques, giving strong support to a body of
example scripts that are written in Perl/ Python/ Ruby/ P4Perl/ P4Ruby. It then shows how to create tools
that support higher-levelpurposeto implement specific policies or address organizational needs.

1 Introduction

Software development and handoff activities include repetitive steps, which are sometimes automated and
sometimes repeated by hand. Often, the reason given for a manual step is,we didn’t have the time to
automate that part.

This invites the question,once you have the time, where do you start?

AUTOMATING QUERIES AND SYSTEM LEVEL TASKS NEED NOT BE DAUNTING.

2 Terminology

There are three perspectives from which we can approach Perforce scripting tasks:

context Where it’s done.Server-side triggers are such a context; workspace-oriented tools are another;
[post-submit] review daemons are a third.

techniques How it’s done. Methods that can be applied to address particular technical concerns such as
language choice, efficient data access, performance, maintainability and extensibility.

purpose Why it’s done.Business, system or process goals that motivate the creation of the script. Examples
are tools to verify that code is reviewed/authorized prior to checkin (or prior to release).

1

Note that thepurposemight restrict the choices ofcontext. E.g., a backup script might need to be run in
thecontextof the server machine for security reasons.

2.1 Examples of “context”

The contextof a script is where it is run and how it is installed1. The following is an incomplete list of
contextsin which one creates (or runs) Perforce scripts:

• Client commands run in workspace. Anovernight build scriptruns Perforce commands, in the con-
text of a certain user and a certain workspace name. (It might, as part of initialization, create that
workspace definition.)

• Trigger scripts run on server. Examples related to this context can be found in [Vance2005].

• Review scripts (“post-submit”) run in workspace.

• Maintenance commands run on server. For example, a script that runs a backup using the command,
p4d -r . -jc, needs to be invoked directly on the server machine as a user that haswritepermission
on the database.

• p4winTools menu. Thep4winmenu is another place in which one might run a script orneed some-
thing done. In this context, the script / program can receive a small number of arguments (e.g., the
selected file, user, etc.), cannot do any user interaction to speak of, and needs to realize that anything
printed out tostandard outputmight vanish when the enclosing window goes away.

2.2 Examples of “techniques”

Thetechniques usedreflect the programming choices: which language to use, how to retrieve data efficiently,
how to gauge performance, coding for long-term maintenance needs and extensibility.

This section lists several guidelines that are helpful techniques.

2.2.1 Use the right language

Compiled languages such asC++ andJavaare useful, in that they are more resistant to change in the envi-
ronment due to compile-time binding and less subject to break when a new package or compiler/interpreter
is installed2.

1Issues such as user permissions, are part of thecontextalso.
2Compiled languages are better at preventing accidental and purposeful modification of the behavior. There is a trade-off

between ease of development and security in most cases.

2

However, such mechanisms / structure might prevent a build engineer from making a fast change to a script
to continue a compile, or to release a product. Compiled languages might need too many files/libraries to
guarantee a quick tinker-and-rerun cycle.

The wealth of scripting languages, which have [somewhat] smaller footprints and support fast development
of new scripts, makes them attractive for these needs. Scripting languages3 support loop constructs, string
operations, and modification from any text editor. The more recent languages, such as Python and Ruby,
have object-oriented support that rivals the most sophisticated “traditional” languages.

2.2.2 Not all languages are created equal.

The language might be too primitive, using arcane constructs for looping (DOS.bat / .cmdfiles) or for string
handling (Unix.shscripts). Also, the language environment might be too combersome, requiring editing
within an IDE or compiling to run4.

Using language-specific advantagesThere are different reasons to choose one language over another:
business needs, features of a language, availability on various platforms, and cost to implement and
maintain.

Certain languages, such as Python and Ruby, have a binary data support calledmarshal. This retrieves
data from a Perforce server, already parsed into usable fields and columns.

