A White Paper by Rogue Wave Software.

~
ROGUE WAVE

SOFTWARE

Rogue Wave Software
5500 Flatiron Parkway,
Suite 200

Boulder, CO 80301, USA
WwWw.roguewave.com

http://www.roguewave.com/

Debugging Common Issues in Multithreaded

Applications

A Comparison of Debugging a Multithreaded Application using GDB and
TotalView

by Rogue Wave Software
© 2013 by Rogue Wave Software. All Rights Reserved

Printed in the United States of America

Trademark Information

The Rogue Wave Software name, logo, and TotalView are registered trademarks of Rogue Wave Software, Inc. or its
subsidiaries in the US and other countries. ReplayEngine is a trademark of Rogue Wave Software, Inc. or its
subsidiaries. All other company, product, or brand names are the property of their respective owners.

IMPORTANT NOTICE: The information contained in this document is subject to change without notice. Rogue Wave
Software, Inc. makes no warranty of any kind with regards to this material, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. Rogue Wave Software, Inc. shall not be liable for errors
contained herein or for incidental, consequential, or other indirect damages in connection with the furnishing,
performance, or use of this material.

TABLE OF CONTENTS

Y o1 1 T PPV PRRPRRPSTRIOt 4
Sample Multithreaded Application with COMMON [SSUESvvieiiiiiiiiiiiiiiee e 4
Debugging a Simple, Multithreaded AppliCatioN.......ccviiiiiiiiie e 5
Debugging a Multithreaded Application With GDBccccceviiiiiiiieniiiee e 6
Debugging a Multithreaded Application with TotalViewccccceeeeiieicciiiiieeeeee s 8
Investigating @ NondeterministiC ISSUE.........uiiiiiiieiecieee et 12
Investigating a Nondeterministic Issue With GDBcccooiviiiiiiieeiee e, 12
Investigating a Nondeterministic Issue with TotalViewccccovvvveeeiiiiicciiiieeeeeeee, 15
Thread Control Capabilities of GDB VS. TOtalVIEW.....cc.uviiiieiiiiiccieee et 20
Thread Control Capabilities of GDBceeiiiiiiiiiiiiiiieeeee et e e snnnns 21
Thread Control Capabilities of TOtalVIieWoocccuvieeeiii i 26
Displaying Local Variables of Different Threadsccceeeeeiiiieciiiiiieeeec e 30
Displaying Local Variables of Different Threads Using GDB...........ccccecevveeeeeciieeeeeennnen. 30
Displaying Local Variables of Different Threads Using TotalView..........ccccecouveeeecnnneenn. 31
CONCIUSTON ..ttt sttt e e st e e e st e e e sab e e e bbeeebaeesbneeenneeenane 34
ADOUL TOTAIVIEW .ttt e e e s nee e 34

ADOUL ROGUE WaAVE SOFEWATIE...ceeiiiiiieiiirieeee ettt e e e e e s e eabree e e e e e e e e e satnraeeeeeeeeeenns 34

Abstract

This paper describes several challenges that are commonly encountered when debugging multithreaded
applications in order to compare the open source GNU GDB debugger (hereafter referred to as GDB)
with the TotalView parallel debugger from Rogue Wave Software. The challenges highlighted will
include:

e debugging a multithreaded application

e investigating nondeterministic issues

e demonstrating thread control capabilities

e displaying local variables
TotalView offers impressive feature capabilities that are either not included or not possible to perform
with GDB. This paper explores some of these features and scenarios to demonstrate the differences
between the two debugging tools.

Sample Multithreaded Application with Common Issues

In the examples found in this paper — we will be referring to an application. The actual code is not
included in this discussion, but the following description outlines the important details of the application
and the bugs we will be tracking down in the following scenarios.

The application is a simple tcp-server that creates a new thread (super-thread) for processing each
incoming client request. Each super-thread spawns a set of sub-threads which approximate the value of
pi using the trapezoidal rule. The server allows one to define the maximum number of super-threads
and the number of sub-threads. Three implemented bugs can be switched on and off for demonstration
purposes. This could be done through the use of global variables, or the use of ifdefs in the code and
rebuilding the application for each scenario.

The application is implemented in C and consists of these four functions:

int main(int argc, char* argv[]) /* All super-threads are created here */

void *processRequest(void *sfd) /* The sub-threads will be spawned in

this function */
void *iterate(void *ind) /* Sub-threads are calculating PI */
void onError(const char *errorMsg) /* Error handling */

Properties referring to each super-thread are stored in an array of structures which is globally visible.
Whether a thread is still alive or has already been terminated, these structures will hold the thread id,
the session id, and the results calculated by the super-thread’s sub-threads.

4 WWW.roguewave.com

Introducing such an array (threadInfo tID[MAXTHREADS];) allows one to provide thread functions with a
pointer to an index of this array while creating a thread in order to hand over all relevant super-thread
related properties.

The following variables, which are used to store the index’s integer value, will be mentioned in this
document:

int *pindex; /* Pointer to an index of type integer, used in function

main() as argument in pthread create() */

void *sfd; /* Void pointer to an index of type integer, used in function
processRequest () */

int index; /* Local integer variable used in function processRequest () */

void *ind; /* Void pointer to an index of type integer, used in function
iterate() */

int index; /* Local integer variable used in function iterate() */

Debugging a Simple, Multithreaded Application

The following example compares the capabilities of GDB with TotalView when debugging a simple,
multithreaded application.

The first bug should be easy to find. The server calculates reasonable results when only one super-
thread is running, as seen in Figure 1. However, when additional super-threads are created the results
become incorrect, as shown in Figure 2.

luedtke@linux-8ude:~/tests/listener> /runclient.sh localhost 25000 1000000 1
Try to connect server localhost on port no,: 25000

Please enter number of 1terations: 1000000
luedtke@linux-8ude:~/tests/listener>

Pl = 3.14159265358987349614

This result was presented to you by thread no.: 3077532528

Figure 1: Correct results when one super-thread is run

5 Www.roguewave.com

Try to connect server localhost on port no.: 25000

Please enter number of 1terations: 1000000

PI = 0.97991465250752252114
This result was presented to you by thread no.: 2976418672

Please enter number of 1terations: 1000000

luedtke@®l inux-8ude.~/tests/listener>

FI = 3.14159265358983974536

This result was presented to you by thread no.: 3001596784

Figure 2: Incorrect results when two super-threads are running

It seems that there is a conflict between threads that occurs in cases where more than one super-thread
is running. The popular (some would say ubiquitous) GDB debugger® will be used to demonstrate this
issue. We will also show how that same issue can be addressed using TotalView?.

Debugging a Multithreaded Application with GDB

The following steps outline a debug session using GDB:
1.) Start the server within GDB: gdb ./server.
2.) Set the breakpoints:
As shown in Figure 3, it makes sense to place the first breakpoint in main(), in front of the

function pthread_create(), where the super-threads are created.

The GDB command 1list main <return> lists the source code with line numbers.
The first breakpoint is set at line 266 by typingbreak 266 <return>.

! http://www.gnu.org/software/gdb/ Rm WAVE

? http://www.roguewave.com/products/totalview.aspx SOFTWARE

6 Www.roguewave.com

http://www.gnu.org/software/gdb/
http://www.roguewave.com/products/totalview.aspx

3)

4.

5.)

6.)

