

Skip to main content

Secondary navigation
	Downloads
	Integrations
	Blog
	Company	About Us
	Team
	Culture
	Careers
	Partners
	Press
	Events
	Security & Compliance

	Contact	Contact Us
	Request Support
	Subscribe

Perforce

Main Navigation - Mega Menu
	ProductsMain Navigation - Mega Menu
	Explore Products

	All Products

Dev Productivity & Collaboration
Application Testing & Quality
Agile Management & Planning
Application & Open Source Management

Helix Core

Version Control

Helix TeamHub

Code Hosting for Git, SVN, Hg

Helix IPLM

IP Lifecycle Management

Gliffy

Diagramming

JRebel

Java Application Development

Helix DAM

Digital Asset Management

Dev Productivity & Collaboration
Application Testing & Quality
Agile Management & Planning
Application & Open Source Management

Helix Core

Version Control

Helix TeamHub

Code Hosting for Git, SVN, Hg

Helix IPLM

IP Lifecycle Management

Gliffy

Diagramming

JRebel

Java Application Development

Helix DAM

Digital Asset Management

	SolutionsMain Navigation - Mega Menu
	Explore Solutions

	Solutions Overview

Main Navigation - Mega Menu
	By Need

	By Industry

Main Navigation - Mega Menu
	Application Lifecycle Management

	Agile Project Management

	Diagramming

	DevOps

	Version Control

	IP Lifecycle Management

	Java Application Development

	Web & Mobile App Testing

	Codeless Selenium Automation

	Static Analysis & SAST

	Audit & Compliance

	API Management

	Open Source Support

	Enterprise PHP

	HPC Debugging

	Configuration Management

	IT Infrastructure & Automation

	Development Tools & Libraries

Main Navigation - Mega Menu
	Aerospace & Defense

	Automotive

	Embedded Systems

	Semiconductor

	Energy

	Financial

	Game Development

	Virtual Production

	Government

	Medical Devices

	Software

	Digital Twins

Main Navigation - Mega Menu
Main Navigation - Mega Menu
Main Navigation - Mega Menu
Main Navigation - Mega Menu

	Customers

	ResourcesMain Navigation - Mega Menu
	Explore Resources

	Papers & Videos

	Recorded Webinars

	Events & Webinars

	Blog

	Free Trials

	Subscribe

2023 Game Development Report
Read Now

	Support

	ServicesMain Navigation - Mega Menu
	Consulting/Professional Services

	Training

Main Navigation - Mega Menu
	Consulting Services Overview

	Akana

	BlazeMeter

	Helix ALM

	Helix Core

	Helix QAC

	Klocwork

	Methodics IPLM

	OpenLogic

	Perfecto

	Zend

Main Navigation - Mega Menu
	Training Overview

	Hansoft

	Helix ALM

	Helix Core

	Helix QAC

	Klocwork

	OpenLogic

	Perfecto

	Zend

	Try Free

	Downloads

	Integrations

	Blog

	CompanyMain Navigation - Mega Menu
	About Us

	Careers

	Culture

	Events

	Partners

	Press

	Team

	Contact

Breadcrumb
	Home
	Resources
	Blog
	
8 Version Control Best Practices

May 21, 2020
8 Version Control Best Practices
Version Control
Coding Best Practices

By
Brent Schiestl
Every team should follow version control best practices — whether your team is big or small.
Here we cover key version control best practices and how to apply them.
Table of Contents
	What Are Version Control Best Practices?
	8 Version Control Best Practices
	Free Version Control + Built-In Best Practices
	Version Control Checklist
	Apply Version Control Best Practices With Helix Core

Table of Contents
1 - What Are Version Control Best Practices?
2 - 8 Version Control Best Practices
3 - Free Version Control + Built-In Best Practices
4 - Version Control Checklist
5 - Apply Version Control Best Practices With Helix Core

Back to topWhat Are Version Control Best Practices?
Version control best practices are habits, policies, and workflows your team can develop to use version control most effectively. They include making sure every commit is traceable, having clearly defined branches, and conducting thorough reviews.

Back to top8 Version Control Best Practices
Here are 8 of the most critical version control best practices.
Commit Changes Atomically
One best practice is to commit changes atomically in version control.
All files in a commit are either committed together or not at all. No other user should see partial or incomplete changes.
A check-in is similar to a database transaction described by its ACID properties:
	Atomic.
	Consistent.
	Isolated.
	Durable.