As another example, Ruby has excellent primitives for set operations. As a result, once the contents
of two labels has been retrieved into a Rubylist, computing the difference between the labels is fast5:

case 1: files in the first label but not the second
filesOnlyInLabel1 = label1filenames - label2filenames
filesOnlyInLabel1.each { |fname|

puts "Only in #{label1}: #{fname}"
}

2.2.3 Use tagged output

Whenever possible, scripts should not bother parsing Perforce data. There are output formats that deliver
already-parsed data to an application6:

3The Unix shell, Perl, Python, Ruby.
4VariousC / C++ / Javasolutions. A compiler expert will point out that the issue is not the compilation itself, but the complexity

introduced when the additional steps are added. Also, compiling to machine code is rarely necessary for these scripts, since they are
rarely CPU-intensive enough to matter. In times when that’s the case, optimizing the algorithm is often more fruitful than switching
to a compiled language.

5The full program can be found as “difflabel.rb” on the Perforce Public Depot.
This script is//guest/jeffbowles/scripts/difflabel.rb; there are Python, Perl, P4Perl, and P4Ruby counterparts there, also.

6Filenames with embedded spaces require no extra programming, using this technique.

3

Type of Output Example ’p4’ Option
ascii name / value pairs p4 -Ztag cmd
markshal-encoded arrays of hashes
(Python)

p4 -G cmd

markshal-encoded arrays of hashes
(Ruby)

p4 -R cmd

[Goldstone2005] provides a Python program that usesp4 -G output to create a Unix-like filter for reformat-
ting Perforce output.

2.2.4 Automatically started scripts should not depend on “current user” .

Scripts might be started automatically, at a certain time, to create a checkpoint or run a build.Such scripts
must set the user name, workspace name, and any other “context / environment” information and not inherit
it from the current environment.

One approach is to set such things from the script itself, as seen in the first lines of these examples7:

export P4USER=george set P4USER=george
export P4PASSWD=banana set P4PASSWD=banana
cd /home/perforce/database d:

cd \perforcedb
p4 admin checkpoint p4 admin checkpoint
ls -l checkpoint.* journal* dir checkpoint.* journal*

UNIX SHELL VERSION WINDOWS VERSION

An experienced programmer will realize that such information might be placed in a common script/module
that all automatic scripts reference.

2.2.5 Understand basic installation and redirection.

Continuing with the example in the previous section, it is helpful to capture or redirect output for debugging
and auditing8.

Example: capturing output Using the standard Unix shell and the standard Windows command-line, the
sequence to redirect standard output is:cmd > outfile.txt .

The three-line sequence, given below, is a simple example of this.

7Note that this script doesn’t directly create the checkpoint, but connects to the Perforce server and asks it to make a checkpoint.
This avoids certain common errors, because the script relies on the running server for configuration information instead of looking
it up. (As an example, the running server knows whether journalling is enabled and the like.)

8The system-level commands might discard the output or email it somewhere, and it is more helpful to send the output to your
own log/records.

4

p4 files //depot/main/... a©label1 > contents1.txt
p4 files //depot/main/... a©label2 > contents2.txt
diff contents1.txt contents2.txt

Example: capturing a form’s contents Any command that brings up an editor, such asp4 label or p4
client, has an alternate form:p4 label -o or p4 client -o. Often, a script will capture the
output of a form, massage it slightly, and write it back to the database:

p4 client -o > client.txt
...run ’awk / sed / perl’ to modify ‘‘client.txt’’
p4 client -i < client.txt

Example: logging output from a script/trigger The command,cmd > outfile.txt 2>&1, captures the
standard output tooutfile.txt9.

The script from the previous section,d:\perforcedb\mkckpt.cmd, will generate output that should be
saved:

d:\perforcedb\mkckpt.cmd > d:\p4chpt.out 2>&1

To install a program onto Windows or Unix so that it’s invoked every day at 4 AM, it’s important to
find the operating system tools for such things. On Unix and Linux, it iscron ; on Windows, it isat.

After copying this script to the Perforce root directory (or a “scripts directory”), the command to run
this script on Windows, twice a week at 4 AM, would be:

at 4am /every:monday,wednesday "d:\perforcedb\mkckpt.cmd > d:\p4chpt.out 2>&1"

2.2.6 Performance: Count the trips to the well

A Perl script, that callsp4 describe 18291 several times, can be optimized on two levels:

1. Don’t callp4 describe 18291 so much. Recode the script to avoid such things.

2. Write a routine called “getchangeinfo” that remembers previous results, and returns those results if
called again with the same request. (There needs to be a way to invalidate the cache as necessary.)