257

258 ‘threadcount = 0

259

(830)

260 tiD[1tcount] 1Allocated = §;

261 tiD[1zcount] 1pos = 1tcount;

262 tiD[1zcount] . tSocketfd = (socketrtdl

63

164

265 /* Create new super-thread for handling the new request *
266 if (pthrewd _create(&(tiD[1tcount] threadiD), WILL, processfequest, (vord®) pindex) '= 9)
167 enEreor(“Unable to crente thread”™);
|)

269)

(g

270 /* End of infinite loop *

71

7 close(1sockerfy)

27

274 return 0

275)

(§db) Bbreak 266

[Breakpoint | at 0x8049503¢c: file mtserver. ¢, line J6E

{8)

Figure 3: Setting a breakpoint in GDB

Additional breakpoints are placed at line 132 in the function ‘processRequest(),” where the sub-
threads will be spawned, and before the calculation starts at line 34 in the function ‘iterate().’
These breakpoints will stop the process when they are encountered by the debugger.

While GDB allows you to create thread-specific breakpoints, it does not prevent you from
setting breakpoints on lines that are normally considered invalid, such as in front of comments
or on blank lines. These incorrectly placed breakpoints will be recorded by the debugger but will
not have the intended effect of stopping the program.

Run the server by typing the GDB command run <return>.

Start two instances of the client by opening a separate console and typing
./runclient.sh localhost 25000 1000000 2 <return>.

The server process runs until it hits breakpoint 1. Type the GDB command info threads
<return> to list the currently running threads. Only the main thread labelled with #1 is
listed. Next, check the current value of the variable pindex. This variable points to the index into
an array where each thread stores its calculated result and is passed as an argument to the
‘pthread_create()’ function. The GDB command print *pindex <return> de-
references the pointer and displays its contents, currently ‘0.’

Type the GDB command ¢ <return> to continue execution to the next breakpoint.

As seen in Figure 4, the execution stops at breakpoint 2, line 132, inside of the function
processRequest(). The GDB command info threads <return> shows that two threads
are now running, indicating that a second thread, a super-thread, was created in response to a
request from the client. It is this super-thread (thread 2) that is stopped at breakpoint 2.

0GUE WAVE

SOFT WA

7 WWW.roguewave.com

Try: zypper install -C “debuginfo(burid-1d)=Tebdelb9e9264064353ef 205809527 5605158547
o portnumber provided, listaning on port no 25006

Ereakpoint L, main (argce]l, argv=0xbffffi2d) at mtserver.c. 266

266 '\ (pethrend_create(S(tiD[1tcount], threadlD), MILL, processReguest, (void®) pindex) = Q) (
{(B0) Info threads

* I Thread Oxb7edf6ch (LWP A153) matn {(argcel, argv=Oxnff{f124) at mtserver.c: 66

(gob) print *pindex

31 =0

(gdb) <

[Continuing

[New Thread Oxb7edeb?0 (LWP 6122))

RSwitching to Thread Oxbledeb?0 (LWP 6122))

Breakpoint 2, processRequest (sfd=0«LffrI064) at miserver ¢ 132
132 for (% = 0; 1 < SUBTHREADS, 14¢) {(

(g00) print index

) print *({(nt*) s1d)

{gdt) tnfo threads

¢ 7 Thread Oxb7edeb?D (LWP 6122) processRequest (sfd=Dxbffff0&4) at mtserver c 1322
| Threat Oxb7edr6cO (LWP 6113) OxTfffad22 wn __kernel_vsyscall ()

{gb) .

Figure 4: GDB stopped at the second breakpoint (thread 2 in processRequest())

The GDBprint index <return>command shows the content of the variable index is
set to 0. In contrast, the value the pointer sfd references has changed to 1. In order to print the
value referenced by sfd, it must be cast to an int pointer and de-referenced: (print

* ((int*) sfd) <return>).

This appears to be the cause of the incorrect result. The pointer sfd references the value 1.
When this value is passed to the newly-created sub-threads it causes them to write their results
to sum[1] instead of sum[0].

The value for sfd was passed to the processRequest() routine from main() via the variable
pindex. Looking up the string ‘pindex’ in main() using the GDB command reverse-search
pindex <return> shows that ‘pindex’ occursin lines 252 and 255.

251 if (BUG_1) {

252 pindex = &itcount;

253 }

254 else {

255 pindex = &(tID[itcount].ipos);
256 }

It is obvious that pindex accidentally points to the variable itcount instead of pointing to the
already stored index ipos in the tID array of structures.

Debugging a Multithreaded Application with TotalView

Next we will take the TotalView Debugger through the same scenario of debugging of a simple,
multithreaded application. The TotalView debug session includes the following steps:

1) Start the server within TotalView: totalview ./server.

8 Www.roguewave.com

2) Set the breakpoints:

Just as was done in the GDB session, the first breakpoint is placed in main(), in front of
the function pthread_create(), where the super-threads are created.

Additional breakpoints are placed at line 132 in the function ‘processRequest()’and
before the calculation starts at line 34 in the function ‘iterate().’

Breakpoints in TotalView are a specific type of Action Point. All current Action Points are
displayed under the ‘Action Points’ tab at the bottom of the main window. Clicking on
an Action Point in the list displays that line in the source code window. To place a
breakpoint in TotalView, simply click on the line number for a valid line in the source
code window. Lines that are valid locations for breakpoints are marked with rectangles
around the line numbers.

P e >

TR
e e T RS T

/* Gt tha indax for accessing the el arrey o/
irgex = = {(unte) Lrcl)s

/e [rmucs that the pthrasd rescurces will bs gluen back to sustes =/
prhrasd dstach (pthresd. salf (1)

rim, iter = vi0[ingex]. Literations:
delta x = 1.0 / nun iter)

/e Daternire the rarges for sach sub-threod +/
pahroxd mitex, lock | esutexd 11

lcoo, iteration = LID] inden]. locp count +43
prbrosd mutex onlock smrexd)t

Nl = e iter / SUBTHREADS:
M2 = rum_iter X SUBTHREADS:

IF (loce_iteration == 0} {

:H

o as s nne s B ensl

Figure 5: Placing breakpoints in TotalView
3) TotalView: Push the ‘Go’ button in the toolbar to start the server.

4. Start two instances of the client by opening a separate console and typing
./runclient.sh localhost 25000 1000000 2

<return>. ﬁa

SOFTWAR

9 Www.roguewave.com

When the TotalView process stops at breakpoint 1, the source file containing the
breakpoint appears in the source code pane with the breakpoint line highlighted. The
main thread is displayed in the Root Window as well as in the tabbed pane. The
TotalView thread id is 1.1, the system thread id is displayed in brackets.

To check the value of the variable pindex, move the mouse pointer over the variable
name in the source code pane. To continuously monitor the value of any variable, add it
to a watch list, called an Expression List, by right-clicking on the variable and selecting
‘Add to Expression List’ in the pop-up menu. As you can see in Figure 6, items in the
Expression List display in a separate, thread-specific window.

0488658 -) 00000000 (0

260 I itcount I, iRl located = 15

261 tID{itcount]. fpos = itcount:

% tID{ stoount], iSocketfd = isocketfd2:

264

265 /= Creste rev super-thread for handling the new request «/

ﬂ; if (pthread create (s (tID{ stcount] D). BAL, o {void=) pindex) i= 0) £
gga 3 onfrror{‘Unable to create thread®):

3
LA /= End of infinste loop =/
1
272 close(isocketfd):
274

Tekedn D2

(B s 8

=
‘Action Points | Processes | Thosads |

11 {3077831776) 11 in main

Figure6: TotalView stopped at the first breakpoint (in main()) with the variable pindex
displayed in the Expression List

5) Push the ‘Go’ button to continue execution to the next breakpoint.