Commit all files that belong to a task in a single operation to keep the project consistent at all times.
It's critical to apply best practices to commits. Good-quality commits will improve your project, making you more productive and successful.
Commit Files With a Single Purpose — Not as a Backup
Another best practice is committing files with a single purpose.
Each commit should have a single purpose. For example, fixing a bug or adding a new feature. If a single change makes multiple independent changes to your project, it can become difficult to read and to review. Backing out one of these changes then becomes more complex and unnecessarily time-consuming.
Remember: A commit is not a backup of your current state of your local files, even if it occurs at the end of the day.

By breaking down a larger task into smaller chunks, you can more readily understand and review the intent of changes. For example, you could break a task into infrastructure and refactoring tasks before making user-visible changes. Keeping the scope narrow also makes it easier to back out a bad commit.
Write Good Commit Messages
Another commit best practice is to write good commit messages.
Each commit should have a description that explains the why — but not necessarily the how — regarding the change. (How is usually deducible by comparing the file contents before and after the change.)
A good commit message makes it easier for a reviewer — and you — to understand the purpose of the commit later. A good commit message also references the issue ID(s) — or even the requirement ID(s) — that the commit addressed (if applicable).
Don’t Break Builds
Another version control best practice is to avoid breaking builds by doing complete commits.
Provide test cases and at least stubs for new APIs. This ensures every commit is usable by any other member in the team without breaking their build.
A complete commit is easier to propagate between branches. An incomplete commit of an API, for example, might build locally in your work area and pass all tests. But it could break in another team member’s work area.
Back to topFree Version Control + Built-In Best Practices
It's easier to apply version control best practices when you use the right tool. Get started with Perforce version control — Helix Core — for free for up to 5 users.
TRY Helix Core FREE

Do Reviews Before Committing to a Shared Repository
It’s also a best practice for version control to do reviews before committing to a shared repository.
A good commit is often reviewed before merging it to a shared repository. This is done either through a review system or a pull-request.
Reviews are a great way to get another perspective on a change and to improve code quality. Code reviews are also useful to increase code awareness within the team. This also enhances the team’s productivity through code reuse and higher quality of output.
📘 More on code review best practices >>
Make Sure Every Commit Is Traceable
Another best practice for version control is to ensure traceability.
The project should be able to build and pass its test cases before and after the commit. If you notice a bug and want to track down the change that introduced the bug, you usually reset your working environment to a previous time to verify the bug is still there. (This is done either by hand or through some bisect facility.) If previous changes don’t even build, tracing down a bug becomes a lot more difficult.
For security and auditing, you must store the author of the change. You also need to store additional information, such as reviewer comments. A commit is also often associated with a specific issue or new feature request.
Following the version control best practices highlighted here will ensure that each commit can be backed out again if necessary. The best pre-commit reviews and build tests won’t always prevent unintended side effects that appear in later testing.
In such cases, it might be necessary to back out a commit. This returns the state of the project to an earlier time. This operation usually preserves history as well, so that the change can later be re-applied or analyzed and fixed as necessary.
Follow Branching Best Practices
It’s also important in version control to follow branching best practices. So, what is the best practice for branching?
There are many.
Using branches is important for managing releases, new features and bugs. But there can be some challenges in branching. For instance, changes in one branch often have to flow to other branches. This makes it critical to follow branching best practices to avoid merge conflicts, lost updates, and unintentional overwriting of existing changes.
Branching best practices include:
	Try to keep things simple.
	Have well-defined code branching policies.
	Give codelines an owner.
	Uses branches for releases or milestones.
	Protect your mainline.
	Merge down and copy up.

📘 More on branching best practices >>
Protect Your Assets
Another version control best practice is to incorporate the right security measures to protect your assets.
Your version control system is a key repository for your organization. It stores and manages some of the most valuable assets in the company:
	Your intellectual property (IP), which includes source code for applications used internally and/or by your customers.
	Your product designs.
	Export or compliance documentation.
	Your videos, graphics, or images.
	Business documents.
	And much more.

Consider the value of these assets. And consider time and effort needed to recreate them after any potential disaster or the possible risk if they were leaked to a competitor. Then you’ll get some idea of why security should be a major consideration when choosing a version control tool, so you can always apply the best practices.
Best practices include:
	Backup and failover.
	Access control.
	Visibility into activity.