Note that the second strategy could be implemented in a library of routines that all scripts use.

This optimizes database queries and also network traffic; even small queries have network overhead.

This strategy generalizes, to a point:during the debugging of a new script, it can be useful to save the
output of Perforce commands into a file. This saves overhead on the server and makes debugging faster. The
following example is written in Perl:

9The archane syntax, identical in the Unix shell and the Microsoft command interpreter, is an instruction to redirect output to
outfile.txtand then to redirect file number 2 (standard error) to the same place as file number 1 (standard output).Order is significant
– give the log filename as the first redirection!

5

$dataf = "/tmp/test18291.txt";
if (! -f "$dataf") {

system("p4 describe 18291 > $dataf");
}
open(IN, "<$dataf") || die "Cannot open $dataf\n";

For production needs, any temporary files need to be cleaned up, eventually, as part of the script’s exit
strategy.

2.2.7 Performance: Group arguments together.

The command,p4 files x y z, results in three requests, one for each argument. For simple or short-
running commands, this is of no concern.

In the case of commands that affect files or take time, such asp4 sync //depot/main/... a©label1
//depot/main/... a©label2, the results reflect this architecture10.

In this example, a third – temporary – label is helpful. It could be used to craft the list of what files to include
from label1 andlabel2, so that the argument top4 sync is simpler.

Similar strategies exist for temporary clients. Build engineers sometimes create them to guarantee a clean
workspace definition before a build, or to simplify the arguments11 of p4 obliterate.

2.2.8 Performance: Loop through results

Database programmers have to wrestle with database performance. One rule is thatone query is better than
two, or twelve, or a hundred.

For example,p4 fstat ... is one database query. It is somewhat expensive, in that it collects a good
amount of information about each file, but it’s one query.

A less-efficient approach is to runp4 on each filename or argument, which increases network traffic (more
requests made) and increases the number of queries (from one query to one-per-file).

As an example,p4unknown.rbcomputes the list of all files in the workspace and compares against what is
mapped from the server. The Perforce-specific parts are below:

10In this case, p4 sync //depot/main/... a©label1 would put one set of files in place, and thenp4 sync
//depot/main/... a©label2 would put a second of files/revisions into place.

11and improve the running time

6

#---
first call to P4: ’p4 client -o’
#---
puts "Step 1: Get the client name."
cl spec = p4.run("client", "-o")[0]
cl name = cl spec[’Client’]
cl root = cl spec[’Root’]

puts "Ran user-client, output was ’client=#{cl name}’"
#---
second call to P4: ’p4 fstat //myclient/...’
#---
puts "Step 2: Get the list of Perforce-known files."
ret = p4.run("fstat", "//#{cl name}/...")

In this case, the commandp4 fstat //myclient/... makes it possible to write this script with two calls
to Perforce.

Even if it becomes necessary to create temporary labels or client workspace definitions12, this optimizes
traffic to the server.

2.2.9 Use //clientname/... syntax when appropriate.

The previous section usesp4 fstat //myclient/... to refer to the files mapped onto workspacemy-
client. The results were dramatic, reducing a complex task to a small number of queries.

This intermediate syntax is an easy way to address only the client-mapped files.

2.2.10 Know how to document performance.

All the scripts referenced in this paper have a comment section at the top. The comment block forp4unknown.rb
is:

Task: determine which files need to be "p4 add’ed."
#
num of calls to ’p4’: 2
status: tested on Darwin Mac OS X using "p4 -R"

Note that the number of calls top4 does not depend on the number of arguments or number of files.If it
does, recode the script.

In addition, WALK THROUGH THE PROGRAM AS IF YOU’ RE A FIRST-SEMESTER STUDENT, ASKING

YOURSELF WHERE THE PROGRAM WILL SPEND THE MOST TIME. Often, a lookup of a filename in a

12From time to time.