6.) The Root Window shows that the first super-thread is created. The thread is labelled
1.2, and is stopped at breakpoint 2 in the processRequest() function.

10 WWW.roguewave.com

Figure 7: TotalView Expression List and Root Window after creating the first super-thread

A double-click on thread line 1.1 in the Root Window moves the focus back to the main()
function. The source code of main() is displayed in the source code pane.

As you can see in Figure 8,the Edit menu of TotalView’s process window contains the
option 'Find String’ to look up occurrences of the string pindex, which leads to the bug
mentioned above.

-

Find String

3 pingdex = &(tID[itcount], 1pos):
Athreadcourt = 0

%n.eomt «iAllocated = 1:
£IDf stoount. 1tcount
10f steont . LSoekeu'd = isocketfd2:

/» Create rev super-thread For handling the nev requast =/
i (pt.hrood.cmuts(tn!xmn] theeadID), NULL, processRecusst. (volde) pindex) Is 0) {
orError (“Unable create thread®

245
246
247
243
243
20
261
25270
263
%
6

287

259

2
263
264
265

Figure 8: TotalView finding a string in the source code

TotalView’s graphical user interface makes it simple to set the breakpoints, look at variable
data, and see how the status of the different threads changes.

:)

SOFTWAR

11 www.roguewave.com

Investigating a Nondeterministic Issue

We will now move on to investigating another type of debugging challenge that is commonly
encountered when developing multithreaded applications - a nondeterministic issue. The server is re-
built for the second debugging example with the second implemented bug turned on.

Most requests sent by the client result in correct results, but as you can see in Figure 9, repeated
requests produce an intermittent, nondeterministic error in the calculated value for pi.

PI =
This

Pl =
This

This

PI =
This

P1 =

3.00859145508113032923
result was presented to you

3.14159265358986239391
result was presented to you

3.14159265358989125971
result was presented to you

3.14159265358584329808
result was presented to you

3.14159265358981576455

by

by

by

by

thread

thread

thread

thread

ne.

ne

ne

2509031280

3001351024

2841889648

3034921840

Figure 9: Nondeterministic error

Very often, nondeterministic issues like this are caused by race conditions. An approach in this case is to
trigger the issue by placing a conditional breakpoint. The investigation starts by examining how this

would be accomplish by using the GDB debugger.

Investigating a Nondeterministic Issue with GDB

1.) After starting the server within GDB, the command break 151 if approx < 3.14
<return> causes the program to stop at line 151 when the result of approx is less than 3.14.

2.) Asyou can see in Figure 10, running the server several times eventually triggers the breakpoint
when the conditional expression is true.

12 www.roguewave.com

New Thread Oxaee3cb70 (LWP 32567)]
New Thread Oxade3ab70 (LWP 32569)]
New Thread Oxae63bb70 (LWP 32568)])
New Thread 0xad639b70 (LWP 32570)]
New Thread Oxace38b70 (LWP 32571)]
New Thread 0xab635b70 (LWP 32572)]
New Thread Oxaae34b70 (LWP 32573)]
New Thread 0xa%9631b70 (LWP 32576)]
New Thread 0xaa633b70 (LWP 32574)]
New Thread 0xa8e30b70 (LWP 32577)]
New Thread 0xa9e32b70 (LWP 32575))
Thread Oxb6edcb70 (LWP 32550) exited]
New Thread Oxb6edcb70 (LWP 32578)])
New Thread 0xa862fb70 (LWP 32579)]
New Thread 0Oxa7eleb70 (LWP 32580)]
Thread 0xb5649b70 (LWP 32555) exited]
New Thread 0xa762db70 (LWP 32581)]
Switching to Thread Oxbled42b70 (LWP 32548)]

reakpoint 1, processRequest (sfd=0x804b2ac) at mtserver.c:151
51 thisThreadID = pthread_self();

gdb) print approx

2 = 3.0065293158778639

gdv) i

Figure 10: GDB, breakpoint triggered when a conditional expression is met

3.) Asseenin figure 11, to get an idea about what is going on with the referring sub-threads, use

the command info threads <return>.

INew Thread Oxb3ed46b70 (LWP 234))
SO0 Thread 0Oxb3ed6b70 (LWP 334)
49 Thread Oxb3645b70 (LWP 3233)
48 Thread Oxb4ed48b70 (LWP 231)

()
47 Thread Oxbl641b70 (LWP 332) 0x08048a55 wn 1terate (
ind=0x804blec) at mtserver.c:61
46 Thread 0xad639b70 (LWP 330) Oxb7fb7d03 i1n pthread _mutex_lock ()
from /1ib/1l1bpthread.so.0
45 Thread 0xaa633b70 (LWP 329) (Exiting)
|l event () from /l1ib/libpthread.so.0
44 Thread Oxb0Ded40b70 (LWP 328) Oxffffed22 in _ _kernel_vsyscall ()
42 Thread Oxab635b70 (LWP 326) 0x08048a41 n 1terate (
ind=0x804b27c) at mtserver.c:60
41 Thread Oxbled42b70 (LWP 325) Oxb7fb7ccf n pthread_mutex_lock ()
from /1ib/libpthread so.0
38 Thread Oxabe36b70 (LWP 322)
() from /1ib/libpthread.so.0
35 Thread Oxb2ed44b70 (LWP 3219)
() from /lib/11bpthread.so.0
32 Thread Oxa8e30b70 (LWP 316) (Exiting)
| event () from /1ib/libpthread.so.0

P 31 Thread 0xa9631b70 (LWP 215) processRequest (sfd=0x804b2lc)

at mtserver.c:151

Oxffffed22 wn __kernel_vsyscall ()
Oxffffed22 in __kernel_vsyscall ()
0x08048810 wn pthread_mutex_locképlt

Oxb7fb4980 1n __nptl_death

0xb7fb4970 1n _ _nptl_create_event
Oxb7fb4970 in __nptl_create_event

Oxb7fb4980 in __nptl_death

Figure 11: Output from the GDB info threads command

13

~

ROGUE WAVE
SOFT WA

wWww.roguewave.com

4.)

A reasonable hypothesis for the incorrect result is the assumption that a sub-thread was
not able to finish its work until the result was sent back to the requestor. In this case this
sub-thread would be stuck in the iterate() function.

The status view on the current threads shows that threads 42 and 47 are still in the iterate()
function. Do they belong to the current super-thread which has initiated the stop at the
breakpoint?

The command backtrace full <return> shows all local variables of the thread
currently in focus. The focus can be switched to another thread by using the command
thread <threadnumber> <return>.

As you can see in Figure 12, examination of the index variables in the two sub-threads shows
they do not belong to the super-thread.

Ne % tele Infa availsble

e i

Figure 12: Comparing local variables of different threads in GDB

The next possible candidates are threads 41, 46, and 48. These threads are in the
pthread_mutex_lock() function that is called inside of iterate(). Switching the focus to these
threads using the GDB command thread <threadnumber> <return>, moving up
the backtrace until inside iterate() using up <return>, and displaying the local variables using
backtrace full <return> still does not uncover the thread that caused the error.