Related Content:
	📘 How to Streamline IP Reuse
	📘 What Is MFA?
	📘 How to Lock Down Git
	📘 SVN Branching & Merging
	📘 7 DevOps Best Practices

Back to topVersion Control Checklist
Here’s a quick version control checklist to use to ensure you’re applying the right version control best practices.
Commits
Applying version control best practices to commits is critical. Here’s what you need to consider.
	Have all commits be atomic, complete, consistent, traceable and with a single intent
	Make changes visible through frequent commits
	Consider how you would use the comments in the future
	Review code before committing to the mainline
	Make commits reversible

Branching
Applying branching best practices is critical to success. But it can be complicated. To reduce the pain (and effort) for your teams, your branching strategy should aim to:
	Optimize productivity.
	Enable parallel development.
	Allow for a set of planned, structured releases.
	Provide a clear promotion path for software changes through production.
	Evolve to accommodate changes that are delivered, perhaps daily.
	Support multiple versions of released software and patches.

Security
Security is another critical version control best practice. Your security plan must consider multiple levels.
	Data: encryption at rest and in transit; specific file and file-type access controls.
	Users: authentication and authorization; integration with enterprise tools.
	Branches and streams: partitioning access control according to the intent of a change— development or release.
	Audit trails: immutable history of all changes.
	Threat detection: using data collected to warn of accidental or malicious risks.

Back to topApply Version Control Best Practices With Helix Core
Helix Core — version control from Perforce — makes it easy to apply version control best practices.
You can use Helix Core to:
	Commit changes atomically.
	Commit files with a single purpose.
	Write good commit messages.
	Avoid broken builds.
	Do reviews before committing to a shared repository.
	Ensure complete traceability.
	Enforce branching best practices with Perforce Streams.
	Incorporate security measures all the way down to the individual file-level.

See for yourself why Helix Core is the best version control tool. You can get started for free for up to 5 users and 20 workspaces.
GET HELIX CORE FREE
Back to top

Brent Schiestl
Director of Product Management, Perforce Software
Brent oversees the version control portfolio at Perforce. He loves being at the intersection of customers and software development teams, especially when there are hard problems to solve. In his spare time, he enjoys spending time with his family, staying active, and anything that has to do with the sport of hockey.

Footer menu
	Products	Plan
	Helix ALM
	Helix Plan
	Create & Develop
	Helix Core
	Helix4Git
	Helix DAM
	Helix TeamHub
	Helix Swarm
	Helix IPLM
	VersIC
	Test & Validate
	Helix QAC
	Klocwork
	Operate, Manage, & Scale
	SourcePro
	HostAccess
	HydraExpress
	PV-WAVE
	Stingray
	Visualization

	Solutions	By need
	Application Lifecycle Management
	Agile Project Management
	DevOps
	Version Control
	IP Lifecycle Management
	Static Analysis
	Audit & Compliance
	Configuration Management
	IT Infrastructure & Automation
	Backlog Management
	Project Portfolio Management
	By industry
	Aerospace & Defense
	Automotive
	Embedded Systems
	Semiconductor
	Energy & Utilities
	Finance
	Game Development
	Virtual Production
	Government
	Life Sciences
	Software

	Services	Consulting/Professional Services
	Consulting Services Overview
	Akana
	BlazeMeter
	Helix ALM
	Helix Core
	Helix QAC
	Klocwork
	Helix IPLM
	OpenLogic
	Perfecto
	Zend
	Training
	Training Overview
	Helix Plan
	Helix ALM
	Helix Core
	Helix QAC
	Klocwork
	OpenLogic
	Perfecto
	Zend

	Resources	Papers & Videos
	Events & Webinars
	Recorded Webinars
	Blog
	Perforce U

	Support
	Customers	Case Studies

	About	Our Team
	Our Culture
	Careers
	Press
	Contact Us

	Partners	Integrations
	Resellers

	Quick links	Free Trials
	Subscription Center
	Customer Support Login
	Educational Licenses
	How to Buy

	

Perforce

Copyright © Perforce Software, Inc. All rights reserved. | Sitemap | Terms of Use | Privacy Policy

Social menu
	Facebook
	Twitter
	LinkedIn
	YouTube
	RSS

Send Feedback