7

list of 100,000 files can be sped up with a simple hash or change in how the list is stored. (For example,
a string comparison of files that start with//depot/main/against a large list of similar files can waste CPU
cycles. Hashing into a ’dict’ or ’hash’ object, based on the filename (the last component of the full name)
might prove fruitful, for example.)

2.3 Examples of “purpose”

Thepurposeis the highest-level need that’s being addressed.

Even seemingly “high level” needs, such as automating build scripts, serve a higher purpose:supporting
development “workflow”needs.

2.3.1 The build script

Every development group eventually creates an automated script to build and stage the current product.
Using the terminology from the previous section:

purpose . . . to create a “development heart-beat” that tells development and testing groups, once a day, what
thehealthof the development code line is;

context . . . is that of a script (or scripts) running on a stable machine that houses a Perforce client workspace;

techniques . . . include choice of language, guaranteeing reproducibility, and installation so that it is done
every night like a night watchman.

Note that the context (“IS wants it run on the server machine”) might limit the techniques available. E.g.,
language X is not a choice because it isn’t cleared for the security level of the server machine.

2.3.2 The backup script

Similarly, every Perforce installation will need to checkpoint the database to create a tidy version of the
metadatafor later filesystem backups. In this case:

purpose . . . to create ametadata checkpointthat be a component of a larger backup scheme.

context . . . is that of a script (or scripts) running on the Perforce server machine. In this case, that is the
right place to run a checkpoint and [possibly] delete old checkpoints or archive to other volumes13.

techniques . . . choice of language, inspecting the code to find critical sections during which a machine fail-
ure could be catastrophic (such as removing a needed checkpoint before authenticating its successor).

13This is something that requires write access to the Perforce server directories, which implies running on the Perforce server
machine or having write access to its disks. The former is cleaner, from a security aspect.

8

2.3.3 The security enhancements

(What follows is a small example, but one that hints at the options available.)

purpose . . . Giving permissions touser * might create a security problem. It is useful or necessary to
enforce the rule,no permissions can be given touser *.

context . . . The Perforce 2004.2 triggers provide a way to examine the user-provided forms before the
committo the database.

• Any such trigger will need to run on the server, and will therefore run with the system-level
permissions of the user who started the server.

• It is possible for the trigger to run, but to provide the user-provided form as contents of a file.
The trigger, thereby, needn’t callp4 at all.

technique Using a scripting language such as Python or Ruby, use a trigger script that’s invoked at state
”in” for form ”protect”. The trigger script can parse the filename that’s provided, and will callp4 zero
times.

The example script follows14.

Task : form t r i g g e r t h a t r e f u s e s ” p4 p r o t e c t ” e n t r i e s t h a t
g i ve p e r m i s s i o n s t o ” u s e r∗”
num of c a l l s t o ’ p4 ’ : 0
s t a t u s : t e s t e d on Darwin Mac OS X u s i n g python 2 .3
#
A p p r o p r i a t e ’ p4 t r i g g e r s ’ l i n e f o l l o w s :
example1 p r o t e c t i n ” py thon / pa th / t o / t r i g p a r a n o i d . py−− f o r m f i l e %f o r m f i l e%
2>&1”

impor t g e t o p t
impor t sys
impor t r e

d e f a u l t F o r m F i l e = None

[o p t i o n s , a r g s] = g e t o p t . g e t o p t (sys . a rgv [1 :] , ’ ’ ,
[’ f o r m f i l e = ’ , ’ f f = ’])

f o r [opt , a rg] i n o p t i o n s :
i f op t == ”−− f o r m f i l e ” o r op t == ’−− f f ’ : d e f a u l t F o r m F i l e = a rg

i f d e f a u l t F o r m F i l e i s None :
p r i n t ”−− f o r m f i l e XXXX must be g iven on command− l i n e ”
sys . e x i t (1)

e r r o r L i s t = []

fd = open (d e f a u l t F o r m F i l e , ’ r ’)

14A Ruby version is available from the authors.