The only way to solve this issue seems to be by placing breakpoints at the end of function
iterate(), running the process until the last thread hits the breakpoint, and trying to determine
the referring super-thread. This is very time consuming because of the error’s sporadic
occurrence and GDB’s limited support for solving nondeterministic issues. The issue may not be
solved in a reasonable timeframe because the iterate function may be called many times before

the error manifests. Subsequent thread activity may also change the critical state, ﬁ.

obscuring the clues needed to make a clear diagnosis. Now we will examine how

this works with TotalView. ROGUE WAVE

SOFTWARE

14 WWW.roguewave.com

Investigating a Nondeterministic Issue with TotalView
The following steps demonstrate TotalView’s investigation of the same issue.

1.) Analogous to the technique used with GDB, a conditional breakpoint is placed at line 151. As
you can see in Figure 13, the process stops when approx < 3.14.

File Edit View Group Process Ihread Action Foint Debug Tools Windou B=1p
Group (Cantrol) U . n . . ' g ‘ ’ ‘ ‘ .’ 1 ‘ o
| 60 Halt «i i@ mun Hext aup U ﬁur T2 Gofsace Frey InSreg EaY 10 Backlo Live
[MMBNE Process server Createcd) (R !IHIHIIIHI
ll SREEEEN lll 1”gcuﬂjﬂt3pﬂqg lll |II Frrtirlrrriiiridd III
Stack Trace Stack Frane ﬂNn-
Mo current thread ﬁilm current. thresd X
w Breskpoint - Barnier S Evaluate ID: 1
Expression:
Af (spprox < 3,14) £
8! $=top;
. el
w7 /= Regult caloulstad
148 approw = delta x o t]
149
150 /% fck susten for aw |
thisThreadID = pthral 11
152 :
152 /e Frepare atring fou [
l% roaciin - ttrml.f‘::‘r,: . 5 ' . e
1 : :
e ool wEtr 20 Fontran . Assenbler
iga; /s eite result. ta o Location: /nedia/E813-80F7/TCP-Server/ntserver.cai5l Addresses.., |
. ik Cerital et s : ’ ok . Seitistin =
B e (O U [
163 " Plant 1in share group
!§g cloas(_itsockatfd):
;Eé £ 100 index] . Litl locate: ’ -) ___I;u‘.‘Q ____Jhncel ._..__ltblD
Lr E = - - o x
168
162 rotirn NAL:
Action Poinn] Pngecm] mnldu] J.".‘J—J..J

Figure 13: TotalView conditional breakpoint configuration

2.) Asshown in Figure 14, turn on the TotalView reverse debugging feature called ReplayEngine to
record the debugging session. ReplayEngine records the execution history of a program and
makes it available for examination. It allows stepping back to any line in the code that was
executed while recording was enabled, restoring the state of the entire process to what it was
when that line was executed. While very handy in any debugging session, this functionality is
indispensable for non-deterministic problems, such as this one.

~oint Debug Tools Window

3

‘ep Out Rl_m To|fRecor % GoBack Frew Uk
[R]

Zxited or Newver Created]
~ent thread =

A Stack FT"
Figure 14: Switching on the TotalView reverse debugging feature, ReplayEngine ROG‘E WAV[

15 WWW.roguewave.com

3.) Push the 'Go’ button to start the server and send a number of client requests. As you can see in
Figure 15, the process stops because a super-thread met the condition at the conditional
breakpoint.

o 14 -w y <n¢cas 3 KR
while (LIDC inchen) st i1l workirglid) {
Yh-llﬂ)l:

3

deltax = 1,0 / ma_itor;

1t

143

é

147 /o Result ealoulatad ul -ora-h will b» stored in appros
umﬂ wyrue = delta s »

150 /e Rk mgsten For own Uweed 1d o/
-m » thisthresddlll = pthvead_celf i):

tg /o Prepare string for sending the result o/

resdim = (-ﬂuM

195 WPL = 8,200 s resilt eas Frosaied to W
;“; vras. UhisTheeadID))

158 /v Write result Lo sochet

g ttathn = .nu(rouau'o. wital Tar, resdiuel:

L

W(Wh w -'M o w@ﬂ.
e

" JSuarver (G6 actiwe threads!
1.2 Cacal) ' n _serrel vagscell
1.45 oenly 7 n Seerel_enymeall
1.4 Clownl> T n _serrml_smmonll
1.47 Cocals ¥ n _serrel_ssumcell
1.4 Clacald T n _ _Aseval_emgscall
1.4 Useals n serrel vmpesll
1.50 Clocal> T n _serel_ssyesll
1., (localy 7 0 _Serrel_yscall
1.57 Uacal) T in _eral_sapcall
1.5% Uocal? ¢ n errel_smpeall
1.58 Uocald ¥ i _errel vmgecall
1.55 Cocalr 1 n _sarrel_smncall
1.9 Cocaly T N __serral_saymonll
1.57 Uoculy ' an _errel emgscall
1.58 (osealy r in arrel_sayecall
1.%9 Closnlr T N _Seerelengsinll
1.0 Clcaly T " _sarvel_sspcall
1.62 Clocnls 1 n _Aserwl_ssyscall
1.62 Uscal? ¥ n errel vnmcsll
1.63 Clocaly 1 n wrel_oysall
1.64 Clocaly T n _bervel_empmoall
1,68 Gecal) T n _eerrel_sagssall
1.040 Clocaly ' n _erral ssyscall
L.67 Ceemls T an L errml_esygscall
53 T

Figure 15: TotalView stops at the conditional breakpoint

4.) Asseenin Figure 16, use the TotalView ReplayEngine to step back to line 148 and restore the
entire process to its state when that line was executed. Examine the status of each thread at the

moment the error occurred.

16

’\

wWww.roguewave.com

-=

/= Wast until aLl mtreed hM boen fintzhead (barrier) =/
For (1= BUG 2: | < SUBTHREADS:

wiile (Lm[m].-uu uorbur‘(t]) {

?uuooo 2

3

dulta x = 1,0 / run_iter:

/% Regult calculated by all sub-thrasds «ill be storad in aeprox =/
wprax = deltas « LID[index] . sumr

/% sk systen for ouwn thraoed id ¥/
thisThread]D = pthrasd_self();

/e Prepare string for sending the result «/
rendtis « vrart.f(vrluhaf‘f'cr

WP = %25, 201 nThis result was sreserted to you by thresd no.: Ju'n'n®,
arerox. thisThreadll)s

/o Mrite result Lo socket ¢/

Figure 16: Stepping backwards using the TotalView ReplayEngine

5.) Following the same hypothesis as in the GDB session, test to see if one of these threads is still
executing in the iterate() function. The value of its local variable index should be 6 because that
is the value of the referring super-thread’s index variable. Unfortunately, no thread seems to be
currently running in iterate(), but, as you can see in Figure 17, the Stack Trace pane shows that
__kernel_vsyscall() was called from within iterate() by several threads.

’\

-=

17 www.roguewave.com

—Herrel_veuscall,
111 _lock_wair,
lock

DiXesL). Xest
235, Xsh

ok, Xux: (Yaox?
Fal, (eax)
Wil (Xeax?
Xal, Olmax)
Xcl,

126

R R

v100 FO1mnt Frocesses nreags |
1 wtemrver ,c8i51 processfequent «02fd

Figure 17: Thread in __kernel_vsyscall() in TotalView

6.) Click on ‘iterate’ in the Stack Trace pane and check the local variables in the referring Stack
Frame pane to see that thread 68, which belongs to the super-thread at the breakpoint, has not
yet finished the iterate() function. As you can see in Figure 18, this is the reason for the incorrect
result.

