
D A T A S H E E T

© Perforce Software, Inc. All trademarks and registered trademarks are the property of their respective owners. (1020PR25)perforce.com

CI/CD Static Analysis Integration
Checklist

Modern software development moves fast. With Continuous Integration and Continuous
Delivery (CI/CD) pipelines enabling teams to push code changes multiple times a day,
maintaining code quality becomes both more critical and more challenging.

Adding analysis and checks to your CI/CD pipelines will prevent coding flaws and potential
security vulnerabilities from slipping through to later phases of testing, or — worse still —
into production.

To truly optimize development workflows and shift-left, integrating static analysis/SAST
into both your CI and CD pipelines is essential — but it is also important to do this without
obstructing the existing processes.

Follow the maturity steps from the checklist below to align with our recommended best practices.

Step 1:
Define the
Rules

Step 2:
Add Static
Analysis
to the CD
Pipeline

Step 4:
Add Static
Analysis
to the CI
Pipeline

Bonus Step:
Add
Pre-Commit
Analysis

Step 3:
Create a
Baseline

Step 5:
Turn on
Quality
Gates

Static Analysis CI/CD Integration Maturity Stages

https://www.perforce.com

CI/CD Static Analysis Integration Checklist

© Perforce Software, Inc. All trademarks and registered trademarks are the property of their respective owners. (1020PR25)perforce.com

6 Steps to Add Static Analysis to the CI/CD Pipeline

Step 2: Add Static
Analysis to the CD
Pipeline

This step begins automated enforcement
of code quality and provides measurable
insights into technical health.

You can start tracking and optimizing your
selected rules.

	� Add your static analysis tool(s) to your existing
CD pipelines for Master branch builds.

	� Run these analyses nightly, weekly, or per-revision.

	� Review results.

	� Refine rules.

Step 3: Create a Baseline Once you have full analysis results from the
CD pipelines, a decision should be made
about what to baseline.

By starting from zero, you separate existing from
new findings, creating new technical debt.

	� Determine if the results are valid and valuable.

	� Decide what to baseline:

 - What needs to be fixed now?

 - What can be left to the backlog?

Step 4: Add Static
Analysis to the CI
Pipeline

Now that you’ve addressed CD, it’s time to
implement the new static analysis stage to
your CI pipelines to kick-start shift-left.

In this phase, developers begin to get
early visibility into code quality issues,
enabling them to catch and fix problems
before they escalate. This is the essence of
shift-left, improving efficiency and reducing
downstream defects.

	� Run static analysis tools on each new branch as part of your
branch and merge strategy.

	� Report and triage new findings (the deltas) in the branch
review process.

	� Analyzing just the change code (change-set) will improve
analysis times and minimize feedback loops.

Step 5: Turn on Quality
Gates

Now it’s time to turn on Quality Gates for your
static analysis results in the CI pipelines.

Quality gates enforce code quality and security.
The development team can now code with
confidence, trusting that substandard code
will be prevented from passing through.

	� Roll out static analysis rules enforcement through
CI Quality Gates.

	� New technical debt is now blocked from entering
the codebase.

Step Description/Benefits Checklist

Step 1: Define the Rules This step focuses your teams’ thinking on
quality, safety, and security.

Defining rules is a team effort. Involving
Development, Security, and QA teams
ensures broader coverage of vulnerabilities,
aligns rules with real-world workflows, and
fosters shared ownership of code quality
and security.

Ask your teams:

	� What rules are required to be enforced?
- Check for coding standards that help meet industry
 standards for quality, safety, and security.

	� If not required, what rules would you like to be enforced?
- You can also use static analysis tools, like Perforce QAC
 and Perforce Klocwork, to create your own internal standard.

Helpful Tip: Start with a smaller set of rules that are always strictly enforced, rather than having too many.

https://www.perforce.com
https://www.perforce.com/products/helix-qac
https://www.perforce.com/products/klocwork

CI/CD Static Analysis Integration Checklist

© Perforce Software, Inc. All trademarks and registered trademarks are the property of their respective owners. (1020PR25)perforce.com

Shift-Left development is a practice that helps developers find and fix vulnerabilities and coding errors

as early as practical in the software development lifecycle (or, to the left of the linear development

timeline, before the product has been released to end users).

Adding tools like static code analyzers enables you to adopt shift-left methodology faster, more

accurately, and at scale.

Automate CI/CD With Perforce Static Analysis
Perforce Static Analysis tools — QAC and Klocwork — automate the CI/CD pipeline and beyond with quality checks, consistent policy

enforcement, and security assurance — accelerating your time-to-market. On the desktop, developers get immediate feedback, improved

code quality, faster code reviews, and the tools they need to be empowered.

Plus, with the integration of artificial intelligence (AI), developers can now go beyond issue detection to intelligent resolution. Perforce

AI Remediation seamlessly integrates with the desktop environment, harnesses Klocwork/QAC analysis results, supporting flexible LLM

selection, and enables interactive collaborative sessions — empowering teams to refine code faster and more effectively.

See for yourself how Perforce Static Analysis optimizes shift-left. Request your free trial today.

www.perforce.com/products/sca/free-static-code-analyzer-trial

Free Trial

Bonus Step:
Add Pre-Commit Analysis

Optimal shift-left brings the process of
finding and fixing to where the code is
created: back to development.

By finding and addressing issues early,
organizations save time, money, and a
lot of rework.

	� Optionally, make the tools available to
developers on the desktop or within
their IDE to check for new issues before
they even commit.

	� Ideally, provide developers with efficient
options to resolve issues, such as AI
code assistance tools.

https://www.perforce.com
https://www.perforce.com/resources/shift-left
https://www.perforce.com/solutions/static-analysis
https://www.perforce.com/products/helix-qac
https://www.perforce.com/products/klocwork
https://www.perforce.com/products/sca/free-static-code-analyzer-trial
https://www.perforce.com/products/sca/free-static-code-analyzer-trial