9

i f fd i s None :
p r i n t ” Cannot open f i l e %s ” % d e f a u l t F o r m F i l e
sys . e x i t (1)

p r o t e c t r e = r e . compi le (’ \̂ s +(\S+)\ s +(\S+)\ s +(\S+)\ s +(\S+)\ s + (.∗) ’)

f o r l n i n fd . r e a d l i n e s () :
m = p r o t e c t r e . match (l n)
i f m i s None : c o n t i n u e
(perm , e n t i t y T yp e , e n t i t y , ipAddr , pathName) = m. groups ()
p r i n t perm , e n t i t y T y p e , e n t i t y , ipAddr , pathName

i f e n t i t y T y p e == ” u s e r ” and e n t i t y == ”∗ ” and pathName [0] != ’− ’ :
e r r o r L i s t . append (” Cannot add r e f e r e n c e t o ’ u s e r∗ ’ . So r ry .\ n ”)

fd . c l o s e ()

i f l e n (e r r o r L i s t) > 0 :
f o r e i n e r r o r L i s t :

p r i n t e
sys . e x i t (1)

e l s e :
sys . e x i t (0)

2.3.4 Integrating a bug report to a Perforce changelist

Many approaches can relate abug reportto a Perforce submission of work (changelist). Examples include
the p4 jobsdatabase, thedefect tracker integration([p4DTI]) mechanism that integrates third-party bug
databases to Perforce’s jobs, and commercial plug-ins that do this.

In each case, the problem does not reduce to a single Perforce script. Still, the larger categories exist:

purpose . . . relate the bug reports (or feature requests) to current development checkins, to support queries/re-
ports for management and for downstream needs such as QA / Testing, release notes / documentation,
and later maintenance of the product.

context This depends on the tools available. Thep4 jobsdatabase uses standard Perforce “client workspace”
commands, but might be augmented with triggers or post-update scripts that do something else;
the p4DTI approach is that stragegy, but with post-update scripts that update a Bugzilla (or other)
database.

techniques [p4DTI] is a good example, in that it is a Python program that mirrors thep4 jobs database
into a third-party bug database using thep4 logger hooks.

10

2.3.5 Enhancing the “jobs” database to include state transition enforcement

Most QA departments rely on bug database rules to prevent bug reports from moving from acurrent status
to anew statusthat does not make sense. (E.g., a bug is filed and immediately closed, without areviewstep.)

Although the defaultp4 job behavior does not include validating the proposedStatusof a job when it is
updated, that functionality can be added in a script that runs in thecontextof a form trigger.

purpose . . . Install a “jobs” database mechanism that allows updates to theStatusfield of a job, only when
the transition from the old value to the proposed value is allowed.

context If run as aform triggeron the “job” form, this will be run on the server as part of the update of a
job. It can refuse to allow the update, if the job is attempting an invalid change of its state.

techniques By invoking p4 job to get the current values, the trigger script will have ASCII versions of
current and proposed job data. It can compare the twoStatusfields, refusing invalid transitions.

2.3.6 Installing triggers to enhance access control of forms

It is now possible to install a trigger that is run when a Perforce form is deleted. This makes it possible
to notice a deletion, or possibly to refuse a deletion. This can provide for a stronger access control (“only
members of group XXX can delete a label”) or reporting mechanisms. [Vance2005] gives more details on
this strategy.

purpose . . . Limit deletion of forms, to implement a formal access control ofjobsandlabels.

context If run as aform trigger, this can be run on the server as part of the deletion of ajob or label. It can
refuse to allow the deletion, as appropriate.

techniques By invoking p4 group, the trigger script can decide whether the user deleting the form is in a
group that is allowed to delete the form.

3 Summary

For any scripting task, the first step is to examine the large questions. The terms,purpose, context, tech-
niques, correspond to the questions,why do this, where will I do this, how will I get it done.

References

[Goldstone2005] Goldstone, John,Using P4G.py From The Command Line, Proceedings of the 2005 Per-
force User’s Conference. Las Vegas.

11

[p4DTI] Brooksby, Richard, Perforce Defect Tracking Integration Project, retrieved from
http://www.ravenbrook.com/project/p4dti/

[Vance2005] Vance, Steve,Writing Triggers in Perforce, Proceedings of the 2005 Perforce User’s Confer-
ence. Las Vegas.

12