SOFTWARE

18 WWW.roguewave.com

hernel vswsoall,

A1 _ladk_eait. H
l..)nd 748, Local variables:
- — Dbt S s tter:

ni:

1F (BJ5.3 sa (loop, iterstion == 111 (
LI0[irwdex) 2t 411 _working[loop iteration] = 02
rutumnm N.I.L'

1

/» feproximation of pi by ruserical integration (tragezoldal rule) o/
For (1= starts L < stops ++)

» = delta x * (1 + 0.5

Fxeqd 0/ 41,0+ exi:

Prhoasd_sutax_ ook ! ssutexl 13
100 irchen] coum o= Fox;
} | suten_unlock{ weutexd 32

/* ¥ork of thiz sub-thresd has Deen done, set still_working = 0 =/
100 indenc] st 11l _vorkirgl loce_ttarationl = 07

feturm MAL:

m 1 ﬂ.urvar RIS mwuo-zsa

Figure 18: One sub-thread still executing iterate() in TotalView

The Stack Frame pane for thread 68 shows that the value of variable loop_iteration is 0. This means
the status of this thread is stored at tID[6].still_working[0].

Using ReplayEngine and stepping the super-thread backwards through the barrier at lines 139 to 143
demonstrates the status of this thread will be disregarded.

The issue has been solved.

for (i=BUG_2 ;i< SUBTHREADS; i++) {
while (tID[index].still_working[i]) {
usleep(1000);
}

The value of i starts at 1 and increments upwards, so the super thread never checks to see if the
thread for loop iteration 0 is done.

Notice how straightforwardly we could approach the solution to this issue; having the recorded
execution history makes it really easy to check what the program is doing as we work backwards
through the logic of the program from the incorrect result to the root cause of the bug. A‘“

ROGUE WAVE

T WARE

19 WWW.roguewave.com

Thread Control Capabilities of GDB vs. TotalView

For the third debugging session, we rebuild the server with bug 3 enabled.

In this case, as can be seen in Figure 19, the results are identical for every request but the values are
always lower than 3.14. The reason for this behaviour could be that one or more sub-threads do not
finish the approximation properly.

Pl =
This

Pl =
This

Pl =
This

Pl =
This

Pl =
This

Pl =
This

2.26691687009408848752
result was presented to you by thread no.: 3042986864

2.26691687009411158016
result was presented 1o you by thread no.: 2975845232

2.26691687009401521280
result was presented to you by thread no.: 2866740080

2.26691687009400677510
result was presented to you by thread no.: 2883525488

2.26691687009401476871
result was presented to you by thread no.: 2875132784

2.26691687009401965369
result was presented to you by thread no.: 2757634928

Figure 19: Results of a series of requests with BUG_3 enabled

In order to investigate this bug the following approach is planned:

Set a breakpoint at the very beginning of the iterate() function such that all sub-threads
associated with a particular request are stopped.

Perform a few single-steps of these threads, in lockstep, until the calculation of the different
iteration() sections start.

Move each individual thread in single-step mode in order to analyze its behaviour.

20 WWW.roguewave.com

Thread Control Capabilities of GDB

Again, the debug session will first be demonstrated using GDB.

The capability of controlling threads independently is limited in GDB. The ability to run a single thread is
dependent on the referring operating system’s ability to lock the scheduler. Furthermore, GDB generally
stops the entire process when a single thread hits a breakpoint.

1. To deal with these limitations of GDB, the debugging process will start by setting two
breakpoints. The first one is placed at line 132 where the sub-threads are created in function
processRequest(). The second breakpoint is placed on line 29 at the beginning of the function
iterate().The GDB commands break 132 <return>andbreak 29 <return>
accomplish this.

2. Running the client by typing . /client localhost 25000 1000000 <return>
or ./runclient.sh localhost 25000 1000000 1 <return> inaseparate
console window will cause the server to run to the first breakpoint, as seen in Figure 20. The
GDB command info threads <return> helps identify the super-thread.

(gdb) break 132

Breakpoint 1 at Ox8048cad: file mtserver.c, line 132

(gdb) break 29

Breakpoint 2 at Ox8048957: file mtserver.c, line 29.

(gdb) run

Starting program. /home/luedtke/tests/listener/server

Missing separate debuginfo for /11b/1d-1linux.so. 2

[Try: zypper install -C “debuginfo(build-1d)=d7706cbaa0cad9319cb645eac789cb83990
78797 "

Hissing separate debuginfo for /l1ib/libpthread so.0

Try: zypper install -C "debuginfo(build-1d)=964690b0ca2ed321e995340684e09981f5f
R&6ad”

[Thread debugging using libthread_db enabled)

Missing separate debuginfo for /lib/libc.so.6

Try: zypper install -C “"debuginfo(build-1d)=7eb4el69e926464393e12e98d99¢37156d5
5858~

No portnumber provided, listening on port no.: 25000

[New Thread Oxb7ed4eb70 (LWP 2510)]

[Switching to Thread Oxb7ed4eb70 (LWP 2510)]

Breakpoint 1, processRequest (sfd=0x804b0cc) at mtserver.c:132
132 for (1 = 0, 1 < SUBTHREADS, 1++) {
(gdb) wnfo threads
* 2 Thread Oxb7e4eb70 (LWP 2510) processRequest (sfd=0x804blcc)
at mtserver.c:132
1 Thiead Oxb7edf6cO (LWP 2503) Oxffffed22 in __kernel_vsyscall ()
(gdb)

Figure 20: GDB stopped at the first breakpoint

21 www.roguewave.com

As seen in Figure 21, typing continue <return>, or ¢ <return>, will stop the first sub-
thread at breakpoint 29 in function “iterate().”

Missing separate debuginfo for /11b/11bc.so0.6

f5858"

No portnumber provided, listening on port no.: 25000
[New Thread Oxb7edeb70 (LWP 2510)]

[Switching to Thread Oxb7edeb70 (LWP 2510)]

Breakpoint 1, processRequest (sfd=0x804b0Occ) at mtserver.c:132
132 for (1 = 0, 1 < SUBTHREADS; 1++) {
(gdb) info threads
* 2 Thread 0Oxb7ed4eb70 (LWP 2510) processRequest (sfd=0x804b0cc)
at mtserver.c:132

1 Thread Oxb7edf6c0 (LWP 2503) Oxffffedq22 wn __kernel_vsyscall ()
Kgdb) c
lContinuing.
[New Thread Oxb764db70 (LWP 2511)]
[Switching to Thread Oxb764db70 (LWP 2511)]

Breakpoint 2, i1terate (1nd=0x804b0cc) at mtserver.c:29
29 index = * ((Int*) nd),

(gdb) info threads

[New Thread Oxb6edcb70 (LWP 2512)]

1 Thiead Oxb7e4f6c0 (LWP 2503) Oxffffed22 in __kernel_vsyscall ()
(gdb)

Try: zypper install -C "debuginfo(build-i1d)=7eb4el169e926464393ef2e98d99¢37f56d5

4 Thread Oxb6edcb70 (LWP 2512) ©Oxb7f22848 in clone () from /l11b/libc.so.6
* 32 Thread Oxb764db70 (LWP 2511) 11terate (1nd=0x804b0Occ) at mtserver.c:29
2 Thread Oxb7ed4eb70 (LWP 2510) Oxb7f22848 in clone () from /lib/libc.so0.6

Figure 21: GDB stopped at the second breakpoint

In order to perform single-steps of only thread 3, set the scheduler locking mode to ‘step’: set

scheduler-locking step <return>.

Single-step thread 3 using either the command step <return> (stepping into functions)
ornext <return> (stepping over functions). After executing two single-steps, thread 4
will also enter the function iterate(), but it will stay at breakpoint 2, as seen in Figure 22.

The focus has automatically been switched to thread 4, so it has to be manually switched back

to thread 3 using the command thread 3 <return>.

22

wWww.roguewave.com

(gdb) 1nfo threads
[New Thread Oxb6ed4cb70 (LWP 2512)])
4 Thread Oxb6edcb70 (LWP 2512) Oxb7f22848 in clone () from /lib/libc.s0.6
* 3 Thread O0xb764db70 (LWP 2511) 1terate (1nd=0x804bO0cc) at mtserver . c:29
2 Thread Oxb7ed4eb70 (LWP 2510) Oxb7f22848 in clone () from /lib/libc.s0.6
1 Thread Oxb7edf6cO (LWP 2503) Oxffffed22 in __kernel_vsyscall ()
(gdb) set scheduler-locking step
(gdb) step
32 pthread_detach(pthread_self())
(gdb) step
[Switching to Thread Oxb6edcb70 (LWP 2512))

Ereakpoint 2, 1terate (1nd=0x804b0cc) at miserver.c:29
29 index = * ((Int*) ind);
(gdb) info threads
[New Thread 0xb664bb70 (LWP 2537)]
S Thread Oxb664bb70 (LWP 2537) Oxb77f22848 in clone () from /lib/libc.so.6
* 4 Thread Oxb6ed4cb70 (LWP 2512) 1terate (1nd=0x804b0cc) at mtserver.c:29
3 Thread Oxb764db70 (LWP 2511) 1terate (ind=0x804bOcc) at mtserver.c:34
2 Thread Oxb7ed4eb70 (LWP 2510) Oxb7f22848 in clone () from /lib/1ibc.s0.6
1 Thread Oxb7edfocO (LWP 2503) Oxffffed22 in __kernel_vsyscall ()
(gdb) thread 3
[{Switching to thread 3 (Thread O0xb764db70 (LWP 2511))]#20 iterate (
1nd=0x804b0cc) at mtserver.c:34

34 num_iter = tID[index] 1Iterations;
(gdb) step
35 delta_x = 1,0 / num_iter;

(gdb) 1nfo threads
S Thread Oxb664bb70 (LWP 2537) Oxb7f22848 in clone () from /lib/11bc.s0.6
4 Thread Oxb6edcb70 (LWP 2512) 1terate (1nd=0x804bOcc) at mtserver . c:29

* 3 Thread Oxb764db70 (LWP 2511) 1terate (ind=0x804b0cc) at mtserver,c:35
2 Thread Oxb7edeb70 (LWP 2510) Oxb7f22848 in clone () from /lib/libc.so.6
1 Thread Oxb7edf6cO (LWP 2503) Oxffffed22 in _ kernel_wvsyscall ()

(gab)

Figure 22: GDB after performing two single-steps

Single-stepping thread 3 until line 59, where the approximation starts, does not show any
unusual behaviour. Therefore, switch focus to thread 4 in order to single-step this thread up to

line 59, as seen in Figure 23.

23

’\

-5

wWww.roguewave.com

35 delta_x
(gdb) info threads
5 Thread Oxb664bb70 (LWP
4 Thread 0xb6edcb70 (LWP
* 3 Thread 0xb764db70 (LWP
2 Thread Oxb7ed4eb70 (LWP
1 Thread 0xb7ed4f6cO (LWP
(gdb) step
38
(gdb)
39
(8db)
40
(gdb)
42
(gdb)
43
gdb)
45
(gdb)
46
(gdb)
47
(gdb)
53
(gdb)
59
(gdb) info threads
S Thread 0xb664bb70 (LWP
4 Thread 0xb6edcb70 (LWP
* 3 Thread 0xb764db70 (LWP
2 Thread Oxb7ed4eb70 (LWP

step
loop_1tera
step

step

nl
step

n2
step

step
step
step

step

1 Thread 0xb7e4f6cO (LWP
(gab) il

from /1ib/l1ibpthread. so.

1.0 / num_1iter;

2537)
2512)
2511)
2510)
2503)

twon =

2537)
2512)
2511)
2510)
0

2503)

Oxb7722848 1n clone () from /1ib/1ibc.so.6
i1terate (1nd=0x804b0cc) at mtserver.c:29
iterate (1nd=0x804b0Occ) at mtserver c:35
Oxb7f22848 in clone () from /1ib/1ibc.s0.6
Oxffffed22 in __kernel_vsyscall ()

pthread_mutex_lock(&mutex0);

tID[index] . loop_count++;

pthread_mutex_unlock(&mutex0);
num_iter / SUBTHREADS;
num_iter % SUBTHREADS;
1f (loop_i1teration == 0) {
start = 0;
stop = nl + n2;
1f (BUG_3 && (loop_iteration == 1)) {

for (1 = start; 1 < stop; ++1) {

Oxffffed22 in _ kernel_vsyscall ()
1terate (1nd=0x804b0cc) at mtserver.c:29
1terate (1nd=0x804b0cc) at mtserver.c:59
Oxb7fb4970 1n _ _nptl_create_event ()

Oxffffedq22 1n __ kernel_vsyscall ()

Figure 23: Single-stepping thread 3 to line 59 in GDB

As shown in Figure 24, single-step thread 4, while taking care that it remains in focus shows that,
in contrast to thread 3, it will hit lines 54 and 55, which will cause this thread to terminate.

The bug has been uncovered:

if (BUG_3 && (loop_iteration == 1)) {
tID[index].still_working[loop_iteration] = 0;

return NULL;

24

~

OFTWARE

wWww.roguewave.com

40

§1

8
5
4
3

2
1

pthread_mutex_unliock(&mutex0);

(gdb) step
[Switching to Thread OxbS5Sed4ab70 (LWP 2609)]

Breakpoint 2, 1terate (1nd=0x804b0cc) at mtserver.c:29

29 index = * ((Iint*) 1nd),

(gdb) step

32 pthread_detach(pthread_self())
(gdb) i1nfo threads

.

Thread OxbS5ed4ab70 (LWP 2609) iterate (ind=0x804b0Occ) at mtserver
Thread 0xb664bb70 (LWP 2537) 1terate (1nd=0x804b0Occ) at mtserver.c:29
Thread Oxb6edcb70 (LWP 2512) iterate (1nd=0x804b0cc) at mtserver.c: 42
Thread 0xb764db70 (LWP 2511) (Exiting) Oxb7fb4980 in _ _nptl_death_event

() from /1ib/l1ibpthread.so.0

Thread 0xb7ed4eb70 (LWP 2510) Oxffffed22 in __kernel_vsyscall ()
Thread Oxb7ed4f6cO (LWP 2503) Oxffffed22 in __kernel_vsyscall ()
(gdb) thread 4

[Switching to thread 4 (Thread Oxb6edcb70 (LWP 2512))]#0

1nd=0x804bbcc) at mtserver.c:42

42 nl = num_iter / SUBTHREADS;

(gdb) step

43 n2 = num_iter % SUBTHREADS;

(gdb) step

45 1f (loop_1rteration ==) {

(gdb) step

49 start = loop_iteration * nl + n2;
(gdb) step

50 stop = (loop_iteration + 1) * nl + n2;
(gdb) step

53 1f (BUG_2 && (loop_iteration == 1)) {

(gdb) step

54 tiD[index).still_working[loop_iteration] = 0;

(gdb) print loop_1teration

1

(gdv) i

Figure 24: GDB thread 4 terminates

Here GDB does demonstrate the error, but you have to follow the lines as they come up quite carefully.
In this case the difference between flow control in thread 3 and thread 4 leads thread 4’s results to be
disregarded.

25

1terate (

OFTWARE

wWww.roguewave.com

Thread Control Capabilities of TotalView

The following steps will show the advantages of TotalView’s thread control capabilities:

1.) Start the server with the command totalview ./server and place a single breakpoint
at line 29. Use the ‘Action Point Properties’ dialog to tell the breakpoint to act only on individual
threads, as seen in Figure 25.

5
[:g perror(ecrorMsg)
18 exit{1);:

193

2

21

%,ww witeratel void =ind) {

g usigned long rum_ster. L. nl. n2, s

int locp, iteration, index:

% double approx. X. fox, dsltax:

28 /= Gat the irdex for accessing the ©
3 index = = ({inte) snd):

/= Ensure that the pthresd
pthread_datach(pthread self (1);

run_iter = LID{index]),1Iteraticns:
delta x = 1.0 / nun_iter:

=
i

s

Figure 25: Setting Action Point properties in TotalView

~

SOFTWARE

26 WWW.roguewave.com

2.) Run the server by pushing the ‘Go’ button and run the client one time as already described to
force all four sub-threads to stop at the breakpoint, as seen in Figure 26.

& Q@ TotalView 8.11.0-0

File Edit Miew Tools Window Help
= IDS Rank Host status Description
= - 5

1.1 <local> R in __kernel_vsyscall

1.2 <local> R in __kernel_vsyscall

1.3 <localy Bl in iterate

1.4 <local> Bl in iterate

1.5 {localx Bl in iterate

1.6 <localy Bl in iterate

Figure 26: TotalView Root Window showing all threads have been stopped at the breakpoint
3.) Move your cursor down to highlight one of the sub-threads.

4.) Asseen in Figure 27, select the scope modifier ‘Group (Lockstep)’ in the toolbar’s P/T Set
Control pull down menu to allow single-stepping of all four sub-threads in sync. It makes sense
to move all threads together until line 38 because the mutex will only allow one thread at a time
to pass this barrier. Single-stepping in TotalView is done by pushing either the ‘Next’ (stepping
over functions) or ‘Step’ (stepping into functions) buttons.

00O .server
| Eile Edit View Greup Process Threed fetian Point Detug Tools Hindow Help
' “
Group (Lockstep) ", ‘ ‘ " . ' = "
| Go Mait K 151 Record Golleck Proy Srdtes Sulloe BarkTo LI
At _Arvesd, FFteaT30M vy Detfdbiog -0 OW0O000000 003
Looal s iatles
a_iter s et {000}
i Defsenns {0y
it Dl (0}
el AT {0}
stort ! etend 400y
stens e {0)
boop, iteretiont DreCdias 10)
e o0 10)
— NN tye— 2 .
Function (torate in moorver.c =i
* dovtile eypros, . fox. deltes:
:-_. * Lot the index for ecceszing the 1D erray »/
-_ inchex = w {iinte) grediz
»
1 o Lnmrw Uwt the pohresd rescurces «ill be given beck to systam «/
= privead_detachigthread salf i)z
=
p 7 ma_iter = tI3[andes], ITtarat iore s
= dalta_s = 1,0 7 s ivecs
7 /a Dotarnine e carges For- sach ai-chresd &/
=D el sites LU T
o Lode ity I Lriee], Loos o =43
Ay P EL L e | amsasl 1]
41
43 ni & e iter / SUETHIERGS:
4= 2 = s tter 3 SUBTHENDS:
e
45 ¥ lloop tteretion == O} [
46 art =« U;
47 oo = nl v §
au Julsm § ’
15
bgtion Faints | Procesess | Themads |) o 3y 3of
Tl 1207000001 T " —serel esscall A"'
1.2 130T 1 i _seevel sl Y .
13 1066003341 1 I erate
1.4 13085 46301 M Lerote
1.5 A518219%) 1 n favale
1.6 n Lleraote
o
|
Figure 27: Controlling the lockstep group in TotalView SOFTWARE

27 www.roguewave.com

Another convenient way to control a defined number of threads using TotalView is to create a
Call Graph group. As seen in Figure 28, the Call Graph is a graphical representation of the recent
stack trace of specified processes and threads. It can be opened by choosing ‘Call Graph’ on the
menu ‘Tools’ of the main Process Window.

@ @ @ call Graph - server:Control Group

Group (Control) | I Auto-Arrange

13,14, 15..
(1.3,14,1.5.) __libc_start_main

start_thread
¥ 1.1
Y (1.2)

main
processReguest Ej

¥ (1.2)

usle@

¥ (1.2)

IR

accept

nanosleep

1.2) T

[__kernel_vsyscall |

¥

=]

Update sSave As... | Claose | Help |

Figure 28: The TotalView Call Graph

The Call Graph is useful for understanding the functionality of the application by showing which
threads have a displayed routine on their call stack. This graph shows three different thread
behaviours. Thread 1.1 includes main and is currently in a routine called accept(), thread 1.2 is
sleeping in a routine called processRequest(), and threads 1.3 — 1.5 are in iterate().

Additionally, double clicking on a routine in the graph automatically creates a thread group
called “call_graph,” containing all of the threads which call that routine, as seen in Figure 29.

The new group will immediately appear in the Process Window’s pull down menu r \?

and can be selected for actions affecting the entire thread group, for example,
moving this entire group of threads in single step mode to line 38. ROGUE WAVE
§

28 WWW.roguewave.com

Al = run dter / SUBTREADS!
o T pan_iter X SUBDRIADS;

¥ Cloop_izerstion = 01 £
start = OF
stoe = N1 ¢ 25
Jwlaw [
start 2 loop itecation ® nl
stco = (locp_jteration + 1) «

?

i (BG_3 s 1.»1; tAek don == 32)
LIS ander LSt 1 pap_jteration: 000000001 (1))
) return MAL:

/o fgproxisetion of pi by nuserical integretion (trepecaidal rule) o/
For (1= grarts 1 < srops ++ld

w = delta x * (1 ¢ 05;:

Fou=80/ 1.0+ %2

orzeahansburssssnnstanl

= 11 IR
430411601 71
(30001NES) 11

Figure 30: The bug has been found in TotalView

Stepping each thread through the section shows that one thread takes a divergent path. Hovering over
the variables shows why the program is taking that path.

Compared to GDB, the TotalView debugger has far superior thread capabilities. Not only does it offer a
convenient interface designed to allow complete control over individual threads, it also supports
asynchronous thread control, thread groups, stepping commands that operate on thread

groups, and thread width breakpoints. r/ N

SOFTWAR

29 WWW.roguewave.com

Displaying Local Variables of Different Threads

It is usually necessary to monitor the local variables belonging to each thread in order to check whether
a program is working as expected. In order to demonstrate such a case, rebuild the server with all of the
bugs turned off and the number of sub-threads set to 10.

In this debugging session, monitor changes to the local variable f_x for each of the 10 sub-threads while
in single-step mode. To accomplish this, place a breakpoint at line 60.

As with the sessions above, GDB will be demonstrated first.

Displaying Local Variables of Different Threads Using GDB

1. Start the server by typinggdb ./server <return>, setthe breakpoint by typing
break 60 <return>,runthe server by typing run <return> andsend a client
request to the server by typing . /client localhost 25000 1000000
<return> in a separate console. The first of the 10 sub-threads will hit the breakpoint and
the process will stop.

2. Because GDB always focuses on the thread that last hit the breakpoint, you can serially display

the value of f_x for each thread by alternating the commands print £ x <return>and
¢ <return>.

30 WWw.roguewave.com

As shown in Figure 31, the nature of the GDB output makes it very difficult to compare the values
stored by the various threads, especially if hundreds or thousands of threads are running
simultaneously.

Starting program: /home/luedtke/tests/listener/server
Missing separate debuginfo for /lib/ld-linux.so.2
Try: zypper install -C “"debuginfo(build-id)=d7706cbaalca09319cbb45eac789cb83990
78797"

Missing separate debuginfo for /lib/libpthread.so.0

Try: zypper nstall -C "debuginfo(build-1d)=964690b0caled321e995340684e09981757
986ad"

[Thread debugging using libthread_db enabled]

Missing separate debuginfo for /l1ib/l1bc.s0.6

Try: zypper install -C "debuginfo(build-1d)=7eb4el69e926464393ef2e98d99¢c37f56d5
f5858"

Ne portnumber provided, listening on port no.: 25000

[New Thread Oxb7edeb70 (LWP 5068)]

[New Thread Oxb764db70 (LWP 5069)]

[Switching to Thread 0xb764db70 (LWP 5069)]

Breakpoint 1, i1terate (ind=0x804bOcc) at mtserver.c:60
|60 x = delta_x * (1 + 0.5);

(gdb) print f_x

§1 =0

(gdb) ¢

Continuing.

Breakpoint 1, 1terate (ind=0x804b0cc) at mtserver.c:60
60 x = delta_x * (1 + 0.5);

(gdb) print f_x

§2 = 3.9999999999989999

(gdb) ¢

Continuing.

Breakpoint 1, 1terate (1nd=0x804blcc) at mtserver.c:60
60 x = delta_x * (1 + 0.5);

(gdb) print f_x

§3 = 3.9999999999910001

(gab)

Figure 31: GDB displaying the value of a local variable for every thread

Displaying Local Variables of Different Threads Using TotalView

The TotalView session is set-up similar to the GDB session above.

Of course, it might be nice for GDB to tell you which thread you are seeing each data element from; you
can inquire into it with info threads.

1.) Start the server within TotalView by typing totalview ./server <return>andseta

breakpoint in front of line 60 by clicking on the rectangle around the line number with
mouse button.

2.) Using the right mouse button, click on the breakpoint to bring up its properties menu.
breakpoint to act on threads only.

the left

Set the

31 WWW.roguewave.com

3.) Start the server by pushing the ‘Go’ button and send it a client request by typing . /client
localhost 25000 1000000 <return> in aseparate console. The 10 sub-threads
stopped at the breakpoint, as seen in Figure 32.

Fil

2 0@ TotalView 8.11.0-0

=311 {local>
-1.2 <local>
—1.3 {local>

1.4 <local>
=41.5 {local>
~-1.6 {local>
- 4.7 {local>
-1.8 <local>
-1.9 {local>
-1.10 {local>
-1.11 <local>
L.1.12 <locald

5555555555

55

__kernal_vsyscall
~kernel_vsyscall

iterate
iterate
iterate
iterate
iterate
iterate
iterate
iterate
iterate
iterate

Figure 32: The TotalView Root Window showing all sub-threads stopped at breakpoint 1

4.) In the Root Window, double-click on the line marked 1.3 to change the focus to thread 3. The
current position of thread 3 is highlighted in the Process Window’s source code pane.

5.) Drill down into the variable f_x by double-clicking it in the source code pane. This opens a
variable window that displays the value of f_x for the currently selected thread, in this case

thread 3.

32

wWww.roguewave.com

6.) The ‘View’ menu of the variable window includes the option ‘Show Across ->, as seen in Figure
33." Select ‘Show Across ->Threads’ to create an array-like view of f_x, showing the values for
every thread.

AF (BUG_3 ee (loop.iteration == 1) {
(3414 Lstill_wanicelloog

3

/% Fpproxination of pL by
For {1 = start: 1 <

/# Work of this sub-thread |~
tI0[index] . st 41k _workingl1d 1.1 (3076064%60) (Has no matching call frame>

un;agswm%gﬂwamam i

ot AL 1.2 (3076057968) <Has no matching call frame>
3 1.3 (3067665264) 3,999999999999
1.4 (3059272560) 3.9603956474846
3,84615310650809
3.66972376062565
3.44827467300799
3,19999871999987
i 2,94117517301041
1.10 (3008916335) 2.68456249718495
1.11 (3000523632) 2.43902320047612
1.12 (2992130928) 2,2099436625139

Figure 33: TotalView’s Show Across capability
Variables displayed in a variable window are updated and highlighted as changes to them occur.

View across makes it much easier to do thread vs. thread data comparisons. With TotalView you can
synchronize your threads so they are all at the same well-understood point in their execution, and do an
apples-to-apples comparison of the data each thread contains at that same point. Alternately, you can
run the threads in any execution sequence and see what happens, not just in that thread, but in all the
other threads.

r o

-5

33 WWw.roguewave.com

Conclusion

This paper shows what it is like to debug several common problems in a multithreaded application using
basic scenarios. It demonstrates how this debugging can be done with the open source GDB and with
the TotalView debugger. TotalView provides a variety of useful features that make it easy to see and
control what is going on in a multithreaded program. As you debug and explore the behavior of a
multithreaded application, features such as asynchronous thread control, thread groups, thread width
breakpoints, the Call Graph display, the ability to easily navigate data, and the ability to view variables
across multiple threads will help to provide a clear indication of what the threads are doing.

Multithreaded programs can manifest intermittent defects. Tracking and resolving these defects without
the right tools can be a tedious and frustrating process of running and re-running the program, only to
have the problem go away. TotalView gives developers the ability to capture and deterministically
replay the execution history of the program. This radically simplifies the troubleshooting process. Once
an intermittent error is captured in the recording, it is easy to go back and forth as many times as
needed to understand what has happened, making errors easier to solve.

About TotalView

TotalView is a scalable and intuitive debugger for parallel applications written in C, C++, and Fortran.
Designed to improve developer productivity, TotalView simplifies and shortens the process of
developing, debugging, and optimizing complex applications. TotalView provides a powerful
combination of capabilities for pinpointing and fixing hard-to-find bugs, such as race conditions, memory
leaks, and memory overruns. Providing developers the ability to step freely, both forwards and
backwards, through program execution, TotalView’s unique reverse debugging capabilities drastically
reduce the amount of time invested in troubleshooting code. To help developers maximize hardware
capabilities, TotalView also provides debugging support for NVIDIA® CUDA™, OpenACC®, and the Intel®
Xeon® Phi™ coprocessor.

About Rogue Wave Software

Rogue Wave Software, Inc. is the largest independent provider of cross-platform software development
tools and embedded components for the next generation of HPC applications. Rogue Wave marries High
Performance Computing with High Productivity Computing to enable developers to harness the power
of parallel applications and multicore computing. Rogue Wave products reduce the complexity of
prototyping, developing, debugging, and optimizing multi-processor and data-intensive applications.
Rogue Wave customers are industry leaders in the Global 2000, ISVs, OEMs, government laboratories
and research institutions that leverage computationally-complex and data-intensive applications to
enable innovation and outperform competitors. For more information, visit
http://www.roguewave.com.

34 Www.roguewave.com

http://www.roguewave.com/products/totalview.aspx
http://www.roguewave.com/products/
http://www.roguewave.com/

